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ABSTRACT

A comprehensive theory of quasi-phase-matched (QPM)
three-wave interactions in twinned plates of q3m
semiconductors is developed. The 180* phase change required
by QPM is studied by treating the nonlinear polarization as a
bilinear form in the applied electric field and decomposing it
into invariant and sign changing parts under a 2-fold rotation
of an arbitrary crystal lattice. A new 3 X 3 matrix
representation of the third rank nonlinear susceptibility
tensor. is found for all crystal classes. In the 43m -case
the decomposition of this form results in sufficiently compact
expressions enabling the evaluation of the nonlinear
polarization generated by mixing elliptically polarized waves.
The theory shows that use of circularly polarized light is a
factor of two more efficient than the conventional linearly
polarized light.

The predicted 1% second harmonic generation (SHG)
efficiency is verified experimentally for a stack of 6 twinned
CdTe plates in a Brewster-angle immersion cell using carbon
disulphide as index matching medium

While SHG was demonstrated in selected twinned material,
practical implementation requires either routine optical
contacting of large stacks of twinned plates, or the
achievement of controlled twinning during crystal growth. The
brittleness of CdTe renders the former alternative difficult
to implement. The latter alternative, however, is shown to
hold significant promise of success.

CdTe crystals were grown in a sealed Vertical Bridgman
configuration. The systematics of twinning were studied and a
special ampoule was designed that allowed some degree of
orientational control over twin formation. The experimentally
-derived observations, together with information derived from
a literature survey led to the proposal of a new model of
growth interface anisotropy based on the density of dangling
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bonds gi". The 6-lobe v surface for elemental
semiconductors and 12-lobe extension in the polar case both
conform to the general form given by Herring in 1951, and
represent the first calculation of the Q plots in these
crystal systems.

The model is found to explain a variety of phenomena
related to the interface anisotropy including solitary and
lamellar twinning, faceting and etching. In particular, the
higher twinning frequency of "A" seeded polar crystals is
shown to be the result of the low density of dangling bonds
exposed to the melt in t.hat orientation. For elemental
semiconductors, a stability map against twinning is explicitly
given. Although accidental and two-dimensional nucleation
mechanisms are not ruled out, their u'se is not required. It
is concluded that growth twinning represents in general a
response of the advancing solid-melt interface to a change in
the local kinetic undercooling and the orientation of the
solidification front relative to the lattice.

An alternative model. of growth twinning is also provided
for materials characterized by highly-associated melts.
Relatively stable 8-atom-clusters are shown to be capable of
nucleating the observed oblique twins and predict the
existence of a minimal thermal gradient for monocrystalline
growth.

The dangling bond model provides a framework for further
study of anisotropic interfacial phenomena. In particular
further quantification of the lamellar mechanism holds the
promise of controlled twinning for nonlinear optical
applications.

Thesis Supervisor: Dr. C. Forbes Dewey, Jr.

Title: Professor of Mechanical Engineering
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I.1 Back~round

As of this writing, the quarter-century-old field of

nonlinear optics (NLO) may justifiably be said to have reached

maturity. Comercially available frequency doublers and mixers

are used routinely to obtain coherent radiation at frequencies

not readily supplied by existing lasers. Various nonlinear

optical effects have been shown to have applications in

electronics, communications, energy conversion,

photochemistry, spectroscopy, etc. Introductions to the

field, reviews and collections of articles on NLO have been

given by Bloembergen 1965, Baldwin 1969, Zernike and Midwinter

1973, Rabin and Tang 1975, Shen 1976 and 1977, Harper and

Wherrett 1977, and others.

The conversion of coherent light in nonlinear crystals

must overcome the problem of different phase velocities of the

input and output beams. The conventional solution, called

phase-matching, utilizes natural birefringence to compensate

for the frequency dispersion. This approach, unfortunately,

eliminates from the discussion many highly nonlinear materials

with low or no birefringence.

An alternate approach called quasi-phase-matching (QPM)

was proposed in one of the fundamental papers of NLO

(Armstrong, Bloembergen, Ducuing and Pershan 1962), allowing

the use of nonbirefringent materials. In that method, the

continuously changing phase difference between the source and

the output beams is discretely and periodicaly returned to a
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favorable value by suitably modulating the optical properties

of the working material. In particular, the stack-of-plates

implementation of QPM (Bloembergen 1968), which accomplishes

this modulation by rotating every other plate of a stack 1800

about an axis normal to the propagation direction, enjoyed a

flurry of interest in the mid 1970's (Yacoby, Aggarwal and Lax

1973, McMullen 1975, Okada, Takizawa and Yeiri 1976, Szilagyi,

Hordvik and Schlossberg 1976 and 1977, Thompson, McMullen and

Anderson 1976 and Piltch, Cantrell and Sze 1976).

Another way to modulate the nonlinear susceptibility is

through an artificially (Bloembergen and Sievers 1970, Tang

and Bey 1973) or naturally (Dewey and Hocker 1975, Hocker and

Dewey 1976, Dewey 1976) generated domain structure. In

zincblende materials, lamellar twinning provides an example of

the latter structure type.

A rotational twin plane is a two-dimensional crystalline

defect separating two otherwise perfect crystal domains.

Adjacent domains differ in orientation by a 1800 rotation

about the common twin normal. Since atoms at or near the twin

boundary have only minor differences in their environment

compared to bulk atoms, the twin itself does not have any

unusual interaction with the light field. The change in

orientation across the defect, however, acts as a modulation

of the effective nonlinear susceptibility.

The successful demonstration of QPM in rotationally

twinned crystals by Dewey and Hocker (1975) provided the

initial stimulus for this thesis. The primary objectives of

p. 7



the thesis were therefore the development of a theory of

frequency mixing and doubling in twinned materials and a study

of growth twinning mechanisms.

The NLO part is treated in Chapter II. The theory

presented therein supplies a number of new results, with

varying degrees of generality. They include: a more symmetric

form of X(21; a systematic procedure to identify the

quasi-phase-matched portion of the nonlinear polarization; and

quantitative calculations of the effects of arbitrary twin

plane distributions, of stacking twinned plates and of using

elliptically polarized light. The frequency doubling

efficiency predicted by this theory is verified experimentally

in the first demonstration of second harmonic generation by a

stack of twinned plates (Szilagyi and Dewey 1979).

The difficulties encountered in optically contacting the

CdTe nonlinear plates served to emphasize the necessity for

controlling twinning, so that efficient devices could be

constructed without stacking. The need to understand

twinning, however, is even older than the field of nonlinear

optics. Since the performance of many devices is impaired by

the presence of grain boundaries (of which, twin planes are

special examples), the electronics industry has from its

inception had an interest in the control and elimination of

twinning.

The investigation of growth twinning mechanisms is

presented in Chapter III. Cadmium telluride ingots were grown

by the sealed, Vertical Bridgman method. The observed
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systematics of twinning as well as findings from the published

literature led to the formulation of a model of the growth

interface anisotropy. Based upon the density of dangling

bonds at the solid-melt interface, this model is capable of

explaining in a unified way such phenomena as solitary and

lamellar twinning, faceting and etching. The calculation of

the density of dangling bonds as a function of interfacial

orientation is in itself new, constituting the first

evaluation of the / plot in tetrahedrally coordinated

semiconductors.

The large body of evidence available in the literature

supporting the presented model serves to reinforce the view

that growth twinning is a feature of intrinsic materials, thus

obviating the need for explanations in terms of growth

accidents. However, for semiconducting materials with highly

associated melts such as CdTe, a clustering model is also

compatible with the observed characteristics of twinning.

Metastable 8-atom clusters formed in the melt at some

statistical rate lead to the qualitative prediction of a

minimal thermal gradient below which single crystals cannot be

grown.

In addition to explaining various phenomena associated

with interfacial anisotropy, the dangling bond model of

Chapter III also forms a convenient framework in terms of

which future experiments can be interpreted. Moreover, the

model lends itself to further extension and refinement in the

context of crystal growth theory and provides good cause for
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an optimistic outlook in regards to the control of growth

twinnina.
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I.Al Abbreviations

The following abbreviations will be found in the

following two chapters:

Chapter II

NLO . . . . . . . Nonlinear Optics

QPM . . . . . . . Quasi-Phase-Matching

SHG . . . . . . . Second Harmonic Generation

SFG . . . . . . . Sum Frequency Generation

DFG . . . . . . . Difference Frequency Generation

Chapter III

SEM . . . . . . . Scanning Electron Microscope

TEM . . . . . . . Transmission Electron Microscope

GB . . . . . . . Grain Boundary

GBE . . . . . . . Grain Boundary Energy

TPE . . . . . . . Twin Plane Energy

SFE . . . . . . . Stacking Fault Energy

RCP . . . . . . . Random-Close-Packed

In addition, special symbols were used, as follows:

(caret).....for unit vectors

~ (tilde).....for for the Hermitian adjoint operation

Subscripts:

+ . . . invariant under twinning operation

- . . . sign-changing under twinning operation

o . . component along a (twin plane normal)

. . . component parallel to a twin plane
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Superscripts:

+ . . . component along E+

t . . . matrix transposition

' . quantity evaluated after a rotation operation

Note that negative vector components are interchangeably shown

with an overbar or a minus sign. Commas are occasionally used

to separate the components of row vectors.
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I.A2 List of f ijures and tables

FEiaures

Chapter II

5.1 Crystal coordinate system and angle definitions

7.1 Euler angles (after Messiah 1966, Fig. XIII.l)

8.1 Relation between the fundamental (?) and second harmonic

(p) polarizations for (111) propagation

10.la Effective number (M) of ideal plates vs. the actual

number of optically contacted plates for various phase angles

= 180*r /1 c
b Effective number (M) of ideal plates vs. the actual

number of coherence-length plates immersed in medium with 1 "

29 pm for various spacings

11.la Argand plot of SH field in twinned crystal

b Argand plot for portion of the crystal selected for

exoeriment

11.2 Brewster angle immersion cell (schematic)

Chapter III

3.1 Vertical Bridgman crystal growth set-up

3.2 Growth assembly

3.3 CdTe crystal grown by the Liquid Encapsulated Bridgman

method

a Last to freeze region ("meniscus")

b Laue back-reflection from "meniscus"
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c IOOX SEM of etched "meniscus" showing crack

d X-ray energy dispersive analysis of "meniscus" showing

segregated tellurium

e 59X SEM of etched, twinned CdTe boule 2mm below

"meniscus"

f 110OX SEM of etched twin boundary showing origin of

visible grain contrast

g External grooving (scale divisions .01 in. apart)

3.4a Graphite mandrel

b, c Etched CdTe boule viewed from opposite directions,

showing preferential alignment of lamellar twins

3.5 Etched axial cut through CdTe crystal. This boule did

not wet the quartz ampoule

3.6a Etched axial cut through nearly single CdTe boule

b (110) pole TEM electron diffraction (courtesy J. Nakos)

5.la Nearest neighbor tetrahedral coordination showing

important crystallographic directions

b Projection of nearest neighbor tetrahedron onto the

{110} plane

5.2 Typical dangling bond configurations of interfaces with

normals in the (110) zone

5.3 Density of dangling bonds vs. interface orientation

(polar plots)

a Normals in the (001) zone

b Normals in the (110) zone

c Normals in the (111) zone

5.4 Constant density of dangling bonds contours in
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stereographic projection

a (001) zenith

b (111) zenith

6.1 Etched Si single crystal (from Lee 1969)

6.2 Cusp at advancing interface, due to anisotropic growth

kinetics. The density of dangling bonds for the two grains is

shown in a polar plot. The kinetic undercooling is indicated

qualitatively

6.3 Qualitative external faceting behavior in elemental

semiconductors

a Definition of interface curvature

b, c, d Sequence of boule cross sections as a function of

interface curvature

6.4 Effect of oblique (111) twinning on the density of

dangling bonds for a (111) seeded crystal. The composite

curves select from the two crystal orientations the one with

the higher density of dangling bonds

6.5 Effect of twinning on the density of dangling bonds for

a (001) seeded crystal

6.6 Stability map against twinning; a

density-of-dangling-bonds composite surface for a (001) seeded

crystal and all of its first-order twins (projection of the

3-dimensional surface onto the {001} surface)

6.7 Stability map against twinning; shows preferred twin

operations and stable regions vs. interface orientation

7.la, b First to freeze portion of CdTe boule showing

relatively uniform lamellar twinning
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7.2 Initiation of a twin lamella from a twin boundary

(schematic)

a Cusp at solid-melt interface due to orientation

difference across twin boundary

b Nucleation of second order twin including a high energy

boundary

c The favorable orientation of the new grain gives it a

lower kinetic undercooling

7.3a Atomic model of the thinnest (3 double layers) twin

lamella allowed by crystallographic constraints

b, c Etched CdTe surface showing an example of a twin

lamella (courtesy B. Fabes)

7.4a Lamellar twinning with accute dihedral angle towards the

melt

b Lamellar twinning with obtuse dihedral angle towards the

melt

8.1 Density of dangling bonds vs. interface orientation for

a polar semiconductor with E - 1

9.1 8-atom twin nucleus with an average of 1.75 dangling

bonds per atom

9.2 Initiation of oblique twin at 8-atom cluster

9.3 Crystallographically allowed oblique twin planes

9.4 Stability region (cross hatched) against twinning in

thermal gradient vs. growth rate space, as predicted by the

clustering model

9.5 Filling factor (ff) (or packing fraction) vs.

coordination number (n)
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Tables

Chapter II

7.1 Calculation of the nonlinear polarization with all

fields expressed in terms of the "natural" coordinates

Chapter III

9.1 Average number of dangling bonds per atom for small,

tetrahedrally coordinated clusters

9.2 Relative volume change on melting

A2.1 Transformation matrices for first and second order

twinning

A2.2 Cubic and tetrahedral directions after first and second

order twinning

A3.1 Filling factors for simple crystal lattices
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I1.1 Introduction

The enhancement of nonlinear optical processes by

quasi-phase-matching (QPM) was first proposed in 1962

(Armstrong et al. 1962). Its implementation in rotationally

twinned zincblende - type crystals forms the subject of this

chapter.

The second-order nonlinear optical (NLO) phenomena of

second harmonic generation (SHG), and sum and difference

frequency generation (SFG and DFG), may be treated using

Maxwell's classical equations of electrodynamics. In NLO

materials, the constitutive relations supply a nonlinear

polarization source term to the usual wave equation. After a

number of approximations (see e.g. Byer and Herbst 1977; also

Appendix Al) the wave equation for the electric field

amplitude E3 radiated at frequency W is simplified to

a3
(1.1)

where a is given in Eq. (Al.12) and ak is the wave vector

mismatch. The phase - matching condition

= 0(1.2)

results in monotonic change of the useful radiated field. In

particular, appropriate initial conditions will cause 73 to

increase continuously until complete or maximal conversion is

achieved.

If A k # 0, ~Z3 changes sinusoidally with a half

period (coherence length) 1c given by

p. 24



TT

(1.3)

The QPM method (Armstrong et al. 1962) consists of

using Eq. (1.1) only when E3 is on the increasing half of

its period. Thus, ideally, just as the phase factor has

changed sign (or Akr has reached the value 7r ) one would

like the polarization P to change sign as well, thereby

restoring the growth ability of ~

The stack - of - plates method (Yacoby et al. 1973,

McMullen 1975, Okada et al. 1976, Szilagyi et al. 1976 and

1977, Thompson et al. 1976, Piltch et al. 1976) uses the above

prescription almost unaltered. But useful nonlinear effects

do not always require the above conditions. As long as the

rate of change of E is more often positive than negative,

we can expect substantial growth over sufficiently large

optical paths. Crystalline defects, naturally occuring in a

random or quasi - periodic manner, can also produce an

enhancement of the nonlinear optical properties. Among such

defects, rotational twinning was first proposed by Dewey et

al. (1975) and Hocker et al. (1976) and is now considered to

hold great promise as a convenient frequency conversion tool

(Dewey 1977 and Szilagyi et al. 1979).

