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ABSTRACT

The objective of this research was the development of a computationally efficient
polynomial nodal method for solving the multidimensional, few-group, static neutron
diffusion equation. This nodal method permits discontinuities in the face-averaged fluxes
and net-currents through the use of flux and current discontinuity factors. Discontinuous
face-averaged net-currents were permitted in order to accommodate advance spatial
homogenization methods. This research also explores a nonlinear iteration scheme based
on the coarse mesh finite-difference (CMFD) method. This iteration scheme uses the
polynomial nodal method to determine the inter-nodal coupling and to generate coarse
mesh finite-difference discontinuity factor ratios. The coarse mesh finite-difference
discontinuity factor ratios are then used to force the CMFD method to reproduce the
polynomial nodal method solution. The use of this nonlinear iteration scheme reduces
the number of unknowns required by the nodal method.

The accuracy of this nodal method for assembly sized nodes is consistent with
other nodal methods and much higher than finite-difference methods. The computational
efficiency of this nodal method is slightly lower than other nodal methods. The reduced
computational efficiency is believed to be a consequence of the additional generality of
this nodal method. Instability problems were encountered with three-dimensional
problems where the axial mesh size was much greater than the radial mesh size. For
three-dimensional problems the axial mesh size must be less than three times the radial
mesh size to guarantee stability.
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CHAIER 1

INTRODUCTION

1.1 BACKGROUND

The finite-difference method has been the principal technique for solving the

neutron diffusion equation for more than 35 years. The computer codes based on the

finite-difference method [C1, F4, V 1] that were developed were robust and employed the

most efficient iterative techniques that were available at the time. However, finite-

differencing is inherently a brute force approach to the problem. Even with the continued

advancements in computer technology, there remained constraints on the size and class of

problems that may be solved because of practical limitations on computer storage and

execution time.

Over the last 15 year modem, consistently formulated nodal methods [L1] have

been developed that rival the accuracy of finite-difference methods while using a coarse,

assembly-sized mesh. These modem nodal methods typically reduced the execution time

required to solve these problems by two orders of magnitude. Modem nodal methods

typically break a multidimensional problem into a series of one-dimensional problems by

integrating the neutron diffusion equation over the directions transverse to each

coordinate axis. The procedures used to solve the resulting transverse-integrated

diffusion equation may be used as a natural basis for separating modern nodal methods

into two additional classes: analytic and polynomial. Analytic nodal methods are based

on the analytic solution of the transverse-integrated diffusion equation for each node.

The QUANDRY [S2] code is an example of the analytic nodal method. However,

because of its complexity the analytic nodal method is effectively restricted to modelling

problems with no more than two energy groups. Polynomial nodal methods approximate

the solution of the transverse-integrated diffusion equation for each node with a low order

polynomial expansion. The Nodal Expansion Method (NEM) [B 1, B2, F1, F2] is an



example of the first generation of polynomial nodal methods. One of the principal

advantages of polynomial nodal methods is that they have no effective restriction on the

number of energy groups that may be modelled. The accuracy of both analytic and

polynomial nodal methods is comparable.

Parallel to the development of modern nodal methods considerable advancements

in spatial homogenization methods have been made [S4]. Homogenized cross sections

for assembly sized nodes are typically obtained using the conventional flux-weighting

procedure, with each assembly type being modelled using zero net-current boundary

conditions. This conventional approach does not provide enough degrees of freedom to

match both the flux distribution and the eigenvalue. Smith [S3] provided the sufficient

degrees of freedom by permitting the nodal face-averaged fluxes to be discontinuous.

These discontinuity factors are typically obtained for an assembly by taking the ratio of

the average flux on the face to the node-averaged flux.

At MIT there has recently been interest in homogenization methods for space-

time analysis [K1, T1]. Currently, conventional flux-weighting procedures are used to

generate homogenized cross sections for use in space-time analysis. Kim [K1] and

Tarantino [TI] explored several bilinear weighting schemes based on variational theory.

These bilinear weighting schemes typically required discontinuities in both the face-

averaged flux and net-current [T 1].

1.2 OBJECTIVE OF RESEARCH

The objective of this research is the development of an efficient polynomial nodal

method for the solution of the multidimensional, few-group, static neutron diffusion

equation. The nodal method will permit discontinuities in both the face-averaged flux

and net-current. This extended set of homogenization parameters is proposed to support

future research in advanced spatial homogenization methods. There is to be no

restrictions on the number of energy groups or the structure of the energy groups.



Upscattering will be permitted. Extraneous neutrons sources will also be modelled.

Therefore, the nodal method will solve both eigenvalue and source problems.

The second objective of this research is the development of a nonlinear iteration

scheme based on the coarse mesh finite-difference (CMFD) method. In the proposed

iteration scheme the higher-order polynomial nodal method is used to determine the inter-

nodal coupling. CMFD discontinuity factor ratios which will reproduce the polynomial

nodal method results are then determined. The CMFD method will then be used to

determine the node-averaged flux. This nonlinear iteration scheme was selected because

it is believed to reduce the storage and execution time requirements of the nodal method.

It was also selected because the numerical properties of the CMFD method are better

understood.

1.3 THESIS OVERVIEW

In Chapter 2 a coarse mesh finite-difference (CMFD) method and a polynomial

nodal method both which permit discontinuities in the face-averaged flux and net-current

are derived. First the CMFD method is derived. CMFD discontinuity factor ratios which

will reproduce a reference solution are defined. Then a polynomial nodal method with

flux and current discontinuity factors is derived. Finally, a procedure for determining

CMFD discontinuity factor ratios using the polynomial nodal method is described.

In Chapter 3 the numerical properties of the nodal method are discussed. A

procedure for guaranteeing the stability of the iterative solution is described. The

iterative scheme used to solve both eigenvalue and source problems are described.

Finally the issues regarding the optimization of the iterative solution are discussed.

In Chapter 4 the QUAGMIRE code is described. The QUAGMIRE solutions for

a variety two-dimensional and three-dimensional benchmark problems are presented and

compared to other nodal methods and finite-difference methods.



Finally, in Chapter 5 the results of this research are summarized. Conclusions and

recommendations for further research are made.



CHAPTER 2

SOLUTION OF THE STATIC NEUTRON DIFFUSION EQUATION

WITH AN EXTRANEOUS NEUTRON SOURCE

2.1 INTRODUCTION

In this chapter two numerical methods for solving the static neutron diffusion

equation with an extraneous neutron source are derived. These methods permit

discontinuities in both the face-averaged flux and the face-averaged net current at nodal

interfaces. First a coarse mesh finite-difference (CMFD) method with flux and current

discontinuity factors is derived. CMFD discontinuity factor ratios are defined which will

reproduce a reference flux distribution. Then a polynomial nodal method with flux and

current discontinuity factor ratios is derived. Finally, a procedure for obtaining CMFD

discontinuity factor ratios using the polynomial nodal method is described.

Written in the standard P form [H2], the static neutron diffusion equation with an

extraneous neutron source is
G

V- Jg(r) + Itg(r)*g(r)= I (-LXg(r)vcrg,(r) + Igg.(r) )4g,(r) + qg(r) (2- la)

Jg(r)= -Dg(r)V~g(r), g=1,2,..,G (2- 1b)

where,

Jg = net current of neutrons in group g (cm-2 s-1),

g = scalar neutron flux in group g (cm-2 s-1),

% = reactor eigenvalue,
2t = macroscopic total neutron cross section (cm-1),
Xg = fission neutron spectrum for group g,

vIfg = mean number of neutrons emitted per fission times the macroscopic
fission cross section for group g (cm-1),

Igg = macroscopic transfer cross section from group g' to g (cm- 1),
qg = extraneous neutron source (cm-3 s-1),
Dg = diffusion coefficient for group g (cm),
G = total number of energy groups.



We will use three-dimensional Cartesian geometry to model the global reactor

problem. A general notation for the coordinate directions will prove to be very useful;

therefore u, v, and w are used as the generalized coordinate subscripts. The spatial

domain of the reactor is partitioned into a regular array of right rectangular

parallelepipeds (nodes) with grid indices defined by ui, vm, w, where

i =1, 2. + 1 u = x, y, z

m, n j 1, 2, .J + 1 v u

k =.1, 2, K..., K+1 w u v.

The node (ij,k) is defined by

x E [xi, x,+1],

y E [yj, yj+I],

z E [zk, Zk+1].

The node widths are defined by

hie= u11 - u; u = x, y, z

and the node volume is

Vi.j.k a hi hJ hk

In Cartesian geometry Equations (2-la) and (2- 1b) are

a a ig~~~)+a gJgx(X,Y,Z) + Jgy(x,y,z + Jgz(x, y,z) + I g(x,y, z) g(x, y,z =
ax ay az (2- 2a)

G

2 (IXg(x,yz)vrg.(xyz) + Igg.(x,y,z) ) Og.(x,y,z) + qg(x,y,z)
g'=1 '

Jgu(x,y,z) = -Dg(x,y,z) -- +g(x,y,z), u = x, y, z. (2-2b)
au

We assume spatially homogeneous cross sections and extraneous neutron source

within node (ijk). Typically these few-group cross sections result from group

condensation and spatial homogenization using an assembly transport calculation. We



also permit discontinuities in the face-averaged flux and the face-averaged current. The

flux discontinuity factors provide the additional degrees of freedom required by many

spatial homogenization methods. If bilinear-weighting is used both the flux and current

discontinuity factors provide the additional homogenization parameters required by this

weighting scheme. The flux continuity condition at the node boundaries becomes

f -n"(ui)$ '" (u-) af g(u)* (uli) (2-3)

where,

1-1 mn
Oigu ( 1) = homogenized u-directed face-averaged flux at ut,

Imn
Oigu (u+) = homogenized ui-directed face-averaged flux at uit,

fl-'"(u-) = u-directed flux discontinuity factor at u1,

fg,(ut) = u-directed flux discontinuity factor at ut.

Similarly, the current continuity condition at the node boundaries becomes

f 1-1"'"(u-)J1'"'"(ui) =f '""g(u+)jl""u) (2-4)

where,

J '"'"(u-) = homogenized u-directed face-averaged current at uj,

J1"(ut) = homogenized u-directed face-averaged current at uj,

fl '""(ui)= u-directed current discontinuity factor at u-,

f "j(ut) = u-directed current discontinuity factor at ut.

The neutron balance equation is obtained by integrating Equation (2-2a) over the node

volume, Vijk, and then dividing by Vijk,

[Ji(x,1) - Jk(xt)]+ 1Jk(yj.1) - J y(y±)]+ [jii z1)-

ijk-ijk 11 ij k ij j
Xtg g =9 - vXg + I'gg g + i, g = 1, 2, ... ,G

g'=1 X

where,



Xi+1  Y+I zk+i

jk = dx dy dz +(x,y, z), (2-7)

xI Y+i z

vm+1 W+1 u=x,y,Z

Jin(u) = hy'"h dv dw Jgu(U,V,W), v P u . (2-8)

vm wh whvnu

Combining the total minus transfer terms and the fission source terms yields a more

compact expression for the neutron balance equation,
;ijik(Xf+) - Jk(x+)] + J [jk [(ik+i)Jk(Zk)]+

GM j+ (2-9)
1j kGin kk ijk -ik

Agk+jk =1 Fg kg + i, g 1, 2, G

g'=1 g1 g=1 -

where

A k , g(2-10)

Fg v2 f. (2-11)



2.2 CMFD WITH FLUX AND CURRENT DISCONTINUITY FACTORS

The CMFD expressions defining the homogenized face-averaged currents at the

RHS and LHS of ui are

J -u"(f - 2Dg""' [~.mn $g'n(ut)] (2-12)
hU

2D1-1,mn ~ 1-1,mn
j1-ui,mn(u_) =- g ggu (i -1,mn (-3
gu I - h-1 [fI-1imn(u) g (2-13)

where the CMFD discontinuity factors f11 (ut) and f 1j-u''""ui) are introduced to force

the CMFD method to match the results of a reference calculation [H3]. We also define

the heterogeneous face-averaged flux using the face-averaged flux continuity condition,

*u(ui)= fg"u;(u)*+IJg(u+)= f g- gn(u)*guo'' (uj). (2-14)

Similarly, the heterogeneous face-averaged current is defined using the face-averaged

current continuity condition,

Jg'(u) N f J(u)J1g"(ut) = f ~ j"(ui)J1'"'"(ui). (2-15)

Expressions for the heterogeneous face-averaged current at ul can be obtained by

multiplying Equation (2-12) by f (uf) and multiplying Equation (2-13) by f ~""-(ui)

yielding

f~mf(u)(2Dg" -mn * n(ui) 1
- gJ ~bJjju ff~(u)fgr,""(ut)] 21

i-1,nf(uI) -1 g - 1mn]. (2- 16b)

uguj hu f muif-imnu)

Expressions for the heterogeneous face-averaged flux at u1 is obtained by rearranging

Equation (2-16),



,'"ui) f' ui sm"(u,) g'"+ hu J~i (2- 17a)

= f' "'"(u)f'"(ui) i-_ hiu1  Jg(u 1) 1 (2-17b)

ggu 2D-1n fmn(U)J

Setting Equation (2-17a) equal to Equation (1-17b) and rearranging yields,

h'- 1  '"(f''""(uj) bhu fg'(ut) fs2""(ut)

2 n2Dg'" f""(ut+)

fI'""(u)fI1''"(u)(1-1,mn- f (2-18)

We then define the following discontinuity factor ratios:

rg-UI) fg"(ut) , (2-19a)

rg"'"2 )=," (2-19b)

fmn@ )fm

f '"(ut()

r"'"m ) = -1,mn .n fI(2- 19c)

9 f gt~ (UI) f (g 0

Then dividing Equation (2-18) by ' substituting in the discontinuity

factor ratios, and rearranging yields the following expression for the heterogeneous face-

averaged current at u1,

=[h 
1lu + hio rg~(ui)rg~uni(ui)-I

1rmn - m i 2" (2-2 0)

f j(ut+) yields the LHS component of the u-directed leakage term,



-j'm +
hI-I hi -

2 i-n rnm(ui) + 2 u rg"u4n(u)rgn(ui) x

(2-21)
rgm~n#(ui)rgmn(uj) ""n -1-1,mn].gU 9- i.1mn

Similarly, the CMFD expressions defining the homogeneous face-averaged

current at the RHS and LHS faces of ulsi are

Jgui mn(ufs1) . - 2D" +1,mn u u+1)

Jgu"(u,* - 2Dg" g'(~1 mrn.]

jl~l~nhU fg'u""(uf,+) j

gu I+ c r anidfl a u

The ~ ~ ~ ~ ~ + heeoeeufaeaeae urn n lxa I+I argn b

Jm(u,1)= -
1+1,mn (u+(2d1+l, mn -+mn

fg "'j (u+ 1) h +1
U+i f u1,'"(ufs1) f *+i'mn(*,,

(2-22)

(2-23)

(2- 24a)

(2- 24b)= ~ ~ ~ g -- 14,)2ig" "(i1 mn ,

hi fg""Wuf,)fIt"(,)

n(UI+1) = fg "'(ujf1 )fgU' (uf ) + ''"" + bh1+1 J (ui, 1)

2Dg* -'mn f * (ut1 ) J
- hi ' J(ui~i)

2DJg'"" f Im(ui,-

Setting (2-24a) equal to (2-24b), dividing by f+l'""(+ ) f *u '"'(+), and rearranging

yields

JgU'(u~i1) =
h h t1 + h'u+1

2DI+1,'g

rgLk(u, I)r(uir 1 ) -1
u "'(+0

r I mn - rn11m
-1 rg,#(uIi)rgTun(uIi)i .