The sign changes required by QPM are first treated quite

generally in Section 2. Also independent of crystal class is

a new form of the nonlinear susceptibility (Section 3) which

enables a more systematic handling of transformations as well

as of the subsequent development. In the 4 3m class the

decomposition of the nonlinear polarization into invariant and
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sign-changing components under the twinning operation is

carried out both algebraically and trigonometrically (Sections

4 and 5, respectively). Frequency mixing in the same system

is presented in Section 6. The treatment is expanded in

Sections 7 and 8 to include doubling and mixing of general

elliptically polarized beams. The cummulative effects due to

twinning and to stacking of twinned plates are dealt with in

Sections 9 and 10, respectively. The experimental

verification of the SHG efficiency in an immersed stack of

CdTe plates is described in Section 11. Among the conclusions

of Section 12 is the necessity for an investigation of

twinning as a growth process, with a view to its eventual

utilization in the production of efficient nonlinear optical

devices.
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11.2 Si2nc haesin the nonlinear-2olarization

To simplify notation, we now drop the superscript

identifying the frequency of the fields.

All of the original suggestions for sign reversal (e.g.

Armstrong 1962) involved operations that reversed the sign of

E. They were based on the observation that

3-E =._ dAE; E,
(2.1)

being cubic in the electric field, will necessarily also

change sign.

While this suggestion did serve those configurations

where the component of a SH polarization in the plane of

incidence of a laser was of interest, it did not cover other

components of P, nor those mixing experiments where the

fields are non-collinear. The need addressed in this section

is to provide more general and systematic ways of effecting

these desirable sign changes.

We begin by considering those transformations which

reverse the orientation of a vector, and are also

experimentally accessible. The surviving operations are only

solid body rotations (since inversions and reflections cannot

be physically carried out). The rotation angle is 1800 about

an arbitrary axis 8.

A vector ~A' can be decomposed in parallel ( ) and

normal (A ) components

- A(2.2)
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such that

A 
a ri

0 X x (2.3)AjaC? 4A,)
After rotation, the perpendicular component changes sign

1 ~ A(2.4)

It will be convenient to regard the nonlinear

polarization P as a bilinear form
3

(2.5)

where T are the unit coordinate vectors. Then for second
p

harmonic generation (SHG)

P - P e P(, Ej (2.6a)

and for SFG (with obvious extension for DFG) of fields " and

H

- GI (2.6b)

For definiteness we specialize to the SHG case. The

application to mixing will be readily apparent in the

development which follows.

Proceeding as in Eqs. (2.2) - (2.4) we separate P in

components:

P= C + ( P. )(2.7)
The polarization P' after the crystal rotation, can be

expressed in terms of quantities pertaining to the unrotated,

or laboratory, frame as

P = {E&--) t ---a [E EA ) (2.8)

Using the bilinearity of P as expressed in Eqs. (2.5) and

(2.6a) it is clear that P may be written as a sum of an
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ivit m awhich changes sign under theinvariant term P~ and a term P-
180* rotation:

+ - (2.9a)

P P4P P P<.b+ + (2.9b)

where

(2.10a)

-- Al 14 ..E ( 2 . 1 0 b )

Note here that we have chosen to simplify the notation by

assuming a susceptibility tensor symmetric in the last two

indices. This in no way restricts the generality of the

method, which could just as easily be carried out retaining

...1P -- ) instead of the factors of 2
both permutations of (E ' E
in Eqs. (2.10).

A more detailed evaluation can be carried out for P y

using definition (2.3a) and bilinearity, and expressing a

perpendicular component in terms of the full, unrotated field

less its (invariant) component along S.

-~~ --A'( AY) A Ac"~()
(2.11)

p can be evaluated in the simplest way by combining Eqs.

(2.9a) and (2.11) and solving for P

We are now in a position to state under what conditions

the component of P along an arbitrary unit vector A (fixed

in the laboratory frame) will change sign after the crystal

rotation:
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A (42.(i )j2 ( g
-) A * (2.12)

The primary result of Eq. (2.12), namely that for E fields

in the plane normal to the rotation axis, the P component in

that plane changes sign, could also have been obtained

directly from the definition of P and parity considerations.

But Eq. (2.12) and indeed, the development of this entire

section retain far more generality. Not only are we not

limited by a geometrical configuration, but the crystal class

itself remains unspecified. As mentioned above, mixing could

be accomodated with equal facility. Moreover, the same method

could be used to treat nonlinear polarizations of any order

(e.g. in the nth order we would handle a n-linear form, the

rest of the argument obtaining identically).

Applications of the above results exist in a number of

areas even before further development. For example, in the

stack-of-plates method of QPM using Brewster angle incidence,

it is the component of P in the plane of incidence that is

of interest (A - E). The only a which is perpendicular to E

and maintains the plates at the Brewster angle, is

perpendicular to the plane of incidence.

A second example is at the heart of this thesis.

Rotational twinning such as occurs in zincblende type crystals

is equivalent to a 180* rotation of the crystal lattice on

opposite sides of a {111} composition plane. It is easy to

see that for propagation in a direction normal to the twin
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plane, the component of P parallel to such planes will

change sign from domain to domain.
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II.3 The new form of 2)

There is one more result to be derived before

specializing to our crystal class.

For SHG purposes the nonlinear polarization P is

customarily written in the Miller notation:

(1 dZIt lZ dzi \

d z, d d d d E

2, (3.1)

This formulation takes advantage of the symmetry dijk-dikj
(for SHG). This form is convenient for listing the relevant

non-vanishing coefficients in the various crystal classes. we

have found that for certain computational purposes and for the

physical intuition Eq. (3.1) may be cast into a more

convenient form:

d.

(3.2a)

E%0, ID E <3.2b)
Thus we can avail ourselves of the well developed theory of

quadratic forms (or bilinear forms for SFG or DFG). For

p. 32



example we may want to maximize the component of P along

some vector A. We write

where ED is a matrix-vector (i.e. a vector whose three

components are each 3X3 matrices). This reduces to the

standard problem of maximizing a quadratic form, or

diagonalizing a 3X3 matrix. Eqs. (3.2a,b) are also very

useful when we need to investigate the rotational properties

of P (which are by no means clear in the form of the 3*6 and

6*1 matrices of Eq. (3.1)). Thus the operation of rotation of

the crystal with respect to a lab frame is written as the

transformation of the crystal axes .

(3.4)

so that the E field components transform like

(r . (3.E5)

2' d(3.6)k
where R kis a t hree dimensional rotation matrix.

The polarization P in the rotated system is

E 
E

I (3.7a)

- (3.7b)

Or, in terms of the unrotated (lab) frame
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(3.8)

where

Eq. (3.9) plus the definition of Eq. (3.2b) give us the

transformation properties of the nonlinear coefficients in the

Miller notation under rotation of the crystal axes.

For the present investigation, the important crystal

class is 43m . Here the matrix-vector ID is
A.

0 L
A A

o
(3.10)

L Z

For ready reference we list ID correspoding to the various

crystal classes in Appendix II.A2.

As we shall see in the next section, Eq. (3.10) and the

results of section 11.2 are very advantageous tools for the

detailed evaluation of the nonlinear polarization.
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11.4 Algebraic decomposition of P in the 4 3m class

According to the results of Eqs. (2.9b) and (2.10a) we

need to evaluate

S)4- P(4.1)

As mentioned above, in the sphalerite or 4 3m crystal

class twinning takes place with an effective rotation axis

A .S-- (1)1)) /(4.2)

Recalling the decomposition of Eqs. (2.2) and (2.3) we write

the unit coordinate vectors f. as

(4.3)

where

V6 13 d(4.4)

(e.g. v -- - c.

We refer to v. as the "three-fold" vectors.

Also by way of definition we now distinguish between two

kinds of vectors: the physical ones, pointing in definite

directions in real space, and the abstract (contravariant)

ones which are sets of components constituted in row or column

matrices for the purpose of matrix multiplication. For an

observer rotating with the crystal, a contravariant vector

describes the apparent position of an object fixed in the

laboratory coordinates. The abstract vectors are denoted by

special bold face symbols as in the following example:
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27 (4.5)

Rotating the crystal axes by means of the operator R as in

Eq. (3.4), changes the E field components according to Eq.

(3.6). Then Eq. (4.5) becomes

(4.6)

That E is invariant when the crystal is rotated should be

expected since E is fixed in the lab. Its components

however transform as shown.

With these preliminaries out of the way, we proceed to

decompose E and ID into components parallel and

perpendicular to &:

Ar A.4

A j A. (4.7)

( 8
AA

AA

0 AA

(4.8b)

- 4 -(48c)+ dl .8

Similarly we define a lower case polarization p by

P (4.9)

We have found that subsequent calculations are

significantly eased by introducing a compact notation for the

susceptibility tensor d... We do this by subtracting the
12
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quantity

A

4L dz (4.10)

from each matrix element of di

(A
(4.lla)

V-3 (4.11b)

(4.11c)

It is convenient to examine the effect of sandwiching each of

the two orthogonal components of d between two arbitrary

vectors A and 1B

Ad B Ad 3(3A 3 A-.)J)
(4.12a)

A :-rj 3L+(4.12b)

In this last equation we have used the form of the

perpendicular component of a vector given in Eq. (4.7).

Simpler forms are obtained in a few instances when one of the

vectors has only a parallel or only a perpendicular component

to a:

(4.13a)

(4.13b)
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(4. 13c)

--1FA
(4. 13d)

(4. 13e)

With these results, evaluation of Eqs. (2.10a and

longer presents any problem. The former

'P

r3

cFZ- 03

-3

while the latter becomes

zf~(~)
(4. 15a)

Z -L >
Using Eq. (4.12b)

F3 it j 4

The quantity in parantheses will be recognized as

of the E

the negative

field component in the rotated crystal coordinates:

-(
-3A2E. E.'(LJE

is obviously invariant under the

(4.16)

1800 rotation,

p. 38
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(4.14)

+ 2.
V"-d ((L

3 (4.15b)

E

so that

f~-
Since EAE' j

JZ --- a )

lb 

(

___-w

ell E-Lr
--.. b

FZII F-L
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changes sign when viewed r ,

has now come to deserve its label as the sign changing part of

the nonlinear polarization.

To sum up

El 3L (4.17)
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11.5 Trionometric evaluation for 5MG

We will base the calculation of the nonlinear

polarization on the geometrical configuration of Fig. 5.1

The orientation of the unit internal electric field vector can

accordingly be written

Vos +(5 .1a )

where

If we define (j as the azimuthal angles of the coordinate

axes when viewed from a system with a as the polar axis, we

also have

- d(5.lc)
where

such that

Substitution into Eq. (4.16)

Evaluation of o. -7 (.

From Eq. (5.la) , we express

A A

V-3 d

immediately results in

A

(Eq. (4.16)) is more d

E. and E' as
-I

(5.2)

ifficult.

(5. 3a)
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fA/

:J*
4

-d
(5.3b)

while

A

(3~4

Substitute

-~- 2
- L7~

(5.4)

Eq. (4.16) and collect terms{ A
2.

(5.5a)....

(5. 5b)2.

where - ) is a Legendre polynomial

and . are the angles between u and the unit vectors 5.
J

Let us now use the addition theorem for the associated

Legendre p

Pe ((0 S )z

A% z

olynomials P

PC

(see e.g. Schiff 1968, p. 258):

P (<.05e) +.

P(Cosle 0 5(4 (, y4Q
Here 6. q i are the polar coordinates of the two

vectors whose scalar product is cos G. In our case,

a as z axis

(Co 5 P, (j)P (0)42

P ( 3)fl( cosz(e~.-Y)]
(5.6)

With Schiff's definitions (p.

&t 3 (I 5 - C
so that

0519

zc~z

79-80, op.

P22: I- CE &

cit.) we have

and the only surviving term in

p. 41
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( -2)1

- (/j /, 1) j

P0 -. )

P2(o s , (3((,5r

PI Y eP A s

A. -.1 A

lid 3

(Cos 9.)

(L. ) PI eOs ~(4p ,. - )4



Eq. (5.6) is the last one:

coS - 2.3. S 2_ . 2(s 2- )

With this result Eq. (5.5b) begins to look m

-~ 2 A~T/fJ 0 eV--

(5.7)

ore manageable:

(5.8)

But

C C6d
(P. -Zf COS (3q ((d,)

since

Recalling expression (5.lc) for 0( ), we finally obtain

We record here the combined form of Eqs. (5.2 and

- ios P( s+ P2 (sC (2t

z~J~((3~s~3 V2~

4 ( j

(5.9)

5.9):

(5. 10a)

(5. 10b)

The reason we were able to express p in terms of the

associated Legendre functions is that the latter (actually the

closely related spherical harmonics Y ) are basis functions

for an irreducible representation of the rotation group. The

1 = 2 value is a direct consequence of the presence of two

powers of the electric field. The discussion for higher

p. 42
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orders of nonlinearity proceeds along the

In hindsight,

- -

- I(.,

1/3

a change of

-1

of!

17l

coordinate

-vi AC

#2
I
3

would have straightforwardly lead to the

variety we now display it

p.:
Zee( E

:. L~- 1(K

same result. For

in two different ways:

( .12a)

y2 i) 4V(4 e E 2 (5. 12b)

The spherical harmonics Y

be

2

y2

327T

c OSZ

5 1,. J7

in Eq. (5.12b) are defined to

U

t L CP

(5.13)

£

while the circular polarization unit vectors

p. 43
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system

or

(5. lla)

'4.'

S (5. 11b)

are

same lines.

C3

/F 
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+- Z t - ) (5.14)

An interesting feature of our result (5.10) is that rotating

the crystal around the three-fold axis a while keeping E

fixed in the lab gives the nonlinear polarization p two

counter-rotating components (ignoring the constant along a

itself). One of the components is locked in angular phase

with the fundamental, while the other counter-rotates at twice

the rate with respect to the crystal or three times as fast

with respect to the lab. We see that a 7T/3 crystal

rotation turns the latter component by 7 with respect to

its initial lab position. For (1,1,1) propagation (cos

0) the only radiating component is this term which will change

sign across the twin boundary, as required for

quasi-phase-matching.

Equation (5.10) also shows that the magnitude of the

radiating polarization is independent of the angle when

propagation is along the three-fold axis (EJa and it is given

by

(5.15)

The magnitude of the total polarization is readily obtained

from Eq. (5.10)

(5.16)

For (1,1,1) propagation this becomes

If* I:E (1o = (5.17)
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From Eqs. (5.10b), (5.15)

polarization revolves on a

with a cone half-angle 6)

and (5.17) it is clear that the

conic surface coaxial with (-S)

of

( a c f s- ^_'(.*fCo s

and which contains the three (-l,100)

the simplified expression

~O~Ezf~C4 4q)

type axes. In fact,

(5.19)

shows that

24
-E

(5-20)

and

70 fic'fr coq (5.21)

or

Thus, whenever E is along one of the six (0,1,-1) type

axes normal to & , the radiated field will be normal to the

plane of incidence, and could then be efficiently filtered out

using a Brewster angle window.

Similarly, Eq. (5.19) shows that the radiated field

p. 45
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would be in the plane of incidence whenever q .q i.e.

when is aligned with one of the six (2,-l,-l) type axes

normal to S.
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11.6 Fr esu enfcx mixing

Assuming for simplicity that the symmetry of the second

harmonic susceptibility tensor is retained by a second order

mixing process, the nonlinear polarization at the mixed

(output) frequency pM is

{M : , )2 7iH, P=2(6.1)
Equations (4.12) and (4.13) come in handy again and with no

further complications we obtain

1Z L)(6.2a)

NJJ j d (

Defining and as the polar and the azimuthal

of H in the manner of Eqs. (5.1) we also readily a

the trigonometric form of :

-- 3osyos - (o GS/sin FS coS a-

6 .2b)

angles

rrive at

[Cos 5 r SuqjvaOW 4 C'Os V5c IA a(J (6.3)

To calculate pM we will use a different, more direct

method than that of Section 11.5. We substitute

EtL L. ( ( S Ss - (6.4a)

and

3' Ck5 
(6.4b)

in the expressio'n for j(Ej ,H ) arising from Eq. (4.llc)
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The term multiplying the "1" of (1-,) gives a null

result since it is proportional to

The remaining term is

Write the product of cosines as

[Cos 4 - e

and notice that the second term will multiply something

proportional to

leaving only

inside the summation. Now

But according to Eq. (4.7) the summation is V(3/2 times

the perpendicular part of a vector whose components are

This is none other than d(-{f-1r) (see Eq. 5.lc), i.e.