Then substituting in the current continuity condition and rearranging yields the RHS u-

directed leakage term,

(2- 25a)

(2- 25b)=fI (U- )flmn(u- mn
' ; I gU 1+0 9g +1



J,"'(ui 1 ) = +
gu2DIg"'"

hIu+1 rmn ( 1)rmI(ui,)-1

2Dg+,mn rju'(ui,)
(2-2.6)

-r gf#(q.1)rgmn(ui.1) 
'+1,m

Combining Equations (2-21) and (2-26), and dividing by hl yields the u-directed leakage

term

.[JI (I) - no

hL

I -+ (2-27)

rum;n+ r~eu~gm x [rgnun,(q )r.=m i. 1.

bhL2nh 2dslmJ

and similarly for the v-directed and w-directed leakage terms.

Finally, the CMFD balance equation for node (ijk) is obtained by substituting

Equation (2-27) into (2-9),

1 ~ h~1  (s.i)rA(xi.i] 1)~
h 2D 2D r5xi1

( )+
h WL2j"'

+y

h 2Djk

l ,j-k 
hy 21

2D ik X ik *JIjk

h r , (+I)r 4y y+1) -r ,'(y k.i)r (y .) ] +

r, [

+ A4
rSD +(yik

1~ ~ ~ + i. L )~~ r,( ir Zk+ I )1*'[ikkz r (a.1) X [I iik+ - r ,(+l)rijz(z+l)iik+l]+
h 2Dk 2Dg rj(.

haZ h ~ Xr (z) + r (k)riz(z)]x r (a)rz(a) - 1]

G G

A- F S jg'+ , g =1 ... , G.

(2-28)

hI1T rgu,~~u(i1 N - r.7 N+ 0n.rgm ( 4n.+ 
2Dg**'"" rg"(u1.)

X [rSik 'k ijk ij-Ik]Y,#(y J)r,SY(YJ)i g _ 8 +



Note that if the flux and current discontinuity factor ratios are set equal to unity Equation

(2-28) reduces to the mesh-centered finite-difference approximation to the neutron

diffusion equation.

In addition, by rearranging Equation (2-17) we obtain an expression for the

CMFD discontinuity factor ratio at ui in terms of the node-averaged fluxes, the

heterogeneous current at u, and the flux and current discontinuity factors at ul,

-1-,mn hiu-1 Jgu)

fm '"" (ui-) 2 di-1m gt-mnui

fg(u) imn+ h" Jgmlf(ui)

2Dig'" fimn(uf)

We will find this expression quite useful in following section.

2.2.1 Boundary Conditions

The following general notation will be used to specify the reactor boundary

conditions,

4$j(u.) = F'n'"J n"(u.) I. h*

(2-29)

(2-30)

where,

u = heterogeneous face-averaged flux at the external boundary u,

Jg(us) = heterogeneous face-averaged current at the external boundary us,
us= external boundary,
i= outgoing unit vector normal to the external reactor boundary,

ri = albedo.

The following boundary conditions may be specified:



I~rf = 0ogu±

=2
= 00

=2+ 4
ag- 1g

zero flux,

zero incoming current,
zero current,

albedo where, ag = Jgu(us)

Jg(us)

The LHS boundary condition is

$m(ui)= - mn'J mn"(ui).

The LHS component of the u-directed leakage term is obtained by substituting (2-30) into

(2-16a) and rearranging,

f~nM nm -1
h p (w) rm - Imn

jg"( ) = " + gk x *g .
2Dg' fV(3* fg"Ui*

(2-31)

And the CMFD discontinuity factor term at the LHS boundary is given by,

mfn

f * - f(ut)
fg(uf)

-imn

( +
jgmn"(ui)

1 hi .1
fim(uf) 2Dig'"

(2-32)

The RHS boundary condition is

*u (ui,1) = Fgj 'h(ui, 1).

The RHS component of the u-directed leakage term is obtained by substituting (2-30) into

(2-16b) and rearranging,

Jg1"(ui 1) =E 2D'"

f m(u, 1) rm+ -1

fgMu~(ui,1) f, "(ui,)-1

And the CMFD discontinuity factor term at the RHS boundary is given by,

-Imn

Jg'U"(ui,1)

im

1fg"ui,1)
I hlu

flmn(ui,1) 2DIm"'

(2-33)

(2-34)



2.3 POLYNOMIAL NODAL METHOD WITH FLUX AND CURRENT

DISCONTINUITY FACTORS

In this section a polynomial nodal method which permits discontinuities in the

face-averaged flux and current will be derived. First the transverse-integrated neutron

diffusion equation will be derived. Then the polynomial expansion of the transverse-

integrated flux will be introduced and the nodal coupling equation will be derived.

Finally, a procedure for determining CMFD discontinuity factor ratios will be described.

Discontinuities in the face-averaged flux and current are introduced through a

more general set of homogenization parameters (few-group cross sections) which include

flux and current discontinuity factors. This nodal method makes two fundemental

approximations to the formally exact neutron diffusion equation. First, the transverse-

integrated flux is approximated by a polynomial expansion. Second, the transverse-

leakage is approximated by a quadratic polynomial.

2.3.1 Transverse-Integrated Neutron Diffusion Equation

Instead of solving the entire coupled 3D neutron diffusion problem, nodal

methods typically break the 3D problem into a series of coupled ID problems and solve

each of these ID problems in turn [Fl, L1, S2]. The first step is to integrate the neutron

diffusion equations in the directions transverse to the direction of interest. Operating on

Equations (2-2) with

Vm+1 wn+l

1 dv dwh!h, J,
mm

yields the transverse-integrated neutron diffusion equation for node (lmn),

G G

T Jg"(u) + 2 A"m"' "(u) = -- FGIn(u) + ~Ign -Lr (u) - L n n(u)(2-35a)
du gu 1= ggg Xg1=1 9 g

g'=1 g g'=z

Jgin(u) = - Dg"'"{ gu(u) ,u =x, y,z (2-35b)



Imn ( m+1 wn+1

*gu (u) 1 dvi
hm n

Vm+1

Jign(u) = hh
m

I'"(u) = I [Jgv
v w n+1

1"() 1 [Jgw
Jv m+h W"h",

m

dw *g(u,v,w),

wn+1

dv n

n

u E (ui, uj1)

dw Jgu(u,v,w),

(u,vi+ 1,w) - JgV(u,vm, w)] dw,

(u,v,w 4+1) - Jg,(u,v, wj+)] dv.

Note that the transverse-integrated flux is defined such that the node-averaged flux is

preserved

-I-
ho +1

Similarly, we define the transverse-integrated v-directed and w-directed leakages such

that the node-averaged leakages are preserved

U+1
1

hlu+h I+

r,"(u) du =

LQw(u) du m

-Imn

hE"

hn

2.3.2 Polynomial Expansion

The ID transverse-integrated flux for node (lmn) is approximated by a polynomial

of the general form [F1,F2]

(2-36)
N

*gu (u) a 2
n =o0

where the basis functions are required to satisfy

where

$gu (u) du = "

algu",fn (U), uE (ui, u1+1), N z 2



f(u) du n =0 (2-37)
hiufs 0 n = ,.,N .

In addition, the higher-order basis functions (N;2 3 ) basis functions are required to

satisfy the additional constraints,

fn (uf)= fn(ui,1)= 0, n =3,. .. , N. (2-38)

The consequence of these constraints on the higher-order basis functions is that

the first three expansion coefficients can be expressed in terms of surface and volume

averaged fluxes and that an increase in the order of the polynomial approximation does

not change these expressions.

The basis functions for N s 4 (quartic polynomial or less) are given by:

fo(u) = 1 ,

f3 (u) = - )-)
2

2

f4U) = 0( - )($2 - 4+).

5

The expansion coefficients for the first three terms are obtained from Equation

(2-36) in terms of the volume averaged and LHS and RHS homogenized face-averaged

fluxes,

-Imn
agu= $g (2-40a)

alm = (uin - Imn (2-40b)

aImn~ I m + Inm -1mn
gu2 gugu u) + *U(u, 1 )- 2 $gm (2-40c)

Substituting Equations (2-39) and (2-40) into the expansion function yields,



*gu (U) = g (u+ )32 - 4 + 1]+ lIgmf(W )[32 2 ]

+ *g"[ 6 - 6  + I
n =3

algInfn(u) .

For a quatric polynomial (N = 4) the flux expansion is

*gu 1 3r2[32gu = (u+ 2 4+ 1] + g(Wl)32 - 2]+ +] 6

+alg-73 3 + 3 2 - + almT"4 -4 + 2 3_6 2+ . 2- 1

Substituting the quartic flux expansion, Equation (2-41), into Equation (2-35b)

yields the quartic approximation to the homogenized u-directed current

J =""u = -L[g(uf )(6  -4)+ O4g(W.+ )(6 - 2)+ nn(6- 12)
gug4 

_ 2 +1)

+ au3 (- 3 2+ 3 - 5+ almi"( 453+ 6 - +

Therefore, the homogenized u-directed current at the node faces are

(2-42)

J4W""(uf) = -

JgW""(ui, 1) =

-4tg(u +) - 2+'mg(g,+ ) + 6 n" - a "3 + ag4

-~~~ ~~ B [i"~(t mn (uj+ 1) 6+ - laTf - 3arn
hi [ 1 1 gU (+ + 4 gU I gu3 u

(2-43)

(2-44)

By rearranging Equations (2-43) and (2-44), expressions for the homogenized face-

averaged fluxes for node (lmn) can be obtained

gu = "'-ag13 + Tagu" + 6" [2Jnin(uf)+J
6 :gm I g

Imn = 1 li"3 + 1 "
~~gu (u~)~ ~gu3 70 gu4

6Du [ nn(uf)+ 2J 'n(uji)].
6 gmn g u I)

(2-45)

(2-46)

For N > 2, the higher-order coefficients ag n, n > 3, are determined by applying a

weighted residual procedure to the transverse-integrated diffusion equation,

G

gu"(u) +
= 1

= - G
A g'= 1

Fgrun(U) + q[gn I ( u-

Rearranging and combining terms yields,



Dlg mnGd JImn(u) + m
gu(hiY g =1

(K2)1 "'(u) + SgP"(u) - qTI"= 0,

(x2)l _ (ht)2 [Ah - - F I ,

Sgmn(u) = Lg(u) + Lm(u) .

(2-48)

(2-49)

Multiplying (2-47) by a weight function w, (u), n = 0,..., N - 2, and then integrating over

u E (ui, ui1 i) yields the moment equation,

DIgmn
(u u (h g 1

(K2)l Imn (u) + SIgn - qmn = 0,

where the inner products are defined by

lul+ 1(wn (U), Sg}n hu) = u

(wn (U), Sginu)= Sg"n,

w mn Imn
wn (u) gu (u) du =- gun

gImnqgun

We will use the following weight functions

wi(u) = f I (U)= - 2'
2

w2(u) = f2 (U) = 382 3 + .2

Note, also, that weighting with wo(u) = 1 yields the nodal balance equation.

Appendix A presents the derivation of the first and second flux and current

moments. From Appendix A the first and second flux moments are

1 1mn =- Igmn(u+) + L (Imn, I a mn (2-52a)Tgul 12 'gu 1ut+12 -gu (u1+I) +T-0 -gu3 (25a

Iml 1 mn 1Imn -Imn#gu2 = gu (u+) + + (u 1) -"
d 20 10

And, the first and second current moments are

+ al mn
+700 agu3

where,

(2-47)

(2-50)

(2-51a)

(2-51b)

(2-51c)

(2-52b)

(wn (U), qgn"")



W1(U), -Jw' (u) 1 Jgm"( + jgI""(u+)

dnn [ UO +(2-53a)

+ 9 Im 7(u- *Igf) ,

(hu2
I 1 Jmn (- jIm

w2(U), d JgT""(U) J gi""(ui,1) Jg'suq)

++ U] (2-53b)

One of the principle approximations used in nodal methods is the quadratic

transverse-leakage approximation [B2]. In this approximation, the u-directed transverse-

leakage is expanded as a quadratic polynomial which preserves the node-averaged

transverse-leakages in the three adjacent nodes,

Sg"(u) = g?+ ( "" -W 1")p (u) + ( g' gu)P14i(u)
= lgl" + A pt'(u) + I p(-(u)4Sgu +~u Apg'(u),

where

p1'(u) =za,+b +ca

p1+(u) =a4+b g+c+

The transverse-leakage moments are then given by

Sui'n -- w,, (u) Sign"(u) du .

Using f1(u) and f2(u) for the weighting functions, the first and second transverse-leakage

moments are given by

Slm"" '= (b + c-)S'"" - (b- + b + e- + c+)-S" + (bl + cl)gi,mn, (2-55)gui 12 tAg 4 A t gu tA gu 'j,

= c ""- (c + c)'" + caWI1 (2-56)

where

+bl + h1+1 hu
hu- + hiu+ h1u+1 hia-l + hlu



2hlu+ h1+1 2hu
hIal + hl + hI+1 hkI + hi

2 2hIU
hIal + hl + hiu+ 1 halu + hl

I h"- 2hlu

hi + hiu+ h1+1 hl + h1+1

h" - ho 2h'

h- + hiu+ hL+1 hLu+ h'+'

2-" 2hl
h" + h'u+ h+1 h'u+ hu+1

Note that these quadratic expansion coefficient are solely dependent upon the nodal mesh

spacings. A more detailed derivation of the transverse-leakage moments, for a number of

geometries, is presented in Appendix B. Appendix B also discusses the constraints on the

application of the quadratic transverse-leakage approximation.

The only remaining term in the moment equations to be determine is the

extraneous neutron source moment. Since we have assumed a homogenized (flat)

extraneous neutron source, the extraneous neutron source moment is zero except for unity

weighting (the nodal balance equation). Therefore, the extraneous neutron source

moment is

q m ~ - '"" n = 0 ,
0u n=O ,...,N-2 .

Substituting Equations (2-52a) and (2-53a) into (2-50) and rearranging yields the

first moment equation; and similarly, the second moment equation is obtained by

substituting Equations (2-52b) and (2-53b) into (2-50)

cUI-



j""(ui1)+ J'"n(tg)]+ _[*g (u_+1) - i4W'(u)]
2hu, (h1W0

(x2)1 Imngg j4 (ui1+) -+ 1 112g44 (ut) + 1a
12 " 1120 agj

+ SImn= 0gui

J[4g""(ui+,) - JgW"(uf)]+ 3D1'"" *Imn(+)
2hu g I (hV u(1

+ 2

Q g'=
+ 20 9ou(ui, 1 ) 10 g + a gu4

+ S" = 0.

In addition, the following identities will be useful

1g7u(uij+i) - #g (u)= LalI - (i ,)+ J "Imn+
gu 1 - gu3 aJ(u,+ 1  ) -gu (u)

-m ii, Jmnu(u)
-2rIn 1 a1,n gjmnU-+)jm(

(2-57b)

(2- 58a)

(2-58b)

Substituting Equations (2-58) into Equations (2-57) and rearranging yields expressions

for the third and fourth order nodal expansion coefficients in terms of the homogenized

u-directed currents and the transverse-leakage moments:

G

a "u's + Ix2)lg7 a "'n

G

g'=1

' nn(u=)

g

G

a +

g =1
G

24go=1

(2- 59a)

+ 1l"um(u )+J, (u+0i
2(hY S

g guig

(K 2)1nN a I fl

(2-59b)
5( g2

5gm-gu2

1
2)1 mn hu mn

(K W91 - g'U (ul+)g mn
9

Equations (2-59) are not convenient for numerical reasons, expressions in terms of

the heterogeneous u-directed current are preferable. Expressions for the third and forth

(2-57a)

and

U (W+I) , mn2 uI I

(2)1g mn Im(u+)

- J"n"(ui -



order nodal expansion coefficients in terms of the heterogeneous u-directed current at ul

and ul.1 are obtained by applying the current continuity condition, Equation (2-15),

G

iy+ 1
g' =1

(x 2)lm amg3 =

(2-60a)

1 (X 2) mn

g =1

hlu g"mu(ul) J "'(u1,1)

Dgn gnn + grnn -~l)

G

a + II(I(2)l a4 = =
g'=1 4 g ju

( 2)Imn hu

g gu+)

J"(ui,+)]
f qu (ui,1)

5 15(hY lu)min
DImngg

Thus, the determination of the third and fourth order nodal expansion coefficients

requires the solution of two Gx G linear systems which are dependent upon the mesh, the

cross sections, the reactor eigenvalue, the heterogeneous u-directed current, and the

transverse-leakage moments.

2.3.3 Nodal Coupling Equation

From the flux expansion, the u-directed homogenized currents for node (lmn) are

given by

J " f - n - 4 ( - I ) + " +JgU ul+) "g 4m(,,) - 2 4,gu (,+l) + 6 g - yag3

Jl(u 1 )=

(2-43)

(2-44)
]Dlmng Imn Imn

(u+) + 4 (U-
hl [2 gu I gU 1+1

U

In order to eliminate + (ui,1) from J in (uf) we add 2x(2-43) to (2-44) and subtract

gu, yielding

6 Igr ( u f + 6 'Im n
hJ"(t = u I- 

(2- 1)a3 imn I mn -'".+u ~-gu4J gu

and

2(hLSmn
Dgmn gui

g

G
1 

1
g21

(2-60b)

6%"' - yalgO"3- }agi".

3Jg'u( )=- (2-61)

ainm],gu4



Multiplying the neutron balance equation by h' and rearranging yields

21l + hfu - huqg.
d m G

- IU -- Lu I
u ,=1

And, substituting (2-62) into (2-61) yields

3 J r"(uf) = - I- 6*g2(uf)

~mG

+ Iu 9=

+ 6Ann - aIl amn I a 1+r % 2ygu3 T gu4J

(2-63)
(K2)I "'"g+ huS'" - h'

For node (1-1 ,mn) the u-directed currents are

___- _- ,- gun1
1UI(,n - D 4I""(t 1 ) - 2$1i,""(,- ) + 6i-1, -l-a + - lgu4" ,

2 5 J
1-1,nmnm I- 1,nm

IlUI(u) D 1 [24U"(e-i ) + 451j"" -)t 6 - - d ""b~ L T 2 5 1]

(2-64)

(2-65)

Next we obtain an expression for J 1-,(u-) in which *in ) hduin I hiu' (u ) has been eliminated by

adding 2x (2-65) to (2-64) and add the u-directed leakage for node (I--1,mn)

Ilmn _ F -1,mn
3J'" (u)=- [ I6 * u'(ui) - 6 1-1,mn

u
-1,mn G

u i1

2 "" - 5 a gu4 "

'2 ,n i ,nn - 1,mn + h ('-1, mn

Multiplying (2-63) by rg1ug(ui), adding (2-66) multiplied by D,
D.1Ir

and rearranging

yields the u-directed nodal coupling equation for node (lmn)

(2-62)

(2-66)



j mn"(ui)= 3hi 1 +gu D1 i-mnu)

6 -
1,mn + a u-3""

G

- I
g'1= 1

(x2)-1;"mf;1.,mn + rma(ui) $
g'= 1

( )2 g-uimn
D9 , g u + ql-lmn K IMn

9 1+ rl'M03 A)- gu
DS

3hDo r3(to
Dig"'" f I uf)

+ 3-a -' - - agu3 +T a"

(x~2)il'

-IMn]

Boundary Conditions

Rearranging Equations (2-63) and (2-66), the homogenized u-directed current on

the left and right faces of node (lmn) are

+ 4 g- a "

G

3h'u g1

Jgn(u1- 2J "" (ui

DI mn G
- I

3hu g'0=1

+ a

(2-68)
qlmn]

- aLi]

(2-69)

Using the general external reactor boundary condition, Equation (2-30), the LHS

boundary condition is

(2-70)

(.K)Irn{lmn roffgg, ~ Sg 3Lgu

mn - amn
) 4 g 4 .agu

2- ~1g'u")I r, N[S3

Substituting (2-70) into (2-68), applying the flux and current continuity conditions, and

rearranging yields the LHS nodal coupling equation

J""(uu)= 3h + 6g [- -6(g"' + --a3mn - lD"' f+ (ux fg'u," uu3 -)gu4

G

9 1=1I

(2-71)

( 2) jpIC Tn+
D, 

r ~g1n zrmn] I.

(2-67)

2.3.3.1

Jg'u"(u+)= - l 2Du " n(uf)

ffm mn
gu_ j mn (UI)gu (ul) r gu



Similarly, the RHS external boundary condition for node (lmn) is

Ig 41)= m Jgju(+ 1 ) . (2-72)

Substituting (2-72) into (2-69), applying the flux and current continuity condition, and

rearranging yields the RHS nodal coupling equation

mn ~-

Jg'U"(ui+1) [I3he f u + 6 Fsuj x6m + 2-ag" + -a']
D f ""I 1)0 fgu(u )_ 2(2-73)

g 1 -1 gn(T -iI DIM

2.3.4 CMFD Discontinuity Factor Ratios

In general, CMFD discontinuity factor ratios may be defined which will permit

the CMFD method to reproduce any reference solution [H3]. The CMFD discontinuity

factor ratios are in effect correction factors for the CMFD method which provide the

additional degrees of freedom which are required in order to match the reference solution.

We will used the polynomial nodal method to specify the nodal coupling equation, the

reference solution, which will then be used to determine CMFD discontinuity factor

ratios. With these CMFD discontinuity factor ratios we may use the CMFD method as

the computational engine of our nodal method while retaining the higher-order accuracy

of the polynomial nodal method.

We may obtain an expression for the CMFD discontinuity factor ratios at node

faces in the interior of the reactor in terms of node-averaged fluxes and heterogeneous

face-averaged currents by rearranging Equation (2-17)E-I-1,mn h11 Jg'(u1 ) 1
ff'(ui-) 2DJ-1 '"'" f "'" Imn(Ui)

r2n( ) )= -j .J (2-29)ff Iu+) mn+ hi Jgm'(ui)
2Df" f3u ""' uf



In this expression the nodal coupling equation, Equation (2-67), should be used to

provide the heterogeneous face-averaged current.

Since CMFD discontinuity factor ratios are not defined at reactor boundaries,

different expressions must be used. The CMFD discontinuity factor term at the LHS

reactor boundary is given by

mn -Imn

f = (u+) - f gt4 uf)[ + 1 h2 " (2-32)
fg"(f J gn"(ui) f I""n(uf) 2D in

where Equation (2-71) is used to provide the heterogeneous face-averaged current at ul.

Similary, the CMFD discontinuity factor term at the RHS reactor boundary is given by

mn ~-Imn

f " =f fg (ui,1 ) - 1 2D' , (2-34)

where Equation (2-73) is used to provide the heterogeneous face-averaged current at u1 1.

2.4 SUMMARY

In this chapter two numerical methods for solving the static neutron diffusion

equation with an extraneous neutron source were derived. Both of these methods permit

discontinuities in the face-averaged flux and the face-averaged current at nodal interfaces

in order to accommodate new bilinear weighting schemes. First a coarse mesh finite-

difference (CMFD) method with flux and current discontinuity factors was derived. Next

CMFD discontinuity factor ratios which permit the CMFD method to reproduce a

reference solution were defined. Then a polynomial nodal method with flux and current

discontinuity factors was derived. Finally, a procedure for obtaining CMFD discontinuity

factor ratios using the polynomial nodal method was described.



CHAPTER 3

NUMERICAL CONSIDERATIONS

3.1 INTRODUCTION

In Chapter 2 the CMFD method and a polynomial nodal method, both of which

permit discontinuities in the face-averaged flux and current, were derived. In addition, a

procedure in which correction factors for the CMFD method (CMFD discontinuity factor

ratios) may be determined using the polynomial nodal method was described. The

combination of the CMFD method and the procedure for determining the CMFD

discontinuity factor ratios results in a hybrid nodal method in which the CMFD method is

the computational engine.

In this chapter the numerical properties of the nonlinear iteration scheme used to

by this nodal method will be discussed. The iteration strategies used for eigenvalue and

source problems will be described. Initially, iterative methods in which all the energy

groups are solved simultaneously will be discussed in order to illuminate the numerical

properties and behavior of the groupwise methods which will actually be used. The

groupwise iterative methods used to solve the eigenvalue and source problems will be

developed and described in detail. Finally, issues related to the optimization of the

iterative procedure will be discussed.

3.2 NUMERICAL PROPERTIES

The CMFD balance equation, Equation (2-28), can be expressed in a more

compact finite-difference-like matrix equation

M(wr)+= F+ q (3-1)

where,



= matrix of dimension (N*G)x(N*G) containing the absorption,
scattering, and diffusion terms

F = matrix of dimension (N*G)x(N*G) containing the fission source terms

* = vector of length (N*G) node-averaged fluxes
q = vector of length (N*G) containing the extraneous neutron source terms

k = eigenvalue
N = number of nodes
G = number of energy groups.

Note that in the general case the matrix M(+,X) depends on the flux and eigenvalue,

therefore, the equation is nonlinear. This nonlinearity is introduced through the CMFD

discontinuity factor ratios, which are dependent on both the flux and the eigenvalue.

Note that if the flux discontinuity factor ratios, current discontinuity factor ratios, and

CMFD discontinuity factor ratios are equal to unity then Equation (3-1) reduces to mesh-

centered finite difference form of the neutron diffusion equation.

For eigenvalue problems we are interested in solving

M(+,)+= LF+. (3-2)

In general, the only properties of M(+,X) that we can guarantee is that it is real and

irreducible. If any of the discontinuity factor ratios are not equal to unity then M(+,X)

becomes nonsymmetric. Diagonal dominance may be guaranteed if the diffusion

coefficients, the current discontinuity factor ratios, and the product of the flux and CMFD

discontinuity factor ratios are positive and bounded [A1]:

0< Dg"" < o

O<n r(ui) < o ,

O<rgff,(ui) rgn(ui) < o .

If diagonal dominance is preserved the convergence and stability properties of the

iterative solution to Equation (3-2) are guaranteed.

Aragonds and Ahnert [A l] have shown that diagonal dominance may be imposed

by adjusting the diffusion coefficients, forcing the discontinuity factor ratios to be



positive and bounded. Since, in our derivation, the flux and current discontinuity factor

ratios are homogenization parameters this procedure may only be applied to the product

of the flux and CMFD discontinuity factor ratios,

1-1,mn h Jg(ui) 1
rmD 21,dmn mn (u)

rg~*'(ui)rga (ui)= - - .
Imn+ hi J g(ui)

Diagonal dominance may be imposed by requiring the diffusion coefficients to satisfy the

following stability condition,

m h m J1(uj) JM(u, 1 )
D"'> max-,.

2 g"' g"'J(uf') fg,1(uf,1)

If this stability condition is not satisfied the diffusion coefficient is arbitrarily increased

until it is satisfied. These modified diffusion coefficients are then u'sed in the CMFD

balance equation, Equation (2-28), and to calculate the CMFD discontinuity factor ratios,

Equation (2-29). The modified diffusion coefficients and CMFD discontinuity factor

ratios permit the preservation of the nodal leakage rates while imposing diagonal

dominance.