(6.6)

since 0 is perpendicular to A by definition.

To summarize

EW2Cos ,St's Sciy CVS
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(6.7)

The major results of Section 5 also hold for mixing.

Propagating along (1,1,1) ( - V 7T /2)

(- (6.8)

Here again the magnitude of the radiating polarization is

independent of the azimuthal angle of either field. However

the total polarization does depend on the angle between the

two planes of incidence -

3, (6.9)

It is noteworthy that when the mixing fields are mutually

perpendicular ( - 7T/2), p - 0 which could already

be seen in Eq. (6.2a)

If E |1 H (1/2 )FM reduces to the form of Eq. (5.19)

so that once again the radiating polarization may be made

normal to the common plane of incidence by aligning the field

with a (0,1,-l) type axis.

A different approach to the whole topic of mixing stems

from the observation that the nonlinear polarization is a

symmetric bilinear form (p(E,H) - $(1,E)) . By defining two

new independent fields F and G as

(6.10a)

(6.10b)

the polarization can be expressed in the explicitly symmetric

form of the second harmonic:
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(6.11or

Having succeeded in expressing the mixing as a superposition

of second harmonic polarizations, all of the results of

Sections 11.4 and 5 can be taken over intact, with the

proviso that the "fundamentals" F and G are the averages

of E with H, and E with (-H) respectively.

One final observation: letting E = i in Eq. (6.1)

cannot recover the second harmonic expression but rather twice

that. This famous factor of two is often referred to as the

permutation degeneracy and introduced ad hoc to yield the

correct result. It may however be understood in light of the

fact that in the degenerate case the second harmonics of each

individual field must be added in as well, resulting in four

times the single field SHG value. But this is as it should

be, considering that in this case the fields add coherently

and we are really looking at the SHG of a field twice the

strength of the original one.
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11.7 E-l-i2 £i--a-IIX-2 0larized fundamental

An interesting and useful generalization of the preceding

theory obtains in considering the case of circular and

elliptical polarization. Practically, such fundamentals can

result anytime linearly polarized laser light is subjected to

total internal reflection (viz. Born and Wolff 1980, section

1.5), or passed through a 6-wave plate. Heuristically, this

situation can be shown to be desirable by recalling the

dependence of the nonlinear polarization on the electric field

strength. In linearly polarized light the field undergoes

oscillations with a resulting rms value down a factor of /7

from the peak. The rms nonlinear polarization is then half of

its peak, and the rms SH intensity only a quarter of the value

corresponding to the maximum fundamental field strength. By

contrast, with circularly polarized light, the fundamental

field describes a helix of constant radius equal to the peak

field strength, resulting in four times as much SH intensity.

Normalizing to the same fundamental intensity, the SH

intensity is still twice that of the linear case. In this and

the following section we will put these ideas on a

quantitative basis.

Consider an arbitrary cartesian coordinate system OXYz.

Denoting the usual phase angle by

4 Z -(A) (7.1)

a general elliptically polarized wave propagating in the Z

direction may be described by means of its real electric field
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v e c t o r : ( .A

Linear polarization obtains for b-O , while a-b implies a

right hand circularly polarized wave (conforming to the

optical handedness definition; this corresponds to

left-handed screw motion). In complex form Eq. (7.2) reads

(cr<-L (7.2b)

or

G X 6 Y (7.2c)

The complex circular polarization unit vectors are

S-.)left-handed (optics) (7.3a)

- right-handed (optics) (7.3b)

(In what follows we will use the handedness definition

customary in optics). Equations (7.3) are easily inverted:

4- (7.4a)

(7.4b)

In terms of the epsilons, the complex E amplitude is
q46 A 4,bA

E V 6 4- <7.s)

i.e. our field can also be conceived of as a superposition of

unequal, counter-rotating circularly polarized fields.

In cgs the instantaneous light intensity is

-)(7.6a)

while the measurable rms value is

< > (7.6b)

With the elliptically polarized field of Eq. (7.2)

-s (77)

which illustrates the factor of 2 variation in intensity as
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the state of polarization changes from linear (b-0) to

circular (b=+a).

It is convenient to describe an arbitrary propagation

direction Z in terms of its deviation from the preferred 2

- (1/.,3)(l,1,l). Figure (7.1) shows the use of the Euler

angles c(, 8 and ) (after Messiah 1966, Fig. XIII.1) to

parametrize the departure of the OXYZ from the Oxyz system

previously defined in Eqs. (5.lla). The rotation matrix R

which connects the two systems

(7.8)

(Z ('

is conveniently found in Messiah 1966, Eq. (C.45) in terms of

the Euler angles:

CO~fv4 WoQ' Si ksu -0 "CS5Sq

cosYco sq+s s -co'cegqS pYI
(7.9)

-- C-05 S5 /3 (05

Furthermore, if we denote by M the unitary matrix

M o(7.10)

4 ( 0 c (/E'

arising from Eqs. (7.4), the transformation between circular

polarization coordinate systems is

(. E
=M M (7.11)
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The tilde stands for the Hermitian adjoint operation

(transposition and complex conjugation), and the lower case

epsilons serve the circular polarization functions in the

Oxyz system. The transformed matrix

2

(7.12)

looks very much like the transformation matrix for the

harmonic polynomials rY which the unit vectors ' 2

and z , formally resemble.

The reason for invoking the foregoing mathematical

apparatus becomes apparent when the connection is seen between

the circular unit vectors and the positive "cubic" lattice

directions (100), (010) and (001) (labeled by t.). A
)

straight forward application of Eq. (5.11b) in conjunction

with the definition of the epsilons reveals the following

convenient expressions
A f_ " .1) t:C4

4 - er -

A 31/ e

(7.13b)

These we shall employ to advantage in complicated equations
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such as (4.17)

A significant part of the earlier formalism has relied on

the decomposition of vectors in components parallel and

perpendicular to 2 - 8, the three-fold axis of the 43m

system.

r=~

The values of E , E+ and E~ are

(7.15a)

S ) C(7.15b)

L()(7.15c)
The SH polarization is still described by the formulae of

Section 4, but now the electric fields therein must be

construed to be the complex quantities described in the

present section. For example, E2 of Eq. (4.14) is seen from

Eq. (7.14a) to be

L =2. E + E~j£ (7.16)

since

(7-17a)
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and

O+
(7. 17b)

(Note that the + superscripts refer to the circular basis,

whereas as subscripts, they refer to sign changing of

invariant components under the twinning operation).

....- under
we have found that the evaluation of p+ and p_

P+

these circumstances proceeds most efficiently by extending the

simple results of Eqs. (4.13) to circular polarization. Using

expression (7.13) for the circular unit vectors and the

following indentities

(7. 18a)

and

-.:./ (7.18b)

it is straight forward to derive the results listed in Table

7.1. Since any vector can be expanded in the circular basis

(as in Eq. (7.14a)), this table plus the bilinearity of i"'

enables us to evaluate any doubling or mixing nonlinear

polarization. Thus for SHG p+ is simply

(7.19a)

(7.19b)

(see Eq. (4.14) for comparison) and

5 . ) E_(7.20a)
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-fE, (7.20b)

Note that in arriving at Eqs. (7.19) and (7.20) we have made

no assumption concerning the orientation and state of

polarization of the fundamental. They can still be chosen

arbitrarily by giving values to the Euler angles as well as to

the a and b amplitudes.

To obtain the state of polarization of the SH wave we

must now transform back from

tA

Z 2

We can read off RR from Eq.

'( e (Ct o

r V-Z g-6tr
e se

o + -z to the 0 C-2

- (7
+E

ZA
z(7.

(7.12)

q(7.

In the symbolic notation of Eqs. (7.19b) and (7.20b) the

nonlinear polarization radiating at frequency 24) in the Z

direction is

fjd I).fII qe ;J A72

(7.23
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Of these four terms, the latter two (arising from the sign

changing term of the nonlinear polarization) will tend to

build up as the wave progresses through the twinned material.
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11.8 (...11111_2 2 2 2 tion

Intriguing as it may seem, prad of Eq. (7.23) is much

too general - and therefore complex - too extract physical

insight from. Much more can be said, however, if we let Z -

2 in Fig. (7.1). Then, using our definition (5.lb)

^- L os CO((SS A (q+- )
(8.1)

where

In the Oxyz system, 7 is written

S( CoS~f Los(~5 sia)e aT$sLst4 5 sees 4

E ^(8.2)

which shows the superposition of unequal, counter-rotating

fields. As in Eq. (7.2c) the complex amplitude is

CAA -- LA f

(8.3a)

V~a 6 4 +- C- (8.3b)

The components of E in the 0 + system (Eqs. (7.15))
are much simpler

(8.4a)

it '

4z (8. 4b)

V2, (8.4c)

as well as those of (Eqs. (7.19))
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(8.5)

and of (Eqs. (7.20a))

|-b 7 Zi ('( - -. typ(1)( e E
To find the rectified polarization, we go back to Section 4

(keeping in mind a different value for the susceptibility),

and in each quadratic expression in the electric field we

replace one of the powers by its complex conjugate. Thus, Eq.

(4.14) will read

f+ r a I'C" / ' 1 -3 ' E-(8.7)

It does not matter which of the factors is conjugated, since

for the final expression only the real part remains. For

(111) propagation Eq. (8.7) simplifies to

V 3 /(8.8)
Similarly, using the results of Table 7.1, p of Eq. (4.15a)

is changed to

_-&: f~Zt f1 A14' /~z,~~9

The total real time dependent nonlinear polarization is

(8.10a)

Z( polar 4 Viz-ation
(dc polarization)
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- W -' cc5? Z-

(longitudinal wave)

(radiating polarization)

(8.10b)

Equation (8.10b) reveals a number of interesting properties.

Firstly the radiated field must in general be elliptically

polarized and may be described as a superposition of

conter-rotating circular fields. When the fundamental is

circularly polarized (a=+b) the SH wave will be likewise.

The input and output, however, have opposite handedness as has

been previously pointed out (Simon and Bloembergen 1968).

In the linear case (b-0) the amplitude of the ac part

reduces of course to the form of Eq. (5.19)

(8.11)

since

A right-handed fundamental (b-a) leads to a SH polarization

(8.12)

The relationship between the instantaneous orientations of the

fundamental and the SH fields is depicted in Fig. 8.1 (there

is no significance to their relative magnitude in the

picture).

We are now in position to compare the efficiency of

linear and circular polarizations for SHG. To do so, a
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linearly polarized fundamental

4() =aL(4 M Co-? (8.13)

is used firstly "as is" and secondly after passage through an

ideal (no losses) quarter wave plate

V1 (8.14)

In the first case the radiated polarization is

(8.15)

while in the second case

2- V aL (8.16)

It is seen that, although the modulus of p is the same in both

cases, the rms nonlinear polarization is 2 greater in the

circular SHG. Consequently for equal input intensities, a

circularly polarized fundamental would produce twice as much

SHG intensity and conversion efficiency as its linear

counterpart. This finding has apparently not been previously

noted.

Frequency mixing of elliptical waves has analogous

properties and is dealt with in Appendix A3.
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11.9 Summation over twinned domains

In Section 1 the governing equation (1.1) for the second

order field 23 (see Appendix II.Al for derivation) was given

to motivate the developments in subsequent sections on the

sign-changing polarization components. This equation is

equally valid for SHG and mixing (SFG and DFG) when the

appropriate polarization is used for P3 . In the small signal

approximation (II.Al) Eq. (1.1) integrates to

(9.1)

To avoid excessive handling of constants we now define a

lower-case field 3 to parallel the definition of the

lower-case polarization V3

C46q (9.2)

so that Eq. (9.1) becomes

:'(e -eL (9.3)

We can apply solution (9.3) inside any homogeneous region (p3

- const.) such as the nth domain of a lamellarly twinned

crystal, beginning at the (n-l)th twin plane (r ) and ending

at the nth twin plane (r ):

(9.4)

If we now sum Eq. (9.4) over all domains j from 1 to n, the

intermediate e fields drop out:
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(9.5)
The reason we chose to group terms of equal phase together m

already be apparent if one recalls the separation of p3 in

an invariant and a sign changing part (e.g. Eq. 4.17):

( 9 3

Then the coefficient of each such phase factor in Eq.

recognized to be

or 4~~

This equation contains all the features of

quasi-phase-matching. The simplest way to see this is

idealize each domain thickness as a coherence length,

Then Eq. (9.7) becomes

3 
e e()

(9.5) is

9.7)

to

i.e.

9.8)
'-I

With an even number of equal domains, Eq. (9.8) shows that

only the sign changing part contributes. For a large n this

is true regardless its parity. In both cases the nonlinear

field is proportional to the number of domains n, i.e. the
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intensity is quadratic in n.

If we take each domain to be an even number of coherence

lengths thick, Eq. (9.4) already says that there is not any

net gain in the nonlinear amplitude regardless of the number

of domains. A more complete analysis of Eq. (9.7) in the case

of equal domains was given earlier (Szilagyi, Hordvik and

Schlossberg 1976).

Consider now a more general distribution of domain

lengths. Eq. (9.7) still allows the statement that for an

even number of coherence lengths the first two terms cancel

identically and -' is still the only survivor.

It is worth emphasizing that none of the results in this

section have depended on properties peculiar to any one

crystal class. In other classes ~e3 would have been defined

so that Eqs. (9.3 - 8) would involve the full nonlinear

polarization instead of being rescaled by the nonlinear

susceptibility coefficient. However, in the 43m class the

preceding sections have obtained simple forms for the various

nonlinear polarization components.
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11.10 Stackin2_of twinned-2lates

The creation of artificial regularly twinned structures

must await the development of the ideas presented in Chapter

III. In the meantime, naturally twinned material may in

principle be employed more effectively by stacking plates

diced from the same plane-parallel piece. Initially proposed

by Armstrong, Bloembergen, Ducuing and Pershan 1962, the

stack-of-plates method has been implemented experimentally by

a number of workers including Franken and Ward 1963 and Okada,

Takizawa and Ieiri 1976 in quartz, Szilagyi, Hordvik and

Schlossberg 1976 and Thompson, McMullen and Anderson 1976 in

GaAs, and by Piltch, Cantrell and Sze 1976 in CdTe. The

first achievement of SHG in a stack of twinned plates will be

described in Section 11 for CdTe (Szilagyi and Dewey 1979).

For simplicity the propagation is coaxial with the stack

normal and the spacings are assumed to be uniform. Ideally,

to minimize Fresnel reflection losses, the plates would be

brought into optical contact. In the following calculation

this arrangement is the limiting case of r d- 0 , where r d is

the plate spacing. Consistent with the narrow distance, each

field is assumed to undergo multiple reflections in the gap,

resulting in a Fabry-Perot transmission coefficient. Within

each plate, only the first forward pass is regarded as having

contributed significantly to the nonlinear efect. The

justification lies in the quadratic dependence of the

nonlinear intensity on the fundamental, and in the relatively
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low reflectivities resulting from the use of index matching

fluids (see van der Ziel 1976).

The component of the polarization invariant under

twinning was seen in Eq. (8.5) to be along the propagation

direction. The remaining (sign changing) component was given

in Eq. (8.6) and, since it is perpendicular to the propagation

direction, it is also the radiating part. Accordingly (and

dropping the superscript 3) the radiated wave of Eq. (9.7)

becomes

-~ -.. ukr,

(10.la)

where

2- (10.1b)

As was shown in the preceding section, in the case of ideal

spacing

Ai ::Ik (10.2a)

for

(r~~ (10.2b)

In general, though, N acts as an effective number of ideal

domains, usually less than n, and is independent of the

coordinate system.