In the limit of infinitely fine mesh spacing all of the discontinuity factor ratios

will approach unity. In this case, Equation (3-2) reduces to the mesh-centered finite

difference approximation to the neutron diffusion equation and M will have the following

properties:

1. Real

2. Irreducible

3. Symmetric

4. Diagonally dominant.

Therefore, in the limit of infinitely fine mesh spacing Equation (3-2) will have the

following properties [W1]:



1. There will exist a unique real positive eigenvalue, ki, which is greater in

modulus than all other eigenvalues.

2. The eigenvector corresponding to the eigenvalue ki will be unique and

positive.

Thus, in the limit of infinitely fine mesh spacing Equation (3-2) is guaranteed to converge

to the exact solution of the neutron diffusion equation [WI]. For larger mesh spacings

this behavior is guaranteed only if the product of the flux and CMFD discontinuity factor

ratios are positive and bounded, and forcing them to be positive and bounded may require

arbitrary changes in the group-diffusion coefficient.

For source problems we are interested in solving

[M(A - F]+ q .(3-3)

In general, the numerical characteristics of Equation (3-3) are unknown since, as in the

case of eigenvalue problems, the only properties of the matrix [M(+,X) - F] that we can

guarantee is that it is real and irreducible. As with eigenvalue problems diagonal

dominance may be imposed using the Aragonds and Ahnert procedure [Al]. However, in

the limit of infinitely fine mesh spacing we know that the discontinuity factor ratios will

approach unity and that Equation (3-3) will approach the exact solution of the neutron

diffusion equation.



3.3 ITERATION STRATEGIES FOR EIGENVALUE PROBLEMS

3.3.1 Outer Iterations

The power method [WI] is the simplest method for solving the eigenvalue

problem represented by Equation (3-2). The power method algorithm for this problem is

(P1 = M( ,(P) )]lI F ()(3-4a)

(P+1) (P) (1, F +I
+ =(P) (3-4b)

(1, F

where p is the outer iteration index. Outer iterations are used to calculate the fission

source, (1/)F+, and the eigenvalue, . Inner iterations are used to invert the matrix

M(+,X). The nonlinearity in this problem is handled by computing the matrix M(+,X)

using the solution from the previous iteration. However, the convergence rate of the

power method is undesirably slow. This is because successive calculations of the fission

source, (1/X)F+, vary in the asymptotic limit by an amount governed by the dominance

ratio

d = ,

where k, and k2 are the fundamental and first harmonic eigenvalues, respectively, of the

matrix [M(+,k)4 F. This ratio, which in general varies from iteration to iteration, will be

close to unity for most problems, resulting in slow convergence.

Wielandt's method of fractional iteration [W1,S2], or eigenvalue shifting, is one

method for accelerating the convergence of outer iterations. It accelerates the

convergence of the outer iterations by effectively reducing the dominance ratio.

Wielandt's method is derived by subtracting (1/')F+ from both sides of Equation (3-2),

where X' is the eigenvalue shift,

M(#,k) - k.F]+= I F+,



and

A X V'

The iteration algorithm for Wielandt's method of fractional iteration is

(+ [M ( (,) XP)) -4 P j) (3-5a)

(P+1) (P) (1, F4 +1
A = A (,F )(3-5b)

X p+l) _ A= .+'X' (3-Sc)
p +1)

Note that Wielandt's method requires all of the energy groups to be solved

simultaneously. If 1/X' is closer to 1/Xi, than to 1/X2, the converged eigenvalue and

eigenvector obtained using Equations (3-5) will be identical to that obtained using the

power method. In general, since Xi will vary throughout the outer iterations, ' is

required to be greater than the largest X1. The shifted dominance ratio is given by

ds = 1 1

which is clearly smaller than the unshifted dominance ratio if X' X1. Therefore, the

convergence of the outer iterations will be accelerated using Wielandt's method. The

power method may be obtained from Equations (3-5) by setting the eigenvalue shift, ',

equal to infinity.

There are several important differences between the numerical behavior of the

Wielandt method as applied to nodal methods and as applied to finite difference

equations. These differences are due to the nonlinear nature of the iteration matrix

[M(,X) - , F]- 'F. Since the M(+,X) matrix depends on the flux solution from the

previous iteration, the eigenvalue spectrum of the iteration matrix will change every time



M(+,X) is recomputed. Sutton [S8] found that there can be substantial variations in the

fundamental eigenvalue of the iteration matrix as the problem converges. He also found

that the net rate of convergence of the Wielandt method was determined by two

processes: the rate of convergence of the fission source to the fundamental mode of the

iteration matrix, and the rate of convergence of the iteration matrix to one with the same

fundamental eigenvalue as the diffusion equation. Only the first of these processes is

directly accelerated by the Wielandt method.

The nonlinearity of the problem has several implications on the performance of

the Wielandt method. First, it is not possible, in general, to apply a single value of the

eigenvalue shift throughout the iteration process that will lead to convergence in a few

iterations. This is because the choice of the eigenvalue shift that makes the dominance

ratio small early in the iteration may lead to much larger dominance ratios as the problem

converges. This is not true of the finite difference equations where the fundamental

eigenvalue of the iteration matrix is constant and equal to the converged eigenvalue. In

this case, the rate of convergence is due solely to how close the eigenvalue shift, X', is to

the converged eigenvalue, and in the absence of roundoff the number of iterations

required to converge the problem approaches one as the difference between X' and the

converged eigenvalue approaches zero. It is not possible to use an eigenvalue shift equal

to the converged eigenvalue because the matrix to be inverted in Equation (3-5a) would

then become singular. The optimal strategy for handling the nonlinearity present in nodal

methods would be to chose a value of ' at each outer iteration close to the fundamental

eigenvalue of the iteration matrix for that iteration. This is not strictly possible because

the fundamental eigenvalue of the iteration matrix for the current iteration is not known.

However, this optimal strategy may be approximated by setting the eigenvalue shift to a

fixed value that minimizes the dominance ratio early in the iteration process and, as the

problem converges, by then setting the eigenvalue shift close to the eigenvalue calculated

during the previous iteration,
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kf= k()+ 8k .

The above discussion assumes the simultaneous solution of Equation (3-2) for all

the energy groups. However, it will be more convenient to solve Equation (3-2) one

group at at time. The groupwise form of Equation (3-2) is,

G

Ng(+,k)+g=Lj Fgg +g,+ I Igg,+g,, g=1I,...,G (3-6)
g'=1 g'sg

where,

N8(., X) = NxN matrix containing diffusion, total cross section, and g->g scatter-
ing cross section terms for group g

Fgg, = NxN diagonal matrix containing the fission source terms from group g'
to group g

Igg = NxN diagonal matrix containing the scattering terms from group g' to
group g

= vector of length N containing the group g node-averaged fluxes.

As we have previously discussed, the power method is the simplest technique for

solving Equation (3-6). The groupwise version of the power method algorithm is

4p+) IN(+, ) x4 Faggf + I gg,+ , g=1,...,G (3-7a)
g'=1 g'ug

(p+1) (p) (1, F (+)

(1, F+"

where p is the outer iteration index.

The rigorous implementation of Wielandt's method requires the simultaneous

solution of all the energy groups. However, Sutton [S8] has developed a nonrigorous

version of Wielandt's method of fractional iteration. In order to derive Sutton's

groupwise version of Wielandt's method we must introduce the Agg matrix which is

defined as follows:



Ag'g a NxN diagonal matrix containing the ratios $g'g for each node

as the diagonal elements.

Then the groupwise version of Wielandt's method of fractional iteration is

N g(+,X) - I Fgg.Ag.gg = L Fgg,+g,+ 2 Igg,g,. (3-8)
g'=1 g'=1 g'sg

As before, the matrices N8(*, X) and Ag'g are computed based on the solution from the

previous iteration. Also, note that as the problem converges, the rigorous Wielandt

method is regained. The groupwise version of the Wielandt method algorithm is

pi+1) =[Ng(P ,G)- FggAfgJ x\ Fg +2Ig~?(-a
g'=1 g'=1 g'g(P+1(p+1 (p) 1,) FP (3- 9b)

(p+1) A'dP+) p)(1, F+-b

I = .+X (3-9c)
( p+1) +X

The iteration algorithm described by Equations (3-9) contains three nested levels

of iteration. In the outer iteration the fission source (1/A)F is calculated using the flux

from the previous iteration, and A and X are calculated using the results from the current

inner iterations. The inner iterations are used to update the N(4,) and Ag., matrices

using the results from the previous iteration. For each inner iteration the nodal coupling

equations are solved and the CMFD discontinuity factor ratios are determined in order to

update the Ng(*,X) matrices. Also the fission plus scattering source is determined for the

flux iterations. The inner most level of iteration, the flux iterations, are used to invert the

G
matrix Ng(+,X)- Y FggAg,, for each energy group.

g'=1
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3.3.2 Inner Iterations

Inner iterations are used to update the Ng and Agg matrices in order to account for

the nonlinearity present in Equation (3-8). First a polynomial nodal method calculation is

performed to update the face-averaged heterogeneous currents. Using the updated

currents the CMFD discontinuity factor ratios may be determined. With the recently

updated CMFD discontinuity factor ratios the Ng matrix may be calculated, and using the

group fluxes from the previous iteration the Agg matrices may be calculated. The

detailed calculation procedure used during the inner iterations is as follows:

1. Face-averaged heterogeneous currents are updated using the CMFD coupling

equation (2-20) and the flux from the previous iteration.

2. The higher-order expansion coefficients, agu3 and ag, are calculated using

Equations (2-60) and the updated heterogeneous currents.

3. The heterogeneous currents are updated again this time using the nodal

coupling equation (2-67).

4. The CMFD discontinuity factor ratios are updated using Equation (2-29).

5. The matrix N g(# ', kP) is calculated using the recently updated CMFD

discontinuity factor ratios, and the A(P'l) matrices are calculated using the

group fluxes from the previous iteration.

6. The node-averaged group flux vectors are updated through a series of flux

iterations. The following matrix problems are solved iteratively,

G

(3-10)
G () g-1 ( 1) G -O

g'=1 g'=1 g'=g+1

where p and q are the outer and inner iteration indices respectively. Note that

upscattering is not explicitly treated during the flux iterations. However, by



-- I

performing a series of inner or outer iterations upscattering may be adequately

modelled.

3.3.3 Flux Iterations

Equation (3-10) is solved using either the Gauss-Seidel (G-S) method or the

cyclic Chebyshev semi-iterative (CCSI) method [H1]. CCSI is a variant of the block

successive overrelaxation (SOR) method in which the relaxation parameter is varied

every iteration in such a way that the average rate of convergence is increased.

During the flux iterations we are actually solving a matrix problem of the form

Au= b where
G

A = Ng( - Fgg, A ?' (3- 11a)
g'g

g'=1
G g-1 (

1 '' () (1 G(3- 1ib)b= z Fgg*4g+ Igg'*' + gg(-
g'=1 g'=1 g'=g+1

U = (p'l (3-11c)

and p and q are the outer and inner iteration indices respectively. In the CCSI method we

impose a red/black (checkerboard) partition on the problem, then matrix A and vectors u

and b become

A= DR H
L HT DB

U UR

b=[ bR
I bB

Then the partitioned matrix equation which we are solving is[DR H UR _ bR
HT DB UB i-I bB J

If we define the following submatrices



FR = -DR'H

FB a - D- H TFB B

CR " DI -bR

CB = Da bB

the matrix equation becomes

[ I -FR UR [CR] (3-12)
-FB I UB CB

Rearranging Equation (3-12) results in the Jacobi method

U(r+l)= Bu(r)+ C, (3-13)

where r is the flux iteration index and B, the Jacobi iteration matrix, is defined by

B o 0 FR]
[ FB 0

Chebyshev acceleration may be applied to the basic Jacobi method, and if the

problem has a red/black partition this results in the CCSI method

uR+')- a*,'(FRU(+ CR) + (1 - R+1))U (3- 14a)

UB r+ +)(F(+1) - (r+1A(r)
(B1) (rBU R )+CB) + (I (B UB (3- 14b)

The initial relaxation parameters are given by

1) _ I

(1) 1
1 - J-p2

2

and for subsequent iterations the relaxation parameters are given by

(+1)_ 1

1- p2

r+1) 1

1-p2 +1)



where p is the spectral radius of the Jacobi iteration matrix B. The Gauss-Seidel method

may be obtained from Equation (3-14) by requiring (1 = (1) = 1. Flux iterations are

performed until the following convergence criterion on the group flux is satisfied

1 r+1) _ r)I
12 I 2 4  (3-15)

1 -pg 1 2
or until the flux iteration limit is reached.

The CCSI method requires a good estimate of the spectral radius of the Gauss-

Seidel iteration matrix p2. An estimate of p2 may be obtained by performing a series of

Gauss-Seidel iterations, where the estimate of the spectral radius for group g is obtained

using

2(r+1)r+1) _ (r)
P (r) (3-16)

3.3.4 General Iteration Strategy

In practice, one does not know the eigenvalue of a problem in advance, and,

consequently, it is impossible to choose the optimal value of X' to be used throughout the

calculation. However, the following four-step algorithm has been found to produce near

optimal behavior for a wide variety of problems.

1. One or more finite-difference outer iterations are performed to obtain an initial

nonflat flux distribution. The first outer iteration is unaccelerated.

Subsequent outer iterations are accelerated using the Wielandt method with a

constant eigenvalue shift. This constant eigenvalue shift should be

significantly larger than converged eigenvalue, a value of 1.5 has been found

to be effective. The Gauss-Seidel method is used for the flux iterations.

These finite-difference iterations are performed until a coarse convergence

criterion (10-2) on the eigenvalue is satisfied,



2. After an initial nonflat flux distribution has been obtained, the polynomial

nodal method is used to calculate CMFD discontinuity factor ratios. Outer

iterations are accelerated using the constant eigenvalue shift from step one.

Flux iterations are performed using the Gauss-Seidel method. Outer iterations

are performed until a fine convergence criterion (10-3) on the eigenvalue is

satisfied,

I k () - P- 1: E2* (3-18)
3. After the fine eigenvalue convergence criterion has been satisfied the spectral

radii of the Gauss-Seidel iteration matrices are estimated. The eigenvalue

shift is calculated using the previous eigenvalue estimate plus a constant shift

factor (typically 0.02-0.05 for LWRs)

V'= A)+ 8k . (3-19)

The spectral radius of the Gauss-Seidel iteration matrix for each energy group

is calculated using

2(r+1) I (

Pg -I.r (3-20)

where r is the flux iteration index. A number of flux iterations are performed

until the spectral radii convergence criterion is satisfied

P 2 (r+1) - P 2(r)I 5(21
9 r 9 _ 2 r5 E5 (3-21)

or until the flux iteration limit for the spectral radii calculation is reached. A

spectral radii convergence criterion, e5, in the range of 10-2 to 10-3 should be

used, and a limit of eight flux iterations should be sufficient.