The Fabry-Perot transmission (Born and Wolf 1980,

Eq. 1.6.58) relates the field amplitudes and phases just

before and just after the gap:

- C0

/ - ~ C~(10. 3a)
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where

T m OP f z I--f (10. 3b)

are the normal power transmissivity and reflectivity

respectively, cF is the double reflection phase lag

cF zkIT ~7 k 0 rd
A (10.3c)

is the Fabry-Perot intensity transmission and ( is

given by

0-atca~

k -LA 
(10.3d)

As an example, the radiated field after the second twinned

plate but just before the second gap is

e z e4m)f/+[i/ ) Je L
3 1 (-3LK ) (10.4)

The subscripts on the Fabry-Perot transmissions indicate the

frequency. The sign of the term in square brackets is to be

chosen according to the value of the phase mismatch after one

plate traversal. If the plate thickness is close to an odd

multiple of the coherence length the second term of Eq. (10.4)

will nearly cancel the nonlinear gain over the first plate

unless the minus sign is chosen. Conversely, the plus sign is

to be employed for plates approaching an even multiple of 1
C

in thickness. The method of implementing the sign change, as
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seen in general terms from Eq. (2.12), consists of rotating

every other plate 180* about the twin axis.

For the jth plate, Eq. (10.4) becomes

(4 f( )V]4 (10.5)
To solve this difference equation, both sides are multiplied

by and summed over j, leading to the cancellation of

the intermediate fields:

where e(0) - 0. With a little rearrangement and the

summation of the geometric series, the nonlinear field becomes

-y |... ( ) - (1 . a
[)4- A')

(10.6b)

As in Eq. (10.1), Mm is an effective number of plates.

Ideal stacking is obtained with optical contacting and with

plate thickness an integral number of coherence lengths:

z. N Y (10.7)

It should be noted that without the internal QPM due to

twinning, only odd multiples of the coherence length would be

allowed.

Expressed in terms of the intensity transmission
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coefficients, Eq. (10.6) reads

i14-1 I

3Fp
+"60)(10 

8)

In the limit of small plate separation (r << ) Eq.

(10.3d) may be approximated by

(10.9)

which allows a simple expression for the phase occuring in Eq.

(10.8)

,T(A

~4-6..

~kk

-z4k O(10.10)

In addition, if the immersion medium is nearly dispersionless,

the only significant contribution to Eq. (10.10) will be that

of the first term, due to the momentum mismatch within each

plate.

To calculate the output of the stack, the multiplicative

constants of Eqs. (9.2) and (Al.12) must be restored in Eq.

(10.7):

130.1

E N (fC, 
(10.11),
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where the field after a coherence length is defined in Eq.

(Al.13). Also from Appendix Al (Eq. (Al.16a)) but including

the input and output Fresnel transmissions

where the intensity from a coherence length plate can be found

in Eq. (A1.18), and the square of M is

((10.13)
The factorization of the stack effects (M ) from the

twin effects (Nn) in Eq. (10.12) is very convenient for

practical applications. For example, the effects of the

immersion medium, plate thickness and spacing may be evaluated

without any regard for the twin spacing distribution or
2

fundamental polarization. Figures 10.la and b show Mm

versus m for various plate thicknesses in optical contact,

and for various coherence length plate spacings, respectively.

In the former picture, t ththickness rn is listed in

dimensionless form as the phase angle

c.-
The sinusoidal variation is analogous to the Maker fringes

(Maker, Terhune, Nisenoff and Savage 1962) and is strictly
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periodic. The oscillation in Fig. (101.b) is not periodic and

represents a generalization of the Maker effect to include

Fabry-Perot multiple reflection losses. The curves are

calculated for CdTe plates immersed in carbon disulphide

liquid where the coherence length is 29um, and illustrate the

sensitivity of the result to departures from optical

contacting. A similar treatment has been given (Szilagyi,

Hordvik and Schlossberg 1976) in the case of simple Fresnel

reflection losses.
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11.11 Ex2er iments

The nonlinear intensity I3 (Eq. (10.12)) resulting from

the use of a stack of twinned plates was verified

experimentally in the case frequency doubling. The successful

completion of the experiment involved the following steps:

crystal measurement, selection, design fabrication and

orientation, the design and fabrication of an immersion cell,

the use of a laser facility and data analysis.

The nonlinear material consisted of six CdTe plates, with

two twin planes delineating three domains in each plate. Each

domain was approximately 1c in thickness. The six elements

were obtained by dicing and polishing a wider area plate with

the same twin configuration selected to maximize the effective

number of ideal domains N of Eq. (10.1b). The CdTe
n

material and fabrication were provided by II-VI, Inc..

The evaluation of N was programmed to be performed
n

graphically by a Tektronix 4051 microcomputer using the Argand

method (Wynne and Bloembergen 1969, and Dewey and Hocker

1975). The domain thicknesses were measured on a Nikon

travelling microscope by viewing an obliquely illuminated

surface lapped at an angle to the twin normals. The choice of

this method was dictated by the need to produce sufficient

contrast between adjacent domains. In retrospect, however,

the grain revealing etch of Section 111.3.3 would have

considerably improved the contrast and simplified the

measurement.

p. 73



Figures ll.la and b show the Argand plots for the parent

crystal and the fabricated plates, respectively. The selected

domains are identified in Fig. 11.la as "#13", "#14" and

"#15". Each plate was 598um thick. The resulting stack was

characterized by N - 2.88 and Mm - 2.83, where the low

value of M resulted from the significant departure of
m

element thickness from the ideal value of 558 pm - 3 1c

though close enough to require that every other plate be

rotated by 180* about the stack normal (as per discussion

following Eq. (10.4)).

The immersion cell, shown schematically in Fig. 11.2,

featured a brass body made in an MIT machine shop. Viton

gaskets were chosen for their resistence to the carbon

disulphide index matching liquid. The ZnSe entrance and exit

windows, supplied by II-VI, Inc., were aligned in such a way

that the CO2 laser beam incident at the Brewster angle for the

ZnSe-air interface would then refract in a direction coaxial

with the body of the cell and normal to the twinned plates.

Inside the cell the stack was gently spring loaded onto a

teflon lined, V-grooved jig. After mounting the stack,

immersion fluid was injected into the cell through a

reclosable intake hole under the protection of a fume hood.

With refractive indices of 2.4, 1.6 and 2.7 for ZnSe, CS 2
and CdTe respectively, the fundamental intensity is reduced by

a factor of 0.46 inside the cell primarily due to the bending

and widening of the beam. Conversely, the SH beam produced by

the stack is intensified by a factor of 2.1 upon exiting the
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cell. The conversion efficiency in the CS is only a factor.2

of 1.035 greater than the externally measured value.

To execute the experiment, time was reserved on a CO2 TEA

laser operated at Harvard University by J. Black under the

direction of E. Yablonovich. Typical characteristics of the
2

laser were as follows: TEM beam of 0.036 cm area, with

an output of 150 mJ in each 0.5 nsec pulse, repetition rate

0.3 Hz, peak power about 300 MW. After reflection from a

NaCl beam splitter, a reference portion of the output was

monitored by a Au:Ge detector in a side-looking Dewar.

Interpretation of the readings was made possible by prior

calibration against a Scientech energy meter. The fundamental

intensity could be varied by changing the number of CaF 2
attenuator plates in the optical train. The second harmonic

was separated from the fundamental by means of an interference

filter, and measured with a calibrated Pl-51 pyroelectric

detector by Molectron.

As expected, the SH intensity was accurately proportional

to the square of the fundamental intensity. The experimental

conversion efficiency inside the cell but outside the stack

2was 0.9(+0.4)% at a fundamental intensity of 64 MW/cm2. The

theoretical result of Eq. (10.12) predicts an efficiency of

1.2% for this configuration. The values used in the

calculation are
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deff ri

The agreement between experiment and theory is seen to be

good. Under more favorable conditions (N - 2.97, Mm - 6 and

= 100 MW/cm 2) the efficiency would have been almost 10%

(9.4%).

Another cell design was also tested experimentally. The

motivation was the diminished fundamental intensity in the

Brewster cell resulting from beam bending. The second design

featured normal incidence antireflection coated ZnSe windows.

A nickel-copper bellows spring (supplied by Servometer Corp.)

played the dual role of compressing the windows against the

CdTe stack, and of sealing the immersion liquid inside the

cell. In spite of a number of attractive characteristics,

this design was plagued by mechanical problems involving

bellows uniformity and optical component flatness.

Transmission measurements revealed that optical contacting was

not achieved, with inter-plate cummulative CS2 optical path

lengths between 10 and 30 pm. In addition, the uneven

mechanical pressure damaged the plate surfaces, creating

further obstacles to optical contacting.

The CdTe stack had been repolished for the normal

incidence cell, bringing the plates to a thickness of 544 pm,

or 14 pm less than the nearest coherence length multiple. It

is likely that this characteristic was also a contributing
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factor to the lack of success of this cell, as may be seen

from the following considerations.

The wave number mismatch is defined in Eq. (Al.10).

Normal dispersion in CdTe (n = 2.67, n 2.69) results in a

negative value of k, whereas for CS2 anomalous dispersion
- 1.623, n - 1.535) yields a positive momentum mismatch.

(n 2

Examination of the phase factor in Eq. (10.8) reveals that for

plates thicker than the nearest multiple of the coherence

length, a beneficial cancellation of the phase mismatch will

occur when the plates have a small but finite separation.

Conversely, for plates thinner than the nearest multiple of 1c
(such as the 544 pm thickness used in the second design), the

interplate dephasing acts to the detriment of the conversion

efficiency.
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11.12 Conclusions

The results of this chapter will now be summarized in

decreasing order of generality.

For second order nonlinear optics (NLO) in any crystal

class, the new form of the susceptibility (Section 3 and

Appendix A2) constitute a symmetrical and practical way of

displaying the tensor elements and it permits the use of the

well developed mathematical apparatus of quadratic and

bilinear forms.

For quasi-phase-matching (QPM), the nonlinear

polarization is decomposed in invariant and sign changing

parts (Section 2), and the cummulative effects of twin

sequences and of stacked plates (Sections 9 and 10) are given

in crystal-class independent fashion.

Specifically in the 4 3m class, the new form of the

susceptibility leads to explicit algebraic and trigonometric

(Sections 4 and 5) decompositions of the nonlinear

polarization into invariant and quasi-phase-matchable

(sign-changing) parts under the twinning operation. For

(1,1,1) propagation, the magnitude of the radiating

polarization is found to be independent of the azimuthal angle

of the fundamental. Furthermore, for selected azimuthal

angles the radiated field is polarized normally to the

linearly polarized fundamental, enabling convenient separation

of the fields by means of Brewster windows.

The use of elliptically polarized waves is also treated
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in this crystal class (Appendix A3). For equal fundamental

intensities propagating along a (1,1,1) direction, circularly

polarized light is shown to be twice as efficient as linearly

polarized light. In frequency mixing, if at least one of the

waves is circularly polarized, the QPM output is also

circularly polarized, and vanishes if the two input waves have

opposite helicity.

The 1% theoretical efficiency of frequency-doubling the

CO2 laser was verified experimentally in a stack of six CdTe

plates contained in a Brewster angle cell with carbon

disulphide as index matching medium.

It is concluded that quasi-phase-matching is already

possible in judiciously selected twinned materials and that

high efficiency mixing and doubling devices could be obtained

from crystals with sufficient numbers of suitably spaced

twins. Accordingly, there is great incentive to embark upon

an investigative program into the nature and mechanisms of

growth twinning.
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II.Al Idealized SHG intensi tx in coherence-i enSth-218 te (cjs)_

The major purpose of the following derivation is to

record the definitions used in the text.

Maxwell's curl equations in a nonconducting ( =O),

nonmagnetic (p-1), uncharged ( - - 0) medium

-x -- I VC &6 
(Al.la)

and

(Al.lb)

may be combined into a wave equation with a nonlinear source

term

2.;

C7. C d) (Al.2)

where the nonlinear polarization obeys

7 (Al.3)

For SHG, the fields are assumed to consist of only two

Fourier components, the fundamental and the second harmonic.

The parametric (also called small signal) approximation

consists of neglecting the presence of higher order harmonics

and combination frequencies as well as the influence of the

developing SH onto the pump field. In general the boundary

conditions require the nonlinear wave to start with a nonzero

value equal to the nonlinear reflected wave. This initial

value may be neglected when (Bloembergen 1965, Ch. 4.1)
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..---- (z 1.\Z. t (Al .4)

Since this value is proportional to the square of the ratio of

the coherence length to the fundamental wavelength, the

inequality holds in most instances of practical interest. For

doubling of 10.6pm in CdTe this value is about 143000, which

amply justifies the approximation.

The small ratio of wavelength to coherence length also

justifies the so-called slow envelope approximation, where

C7 (E :-J 2c l -7 .. C
2 kI(Al1.5)

Here E(r) is the slowly varying amplitude of the harmonic

wave

(Al.6a)

with

C-? -(2(Al.6b)

and

a0
(Al.6c)

With these approximations the left-hand side of the wave

equation (2) becomes

C ((Al.7a)

and the right-hand side
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-

C O (Al.7b)

The phases '4S and 1/T of the source (polarization) and

total (radiated) waves at the SH are

-,b -2W (A1.8a)

(Al.8b)

Equating complex coefficients at the same frequency in Eqs.

(7)

-277e h 10(Al .9)

where the NL superscript has been replaced by the

identification of the "third wave" (second order nonlinear

optics corresponds in general to three-wave interactions), and

the wave-vector mismatch is

k3  (Al.10)

For collinear mixing or doubling, the scalar products in Eq.

(9) become ordinary products:

--E 2r) 211 \Pf
(Al.11)

Eq. (11) identifies the constant a of Eq. (1.1)

P 1 3  (Al.12)

In the small signal approximation the depletion of the

pump wave is neglected. The integration of Eq. (11) is then
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simply

3 3 , lik $ 3
(o 6 (e(Al .13)

and after a coherence length

()I, A 3(Al.14)
where the initial value was neglected as previously noted, and

where

(Al.15)

The useful nonlinear intensity may arise out of the

component of the radiated wave along a given unit vector 0.

3 fffz
(Al.16a)

(Al.16b)

Defining the effective susceptibility deff as

^ ' c (Al.17)

and expressing in terms of the fundamental intensity (without

reflection losses) Eq. (16b) becomes

2 C S(Al.18a)

The conversion from mks to cgs units obtains by replacing C

d by deff and F, by 47 or
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(4e 7 )Z -1 Z (;14k 5)
(Al. 18b)

2
For SFG or DFG we must replace 1I1 by 4Il4.No reference has

been made so far to the crystal class. In the 4 3m system,

is most generally calculated in the "natural"

system of Section 7. With a fundamental amplitude

coordinate

as in Eq.

(7.14a)

(17):

ie.

Table 7.1 enables the immediate evaluation

A ) = E -I,

~fPl)(L~ )Z

/
ig(~

-1

For (111) propagation E

(eg)Z 4- (

and

(Al .21a)

C- )

where we used the field components of Eq. (8.4).

2cb

Another form

(Al.21b)

Eqs. (21a or b) should be employed when the useful radiated

wave is elliptically or linearly polarized, respectively.
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(Al .20)
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II.A2 Nonlinear susceptibil1ities in new matrix form

The second harmonic coefficients appear below in the new

form described in Section 3. They are arranged in 3 X 3

matrices after reprocessing the corresponding 3 X 6 matrices

in Table 18.1 of Singh 1971 (with the exception of the 4mm

class which was corrected using Table III of Kurz, Jerphagnon

and Choy 1979).