4. Once a good estimate of the spectral radii has been obtained the CCSI method

may be used for the flux iterations. As in step 3 the eigenvalue shift is

calculated using the previous eigenvalue estimate and a constant shift factor



XI= X)+8%x.

Outer iterations are performed until the following eigenvalue, flux, and reactor

power convergence criteria have been satisfied:

I X(p+) X(p) 15 E3 (3-22a)

1I E , g=,...,G (3-22b)
1 rg 1*

5 E6 (3-22c)
Qp)

where Q is the total reactor thermal power. The flux and eigenvalue

convergence criteria should be in the range of 10-5 - 10-6 and the power

convergence criterion should be in the range of 10-3 - 104.



3.4 ITERATION STRATEGIES FOR SOURCE PROBLEMS

This section describes the modifications to the basic iteration strategy described in

the previous section that are necessary to solve source problems. In general, only a few

minor modifications are required for the basic iteration strategy to apply to both

eigenvalue and source problems.

3.4.1 Outer Iterations

The groupwise version of Equation (3-1) is given by

G
Ng(+,X)+g=[ Fgg,4g,+ 2 Igg,+g,+ qg (3-23)

g'=1 gg

where,

N(4, X) = NxN matrix containing diffusion, total cross section, and g->g
scattering cross section terms for group g

Fgg, = NxN diagonal matrix containing the fission source terms from group g'
to group g

Igg = NxN diagonal matrix containing the scattering terms from group g' to
group g

+9 = vector of length N containing the group g node-averaged fluxes
qg = vector of length N containing the group g extraneous neutron source

terms.

For source problems X is no longer the eigenvalue of the problem. It is a normalization

factor that may be applied to the fission source. For most problems X = 1. If X is not

equal to unity, it has a value which forces the reactor to be subcritical.

Moving the fission source term to the LHS and introducing Sutton's Agg matrix

[S8] yields

G
Ng(+,X) - FggAgg ]g = I Igg.g, + qg (3-24)

g'= g';*g

Equation (3-24) may also be obtained from (3-8) by adding the source term qg to the

RHS and setting A' = X.



For source problems the outer iterations consist of iterations on the total reactor

thermal power Q. The behavior of this global variable will control the logic used in the

inner and flux iterations. The total reactor thermal power is given by

G

Q =VT I !qfg, g, (3-25)
g'=1

where,

~f g = NxN diagonal matrix containing the macroscopic fission cross sections
for group g

+9 = vector of length N containing the group g node-averaged fluxes
V = vector of length N containing the node volumes

x = average energy produced per fission.

For source problems the outer iterations are iterations on the total reactor thermal

power. The group fluxes are obtained from a series of inner and outer iterations. The

outer iterations may be expressed by

*(''=Ng(#( ',)-3 FggP' xV+q(32a
g'=1 g eg

G
Qp+)= VTX i If (3-26b)

g'=1

where p is the outer iteration index.

3.4.2 Inner Iterations

Inner iterations are used to solve Equation (3-24). The Ng and Ag'g matrices are

updated in order to account for nonlinearity. The detailed calculation procedure used for

the inner iterations is as follows:

1. Face-averaged heterogeneous currents are updated using the CMFD coupling

equation (2-20) and the flux from the previous iteration.



2. The higher-order expansion coefficients, agua and ag, are calculated using

Equations (2-60) and the updated heterogeneous currents.

3. The heterogeneous currents are updated again this time using the nodal

coupling equation (2-67).

4. The CMFD discontinuity factor ratios are updated using Equation (2-29).

5. The matrix N g(+ ', X) is calculated using the recently updated CMFD

discontinuity factor ratios. The A(P'q) matrices are calculated using the groupg~g

fluxes from the previous iteration.

6. The node-averaged group flux vectors are updated using a series of flux

iterations. The following matrix problems are solved iteratively,

[ G

N() g- L 2 Fgg9A(PO -Pq

g'=1
9 (3-27)

l g -1 ( q l G+ g= I , G
I gg'9' + Igg' ', + q8  , g=1,...G

g'=1 g'=g+1

where p and q are the outer and inner iteration indices respectively. Note that

upscattering is not explicitly treated during the flux iterations. However, by

performing a series of inner or outer iterations upscattering may be adequately

modelled.

3.4.3 Flux Iterations

Equation (3-27) will be solved using the CCSI method. The same procedure as

described in section 3.3.3 will be used with the following exceptions:

A = N g(' ' ) Fgg.A PG (3-28a)
g'=1

g-1G
g 1(p~ 1 ) G (P 4b=2 1 gg,4 '*+ 2 g9.9'4 + qg (3-28b)

g'=1 g'=g+1

where p and q are the outer and inner iteration indices respectively.



3.4.4 General Iteration Strategies

With a few simple modifications the four-step algorithm used to solve eigenvalue

problems may also be used to solve source problems. The following procedure should be

used to solve source problems.

1. One or more finite-difference outer iterations are performed to obtain an initial

nonflat flux distribution. The eigenvalue shift must be set equal to the reactor

eigenvalue, k'= k - 1. The Gauss-Seidel method is used for the flux

iterations. These finite-difference iterations are performed until a coarse

convergence criterion (10-2) on the total reactor thermal power is satisfied,

Qp). Q p-1) . (3-29)

2. After an initial nonflat flux distribution has been obtained, the polynomial

nodal method is used to calculate CMFD discontinuity factor ratios. Again

the eigenvalue shift must be set equal to the reactor eigenvalue, X' = k - 1.

Flux iterations are performed using the Gauss-Seidel method. Outer iterations

are performed until a fine convergence criterion (10-3) on the total reactor

thermal power is satisfied,

QP p-l) :5 E2 - (3-30)
QP-1)

3. After the fine eigenvalue convergence criterion has been satisfied, the spectral

radii of the Gauss-Seidel iteration matrices are estimated. The eigenvalue

shift must be set equal to the reactor eigenvalue, k'= k - 1. The spectral

radius of the Gauss-Seidel iteration matrix for each energy group is calculated

using

p2(r+1) (3-20)8 )9-1



where r is the flux iteration index. A number of flux iterations are performed

until the spectral radii convergence criterion is satisfied

p2(r+1) _ 2(r) - E5 (3-21)

or until the flux iteration limit for the spectral radii calculation is reached. A

spectral radii convergence criterion, E, in the range of 10-2 to 10-3 should be

used, and a limit of eight flux iterations should be sufficient.

4. Once a good estimate of the spectral radii has been obtained the CCSI method

may be used for the flux iterations. As in steps 1-3 the eigenvalue shift must

be set equal to the reactor eigenvalue, X' = X - 1. Outer iterations are

performed until the following convergence criteria on the flux and total

reactor thermal power have been satisfied:

(r+1) _ r)1 E 112 4  g=1.G (3-31a)1 -r+1) 11

I P+1) - Q(P) T E6 (-1b)
Q(P)

The flux and eigenvalue convergence criteria should be in the range of l0s -

10-6 and the power convergence criterion should be in the range of 10-5 - 10-6.



3.5 ITERATION OPTIMIZATION

The description of the iterative method for solving the static nodal diffusion

equation, as detailed in Sections 3.3 and 3.4 for eigenvalue and source problems, has

largely been completed. There remain three issues which much be addressed before the

iterative method is completely specified. These issues are the selection of the number of

inner iterations per outer iteration, the selection of the maximum number of flux

iterations per inner iteration, and the selection of the eigenvalue shift to be used to

accelerate the convergence of the outer iterations in eigenvalue problems.

3.5.1 Inner Iterations

In order to determine the optimum number of inner iterations per outer iteration

the 2D IAEA PWR problem [A3] was solved using several inner per outer iteration

ratios. Table 3-1 illustrates the effect of the various inner per outer iteration ratios on the

iterative solution. Although the use of an inner per outer iteration ratio greater than unity

results in a reduction in the total number of outer iterations, it does not result in a

corresponding reduction in the total execution time. Consequently, the use of an inner

per outer iteration ratio greater than unity is not justified.

The increase in execution time for the solutions with a inner per outer iteration

ratio greater than unity may be attributed to the relatively time consuming procedure for

updating the nodal currents, which is require for every inner iteration. This procedure

consists of the computation of the higher-order expansion coefficients, Equation (2-60),

and the currents using the nodal coupling equation, Equation (2-67). These two

calculations, which are required in order to update the CMFD discontinuity factor ratios,

are the principal time-sinks in the inner iteration. Therefore, in order to minimize the

total execution time one should minimize the number of inner iterations.



Table 3-1

Inner Iteration Optimization

2D IAEA PWR Problem

Coarse mesh, 20x20 cm

Number of flux iterations = 16

Flux convergence criteria = 10-6

Eigenvalue convergence criteria = 10-6

Eigenvalue shift = X + 0.05

tMacintosh SE/30.

Inner Iterations Number of Outer Total Execution Eigenvalue
per Outer Iterations Time (sec)t

1 21 26.72 1.029528

2 17 39.05 1.029528

3 18 60.93 1.029528

4 17 75.40 1.029527



Thus, in general, the optimization of the iteration strategy, with one inner iteration

per outer iteration, requires the minimization of the number of outer iterations. This may

be accomplished in two way: by converging the flux iteration relatively tightly and by

accelerating the outer iterations.

3.5.2 Flux Iterations

Flux iterations are used to solve matrix problems of the form Au = b, for each

energy group, during each inner iteration. In general, the degree to which these matrix

problems are converged is governed by the maximum number of flux iterations which are

permitted during each inner iteration. In order to determine a reasonable limit on the

maximum number of flux iterations per inner iteration the 2D IAEA PWR problem [A3]

was solved with several flux iteration limits. Table 3-2 shows the effect of the flux

iteration limit on the iterative solution. As the flux iteration limit is increased the number

of outer iteration required to converge the problem and the total execution time are

decreased until a critical number is reached. For this problem it is 14 flux iterations per

inner iteration. Above this value no additional outer iterations are required and only a

marginal increase in the total execution time is experienced.

These results indicate that, in general, the flux iteration limit should be large

enough to completely converge the matrix problems at each inner iteration. Since a

convergence criterion on the group flux is used during the flux iterations, the use of a flux

iteration limit larger than necessary will not result in an excessive number of flux

iterations. Thus, a large flux iteration limit may be used without significantly increasing

the execution time. In practice a flux iteration limit of approximately 16-32 iterations

has been found to be sufficient for most problems.



Table 3-2

Flux Iteration Optimization

2D IAEA PWR Problem

Coarse mesh, 20x20 cm

Number of inner iterations per outer = 1

Flux convergence criteria = 10-6

Eigenvalue convergence criteria = 10-6

Eigenvalue Shift = X + 0.05

tMacintosh SE/30.

Maximum Number Number of Outer Total Execution Eigenvalue
of Flux Iterations Iterations Time (sec)t X

4 37 43.33 1.029529

6 31 36.32 1.029529

8 29 34.48 1.029529

10 26 31.25 1.029529

12 24 29.25 1.029529

14 21 25.78 1.029528

16 21 25.97 1.029528

24 21 26.28 1.029528

32 21 26.32 1.029528



3.5.3 Eigenvalue Shift Optimization

The last remaining issue to be addressed is the selection of the optimum

eigenvalue shift, V', for use in eigenvalue problems. As was shown in Section 3.3.1 the

use of Wielandt's method of fractional iteration is an effective method for accelerating the

outer iterations. The optimum eigenvalue shift is determined by two competing

phenomena. First, the outer iteration convergence rate is maximized when the eigenvalue

shift is equal to the true eigenvalue (the dominance ratio is zero) and minimized when the

eigenvalue shift is equal to infinity (the power method). Second, the flux iteration

convergence rate is minimized when the eigenvalue shift is equal to the true eigenvalue

and maximized when the eigenvalue shift is equal to infinity. Therefore, the overall

convergence rate is maximized by an eigenvalue shift that balances the outer iteration

convergence behavior and flux iteration convergence behavior.

Several numerical experiments were performed in order to gain insight into the

phenomena controlling the optimization of the eigenvalue shift. Two different reactor

configurations were analyzed using several spatial mesh sizes. The effects of the

eigenvalue shift on the iteration process are summarized in Tables 3-3 thru 3-5 for the 2D

IAEA PWR problem [A3] with coarse mesh (20x20 cm), fine mesh (10x10 cm), and

very-fine mesh (5x5 cm) spacings respectively. The effects on the 2D LRA BWR

problem [A3] with coarse mesh (15x15 cm) and fine mesh (7.5x7.5 cm) spacings are

summarized in Tables 3-6 and 3-7 respectively. Using the results from these two

different reactor configurations we may draw the following general observations

regarding the convergence behavior of Wielandt's method in the Hybrid Nodal Method:

1. The spectral radii of the Gauss-Seidel flux iteration matrices increase as the

eigenvalue shift is decreased.

2. The spectral radii of the Gauss-Seidel flux iteration matrices increase as the

spatial mesh size is decreased.



3. The spectral radii of the unaccelerated Gauss-Seidel flux iteration matrices are

very small for problems with assembly sized nodes.

4. The outer iteration convergence rate increases as the eigenvalue shift

approaches the optimum eigenvalue shift.

5. The flux iteration convergence rate decreases as the eigenvalue shift

decreases.

6. For eigenvalue shifts less than the optimum eigenvalue shift the effect of the

decrease in the flux iteration convergence rate exceeds the effect of the

increase in the outer iteration convergence rate, resulting in a decrease in the

overall convergence rate.

7. The overall iteration is optimized, with respect to total execution time, when

the eigenvalue shift exceeds the true eigenvalue by a few percent (typically

0.02-0.05 for LWRs).

8. The optimum eigenvalue shift is not significantly dependent upon the spatial

mesh size, despite the fact that the spectral radii of the flux iteration matrices

change significantly.