The triclinic system (class 1 - C ) provides a good

example of the procedure used to obtain the listing below. In

the 3 X 6 form, the susceptibility is given by

Class 1 - C1

d 11d 12 di3 d14 di5 di6

d21 d22 d23 d24 d25  d26

d31 d32 d33 d34 d35 d36/

Recalling Eq. (3.2a), the nonlinear susceptibility is

rewritten as follows: Si.d. i.d. i d
J Ji 3 J 6 j5

i.d. i.d. i d.
3 Js 3 32 j3

J is 3 4d. 3

Since this is a symmetric matrix,

elements need be listed, the rest

Monoclinic System

only the upper diagonal

obtaining by transposition.

iidi 1+i2d21
m - C5

(mIZ)

iid16+i2d26

iid12+i2d22

i 3d35

ij3d34  J
iid13 2d2

Class 1 - C1
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iid1 1+i 3d31
M - C

(inY)
IRE convention

i 2d26

i 1d12+i 3d3 2

i1 di 5+i 3d3s

112d24
i 1d1 3+i d3 3/

i 3d3 6  iidi5 +i 2d25

i 3d3 2  i 1d114+i 2d2 4

i 3d33

2 - C2

(2 1|Y)

IRE convention

i 2d2 1 iidi 6+i 3d3 6

i 2d22

i 2d2s5

iidi 4+i 3d34

i2d2 3

Orthorhombic System

0 i1d15

i 3d32  i 2d24

i 3d36  i 2d25

0 ild 14

0
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2 - C2

(2 ||Z)

i 3d3

(0

mm2 - 2v

222 -D2



Tetragonal

i3d31
4 - C4

0 iidis-i 2d14

i3d3 1  i1d14+i2d1 i

i 33

i 3d31  i3d36

-i3d31

(i 3d31

0 i

0

d14 (

iidis+i2d14

iid14-i2di5

0
0 iidi

i3d31  i2di

3d3

5

5

3/

i3d36  i 2d14

0 ii1di4

0

0 i/
0
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Trigonal System

id 1 1-i 2d2 2 +i 3d3 1 -i id 2 2 -i 2 d 1 1

-i id1 1+i 2d2 2+i 3d3 1

iidis-i2di4

iidi+i 2di 5

i 3/3

3m - C3v

(miX)
IRE convention

3m - C

(miY)

(
(

-i 2d22+i 3d31 -i d2 2

i 2d22+i 3d31

iid11+i 3d3 1

-i id 11+i 3d3 1

iidis

i 2di5
A3 3i 3d33 /

i 1dl 5

i 2di 5

iA3 3

i 11

32 -D3
- i 2 dii -i 2d1 4

-i id 1 1 d 14

0
Hexagonal System

iid11-i 2d2 26- c3h ( -iid 22-i 2d1 1

-i d1 1+i 2 d22

same as 4 - C4

6m2-D3h

(mix)
IRE convention

3 - C3(

0
0
0 /

(i2

d22

0
0
0)
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dii

same as 4mm - C

same as 422 - D4

Cubic System

d1

d14

13 2

0 ii

0

13 2

0 i

0

All elements vanish.
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I I.-A3 Mixinqof_ elli2t icallX 2 o.lari zed liih

In Section 7 a procedure was given to evaluate the

nonlinear polarization by reference to Table 7.1, when the

relevant fields are decomposed in the natural coordinate

system (e.g. Eq. (7.14a)). Following that procedure, the

mixing of elliptically polarized light will now be treated

generally and the effective nonlinear susceptibility given for

(1,1,1) propagation. Without loss of generality, the

evaluation may be restricted to sum frequency generation

(SFG). The difference frequency case obtains by complex

conjugation of one of the field amplitudes.

The field envelopes E and H

A +
E =- F + E E,++E .

-A (A3.1)

a t QE H E.

produce a nonlinear polarization

2 eHf J, [A, ++

V3A/E HuIE Z A (A3.2)

where we have used the distributivity property of the bilinear

form , its symmetry with respect to the exchange of fields

in the 43m system (Giordmaine 1965), and Table 7.1. The

sign changing part of Eq. (A3.2) is obtained according to Eq.

(6.2b):
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I P M (A3.-3)

(compare to Eq. (7.20a)).

Two interesting conclusions may be drawn form this

result. Firstly, if one of the mixing fields is circularly

polarized (e.g. H+ - 0) the quasi-phase-matched output must

also be circularly polarized (in the opposite sense).

Secondly, if the input fields are both circularly polarized

but of opposite handedness, the quasi-phase-matched output

vanishes identically.

For (lll) collinear propagation the mixing fields are

v De A 4  e 1
SCE+V2 e(A3.4a)

d (AP A 4

(following the development of Section 8). Substit

(A3.3) and use of the effective susceptibility d

AE

yields -

dj 2a ftk6)(C fd) e U (a4b)(c)e 
Z- %-

ut ion

fAf

(A3

in Eq.

.5)

(A3. 6a)

Paralleling the SHG treatment of Appendix Al, this form is

most useful when the desired output is circularly polarized.

Otherwise, the following form is recommended
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ef: JaC#~)U- dZ (6 d(A3.6b)

As in the SHG case, circularly polarized input waves result in

a larger effective susceptibility.
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11.7.1 Euler angles (after Messiah 1966, Fig. XIII.1)
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Fig. 11.8.1 Relation between the fundamental (E) and second harmonic

(p) polarizations for (111) propagation
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Fig. II.ll.la Argand plot of SH field in twinned crystal
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III.1 Introduction

The primary stimulus for the study of growth twinning

derives from the need for single crystals encountered by the

electronics industry. Many applications of semiconducting

materials including IC chips, substrates, detectors,

electro-optic modulators, etc., rely for high performance on a

monocrystalline matrix. In the more mature elemental

semiconductors the requirement is consistently met. The

situation is not as good in the case of the compound

semiconductors, where twinning is still widely perceived as

one of the major problems in crystal growth.

The other point of view, as seen in Chapter II, is that

controlled twinning can be an asset in the production of

efficient and economical frequency doublers and mixers. The

materials of interest here are the noncentrosymmetric

semiconductors of high nonlinear optical susceptibility, such

as CdTe.

Following a review of published work relating to growth

twinning we proceed in Section 3 to describe growth

experiments on CdTe. The main experimental observations are

then combined with others extracted from the literature and

summarized in Section 4. The understanding thus derived and

organized forms the basis for a model of the elemental

semiconductor growth interface presented in Section 5. The

intrinsic anisotropy featured in this model is then discussed

and applied in Sections 6 and 7 to a variety of phenomena
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including preferential etching, faceting and solitary and

lamellar twinning. The restriction to elemental

semiconductors is lifted in Section 8 where the dangling bond

model of the interface is refined to include a polarity

parameter. The model successfully accounts for a series of

phenomena even though the analysis is not carried out in as

much detail as in Sections 5 - 7. For the case of materials

whose melts are not highly dissociated or metallic (such as

CdTe), a clustering model of twinning is presented in Section

9, leading to provocative predictions for crystal growth.

Sections 10 and 11 end the chapter with conclusions and

proposals for further research respectively.

It should be noted that no completeness is claimed in the

citation of published work. Also, due to space and time

limitations, many related subjects had to fall outside the

scope of the present research. For example no discussions of

mechanical twinning, segregation phenomena and heat transfer

(except indirectly, through the effect of a given interface

morphology) have been included. It is hoped that these

limitations will not materially detract from the usefulness of

the ideas presented below.

p. 107



111.2 Literature review

The crystallography and morphology of twinning in general

and in the tetrahedrally coordinated semiconductors have been

the subject of a number of early reviews: Aminoff and Broome

1931, Cahn 1954, Hartman 1956. Other works on the

crystallography of twinning by Slawson 1950, Ellis 1950,

Ellis and Treuting 1951, Ellis and Fageant 1954, Haasen 1957,

Holt 1964 have all helped establish its pervasiveness and main

characteristics.

For diamond and zincblende, growth twins were found to

have octahedral habit (i.e. possess {111} composition planes).

The twin operation could be described as a mirror parallel to

the composition plane for the elemental semiconductors, but

the operation which also remains valid for compound

semiconductors crystalizing in the sphalerite (or zincblende)

structure is a rotation of 180* about the (111) axis normal to

the composition plane. Microscopically, twinning can be

described as a stacking defect. Normal cubic stacking in a

(111) direction is described as "staggered" because of the

occurence of three progressively offset double layers in each

repeat distance along this direction. Denoting the position

of each layer as A, B or C according to the amount of the

offset, regular stacking could be symbolized by

...ABCABCABC.... Twinning corresponds to a reversal of the

offset direction, as in ...ABCABACBA.... The immediate

vicinity of the twin plane (...ABA...) is said to be stacked
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in the "eclipsed" configuration, and may be regarded as the

thinnest recognizable portion of the hexagonally packed

wurtzite structure. Twin planes have very low specific

energies (see e.g. Gottschalk, Patzer and Alexander 1978 and

Hall and Vandersande 1978 for the closely related stacking

fault energies) of the order of 10 ergs/cm 2 or 10 meV per bond

crossed by the twin plane. This is due to the lack of a

difference in coordination up to the second nearest neighbors

for distances and up to the nearest neighbors for bond angles.

One of the common features of crystal growth in the

conventional (111) direction is the presence of oblique twins

(Wilkes 1959, Hulme and Mullin 1962, Steinemann and Zimmerli

1963, Vere, Cole and Williams 1983). Solitary as well as

lamellar twins are commonly initiated at the edge of the

crystal (three-phase boundary, or confining walls) and

typically cross the entire boule at an angle of 19.50 from the

growth axis (Billig 1954-'55, Mueller and Jacobson 1961,

Vere, Cole and Williams 1983). The lamellar type is also

commonly generated in the middle of the solid-melt interface

(e.g. Hulme and Mullin 1962) when they must be accompanied by

high energy grain boundaries.

Another type of twinning is at the center of the

attention in dendritic, web and ribbon growth (e.g. Faust

1967, Seidensticker 1977, Dermatis, Faust and John 1965,

respectively). In each case, the reason for the interest lies

in the ability of centrally located twin lamellae to propagate

unidirectionally and thereby generate extended (and sometimes
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highly perfect) crystal structures.

A variety of possible causes have been cited for growth

twinning in diamond-like semiconductors, including:

i) - interface and seed orientation

ii) - interface morphology and thermal environment

iii)- stoichiometry and impurities

iv) - growth rate and undercooling

v) - faceting and - in the compound semiconductors -

polarity.

i). A theoretical appraisal of the propensity to

twinning was given by Billig (Billig 1954). It held that the

likelihood of twinning increased with the degree of alignment

of the resulting {111} planes to the growth axis.

Consequently, he found that a (100) seed was most likely to

cause twinning.

A descending hierarchy of seed orientations vs. effectiveness

in single crystal growth was given by Faust and John 1962 as

(100)>(110)>(ll) for elemental semiconductors (changed to

(110)>(100)>(111) with molecular melts) and as

(111)Sb,(211)>(311)>(100)>(110),(lll)In by Hulme and Mullin

1962 for InSb.

It should be noted that much of the early work does not

separate the effect of the seed orientation from the shape of

the solid - melt interface.

ii). Planar interfaces have been found to be desirable

for monocrystalline growth (Bolling, Tiller and Rutter 1956,

Grabmaier and Grabmaier 1972, Nygren 1973). While studying
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the dependence of twinning on seed orientation Steinemann and

Zimmerli 1963 have also found increased twinning accompanying

curved interfaces, but the dependence on seed orientation

nearly disappeared when the boule diameter diverged by 45* or

more.

The thermal environment is implicitely reflected in the

interface morphology. In addition the crystal growth itself

influences the thermal environment by means of the heat

transfered and generated in the process. The very important

issues relating to these mutual interactions fall largely

outside of the scope of the present work.

iii). The chemical composition of the melt can influence

the growth of crystals in more than one way. Impurities and

departures from stoichiometry affect the position of the

liquidus, hence the growth temperature. They also affect the

energy and kinetics of lattice defects. For example, Bolling,

Tiller and Rutter 1956 who found twin densities in Ge increase

with the concentration of Ga dopant, also found decreased

liquid-solid interfacial energy. Billig 1957 speculated that

twinning in dendrites may be due to the incorporation of

impurities. In GaAs, twinning on the As surface could be

diminished or suppressed by raising the ambient temperature

and with it the As partial pressure (Steinemann and Zimmerli

1963). It is not clear whether these authors were able to

discriminate between the concentration effects and the

possible attendant changes in interface morphology. Another

indication that -this is not at all a simple issue ensues from
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the observation by Mueller and Jacobson 1961 of a lack of

dependence of InSb growth on impurities, although some of the

discrepancies might be explainable by the incompatibility of

the various experimental set-ups.

iv). Information relating to the dependence of twinning

on growth rate is scarce. However, Bolling, Tiller and Rutter

1956 reported an inverse relation between twinning frequency

and the ratio (G/R) of the thermal gradient and the growth

rate. Assuming that the kinetic undercooling (or

supersaturation, for solution growth) just ahead of the

solidification front increases with the growth rate, then a

similar dependence on the latter can be inferred from

Buerger's work, over ten years earlier (Buerger 1945). A

calculation of twinning probability as a function of

supersaturation, undercooling and twin plane energy was

performed by DAweritz 1972 for the elemental and II-VI

semiconductors, assuming an accidental (see below) type

mechanism.

v). One consequence of the directional nature of

covalent bonding in the tetrahedrally coordinated materials is

the strong anisotropy of growth kinetics. Particularly

substantial nucleation barriers must be surmounted for growth

in (111) directions, resulting in increased lag (undercooling)

behind the freezing point isotherm. The resultant flattening

of the solid-melt interface is commonly termed faceting, and

has been shown to be more pronounced in materials with higher

entropy of fusion (e.g. Jackson PSSC 1967). The related
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technologically important anisotropic segregation of

impurities or dopants falls outside the scope of this thesis.

A number of authors have made the connection between the

dependence of twinning on undercooling and faceting. For

example, Wilkes 1959, Hulme and Mullin 1962, Mullin 1962 have

all pointed out the apparent connection between periferal

facet formation and twinning. Unfortunately, more often than

not reliable interface morphology data was not available, and

when it was, it did not support the idea of an {111} oblique

facet as the site for oblique twin nucleation. Further

discussion of faceting appears below in Section 111.6 for the

diamond lattice and in Section 111.8 for the polar

semiconductors.

We can summarize the types of mechanisms which have been

invoked to explain growth twinning as belonging to one of two

general categories:

a). thermally determined or constrained twinning.

b). growth accident or random twinning

The former, arguing for the alignment of a favorable

crystalline axis with the local thermal gradient, will be

developed and applied in Sections 5 through 8 as the prefered

mechanism, under the name of the Dangling Bond Model. The

latter will find an example in the Clustering Model of Section

111.9.
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111.3 x2Emna-Erm

3.1 Description of system

For this phase of the study we used a vertical resistive

heating furnace made by Marshall Products Co., Columbus, Ohio

(Fig. 3.1), with maximum ratings of 1315 0 C, 25 V, 48 Amps. Due

to the age of this furnace, a 22 V ceiling is observed for

safety. A water cooled stainless steel shaft (manually or

automatically movable) supports the growth assembly (Fig.

3.2). The latter is wholly enclosed in a quartz process tube

and allows the use of either vacuum or an inert gas (Ar)

atmosphere to protect the graphite extension rods and crucible

holder from oxidation as well as insulating the work

environment in case of ampoule failure. Up to five

thermocouples may be used simultaneously to monitor the

interior of the process tube.

Furnace temperature regulation is accomplished

manually or automatically using a Leeds and Northrop C.A.T.

Controller. Furnace temperature is monitored by a platinum -

10% rhodium vs. platinum thermocouple, refered to an Ice Point

Reference Standard by Joseph Kaye and Co., Inc., Cambridge,

MA. The same ice point system is used for the Chromel

- Alumel thermocouples used inside the process tube.

3.2 Processing steps

For the actual growth we used "ultra pure" (99.99 %)

polycrystalline CdTe pieces, manufactured by Alpha Products,
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Thiokol / Ventron Division, Danvers, MA, and by II-VI, Inc.,

of Saxonburg, PA, at the rate of about 50 grams per

experiment. Before loading, the charges were etched in a 5%

bromine - methanol solution, gradually diluted to electronic

grade methanol, boiled in this methanol, boiled in de-ionized

water and dried in an evacuated dessicator. Ampoules were

made and sealed by Wilfred Doucette from 16 mm I.D., 2mm wall

tubes, supplied by Quartz Plus, Inc., Watertown, MA. Two types

of treatment of the inner ampoule walls were tried:

sandblasting followed by soaking in Aqua Regia, and etching in

a dilute HF solution (starting with 10 H20 : 1 HF and ending

with 3 H 2
0 : 1 HF by volume). No conclusion can be drawn

about the relative merits of these methods although etching

appears to be intrinsically cleaner.