Wielandt's method is effective in accelerating the overall convergence for the

following reasons. The current calculation which occurs at each inner iteration is so

computationally intensive that we would like to minimize the number of inner iterations

that must be performed. By reducing the dominance ratio, eigenvalue shifting increases

the convergence rate of the outer iterations reducing the number of outer iterations, and

therefore inner iterations, required for convergence. Eigenvalue shifting, by increasing

the spectral radii of the flux iteration matrices, results in a reduction in the flux iteration

convergence rate, effectively shifting more of the computational burden upon the flux

iterations. Eventually, as the eigenvalue shift approaches the true eigenvalue, a point is

reached where the computational burden can not be shifted on to the flux iterations



without reducing the overall convergence rate. At this point the spectral radii of the flux

iteration matrices are so large that the flux iterations are not fully converged which results

in a reduction in the outer iteration convergence rate. As the eigenvalue shift is decreased

further the incomplete convergence of the flux iterations results in additional outer

iterations and an increase in the total execution time.

The application of Wielandt's method to a wide variety of problems in several

nodal codes [S2,S5] has led to the following general procedure for implementing

eigenvalue shifting. At the start of the problem, since the true eigenvalue is generally

unknown, an initial constant value of 1.5 is used for the eigenvalue shift. With this initial

eigenvalue shift there is no possibility of converging to the wrong eigenvector as long as

the true eigenvalue is less than 1.5. After the eigenvalue has converged to about 10-3

(generally only 5-10 outer iterations), the eigenvalue shift X' is set equal to the estimated

eigenvalue X plus an arbitrary constant 6X (generally 0.02-0.05 for LWRs),

X! = X + 6X.

Thus, the eigenvalue shift follows the eigenvalue estimate and is ultimately near the

anticipated optimum eigenvalue shift when the true eigenvalue is determined. This

general procedure has been used on a variety of problems without difficulty.



Table 3-3

Eigenvalue Shift Optimization

(Coarse Mesh IAEA PWR)

2D IAEA PWR Problem

Coarse mesh, 20x20 cm

Number of flux iterations = 16

Number of inner iterations per outer = 1

Flux convergence criterion = 10-6

Eigenvalue convergence criterion = 10-6

tMacintosh SE/30.

Eigenvalue Number of Total Gauss-Seidel Spectral
Shift Outer Execution Eigenvalue Radius

Iterations Time (sec)t Group 1 Group 2

00 118 140.37 1.029501 0.0997 0.0040

X+ 1.0 57 67.98 1.029515 0.2374 0.0031

X+0.5 43 51.38 1.029520 0.3342 0.0028

k +0.2 24 28.55 1.029529 0.4997 0.0033

X+0.1 21 25.48 1.029535 0.6278 0.0032

X + 0.05 21 26.08 1.029528 0.7257 0.0032

X + 0.02 24 29.80 1.029528 0.8028 0.0032

X + 0.01 28 35.37 1.029528 0.8325 0.0032

X + 0.005 32 40.78 1.029528 0.8483 0.0032

X + 0.002 50 64.85 1.029528 0.8581 0.0032

X + 0.001 80 106.97 1.029528 0.8614 0.0032



Table 3-4

Eigenvalue Shift Optimization

(Fine Mesh IAEA PWR)

2D IAEA PWR Problem

Fine mesh, 10x10 cm

Number of flux iterations = 16

Number of inner iterations per outer = 1

Flux convergence criterion = 10-6

Eigenvalue convergence criterion = 10-6

tMacintosh SE/30.

Eigenvalue Number of Total Gauss-Seidel Spectral
Shift Outer Execution Eigenvalue Radius

Iterations Time (sec)t Group 1 Group 2

00 118 483.23 1.029547 0.4042 0.1444

k+ 1.0 63 265.83 1.029560 0.5922 0.1382

k +0.5 48 204.50 1.029565 0.6808 0.1484

k +0.2 30 130.40 1.029568 0.7970 0.1496

k + 0.1 21 91.13 1.029570 0.8600 0.1499

k +0.05 17 72.67 1.029574 0.8993 0.1501

k + 0.02 23 99.67 1.029573 0.9263 0.1502

k + 0.01 24 104.48 1.029573 0.9359 0.1502

k + 0.005 31 137.02 1.029573 0.9408 0.1502

k + 0.002 84 383.53 1.029572 0.9439 0.1502

k + 0.001 160+ 737.30 1.029572 0.9449 0.1502



Table 3-5

Eigenvalue Shift Optimization

(Very Fine Mesh IAEA PWR)

2D IAEA PWR Problem

Very fine mesh, 5x5 cm

Number of flux iterations = 16

Number of inner iterations per outer = 1

Flux convergence criterion = 10-6

Eigenvalue convergence criterion = 10-6

iMacintosh SE/30.

Eigenvalue Number of Total Gauss-Seidel Spectral
Shift Outer Execution Eigenvalue Radius

Iterations Time (sec)t Group 1 Group 2

00 117 2085.65 1.029543 0.7464 0.5536

X+ 1.0 67 1217.75 1.029555 0.8732 0.5573

X +0.5 52 959.98 1.029561 0.9101 0.5571

k + 0.2 34 634.47 1.029565 0.9492 0.5570

X+0.1 26 484.33 1.029568 0.9678 0.5570

X+0.05 22 407.45 1.029569 0.9786 0.5569

X + 0.02 20 393.78 1.029568 0.9858 0.5569

X + 0.01 27 509.43 1.029568 0.9882 0.5569

X + 0.005 44 831.80 1.029567 0.9895 0.5569

k + 0.002 97 1831.93 1.029568 0.9903 0.5569

,%+0.001 160+ 3023.37 1.029566 0.9905 0.5569



Table 3-6

Eigenvalue Shift Optimization

(Coarse Mesh LRA BWR)

2D LRA BWR Static Problem

Coarse mesh, 15x15 cm

Number of flux iterations = 32

Number of inner iterations per outer = 1

Flux convergence criterion = 10-6

Eigenvalue convergence criterion = 10-6

tMacintosh SE/30.

Eigenvalue Number of Total Gauss-Seidel Spectral
Shift Outer Execution Eigenvalue Radius

k Iterations Time (sec)t X Group 1 Group 2

00 152 308.90 0.996288 0.1258 0.0035

X+0.1 32 68.00 0.996326 0.6731 0.0061

X + 0.05 26 56.65 0.996328 0.7772 0.0060
X +0.02 24 55.08 0.996328 0.8606 0.0059
X +0.01 26 61.47 0.996329 0.8843 0.0060
X + 0.005 30 71.45 0.996329 0.9011 0.0059
X +0.002 32 76.27 0.996329 0.9115 0.0059
X+ 0.001 38 92.88 0.996329 0.9150 0.0059



Table 3-7

Eigenvalue Shift Optimization

(Fine Mesh LRA BWR)

2D LRA BWR Static Problem

Fine mesh, 7.5x7.5 cm

Number of flux iterations = 32

Number of inner iterations per outer = 1

Flux convergence criterion = 10-6

Eigenvalue convergence criterion = 10-6

tMacintosh SE/30.

Eigenvalue Number of Total Gauss-Seidel Spectral
Shift Outer Execution Eigenvalue Radius

X Iterations Time (sec)t Group 1 Group 2

00 149 1264.65 0.996336 0.4727 0.1086
X+ 0.1 31 291.87 0.996372 0.8944 0.1109

X + 0.05 22 207.50 0.996374 0.9278 0.1109

X+0.02 19 181.40 0.996376 0.9500 0.1109

X +0.01 19 175.68 0.996376 0.9580 0.1109

X + 0.005 22 206.25 0.996376 0.9621 0.1109

X + 0.002 25 237.45 0.996375 0.9646 0.1109

X+0.001 82 833.17 0.996375 0.9655 0.1109



3.6 SUMMARY

In this chapter, the numerical properties of the nodal diffusion equations were

examined and the hybrid nodal method was shown to reduce to the mesh-centered finite

difference equation in the limit of infinitely fine mesh spacing. As a consequence, it was

shown that the hybrid nodal method converges to the exact solution of the neutron

diffusion equation in the limit of infinitely fine mesh spacing. For larger mesh spacings

the Aragonds and Ahnert stability condition was shown to guarantee the stability of the

iterative solution.

The numerical methods used to solve the nodal diffusion equations were also

detailed in this chapter. The iterative strategies used to solve both eigenvalue problems

and source problems were described. Finally, techniques for optimizing the iterative

solution of the nodal diffusion equations were described.



CHAPTER 4

RESULTS

4.1 INTRODUCTION

In Chapter 2 a polynomial nodal method which permits discontinuities in the face-

averaged fluxes and currents was derived. This nodal method was based on the

assumptions that the transverse-integrated flux may be accurately approximated by a low-

order polynomial and that the transverse leakage may be approximated by a quadratic

polynomial. In Chapter 3 a multi-level iterative scheme for solving the nodal diffusion

equations was described.

In this chapter, the results from the application of this nodal method to several

two- and three-dimensional, few-group, static reactor benchmark problems are presented.

The spatial convergence rate of the nodal method is also examined. Throughout the

chapter the accuracy and computational efficiency of the nodal method are compared to

that of conventional finite difference methods and to other nodal methods.

4.2 QUAGMIRE CODE

The methods developed in Chapter 2 and the numerical techniques described in

Chapter 3 are incorporated into the QUAGMIRE code. This computer code solves the

one-, two- and three-dimensional, few-group, static neutron diffusion problem in

Cartesian geometry. QUAGMIRE solves both eigenvalue and source problems.

QUAGMIRE is designed for workstation class computers running the BSD 4.2 or

SYS 5.3 "flavors" of the UNIX operating system. QUAGMIRE is written in standard

FORTRAN-77, except for several calls to standard UNIX system routines which perform

dynamic memory management and return the command line, system time, system date,

and execution time. All references to system dependent routines are isolated in a few

routines in order to permit easy porting of the code to other computer systems and



operating systems. A version of QUAGMIRE also exists for the Macintosh SE/30 and

Macintosh II series of personal computers running System 6.0 or higher. All

computations are performed in double precision in order to minimize truncation and

roundoff errors.

Neutron diffusion problems may be solved using either a polynomial nodal

method or a conventional mesh-centered finite difference method. With the polynomial

nodal method option, problems may be solved using either a quadratic (second-order),

cubic (third-order), or quartic (fourth-order) flux expansion. QUAGMIRE has no limit

on the number of energy groups that may be used in problems or the structure of the

energy groups. Upscattering is permitted. It uses a more generalized set of

homogenization parameters (cross sections) which may include both flux and current

discontinuity factors. QUAGMIRE is capable of modelling nonuniform mesh spacings

and irregular geometries (jagged boundaries). It also has a control mechanism option

which is capable of modelling control mechanisms which enter from the top of the reactor

(PWR-type control rods), control mechanisms which enter from the bottom of the reactor

(BWR-type control blades), and control drums.

4.2.1 Transverse-Leakage Approximation at the Reactor Boundary

One detail regarding the determination of the cubic and quartic flux expansion

coefficients remains to be specified, the shape of the transverse-leakage at external

reactor boundaries. In the interior the transverse-leakage is typically expanded as a

quadratic polynomial which preserves the node-averaged transverse-leakages in the three

adjacent nodes, Finnemann's [B21 quadratic transverse-leakage approximation. This

approximation requires the node-averaged transverse-leakages in three adjacent nodes in

order to determine the quadratic expansion for the node in the center. This does not

present a problem in the interior of the reactor and at internal (zero net-current) reactor

boundaries, where we may take advantage of symmetry. However, along the external



reactor boundary there is no longer a node adjacent to each side of the boundary node.

QUAGMIRE contains options for four different ways in which the shape of the

transverse-leakage may be approximated. They are, in order of increasing sophistication:

1. Flat transverse-leakage approximation throughout the reactor.

2. Quadratic transverse-leakage approximation in the fuel-bearing region of

the reactor (the reactor core) and a flat transverse-leakage approximation

in the reflector and in nodes adjacent to the external boundary.

3. Quadratic transverse-leakage approximation throughout the reactor except

for nodes adjacent to the external boundary where a flat transverse-leakage

approximation is used.

4. Quadratic transverse-leakage approximation throughout the reactor. For

nodes adjacent to the external boundary a lopsided quadratic expansion,

which preserves the node-averaged transverse-leakages in the three

adjacent nodes, is used.

The first option, a flat transverse-leakage approximation throughout the reactor,

tends to result in unacceptably large errors. Its use is not recommended.

Experience has shown that the second boundary node option, a quadratic

transverse-leakage approximation in the core and a flat transverse-leakage approximation

in the reflector, works best for a large variety of problems. In particular it works best for

problems which have a relatively deep reflector, such as the LRA BWR problem (Section

C.4). This is because deep within the reflector the flux tends to be relatively small and,

therefore, an accurate estimate of the shape of the transverse-leakage in these nodes is not

critical. In fact, in the case of the 3D LRA BWR problem, the use of other boundary

node treatments produced, during the iterative process, negative node-averaged flux

estimates for nodes near the external boundary, and resulted in stability problems. No

stability problems have been experienced if the flat transverse-leakage approximation is

used in the reflector.



For problems with relatively thin reflectors, such as the IAEA PWR problem

(Section C.3), the third boundary node option, the use of the quadratic transverse-leakage

approximation for nodes in the interior of the reactor and a flat transverse-leakage

approximation for nodes on the external boundary, has also been found to yield accurate

results. In particular for the 2D IAEA PWR problems with multiple nodes per assembly

this approximation has been found to yield significantly more accurate results. This is

because the flux for nodes on the external boundary tends to be relatively small and

insensitive to the shape of the transverse-leakage. However, for nodes along the

core/reflector interface the flux tends to be relatively large and, as a result, sensitive to the

shape of the transverse-leakage, therefore a more accurate approximation of the

transverse-leakage shape is desirable.

For problems with fuel-bearing material along the external boundary the fourth

boundary node option, the use of the quadratic transverse-leakage approximation

throughout the reactor with a lopsided quadratic expansion for nodes along the external

boundary, produces the best results. In fact for bare core problems this option is required

for accurate results. This is because, for bare core problems, the flux and current along

the external boundary tends to be relatively high, necessitating an accurate estimate of the

shape of the transverse-leakage in these nodes.

For problems with a deep blanket, such as the LMFBR benchmark problem

(Section C.5), either the third or fourth boundary node option may be used. However, the

use of a lopsided quadratic expansion for the transverse-leakage in nodes along the

external boundary tends to produce slightly more accurate results.