Typically a loaded ampoule was connected to a vacuum

system via a graded seal, a cold trap and a three way

stopcock. The remaining passage through the latter was used to

repeatedly (three to five times) flush the ampoule with high

purity argon (99.999%). The vacuum was usually supplied by a

4" Varian 3305 mobile high vacuum diffusion pump (courtesy of

Dergao Lin). After evacuation the ampoules were sealed by

shrinking around a solid quartz plug covering the CdTe charge.

Following the growth, extraction of the boules was usually

accomplished by ampoule dissolution in concentrated HF (48 %)

which does not appear to adversely affect CdTe.

3.3 Characterization
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The characterization means employed fall broadly in four

categories, depending on the kind of probe used:

a. Non-destructive

i). Photons

ii). Electrons

b. Destructive

iii). Chemical etch followed by (i) or (ii)

(surface)

iv). Chemical analysis (bulk)

In order of decreasing wavelength (i) includes:

- Infrared photography: unfortunately, no IR viewer

responding beyond 2 pm was available.

- Macro and micro-photography in the visible range.

Using a Polaroid MP-3 Land Camera and a Leica Tessovar 35 mm

set-up (courtesy of Prof. A. F. Witt) a variety of features

were recorded, including external morphology, phase separation

lines, voids due to bubble formation, ridges or grooves

corresponding to grain boundaries or lamellar twins. Except

for the external shape, these and smaller features were seen

in greater detail on the Reichert optical microscope,

especially using the Nomarsky intereference attachment.

- X-rays. Laue back-reflection on a Norelco machine

was used to reveal the crystallinity of samples by the

sharpness and position of diffraction spots.

Included in (ii) are:

- SEM. Two different machines were used an AMR 1000A

and a Cambridge SEM. Back-scattering and secondary electron

p. 116



emission modes were used to show micro-morphological surface

detail. X-ray dispersive analysis gives major elemental

constituents and X-ray elemental maps show phase separation

and interface breakdown configurations.

- TEM. (courtesy of James Nakos). This method has

revealed dislocation loops, micro-precipitates and other

assorted microscopic imperfections. In electron diffraction

mode, Kikuchi lines were used to ascertain a relatively high

degree of crystalline perfection.

A grain-revealing etch (iii) was used very successfully

in conjunction with (i) and (ii). The composition is I HF 3

HNO3 : 4 (2% by weight aqueous AgNO 3 solution) (Mullin and

Straughan, 1977) and is used for 10 to 30 sec.

- Macro and micro-photography. This etch produces

strikingly sharp contrast between adjacent grains and was

repeatedly recorded on the MP-3 camera. On polished or

fractured surfaces, triangular dislocation pits are revealed.

- TV image analysis. Using a Hamamatsu C1000 Vidicon

measurement system connected to a MINC-23 computer, lamellar

twin spacing data was acquired from enlarged prints of etched

material.

- SEM. Etched samples have clearly shown that

differently oriented microfacets are responsible for the

observed contrast across a twin or grain boundary.

The chemical analyses (iv) (courtesy of Walter Correia of

the Strnad Spectrographic Laboratory) performed by emission

and absorption spectroscopy have given bulk stoichiometry and
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impurity information complementary to that obtained by X-ray

dispersive analysis.

3.4 Highlights of growth experiments

The following four pieces of work are discussed below:

i). Boric oxide encapsulation

ii). Curved ampoule

iii). No wetting run

iv). Single crystal run

i). A sealed, vertical Bridgman charge was successfully

encapsulated with B 203. The encapsulant was interspersed

among the CdTe charge pieces. The growth assembly was lowered

from the hot zone at 3 pm/sec. Despite the failure of of the

quartz ampoule due to the build-up of thermal stresses during

the last stages of cooling, the CdTe boule was not damaged and

revealed (Fig. 3.3a) a smooth, shiny convex "meniscus" (last

to freeze portion). The portion of encapsulant adjacent to

the smooth, concave crystal-glass interface appeared cloudy

but became clear about one centimeter higher (away from the

interface). This observation was made just before the ampoule

failed. Spectrochemical analysis (see 3(iv) above) of B2
0
3

samples taken from near and away from the interface showed low

Cd concentrations of .07% and .04% respectively. X-ray Laue

back reflection from "meniscus" of boule shows a concentric

ring pattern similar to powder difraction (Fig. 3.3b). Under

100OX SEM magnification (Fig. 3.3c) and after the grain

revealing etch (section 3(iii) above), this "meniscus" appears
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as a jagged, cracked, almost glassy surface. In X-ray

dispersive mode (Fig. 3.3d) the composition of the surface is

seen to be almost pure tellurium, apparently segregated as

excess in the last to freeze portion. But 2 mm below the top

the material is ordinary twinned CdTe (Fig. 3.3e after

etching). At higher magnification (110OX) the reason for the

contrast across the twin boundaries is seen to be the

preferential etching of microfacets on a scale of several

microns (Fig. 3.3f), sufficiently large to give specular

reflection in different directions from one domain to the

next. The same boule in as-grown (before etching) condition

displayed (Fig. 3.3g) a pattern of ridges and grooves on its

vertical surface apparently associated with lamellar twinning.

ii). Observing twin configurations over a number of

growth runs, a pattern began to emerge suggesting a dependence

of twin plane nucleation on the configuration of the

"three-phase" (solid-melt-wall) region. To further study this

dependence, an asymmetric ampoule was designed and a suitably

shaped graphite mandrel (Fig. 3.4a) machined for it. The

quartz ampoule was then moulded over this mandrel by Wilfred

Doucette. The asymmetry would ensure that whatever the exact

mechanism of twinning, it start acting predominantly on one

side of the ampoule, with the twins subsequently propagating

across the boule. The growth run succeeded. Figures 3.4b and

C, show one major family of lamellar twins (with etching

contrast) initiated at a grain boundary, and extending through

most of the boule except near the top where the ampoule
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curvature was different in order to accomodate a larger,

relatively loosely packed charge. The experiment demonstrates

the determining influence the thermal field has on twinning.

Note that the unusual geometry was also responsible for

stressful cooling, hence the abundance of thermally induced

cracks.

iii). Wetting of the quartz ampoule by the CdTe charge

was avoided in a growth experiment, without sandblasting the

wall or covering it with pyrolytic graphite. The following

precautions were taken for the charge preparation:

- The charge consisted of longitudinally cut cylinders

from an earlier run, resulting in a reduced surface to volume

ratio, and unused volume in the sealed ampoule.

- Prior to this experiment charges were etched in a 2%

bromine in methanol solution. Beginning with this run, a 5%

solution has been employed.

- Before sealing, the ampoule was evacuated to

1.5x10- 6 torr.

A feature of this experiment whose utility has not been

proven was a cylindrical nickel shield around the ampoule

support structure, extending up into the furnace to about 1/3

of the height of the ampoule. The idea was to decrease the

amount of lateral heat transfer between the furnace and the

growing solid in order to decrease the presumed concavity of

the solid melt interface.

Another feature which may have interfered with the one

above, was an attempt to study the dependence of twinning on
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the growth rate. This was done by repeatedly and suddenly

changing the lowering rate. The result unfortunately is

inconclusive. The etched longitudinal section in Fig. 3.5

shows a large number of nearly parallel grain boundaries

originating about half way up a large single matrix. It is

entirely conceivable that in the absence of this feature, the

experiment would have yielded a (nearly) single crystal.

iv). Figure 3.6a shows an etched nearly single crystal

grown in the same system. Due to the fact that the charge was

prepared before that of the experiment described above, it

used the old bromine - methanol etch concentration.

Consequently, in spite of using the same quality of vacuum

before sealing, this boule once again wetted the ampoule and

had to be extracted by means of dissolution in HF. Among the

factors probably contributing to the good crystallinity:

- Relatively low pulling rate: 0.5 pm/sec = 1.8 mm/hr.

- Axial gradient of 16 deg/cm +/-7%, determined by

using two thermocouples near the top and bottom of ampoule.

- The use of the same nickel shield as in the 4/15

run.

I would also cite as a favorable circumstance the use of

precast (previously grown in same size ampoule) material whose

last to freeze portion had been removed. For this run, the

amount of excess tellurium segregated on the "meniscus" was

reduced to a small frozen droplet barely visible in the above

figure.

To document the crystallinity of this boule, Fig. 3.6b
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(courtesy of James Nakos) shows a TEM electron diffraction

pattern of sharp spots and distinct Kikuchi lines.
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111.4 Suromar_2f observations and2r02Ost iOns

From the experiments and the literature previously

discussed there emerged the following consistent pattern of

observations applicable to the tetrahedrally coordinated

semiconductors.

Morphology of twinning:

- Twins are the most common type of grain boundary (G.B.)

- Among them the oblique type dominates

- Oblique twins persist over long distances (stabilizing

effect)

- Solitary twins are initiated at an external surface

- Lamellar twin "patches" may be externally or internally

bounded

- Within a "patch" twin spacing appears nearly periodic

- Internal lamellar "patches" emerge from G.B.'s

- Single lamellae can originate at the center of the

interface

Other observations:

- Growing crystals will twin so as to align an "easy" growth

direction with 7 T

- TPE ~ SFE << GBE

- During crystal growth the atoms in each layer will have had

an enormous number of opportunities to test various

configurations before arriving to the final position (see

Appendix Al for an estimate of the sticking probability).

Consideration of these observations has led to the
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adoption of the following propositions as the basis of the

models of growth twinning in subsequent sections:

i) - A single crystal will grow to reduce the kinetic

undercooling ahead of the solid - melt interface.

There are two avenues for reducing the kinetic

undercooling:

1 - increase growth rate; limited for a given pull

rate by the subsequent reduction in driving force, resulting

in some steady state balance.

2 - expose a new crystallographic surface to the melt,

with a higher density of dangling bonds or (see section

III.11) a smaller nucleation barrier.

ii) - A defective crystal will tend to eliminate growth

defects such as high energy G.B.'s .

If the geometry is such that a high energy grain

boundary can be replaced by a coherent twin (section 111.7)

this will happen at least temporarily. In the long run the

growth kinetics before and after the twinning operation must

also be included in the balance.

In Sangster's terms (Sangster 1962), crystal growth in

these materials is largely (but see the next paragraph)

constrained by the applied thermal field. Moreover, at each

point on the solidification front the crystal has an

additional discrete degree of freedom with five values, namel

the choice between the current orientation or twinning about

one of four tetrahedral directions. This local degree of

freedom may be suppresed when crystallography requires that i
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be accompanied by a high energy boundary. Conversely, when the

driving force is sufficiently high, the exercise of this

freedom will lead to polycrystalline breakdown, in some cases

long before any breakdown associated with the presence of

impurities and phase separation.

The properties of the crystalline lattice are also

manifested in anisotropic kinetics of growth, of which

faceting on {lll} planes (Lewis 1975) is a particulary

pervasive example (see Section 111.2). It is precisely this

anisotropy which activates the twinning degree of freedom.

As a first approximation we propose that the microscopic

growth rate is a monotonically increasing (perhaps linear)

function of the density of dangling bonds.

p. 125



111.5 Danalin bo2nd model of the jrowtLh interface

The calculation of the density of dangling bonds as a

function of interface orientation (in effect a V plot)

depends on the following simplifying assumptions:

i) - all bonds sp 3 hybridized

ii) - no surface relaxation or reconstruction

iii)- no polar effects

iv) - all orientations decomposed into {1111 and {100} type

steps

We are therefore limiting the calculation to a tetrahedrally

coordinated semiconductor-vacuum interface at 0*K.

The calculation begins by considering a family of

interfaces whose normals lie in the zone of (are perpendicular

to) a (110) type axis. Figure 5.la gives a perspective

drawing of the first coordination tetrahedron, while 5.lb

shows the same projected onto the (110) plane whose positive

normal points into the paper.

A typical interface normal in the (110) zone is of the

form (iik). In the six angular ranges of Fig. 5.2 such an

interface is made up of only two kinds of steps, except at the

extremes of these ranges where the interface is smooth and

made up of only one kind of step. The drawing indicates

schematically the number of dangling bonds each step

contributes. It is seen that in the ranges II and II' there

are only single bond contributions because only {1111 type

steps are present. In the four type I ranges {001} steps are
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also found, each contributing two dangling bonds.

We now calculate the periodic area of the interface as

the vector sum of the appropriate number of steps of each

kind. In region I with n steps of type {lll} and m steps of

{0011 type in each repeat distance, we obtain an area A

A =A -T Y (0 0 1)(.1

where we have used the widths of a {111} step ( rf3d/2), of

a {0011 step (d), and the depth of the layer (d), all obtained

from the values shown in Figs. 5.1.

Equation 5.1 can be immediately simplified to

, 5, 5Z~if, 2r1n)s 1AI in (5.2)

which is obviously of the (iik) type, as required. Since each

{0O1} step contributes 2 dangling bonds while each {1111-

step contributes 1 bond, the density of dangling bonds X is
simply - ___0 j

or1A

- 00(5.3a)

where n is the unit interface normal. Symmetry will dictate

the same result for region I' while in regions I'' and I''' we

obtain

2 1.007 (5.3b)

The argument is much the same for region II. With m

{111} steps and n {111} steps the area is

A, (5.4)

Since each step contributes only one bond, the density 4 is
- (i0 1 (ol (5.5)

However we must recall that the (110) zone is but one of six
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such zones (disregarding overall sign) and that the symmetry

of the lattice will require the same functional form around

axes of high symmetry such as (111). It therefore makes much

better sense to rewrite Eq. (5.5) as

- 00 :-1/ (5.6)

We are thus led to the conclusion that the entire angular

dependence can be written as

- . ACX (5.7)

where Ais the closest of the cubic directions.

This remarkably simple result was checked by repeating

the process for interface normals in the (001) zone. Inasmuch

as the details shed no new light on the subject, they will not

be repeated here.

As a three dimensional object, this function may best be

visualized by imagining 6 interpenetrating spheres of diameter

2/d 2 whose centers lie on the face centers of a cube of edge

2/d2 . Figures 5.3a, b, and c show cross sections of this

function perpendicular to the (001), (110) and (111)

directions respectively. Another way to visualize this

function is as constant density contours in a stereographic

projection (Figs. 5.4a and b).

When interpreted as a solid-vacuum interfacial energy

with each dangling bond carying a fraction of the appropriate

latent heat per atom, this result is entirely consistent with

the work of Herring who in 1951 showed that such J plots have

to be composed of sections of spheres (Herring 1951).

For the diamond lattice Mackenzie and Nicholas 1962 have
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previously calculated the number of bonds of various kinds cut

by a plane of varying orientation. Unfortunately, due to the

occurence of singly bonded atoms at such an "unstepped"

surface, their result is not directly related to the present

work.

In connection with the above results, it is worth noting

that high index directions correspond with highly corrugated

"hill and valley" structures. Nevertheless the contribution

to the dangling bond density is no more than that given by the

individual steps. There remains some leeway in the

arrangement of steps in such a direction: all the steps of one

kind could be bunched together giving a deeply grooved

surface, or the two kinds of steps could be interspersed

resulting in a smoother interface. In the absence of

step-step interaction energies we cannot derive the choice.

But common sense dictates that given the latitude, the crystal

will conform as closely as possible to the melt isotherm,

which leads to the choice of the smoother interface ( of the

same average density of dangling bonds and repeat distance).

we have seen at the beginning of this section that the

calculation assumes a temperature of O*K. There is good reason

to suspect however that even at the melting point enough

features of the density of bonds remain to preserve the

usefulness of the model. External morphological aspects of

melt grown crystals often include clear anisotropies such as

faceting, dendritic growth or growth twinning which, as we

will see in the next three sections, provide ample
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justification for this approach.
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111.6 Su22ort in evidence and 2221 ications of the danjiins

bond model

A striking confirmation of the density of dangling bonds

calculation can be found in the etching of spherical crystals

of elemental semiconductors. In such experiments, the

ultimate shape is expected to consist of facets with the

fastest etch rate. Figure 6.1 shows the result obtained by

Lee on a silicon sphere (Lee 1969). The fastest directions

are of the (001) type with the rate gradually decreasing

towards the octahedral directions. The etch rate can clearly

be correlated with the density of dangling bonds shown in Fig.