4.2.2 Measurements of Error

The solutions to problems presented in this chapter are compared to reference

solutions which are spatially converged. The quantity of principal interest is the nodal

power density. The reference nodal power densities and the error in the QUAGMIRE



solutions are presented in Appendix D. However for purposes of summarizing these

results, tables containing the maximum error, average error, maximum relative error, and

average relative error in the normalized nodal power densities are presented in this

chapter. With the power density in the ith node represented as PI, the reference power

density represented as P'ref, and the reference core-averaged power density represented as

Pref, the maximum error in the nodal power density is defined to be

maximum Pi - Prefi"ax ~ over all i {

The average error in the nodal power density is defined to be

1 I- Pired ViVor Pref /

where Vi is the volume of node i and Vcore is the volume of the core. The maximum

relative error in the nodal power density is defined to be

.maximum IP - Pr'efI'EreI - over all i I
Pref

The average relative error in the nodal power density is defined to be

EreI -P Pie) VI
Vcore pe

And finally, the error in the eigenvalue is defined to be

EX X- Xref,

where k is the reactor eigenvalue and kef is the reference eigenvalue. Note that these

error measurements apply even when reference core-averaged power densities other than

unity are used.



4.2.3 Number of Unknowns

The number of unknowns is dependent upon the dimensions of the problem and

the solution method. The QUAGMIRE code has options to use the CMFD method and

quadratic, cubic and quartic polynomial nodal methods. The number of unknowns

required by these methods are summarized in Table 4-1. For the nodal methods the node-

averaged flux, face-averaged currents, and the CMFD discontinuity factor ratios are

considered to be unknowns. The CMFD discontinuity factor ratio vectors are equal in

length to the current vectors. The higher order flux expansion coefficients are stored in

temporary working vectors and therefore are not considered unknowns. The number of

unknowns required for the flux and current components, respectively, are

Niux = G x (I JK)

Ncur = G x [(I+ l)JK + (J+ 1)IK + (K + i)IJ]

where I is defined as the number of nodes in the x directions; J is defined as the number

of nodes in the y direction; K is defined as the number of nodes in the z direction, and G

is defined as the number of energy groups. Thus, the number of unknowns does not

increases with the order of the flux expansion.

Table 4-1

Number of Unknowns Required by Nodal Methods

Method Number of Unknowns

CMFD Method Naux

Quadratic Nodal Method Nflux + 2Ncur

Cubic Nodal Method Nflu + 2Ncur

Quartic Nodal Method Naux + 2Ncur



4.2.4 Execution Times

The execution times of computer codes are commonly used to compare their

relative performance. Direct comparison of the execution times from different computer

codes is often difficult unless they are run on the same computer system, using the same

compiler, and under the same conditions because the performance of computer systems

tends to vary widely. QUAGMIRE's increased generality, the introduction of flux and

current discontinuity factor and the ability to model problems with more than two energy

groups, tends to increase its execution time. In addition, QUAGMIRE's use of double

precision tends to increase its execution time relative to other codes which use only single

precision.

The UNPACK [D1] benchmark has been found to be useful in providing a rough

estimate of the floating-point performance of different computer systems. It measures

single precision (32-bit) and double precision (64-bit) floating-point performance, in

terms of millions of floating-point operations per second (MFLOPS), by solving a linear

system of order 100 using the UNPACK LU decomposition routines (SGEFA and

SGEFL for single precision and DGEFA and DGEFL for double precision). The

LINPACK benchmark simulates the typical computational mix found in many

engineering calculations. The single and double precision LINPACK benchmark

software may be obtained from net lib@ornl. govl. Dongarra [D2] has summarized

the full precision (64-bit) LINPACK MFLOPS ratings for a large number of computer

systems. A recently updated copy of Dongarra's report summarizing the benchmark

1The FORTRAN code for the single precision LINPACK benchmark may be obtained by sending the
following electronic mail message to netlib@ornl. gov:

send linpacks from benchmark.

The double precision code for the UNPACK benchmark may be obtained by sending:

send linpackd from benchmark.



results may also be obtained from netlib@ornl. gov 2. Table 4-2 compares the

UNPACK MFLOPS ratings for a variety computer systems. The ratio of the MFLOPS

ratings may be used to provide a rough comparison of the relative execution times of

codes on different computer systems.

2A Postscript copy of the most recent version of Dongarra's report [D2] summarizing the UNPACK
benchmark results for a variety of computer systems may be obtained by sending the following electronic
mail message to netlib@ornl. gov:

send performance from benchmark.

II



Table 4-2

LINPACK MFLOPS Ratings for Several Computer Systems

Full Single Double
Computer System Precision MFLOPS MFLOPS

Mainframes

CDC CYBER 176 [D2] S 4.6

CDC 7600 [D2] S 3.3

IBM 370/195 [D1] D 2.4 2.3

CDC CYBER 175 [D2] S 2.1

IBM 370/168 [D1] D 1.2 1.2

CDC 6600 [D2] S .48

Workstations

IBM RS/6000-550 (41 MHz) [D2] D 27

HP 9000/730 (66 MHz) [D2] D 24

SGI 4D/310 (1 proc) 33 MHz [D2] D 5.0

SUN SPARCstation 2 [D2] D 4.0

SGI 4D/210 (1 proc) 25 MHz D 4.8 2.8

SUN SPARCstation 1 [D2] D 1.4

DEC VS3100 D 0.78 0.49

MicroVAX II D 0.61 0.39

Apollo DN3500 D 0.23 0.19

Personal Computers

Apple Macintosh IIfx [D2] D 0.41

20 MHz 386 w/3167 D 0.49 0.29

25 MHz 386 w/80387 D 0.30 0.27

Apple Macintosh SE/30 D 0.14 0.12



4.3 2D STATIC RESULTS

In this section, the results from several 2D benchmark problems are presented.

Most of the benchmark problems use large homogenized regions in which coarse spatial

meshes may be used. The geometry and cross sections for these problems are completely

specified so that no modelling ambiguities exist. The descriptions of these benchmark

problems are presented in Appendix C. Unless otherwise specified all of the results were

obtained from QUAGMIRE polynomial nodal method using its quartic flux expansion

option. In addition, unless otherwise specified, an eigenvalue and a pointwise flux

convergence criteria of 10-6 has been used. These are relatively tight eigenvalue and

pointwise flux convergence criteria and their use is possible because all computations are

performed in double precision.

4.3.1 Two-Group Homogeneous Bare Core Benchmark Problem

This benchmark problem is designed to study the dependence of spatial

discritization error on mesh size for the quadratic, cubic, and quartic flux expansion

options of the QUAGMIRE nodal code. The benchmark, which is based on one of

Myung Kim's [K1] benchmark problems, consists of a small, two-dimensional, two-

group, homogeneous bare core with zero flux boundary conditions and zero transverse

buckling. The core is 60.0 cm in length in both the x and y dimensions. The benchmark

may easily be solved analytically, the flux distribution in both the x and y dimensions are

cosines. The complete description of this benchmark problem is given in Section C. 1 of

Appendix C.

The problem was solved at several spatial mesh sizes using extremely tight flux

and eigenvalue convergence criteria (10-10). The results of this study are given in

Table 4-3, which presents the eigenvalue error and maximum error in the nodal power

density at various mesh sizes for the CMFD method, quadratic nodal method, cubic nodal

method, and quartic nodal method options of the QUAGMIRE code. In addition,



Figure 4-1 and Figure 4-2 plot the eigenvalue error versus mesh size for coarse and very

fine meshes respectively. Figure 4-2 shows that for mesh sizes between 5.0 and 6.0 cm

both the cubic and quartic nodal methods overshoot the reference eigenvalue, and then

begin to converge to the reference eigenvalue as the mesh size is further refined.

Finite difference methods will exactly reproduce the reference flux distribution of

bare core problems for all spatial meshes, however they produce relatively large errors in

the eigenvalue when coarse spatial meshes are used. Table 4-3 shows that the quadratic

nodal method also exactly reproduces the nodal power density for every spatial mesh

size, and it also produces relatively large errors in the eigenvalue when coarse meshes are

used. Figure 4-3, which plots the eigenvalue error versus the square of the spatial mesh

size (h2), shows that the spatial discretization error is O(h2) for both the CMFD method

and the quadratic nodal method.

Table 4-3 shows that both the cubic nodal method and the quartic nodal method

produce accurate estimates of the nodal power density for all mesh sizes. The maximum

error in the nodal power density is less than 0.5% and decreases to zero as the mesh size

is refined. Figure 4-4, which plot the eigenvalue error versus H, shows that for coarse

meshes the spatial discretization error is approximately 0(h4) for both the cubic and

quartic nodal methods. Since the quartic nodal method uses a fourth-order polynomial

expansion to approximate the transverse-integrated flux the spatial discretization error is

expected to be 0(h4). Similarly, the cubic nodal method is expected to have a spatial

discretization error of 0(h3 ). The higher than expected order of the spatial discretization

error which is exhibited by the cubic nodal method is due to a fortuitous cancellation of

error related to the use of a uniform mesh.

Clearly, the cubic and quartic nodal methods enable the use of significantly larger

spatial meshes to produce solutions of similar accuracy than traditional finite difference

methods. For example, in order to produce an eigenvalue error of 1(-4 the quartic nodal

method required a 10.0 cm mesh, while the CMFD method required a 1.5 cm mesh.



Table 4-3

Two-Group Bare Core Problem: Errors at Selected Mesh Sizes

h CMFD Method Quadratic Nodal Method

N (cm) Ea Emax(%) ELx Em (%)

3 20.0 2.17x 10-2  0.00 -2.23x10- 2  0.00

4 15.0 1.23x 10-2 0.00 -1.25x10- 2  0.00

5 12.0 7.91x 10-3  0.00 -7.99x10-3  0.00
6 10.0 5.50x 10-3  0.00 -5.54x10-3  0.00
8 7.5 3.1Ox10-3  0.00 -3.11x10-3  0.00

10 6.0 1.99x10-3  0.00 -1.99x10-3 0.00

12 5.0 1.38x 10-3 0.00 -1.38x10- 3  0.00

16 3.75 7.76x 104 0.00 -7.77x10 4  0.00

20 3.0 4.97x 104 0.00 -4.97x10 4  0.00

24 2.5 3.45x 104 0.00 -3.45x10 4  0.00

30 2.0 2.21x10 4  0.00 -2.21x10 4  0.00

40 1.5 1.24x10 4  0.00 -1.24x10 4  0.00

60 1.0 5.52x 10-5 0.00 -5.52x10-5 0.00

h Cubic Nodal Method Quartic Nodal Method

N (cm) ELx Emax (%) ELx Emax (%)

3 20.0 -2.13x10-3  0.00 -1.91x10- 3  0.40

4 15.0 -1.07x10 3  0.27 -9.76x104 0.36

5 12.0 -4.01x10 4  0.42 -3.58x104  0.45

6 10.0 -1.57x10 4  0.18 -1.35x104 0.20

8 7.5 -2.69x10.5 0.07 -1.94x l&5  0.07

10 6.0 -3.82x10-6 0.02 -6.42x10-7  0.03

12 5.0 7.51x10- 7  0.02 2.30x10-6 0.02

16 3.75 1.34x 10-6  0.01 1.84x 10-6  0.01

20 3.0 8.37x 10-7  0.01 1.04x 10-6  0.01

24 2.5 4.98x 10-7  0.01 5.96x 10- 7  0.01

30 2.0 2.43x10-7  0.00 2.84x10- 7  0.00

40 1.5 8.95x 10-8  0.00 1.02x 10-7  0.00

60 1.0 2.01x 10-8 0.00 2.27x 10-8 0.00

a Reference eigenvalue = 0.946900410386976
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4.3.2 Seven-Group Homogeneous Bare Core Benchmark Problem

This problem, BSS-3 from the Argonne Benchmark Book [A2], was originally

developed to verify the performance of multigroup finite difference codes. It consists of

a quarter core section of a two-dimensional, homogeneous bare core with zero flux

external boundary conditions. The quarter core dimensions are 67.5 cm in the x direction

and 13.5 cm in the y direction. The 7-group cross sections and energy spectrum are

characteristic of graphite moderated reactors and include upscattering. This problem may

also be solved analytically. The specifications for this benchmark problem are presented

in Section C.2 of Appendix C.

This problem was modelled with 7.5 cm x 4.5 cm nodes using the CMFD method,

the quadratic nodal method, the cubic nodal method, and the quartic nodal method. The

results are summarized in Table 4-4. The quartic nodal method provides the most

accurate estimate of the eigenvalue, the error in the eigenvalue is approximately 9.0x 10-6.

To achieve a similar error in the reactor eigenvalue a finite difference method would

require a uniform mesh 0.2 cm, an increase in the number of unknowns by a factor of

840. The error in the nodal power densities is very low for all of the methods, Emax <

0.03 %. A map of the reference nodal power density and the errors in the nodal power

density is provided in Figure D-1. These results verify that the groupwise solution

method used by the QUAGMIRE code will correctly model problems with upscattering.

A small discrepancy exists for the CMFD method, the nonzero error in nodal

power densities is due to the incomplete spectral convergence of the group flux vectors.

The group fluxes are converged spatially. However, there is a slight error in the group-

to-group flux ratios. The errors are not large enough to warrant serious consideration,

however they may be reduced further through the use of a tighter flux convergence

criterion and/or two or more inner iterations per outer iteration.



Table 4-4

Summary of Results for the Seven-Group Homogeneous Bare Core Benchmark Problem

# Unknowns

# Outer Iterationsa

Eigenvalueb

ek

emax(%)

Execution Time
(Mac SE/30)

CMFD
Method

Nodal Methods

Ouadratic
t 4 1_

189

38

0.782194

7.65x 10-3

0.02

17.72

651

39

0.766878

-7.67x 10-3

0.03

30.63

Cubic

651

38

0.774502

-4.32x10-5

0.02

63.77

Quartic

651

38

0.774536

-8.97x10-6

0.02

94.68

a Eigenvalue Shift = X + 0.3, 1 inner/outer iteration, maximum of 16 flux/inner iterations

b Reference: 0.7745451357



4.3.3 2D IAEA PWR Benchmark Problem

The IAEA PWR problem is a highly simplified two- and three-dimensional, two-

group static benchmark problem [A3]. The specifications for the IAEA PWR benchmark

problem are provided in Section C.3 of Appendix C. The reactor consists of a two-zone

core containing 177 fuel assemblies, each having a width of 20 cm. The core is reflected

radially and axially by 20 cm of water, and the active core height is 340 cm. Nine fully-

inserted control rods are represented as smeared absorbers in single fuel assemblies. In

the three-dimensional configuration, four partially inserted control rods are also

modelled. The existence of inserted control rods and a water reflector gives this problem

severe local flux perturbations, making it a particularly challenging benchmark problem.