5.4a. A similar result was obtained by Ellis with germanium

spheres. Even though he was able to obtain other forms with

various concentrated etches, in the limit of low dilution all

of his etchants yielded cubic forms (Ellis 1954). A direct

correlation between etch rate and bond density in Ge was also

noted by Gatos and Lavine 1965.

The idea of "easy" and "difficult" growth directions in

an {lll} plane was convincingly explained by Billig 1955 and

Barber and Heasell 1965 in terms of the initiation of new rows

of atoms at {111} steps. In terms of the density of dangling

bonds the explanation is automatic with reference to Fig.

5.4b. The lateral growth of steps may be thought of as the

slight deviation of the interface orientation from the (111)

direction (i.e. a vicinal surface). The lateral growth rate

is seen to changes continuously with the direction of tilt.
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Deviations toward a (001) type lobe corresponds to steps

advancing in an "easy direction. Conversely, the difficult

directions result from tilting toward the nearest octahedral

directions. The influence of a proximal (001) type axis on

the growth of {111} steps was also recognized by Miller and

Witt 1975.

Another way to see the anisotropy of growth kinetics is

to look at interface demarcation studies of twinned crystals.

As will also be shown below, after an oblique twinning

operation the dangling bond density will increase, resulting

in transiently higher growth rate and a cusp in the interface

at the twin boundary (Fig. 6.2). Such cusps were in fact seen

by Witt and Gatos 1967 and by Miller and Witt 1975 in twinned

InSb.

Faceting on {lll} planes is well known in tetrahedrally

coordinated semiconductors. It may be understood kinetically

as follows. Assume that the growth rate is proportional to

For an interface normal n(@ ) making an angle 9 with the

{111} direction (n0), the axial component is proportional to

^ ^ ^0). The function f defined as the ratio of this

component to the (111) rate is

______ O (a~ ( 6.1 )
y&eiL y ,P (05 S6 (o1

This function has a maximum of (1+f3)/2-l.37 at 6= 90/2 =

27.4* and equals 1 at the two extremes 00 and 54.70*. The result:

for equal undercooling, all interfaces of orientation

intermediate between (111) and (100) will tend to grow faster

and catch up to the {111} facet. The process is
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self-limiting: the closer the orientation the smaller the rate

difference. (N.B.: Naturally the undercooling will not be

the same at different points of the interface, but will rather

be determined self-consistently by the combined effects of the

applied thermal field, the imposed pull rate and the lattice

anisotropy. Nevertheless, a qualitative understanding may be

gained from the present considerations.) For 0>1 0/2 the

effect is also diminished since f is approaching unity. At

GO the axial rate of that interface is precisely equal to that

at the center of the facet. Thus the angle of tilt would tend

to decrease if initially less than 54.7* and increase if the

reverse were true, leading to a potentially abrupt change in

interface tilt beyond this angle. In that case an external

"facet" would form appearing as a flattened outside surface

and suggestive of the action of a so-called "divergent" facet.

Of course, to have the actual divergent facet be a part of the

local solid-melt interface would require an angle of tilt of

109.50, which, with the exception of unusually severe

"shouldering", would not be achieved.

Tilting now toward the "difficult" (011) direction

(which, projected in the {111} plane would point along the

(211) direction), the function f becomes

(sC(ee~os(@) (6.2)

This function has a ( V-2+ Vr3 )/ 2 V2 maximum at .=1/2=17.6.

As before the angle of tilt will tend to decrease if initially

less than 35.3* and increase if the reverse were true,

resulting in the appearance of flattened exterior surfaces
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suggestive of the action of the so-called "convergent" facets.

To have the actual convergent {111} facets be part of the

interface would require a tilt angle of 70.5* which is not

often realized in practical melt growth.

If we now compare the axial component of the growth rate

at diametrally opposed points on the solid-melt interface, we

find that it is greater in the "easy" directions even after

the second triplet of external "facets" sets in (for 9>54.70).

Figures 6.3b, c and d show the qualitative external faceting

behavior in pulling from the melt as a function of interface

tilt at the perifery (angle 0 in Fig. 6.3a). All three types

of boule cross sections are seen experimentally in the

elemental semiconductors. Facet formation in crystals with

convex growth interfaces was previously pointed out by Mullin

1962.

A major application and the primary reason for this

investigation is the exploration of growth twinning. We limit

for now consideration to the solitary (or isolated) type.

For a (111) seeded crystal Fig. 5.4b showed the density

of dangling bonds as a function of interface orientation.

Because of {111} faceting (discussed above} a major portion of

the interface is in fact coincident with a {1ll} surface.

With this orientation it is obvious that twinning on this

facet would not at all increase the density of dangling bonds

and it is therefore an inappropriate response to undercooling

(recall that the twinning operation is conveniently

represented as a 180* rotation around the (111) axis, hence the
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term rotational twinning). On the other hand, an oblique twin

will definitely increase this density as can be seen from the

composite of Fig. 6.4, where the rotation axis was chosen to

be (111)=(111). Note that in this figure for each

orientation only the highest density surface is shown, whether

that be of the original or of the twinned crystal. After the

rotation the nearest (100) type lobe to the original growth

direction is the (100)' which is located at 1/3(122) in the

unrotated system, as can be seen from Appendix A2. The newh"

relative to the original one is

- -' (6.3)

Thus if the microscopic rate were proportional to and to

the kinetic undercooling, the latter would diminish by 40%.

If the twin plane energy is negligible, we already have a

kinetic explanation of oblique twinning at any growth rate.

With a finite TPE, (111) growth will remain stable up to a

growth rate threshold. At higher rates, kinetics once again

wins out over energetics and the oblique twin is activated.

The crystallography of oblique twinning is such that it

can only occur at the edge of the interface. Otherwise it

would be accompanied by a high energy grain boundary which

would require a far higher driving force to overcome. The

relative stability of a (111) seeded crystal against twinning

can then be understood as resulting from the rather low

kinetic undercooling likely to be present near the curved

perifery of the interface.

Consider now a (001) seeded crystal (Fig. 5.4a). There
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are four potential twinning axes at 54.70 from the growth

direction. One of these twinning operations is shown in Fig.

6.5. It is obvious that this is no more than a different view

of the situation in Fig. 6.4. It is also apparent that no

twinning operation can increase X' beyond its 2/d 2 maximum at

(001).

The prediction is then that there will be no twinning in

a crystal whose solidification front coincided everywhere with

a {001} type surface. The restriction can be relaxed to

include the entire range of orientations where the bond

density could not be surpassed by any twinning operation.

This range is shown in Fig. 6.6 as an octogonal cap on a three

dimensional multiply composite surface. A solid-melt

interface with a normal in this range would never twin

according to this model, regardless of growth rate or TPE.

Moreover even neighboring orientations may not twin below a

certain growth rate (directly related to the TPE).

Taking this analysis to its logical conclusion, we wish

to find the most probable twinning operation for each

interface orientation. Fig. 6.7 associates each interface

orientation with the twinning axis yielding the highest

dangling bond density, or with an unconditionally stable

region. The active planes are shown in this stereographic

projection as the zones of the corresponding twin axes. Note

that in the neighborhood of the (111) axis, tilting the

interface towards a "difficult" direction (which, as discussed

above, leads to the formation of a "convergent" facet when 9
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>35.3*) may result for 0<35.3* in an oblique twin of the type

previously thought to occur by accidental 2-dimensional

nucleation at a point on an actual oblique {111} facet near

the 3 phase region.

It is now clear that most solitary oblique twins do

originate at the edge of the growing crystals. But the

misoriented 2-dimensional nucleation mechanism on a (111)

oblique surface cannot be applicable without the actual

occurence of such an interface orientation. Moreover, as the

preceding argument shows, kinetic (and energetic)

considerations are sufficient to account for the morphology of

solitary twinning in elemental semiconductors, rendering

growth accidents unnecessary. This is not to say however that

heterogeneities of a chemical, mechanical or thermal nature

cannot lead to twinning. But it is one of the important

results of this thesis that the intrinsic material is capable

of twinning in the course of normal growth, without recourse

to causes beyond operator's control.
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111.7 Internal lamellar twinnin2

Under growth conditions more severe than those described

in the preceding section, twin lamellae are found, originating

away from the edge of the solidification front. One of the

findings of the vertical Bridgman growth experiments in CdTe

was that the twin spacing distribution did not appear to be

random but fluctuated about a value locally determined by

thermal conditions. Figures 7.la and b illustrate the

relative uniformity of the twin spacing in two views of the

same crystal. The purpose of that run having been to precast

a charge for another experiment, it was pulled at Spm/sec (an

order of magnitude faster than would have been the case for a

regular run), hence the heavy twinning.

The model proposed here for this type of twinning relies

on the assertion that two driving forces present in crystal

growth operate sometimes at cross purposes. To illustrate

this idea we now refer to Fig. 7.2a where a coherent twin

boundary is shown advancing obliquely into the melt. Due to a

lower density of dangling bonds, the grain on the right is

faced with a higher kinetic undercooling. In order to lower

it, the crystal may twin, while at the same time incurring the

penalty of a developing high energy grain boundary (Fig.

7.2b). Eventually a near "steady" state is achieved where the

undercooling force is small but where the high energy grain is

continuing to advance (Fig. 7.2c). These are appropriate

conditions under which a new twin plane can stop the high
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energy boundary, at the same time leading to another transient

in undercooling. Repeating this cycle would lead to an

oscillatory effect observable as lamellar twinning.

Stacking considerations require that each of the twin

domains bounded on one side by an incoherent planar defect be

an integral multiple of three double layers in thickness (as

also pointed out by Mendelson 1967). The smallest such domain

is depicted in Fig. 7.3aas part of a lamellar configuration.

Figures 7.3b and c show an example of this configuration in

CdTe under 250X magnification using two types of surface

preparation (courtesy of Brian Fabes). Note that in this

example the (110) axis is tilted slightly with respect to

the normal to the page resulting in a slightly changed

apparent twin dihedral angles. Two possibilities arise (Figs.

7.4a and b) according to which of the two angles contains the

local interface normal. The dangling bond diagram (Fig. 6.4)

for twinned elemental semiconductors allows both possibilities

under the following conditions:

i) - Accute angle (70.5*) toward the melt with interface

normal some 600 away from the zone of the twin planes (Fig.

7.4a)

ii) - Obtuse angle (109.50) toward the melt with interface

normal nearly parallel to the zone of the twin planes (Fig.

7.4b)

In both cases an oscillation can only be sustained if the

domain with the higher density of dangling bonds is also the

one with the incoherent (or high energy) boundary with the
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underlying grain.

The fact that in our experiments on CdTe only type (i)

was observed may be indicative of the polarity of lattice and

of the need to incorporate the results of the next section

into the present argument.
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111.8 Polar effects

The dangling bond model presented in Section 111.5 above

was restricted to tetrahedrally coordinated semiconductors.

To generalize the model to the binary compounds we will allow

opposite type of {111} steps ({lll}A = {111}, {111},

{111}, or {111}, and {lll}B = {111}, {111), {111}

or {111}, where the A surface terminates with atoms of

groups II or III and the B surface with atoms of groups VI or

V) to carry different effective numbers of dangling bonds.

Specifically, we will endow B type steps with 1+ 6 dangling

bonds while keeping the other contributions unchanged. To

parallel the derivation of Section 111.5 the calculation will

differ only in regions I'', I''', II and II' of figure 5.2 in

the following respects.

In region I'' the periodic area A

d C/ ((I. cTo +

will contain 2m+n(l+ E) dangling bonds with a density

Zt~i A4 AA

-,(007)+- A.(/to >= x'(

- OZ /- -{ E - TY (8.1a)

Similarly, in region I'''

I n 
( 8 . b )

In region II of Fig 5.2, Eq. 5.5 will be modified to

O/O -I ). /,(8.2a)
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O ~ (8 .2b)

The three dimensional appearance of this modified function may

be visualized by imagining the unmodified version and then

splitting each of the (001) type lobes into two partially

overlapping spheres in such a way so as to increase the

density of bonds in the B direction. Instead of six we now

have a 12-lobed function. When 4 is small the effect is that

of having each (001) lobe slightly elongated toward the B

directions. When 6 is large (say, of order unity) then the

split halves will tend to merge in groups of three around the

B directions. This is the situation depicted in Fig. 8.1

where E was chosen to be unity. It is seen that is

already greater in a B direction than in a (001) direction.

In fact it can be shown that that will be the case for any

value of E greater than 0 , where

c E '732 (8.3)

So for etching of spheres we expect the ultimate form to be

progressively more tetrahedral as E increases. Such shapes,

with fast etching B faces have been reported in GaAs (Richards

1960) and in InSb (Gatos and Lavine JPCS 1960). In addition

Gatos and Lavine (op. cit.) found other features which lend

credence to the present model: i) - the appearance of three

faces in the vicinity of the B directions and ii) - the

presence of four sets of six converging facets, strongly

reminiscent of the six lobes surrounding the A faces in Fig.

8.1. They also report that B faces and (100) faces had about
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the same etch rate in their modified CP-4 etchant.

With regard to growth anisotropy, the predictions in the

polar case are again different. Growing on a B face should

definitely be easier than on an A face. Experimentally this

is nearly universally known to be the case (Prof. A. F. Witt,

private communication). It should be noted however that some

of the early work had reported greater faceting and more

difficult nucleation on B faces (e.g. Hulme and Mullin SSE

1962, Steinemann and Zimmerli SSE 1963, Barber and Heasell

1965). One other paper (Seidensticker and Hamilton JPCS 1963)

in attempting to reconcile the idea of a B face with a large

nucleation barrier with their own experimental findings,

arrives at the notion of a "noble" B face which grows fast.

Such reports are at variance with the currently accepted view

of polarity effects in crystal growth, as well as the model

presented above.

A study of stability against twinning in the polar

semiconductors along the lines of Fig. 6.7, while currently in

progress, has not yet been completed. Nevertheless,

qualitative features are already apparent in Fig. 8.1. For

sufficiently large E, twinning on an A plane will not

decrease the kinetic undercooling during B growth, hence it

will not happen. On the other hand, A growth can always lead

to B twinning regardless of E. The experimental evidence for

this statement is abundant. Notably, Hulme and Mullin SSE

1962 (who, as mentioned above, felt that faceting on B faces

was more pronounced than on the A faces) listed seed
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orientations for InSb in order of decreasing suitability for

monocrystalline growth. The sequence [111], [2111; [311];

[100]; [1101, [1 11] (note their use of the opposite sign

convention) they found experimentally is entirely consistent

with a decreasing dangling bond density as shown in Fig. 8.1.

Another feature suggested by Fig. 8.1 is the possibility

of 90* twins (perpendicular to the growth axis) for B seeded

crystals with little or no deviation from the intended

alignment. Such an occurence has been reported in InSb by

Witt, Gatos, Lichtensteiger, Lavine and Herman 1975 in the

form of rotational (lamellar) bands. With a slight amount of

interface curvature, vicinal surfaces corresponding to the

"difficult" growth directions could be exposed. Rotational

twinning might than interchange the "easy" with the

"difficult" directions, the event recuring after the

consummation of the undercooling transient.

It should be emphasized that nothing in this model

provides a value for E. Ideally, further theoretical work

would make it expressible in terms of the ionicity or the

charge distribution of the compound. In practice, it may

simply be left as a free parameter to be determined

experimentally. Furthermore the interpretation of X as a

density of dangling bonds may be called into question when E

is different from zero. But, as we have seen in this section,

the presence of the extra electrons on B faces does appears to

behave as though more bonds were present.
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111.9 Clusterin2_model

During the course of the investigation into growth

twinning mechanisms, some attention was paid to the

possibility of a "twin nucleus" originating in certain types

of melt and then arriving at an advancing interface at some

mean rate. Such events would be more likely in the more

highly associated melts, i.e. those retaining a relatively

high fraction of covalent bonding in the form of clusters or

random networks.

The stability of small clusters was determined by

computing the average number of dangling bonds per atom. The

process was simplified by imposing tetrahedral bonding and

disregarding polar effects. Table 1 lists this average for

clusters of up to 8 atoms. The remarkable finding is that the

smallest cluster where this average falls below the threshold

value of 2 is the 8-atom cluster of Fig. 9.1. This cluster

can be readily seen to be the smallest stable portion of the

wurtzite lattice - or, what is the same thing - of a twin

plane in the sphalerite lattice.
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TABLE 111-9.1
No. Distinct Dangling Per
atoms topologies bonds atom
1 1 4 4
2 1 6 3
3 1 8 ~2.67
4 2 10 2.5
5 3 10 2.4
6 1 12 2

3 14 ~2.33
7 1 14 2

6 16 ~2.29
8 ""> 1 -"> 14 ""> 1.75

4 16 2
7 18 2.25

Consideration of Fig. 9.2 will evidence the fact that the

most energetically favored position of an 8 atom cluster on an

undercooled {111} surface is such that a twin plane will be

initiated obliquely. There is some bond angle distortion and

anomalous 3 atom coordination at the junction but that will

occur regardless of the twin mechanism. Depending on which of

the two types of oblique twins (Fig. 9.3) the cluster

initiates, the result may be a single lamella or a more

complicated structure such as given in Fig. 7.3.

Potential consequences of a clustering mechanism can be

seen from the following argument.

The total number N8 of 8 atom clusters is obtained from a

time and space integral of the appropriate nucleation rate

If we assume that the clustering effectively takes place only

in the undercooled region of the melt, of thickness

the integral becomes
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fv~"0 (dVI d v J 7~ V (r
The result can be estimated by assuming a nearly constant

growth rate so that

and -----

G /(a V11
For single crystal growth we require that this quantity be

less than 1, i.e.

C-, \ -A4 (9.1)

This requirement on G and R is plotted in Fig. 9.4 together

with the constitutional supercooling criterion to yield a

region where single crystal growth is allowed. The existence

of a minimal thermal gradient below which sustained

monocrystalline growth is not possible is a novel feature, not

previously disclosed by other theories.

Other limitations in (GR) space may also exist, related

to such factors as thermal stresses in the growing solid and

thermal stability of the confining walls.

Experimental evidence for this type of twinning mechanism

is limited. Iseler 1980 has reported the

existence of a minimal G for monocrystalline InP grown by LEC.

He also noted that the value of G is increased by themin

addition of various dopants, which can readily be understood

in terms of the clustering model.

Searching for materials where this mechanism may be

applicable is simplified by tabulating the volume change on

melting. A small value of AV/V implies a small change in
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the average coordination number, i.e. retention to a greater

degree of covalent bonding. As can be seen from Table 9.2

(processed from data in Glazov et al. RJPC 1969) CdTe differs

sharply from the other semiconductors listed. Not only is the

change on melting smaller in magnitude but it also has the

opposite sign. Of the other materials, the one with the next

smallest change on melting (Ge) is still better than an order

of magnitude higher than that of CdTe.

TABLE 111.9.2 A
Material VS
Si -9.1
Ge -4.5
AlSb -11.4
GaSb -8.7
InSb -11.1
GaAs -9.6
InAs -6.6
CdTe +0.35

A more precise definition of the state of the melt is the

average coordination number n. In Appendix A3 a polynomial

relationship is developed between the filling factor ff and n.

Given the experimentally determined interparticle separation

b and melt density, the filling factor ff melt can be
melt
expressed as

- - f(9.2)

Then the value of n may be read off the graph in Fig. 9.5.

For example, in the case of InSb, Glazov and colaborators have

reported JP = 6.48 g/cc (Glazov et al. RJPC 1969) and
melt

b me = 3.15 A (Glazov et al. book 1969). The molar mass M

was given by Sirota 1968 as 236.57 g/mole. Using Eq. 9.2 we
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find ff = .540 and from Fig. 9.5 we read n=~6.2. This is
melt

consistent with the rocksalt coordination of 6 listed by

Glazov (Glazov et al. book 1969).

This approach can thus be used to deduce the average

coordination number in the melt, and should be useful in an

assessment of the validity of the clustering model of growth

twinning.
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III.10 Conclusions

The dangling bond model has led to the unified

explanation of a variety of phenomena. It therefore appears

that in most cases twinning occurs deterministically as a

result of the interplay between the applied thermal field and

the anisotropy of the growth interface. The degree of

uncertainty associated with the spatial and temporal position

of new twinning events should be no greater than the

uncertainty (i.e. fluctuations) in the configuration of the

thermal field itself.

Considering the motive force behind this thesis (see

Section 1) the most important feature of the dangling bond

model is its ability to explain much of the phenomenology of

growth twinning. A diagram of stability against growth

twinning is explicitly given for elemental semiconductors

(Fig. 6.7). The polar case is equally promising but more

qualitatively treated in Section 8. The lamellar model of

Section 7 gives hope to the goal of the eventual achievement

of regular rotational twinning. Thus we can indeed look

forward to the use of the nonlinear optics concepts presented

in Chapter II in building efficient and inexpensive frequency

doubling and mixing devices.

Other successes of the dangling bond model include the

qualitative explanation of faceting and preferential etching

of the tetrahedrally coordinated semiconductors. Although not

discussed above, a preliminary study showed that the
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morphology of dendrites, ribbons, webs, whiskers, needles and

plates also lend themselves to an understanding in the same

terms.

While constrained twinning has been shown to be the

prevalent type, accidental twinning remains a possibility. In

semiconductors with highly associated melts such as CdTe, the

clustering model of Section 9 may provide an alternate

explanation. In addition to the preferred occurence of

oblique twins, the model predicts the existence of a region in

G-R space outside of which monocrystalline growth cannot take

place. In particular, there exists a minimal thermal gradient

below which no single crystals will result, regardless of the

pull rate.
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III.11 Future research

To further check the above models a number of experiments

suggest themselves. In most of these, use of the interface

demarcation technique developed at M.I.T by Professors Witt

and Gatos and collaborators (Witt and Gatos JES 1967 and 1968,

Singh, Witt and Gatos 1968, Lichtensteiger, Witt and Gatos

1971) will be indispensible. For example, a study of

threshold effects in oblique twinning for a given orientation

should yield results from which the corresponding threshold

for another orientation could be calculated.

Bridgman experiments with twinned seeds should provide

verification for the lamellar model of Section 7. In fact, an

even simpler experiment would be an unseeded Bridgman run

using a tilted ordinary quartz ampoule to create thermal

asymmetry. The expectation is that a result similar to that

of Fig. 3.4 would be obtained.

A different series of experiments should be done in a

Czochralski system to measure the systematics of interface

demarcation line angles with the growth axis in the vicinity

of central facets and near the external surface. It is

believed that such measurements could be used for a

determination of the polarity parameter in the compound

semiconductors. The same purpose would be served by etching

monocrystalline spheres of various II-VI and III-V materials

where this has not yet been done.

Much theoretical work remains to be done too. A high
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priority should be given to developing the polar results to

the extent achieved in Sections 5 - 7. Also of great interest

would be the development of a microscopic growth rate theory

incorporating the results of this chapter. A preliminary look

in that direction has already indicated a possibility of

interface instability and breakdown lying completely outside

present morphological instability theories. Such

instabilities could occur in arbitrarily pure materials of

certain orientations under the influence of transient

interface perturbations. For other orientations these

perturbations could lead to the propagation of dispersionless

growth waves (solitons) across the interface.

Finally, the influence of melt association on growth

should be investigated. It is expected that significant

clustering would influence not just the clustering model of

Section 9 but also the dangling bond model of the growth

interface.
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Al Estimate of stick inj p2 obability_ du.Kn ns rowth from the

melt

We compare the layer deposition rate 1/r dep in normal

growth to the collision rate 1/ Coll in the melt:

rcoll
P=----(1)

dep
In the (111) direction the layer thickness is 4b/3 so that

=4b/3R (2)
dep

The collision time is

=X/vT

whni~ X is the mean-free-path and vT is the thermal velocity.

We estimate these as follows:

=Vmolec

where

v molec=M/(NA fi) = molecular volume

and

T=417 b2 = collision cross section (5)

Also

vT= (3RT/M) (6)

Combining Eqs. 1-6 and evaluating for CdTe

P - 2.5XlO(-1 0 ) (7)

The values used were

M=240 g/mol

1 -5.67 g/cc

b=2.81 A
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T=1365 *K
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III.A2 Twinnin2_opteations and low index directions

A general 3 X 3 rotation matrix R(u, ) can be written

.C5+(AA| - aEg| k S iaY
(Professor R. Balluffi 3.33 course notes, Spring 1980, M.I.T.)

For twinning = 180* and

R ( -) zV t

The matrices

R? (aJuS R[j)'{u()
in Table 1 below express the coordinate transformation of a

vector imbedded into the lattice after the latter has

undergone two successive twinning operations. Note that

0|=R , liz+Ra') MR U u^

i.e.

2t I z
Also note that R(u) = R(-u)

The results for first and second order twinning

operations onto the tetrahedral (previously published by

Slawson 1950) and cubic directions are listed in Table 2.
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III.A3 Fillin2_factor versus coordination number

In a hard sphere approximation the filling factor ff

(or packing fraction) is given by ffV at/V where V is

the spherical volume. For a binary compound of fairly closely

matched components (i.e. where we can ignore differences of

atomic radii) with mean nearest distance b, density and

molar mass M, its value may be obtained from

if - --~L# (1)
M /(2 A4f) 3 1VI
To obtain a relationship between ff and the

coordination number n, we considered the exactly known data

points of Table 1. The following cubic was found to be the

lowest order polynomial fitting the data

ff=O.0646 +.03ZI4, 0.0 00 $7 (2)

This function is displayed in Fig. 9.5.

In addition to the InSb example discussed in Section 9,

we have found the following check of Eq. (2). The

coordination number for an "ideal" RCP (random-close-packed

structure) was independently calculated to be 13.397 . Since

the value was subsequently found in the literature (Nelson

preprint), the derivation will not be presented here. Upon

substitution in Eq. (2) we find the following filling factor

for the RCP

=a637 (3)

This is within 1% of the experimentally determined value of

.63(7) (Scott 1960). Equation (2) makes also the as yet

unverified prediction that there is a range of coordination
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numbers 9 ~< n < 12 of density higher than that of the FCC

structure. The maximum packing density would be .773 at n

=~ 10.6.
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Fig. 111.3.2 Growth assembly Fig. 111.3.1 Vertical Bridgman crystal
growth set-up



(a) Last-to-freeze region ("meniscus") (b) Laue back-reflection from "meniscus"

Fig. 111.3.3 CdTe crystal grown by the Liquid Encapsulated Bridgman method



(c)

iOOX SEM of etched "meniscus" shlowing crack

(d)

X-ray energy dispersive analysis of "meniscus" showing
segregated tellurium

Fig. III.3.3(cont.)
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(g)
Graphite mandrel External grooving (scale divisions .01 in.

apart)
Fig., III.,3.3(concluded)Fig. 111.3.4

(a)



(C)

Fig. 111.3.4 Etched CdTe boule viewed from opposifte directi'ons, showing preferential alignment

of lamellar twins



Fig. III.3.6a Etched axial cut thirough, nearly

single CdTe boule
Fig. III.3.5 Etched axial cut through CdTe

crystal. This boule did not wet
the quartz ampoule



Fig. III.3.6b (110) pole TEM electron diffraction (courtesy J. Nakos)
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2

Fig. III.5.la Nearest neighbor tetrahedral coordination showing

important crystallographic directions

Fig. III.5.lb Projection of nearest neighbor tetrahedron onto the

(11O) plane
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II'I
(iii)(111)

Fig. 111.5.2 Typical dangling bond configurations of interfaces with

normals in the (110) zone
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(110) 0(001) (I1O)

(a) (100) (010)

(110)

Normals in the (001) zone

Fig. 111.5.3 Density of dangling bonds vs. interface orientation

(polar plots)
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(b)

Normals in the (110) zone

Fig. 111.5.3 (continued)
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(c)

(112)

Normals in the (111) zone

Fig. 111.5.3 (concluded)
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(T0o)

(010) .u( (010)

(a)

(100)

(001) zenith

Fig. 111.5.4 Constant density of dangling bonds contours in

stereographic projection
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(b)

(111) zenith

Fig. 111.5.4 (concluded)
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single crystal (from Lee 1969)

P. 179

Fig. 111.6.1 Etched Si



ATu= f (RI )
Tm

,401mm

(1o)'

(111)
N

/

Fig. 111.6.2 Cusp at advancing interface, due to anisotropic growth
kinetics. The density of dangling bonds for the two grains is shown in
a polar plot. The kinetic undercooling is indicated qualitatively
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Definition of interface curvature

35.30<8<54.7 0 54.7*<< 90

(b)(C) (d)
Sequence of boule cross sections as a function of interface curvature

Fig. 111.6.3 Qualitative external faceting behavior in elemental

semi conductors
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(111)

(a)

(II2) 00<8 < 35.30



Fig. 111.6.4 Effect of oblique (111) twinning on the density of
dangling bonds for a (111) seeded crystal. The composite
curves select from the two crystal orientations the one
with the higher density of danqling bonds
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(100)

(010) x(001) (010)

x(I00)'

x (00i)

(IITO)

(100)

Fig. 111.6.5 Effect of twinning on the density of dangling bonds for
a (001) seeded crystal
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- STABLE AGAINST TWINNING

Fig. 111.6.6 Stability map against twinning; a density-of-dangling-
bonds composite surface for a (001) seeded crystal
and all of its first-order twins (projection of the
3-dimensional surface onto the {001} surface)
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t Tit

(III) TWIN
PLANE '

i11) TWIN
PLANE

Fig. 111.6.7 Stability map against twinning; shows preferred twin
operations and stable regions vs. interface orientation
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(a)

Cb I _

Fig. 111.7.1 First to freeze oortion of CdTe boule showing relatively
uniform lamellar twinning
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(a) Steady

(b) Transient

Tm

(c) "Steady"

Initiation of a twin lamella from a twin boundary
(schematic)
Cusp at solid-melt interface due to orientation difference
across twin boundary
Nucleation of second order twin including a high energy
boundary
The favorable orientation of the new grain gives it a
lower kinetic undercooling

P. 187

Fig. III. 7.2

(a)

(b)

(c)



(112)

(001)

(II2)-

Fig. III.7.3a Atomic model of the thinnest (3 double layers) twin lamella allowed by crystallographic
constraints



SURFACE PREPARATION OF CdTe

(b)

Etched CdTe surface showing an example of a twin lamella (courtesy B. Fabes)
Fig. 111.7.3 (concluded)

(a)



Fig. III.7.4a Lamellar twinning with accute dihedral
melt

angle towards the
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0

Fig. III.7.4b Lamellar twinning with obtuse dihedral angle towards the
melt
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(oi) (OIT)

X

(110) (I11)

(ill))

Fig. 111.8.1 Density of dangling bonds vs. interface orientation for
a polar semiconductor with E = 1
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Fig. 111.9.1 8-atom twin nucleus with an average of 1.75
dangling bonds per atom
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Fig. 111.9.2 Initiation of oblique twin at 8-atom cluster
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Fig. 111.9.3 Crystallographically allowed oblique twin planes
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Fig. 111.9.4 Stability region (cross hatched) against twinning in
thermal gradient vs. growth rate space, as predicted
by the clustering model
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0.8- FCC
HCP
0

0 BCC
(CsCl)

RCP
0.6-

o SC
0.5- (NaCl)

0.4 _ ff=00646 + 0.03210n + 0.01278n 2 -0.0008969n 3
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Fig. 111.9.5 Filling factor (ff) (or packing fraction) vs. coordination number (n)
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