The 2D IAEA PWR problem was solved with 20 cm, 10 cm, and 5 cm spatial

meshes in quarter-core geometry. Table 4-5 summaries the QUAGMIRE results for these

cases. Core maps of the error and relative error in the normalized assembly power

density are presented in Figures D-2 and D-3, respectively. The reference solution is a

spatially converged 3-1/3 cm IQSBOX calculation by Wagner [W2]. The maximum

error and maximum relative error in the assembly power density are 1.18% and 2.01% for

assembly-sized nodes. The assembly with the largest relative error in the power density

is one of the low power assemblies adjacent to the reflector. Errors in the reactor

eigenvalue and assembly power density decrease rapidly as the spatial mesh is reduced.

With a 5 cm spatial mesh the solution is nearly spatially converged.

Finite difference methods require a spatial mesh of 1.25 cm to achieve similar

accuracy [A3]. Wagner reported that the finite difference code VENTURE required 930

seconds on an IBM 360/91 to solve this problem with a uniform 1.25 cm mesh [W21.

A comparison of results for the 2D IAEA PWR problem from several nodal

methods is presented in Table 4-6 and Table 4-7. QPANDA is a quartic polynomial

nodal method and the neutronic method used in the SIMULATE-3 code [S5].

QUANDRY [S2] is an analytic nodal method and IQSBOX [W2] is fifth-order nodal



expansion method. Table 4-6 summarizes the results for assembly-sized nodes and

Table 4-7 summarizes the results for solutions with four nodes per assembly. The

accuracy of QUAGMIRE is comparable to the other nodal codes. For solutions with four

nodes per assembly the accuracy of QUAGMIRE is superior to the other codes.

Figure 4-5 and Figure 4-6 present traverses of the transverse-integrated, x-directed

fast and thermal fluxes, respectively, along the core centerline (j = 1) for several spatial

mesh sizes. Figure 4-5 shows that the quartic flux expansion provides a very good

approximation to the spatial shape of the fast flux for all of the spatial mesh sizes.

Figure 4-6 shows that the quartic flux expansion is a very good approximation to the

spatial shape of the thermal flux for the 0x 10 cm and 5x5 cm mesh sizes. In general, the

quartic flux expansion is also a good approximation to the shape of the thermal flux for

the 20x20 cm mesh, except for the node adjacent to the core/reflector interface. In this

node the shape of the thermal flux is significantly in error, indicating a smaller mesh size

should be used.



Table 4-5

Summary of Results for the 2D IAEA PWR Benchmark Problem

Mesh Spacing

20x20cm 10x10cm 5x5cm

# unknowns 762 2546 9912

# outer iterations a 22 18 22

Eigenvalue b 1.029528 1.029605 1.029585

Emax (%) 1.18 0.07 0.01

E(%) 0.69 0.02 0.004

Erel ( 2.01 0.10 0.02

frel ( 0.74 0.02 0.004

Execution time 3.16 9.11 50.80
(sec SGI 4D/210)

a I inner/outer iteration, maximum of 16 flux/inner iterations

b Reference: 1.029585



Table 4-6

Summary of Results for the 2D IAEA PWR Benchmark Problem

Obtained by Several Nodal Codes with a 20 cm Mesh

Eigenvalue a

Emax (%)

-E(%)

E-rel MN)

Trel (%)

Execution time (sec)

Symmetry

QUAGMIRE QPANDA
[S61

QUANDRY
[S21

t I - - 4 - - I

1.029528

1.18

0.69

2.01

0.74

3.16 b

1/4 core

1.02955

2.2

1.0

3.2

1.1

1/8 core

1.02962

0.56

0.25

0.94

0.27

1.24 c

1/8 core
I L L

a Reference: 1.029585

b SGI 4D/210

c IBM 370/168

d CDC CYBER 175

IQSBOX
[W21

1.029657

1.4

1/8 core



Table 4-7

Summary of Results for the 2D IAEA PWR Benchmark Problem

Obtained by Several Nodal Codes with a 10 cm Mesh

Eigenvalue a

Emax (

-E(%)

Erel (%)

Trel (%)

Execution time (sec)

Symmetry

QUAGMIRE

1.029605

0.07

0.02

0.10

0.02

9.1 1b

1/4 core

QPANDA
[S6]

1.02962

0.2

0.1

0.3

0.1

1/8 core

QUANDRY
[S2]

1.02960

0.22

0.10

0.32

0.11

6.7 c

1/8 cord

IQSBOX
[W2]

1.029611

0.3

1/8 core

a Reference: 1.029585

b SGI 4D/210

c IBM 370/168

d CDC CYBER 175
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4.3.4 2D LRA BWR Static Benchmark Problem

The LRA BWR static benchmark problem is based on the LRA BWR problem, a

highly simplified two- and three-dimensional, two-group kinetics benchmark problem

[A3]. The static benchmark problem is described in Section C.4 of Appendix C. The

problem consists of a BWR with a two-zone core containing 312 fuel assemblies, each

15 cm wide. The core is reflected both radially and axially by 30 cm of pure water, and

the active core height is 300 cm. The control blades are represented as smeared absorbers

in the four adjacent fuel assemblies. Nine control blades are modelled in their fully-

withdrawn positions. As a result, the flux distribution displays severe local perturbations.

Although this problem is unlike a commercial BWR, the severe flux peaking makes this

problem more difficult to solve than a real BWR.

The 2D LRA BWR problem was solved with uniform 15 cm, 7.5 cm, and 5 cm

spatial meshes in quarter-core geometry. Table 4-8 summarizes the QUAGMIRE results

for these solutions. These solutions use a quadratic transverse-leakage approximation in

the core and a flat transverse-leakage approximation in the reflector. The error and

relative error in the normalized assembly power densities are displayed in Figure D-4 and

Figure D-5, respectively. The reference solution is a 16 node per assembly calculation by

Shober [S1]. For assembly-sized nodes the maximum error in the assembly power

density of 1.18 % occured in one of the uncontrolled assemblies on the diagonal. The

maximum relative error of 1.41 % occured in the uncontrolled assembly in the center of

the core, a low power region in the core. Both errors are quite reasonable for this

problem. The errors decrease rapidly as the mesh size is refined and are effectively

negligible for the 4 nodes per assembly case.

The QUAGMIRE results are compared to the results from QUANDRY for

assembly-sized nodes in Table 4-9. The errors in the assembly power density from

QUANDRY are significantly smaller than from QUAGMIRE. This is believed to be due

to the use of the flat transverse-leakage approximation in the reflector. However,



empirically it has been found that the use of a flat transverse-leakage approximation in

the reflector for problems with deep reflector will prevent negative node-averaged fluxes

and guarantee numerical stability.

When comparing the number of unknowns required by different computer codes it

is often more illustrative to compare the physical unknowns. The physical unknowns in

QUAGMIRE are the node-averaged fluxes and the u-directed face-averaged net-currents.

In QUANDRY the physical unknowns are the node-averaged fluxes and the u-directed

node-averaged leakages. Thus, QUAGMIRE requires slightly more physical unknowns

than QUANDRY, one more per row per direction per group. For the 2D LRA BWR

problem with assembly sized nodes Table 4-9 shows that, correcting for the difference in

symmetry, the number of physical unknowns required by QUAGMIRE and QUANDRY

is approximately equivalent.

Figure 4-7 and Figure 4-8 present traverses of the transverse-integrated, x-directed

fast and thermal flux, respectively, along the core centerline (j = 1) for several spatial

mesh sizes. Figure 4-7 shows that the quartic flux expansion provides a good

approximation to the spatial shape of the fast flux for the 7.5x7.5 cm and 5x5 cm mesh

sizes. The shape of the fast flux for the 15x15 cm mesh solution is in error in the

uncontrolled assemblies. Figure 4-8 shows that the quartic flux expansion is a very good

approximation to the shape of the thermal flux for the 7.5x7.5 cm and 5x5 cm mesh sizes.

However, for the 15x15 cm mesh, there is a significant error in the shape of the thermal

flux in the uncontrolled assemblies, indicating that the quartic flux expansion is not

adequate for this mesh size.



Table 4-8

Summary of Results for the 2D LRA BWR Static Benchmark Problem

# unknowns

# outer iterations a

Eigenvalue b

Emax ()

-E(%)

erel (%)

rel (%)

Execution time
(sec SGI 4D/210)

a 1 inner/outer iteration, maximum of

-Mesh Spacing-

15 x 15 cm

1298

24

0.996328

1.18

0.39

1.41

0.42

6.50

7.5 x 7.5 cm

5016

19

0.996376

0.19

0.04

0.14

0.04

21.25

32 flux/inner iterations

b Reference: 0.99636

5 x 5 cm

11154

22

0.996368

0.07

0.02

0.07

0.02

58.77



Table 4-9

Comparison of Results for the 2D LRA BWR Static Benchmark Problem

with Assembly-Sized Nodes

a Reference: 0.99636

b SGI 4D/210

c IBM 370/168
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4.3.5 2D LMFBR Static Benchmark Problem

The LMFBR static benchmark problem is a simplified model of the MARK I core

design of the SNR 300 prototype LMFBR at beginning-of-life [A4,B4]. The benchmark

is designed to model the physics and geometry that are characteristic of LMFBRs. It

consists of two- and three-dimensional, four-group, static neutron diffusion problems in

triangular-z and x-y-z geometries. The specifications for the x-y-z version of the

benchmark problem are provided in section C.5 of Appendix C. The x-y-z version of the

benchmark models a quadrant of the reactor. The benchmark defines materials for the

inner core, outer core, radial blanket, axial blanket, control rod, and control rod follower

regions. In the 3D problem the control rods in the inner core are modelled in their fully-

withdrawn position at the upper core/blanket interface and the control rods in the outer

core are partially-inserted. The two-dimensional benchmark models two horizontal slices

of the reactor, one of the lower core (rods out) with the control rods in the outer core

withdrawn and the other of the upper core (rods in) with the control rods in the outer core

inserted.

In this section the results of the 2D LMFBR problem are presented. A uniform

spatial mesh of 5.4 cm is used throughout the reactor except along the external boundary

where a 8.1 cm spatial mesh is used, 19x 19 spatial meshpoints. Table 4-10 summarizes

the results for the rods out and rods in problems using quadratic, cubic, and quartic flux

expansions. The reference solution for the 2D LMFBR problem was taken to be a finite

difference solution by Buckel [A4], obtained using the CITATION code. Buckel actually

performed a series of calculations with refined mesh spacings and applied a Richardson

extrapolation, assuming that the errors were reduced with the square of the mesh spacing,

to obtain a reference solution in which the mesh spacing had been extrapolated to zero.

For the quartic flux expansion the eigenvalue error for both the rods out problem,

2.3x 10-5, and the rods in problem, 1x 10-6, are extremely small. In Table 4-11 the

quartic results are compared to the NEMBOX nodal code and the CITATION finite
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difference code. NEMBOX [F3] is a multigroup version of NEM in which the flux is

expanded using fourth-order polynomials. CITATION [F4] is a mesh-centered finite-

difference method. The accuracy of QUAGMIRE is slightly superior to NEMBOX.

CITATION would require a spatial mesh of approximately 0.25 cm in order to yield

similar accuracy.

Table 4-10

Summary of Results for the 2D LMFBR Static Benchmark Problem

Nodal Methods

Quadratic Cubic Quartic

# unknowns/group 1881 1881 1881

# outer iterations a 20 20 20

Rods Out Eigenvalue 1.246765 1.246763 1.247133

Eigenvalue error b 2.3x10-5  2.1x10-5  3.91x 10-4

Execution time 39.92 32.72 25.45
(sec SGI 4D/2 10)

# unknowns/group 1881 1881 1881

# outer iterations a 15 15 15

Rods In Eigenvalue 1.110015 1.110073 1.111325

Eigenvalue error b 1x10- 5.8x10-5 1.309x10-3

Execution time 28.29 23.25 17.85
(sec SGI 4D/2 10)

a Eigenvalue

b Reference:

shift = k + 1.0, 1 inner/outer iteration, maximum

1.246742 Rods Out, 1. 110016 Rods In

of 32 flux/inner iterations
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Table 4-11

Comparison of Results for the 2D LMFBR Static Benchmark Problem

Problem Code Meshpoints Eigenvalue Eigenvalue Execution
Error Time (sec)a

QUAGMIRE 19x19 1.246765 2.3x10-5  39.92

NEMBOX [F3] 19x 19 1.24677 2.8x10-5

Rods Out CITATION [A4] 20x20 1.248374 1.632x10- 3  6

39x39 1.247148 4.06x10 4  29

59x59 1.246926 1.84x 104  82

79x79 1.246834 9.2x10-5  179

xo b 1.246742

QUAGMIRE 19x19 1.110016 1x10-6 28.29

NEMBOX 19x 19 1.10998 -3.6x10-5

Rods In CITATION 20x20 1.116772 6.756x10-3  6

39x39 1.111857 1.841x10-3  31

59x59 1.110778 7.62x 104  85

79x79 1.110397 3.81 x 104 183

x0 b 1.110016

a QUA GMIRE SGI 4D/210, CITATION IBM 370/168

b Richardson extrapolation to h = 0

103



4.3.6 CISE BWR Benchmark Problem

The CISE BWR benchmark problem [B3] is an idealized model of a two-

dimensional, two-group BWR which explicitly represents many of the heterogeneities

that are present in BWRs. The CISE BWR core consists of 208 fuel assemblies, each

15 cm in width, and is surrounded radially by a 15 cm water reflector. The core is

arranged in a checker board pattern with fresh and depleted fuel assemblies. Thirteen

control blades are modelled in their inserted positions. The fuel region, control blade,

and water gaps are explicitly modelled in each fuel assembly. The major simplification

in this benchmark problem is that the actual heterogeneities in the fuel region (enrichment

zones, burnable poison rods, and water rods) are not explicitly represented but are

modelled homogeneously for the entire fuel region. The specifications for the CISE

BWR problem are provided in Section C.6 of Appendix C.

The reference solution to the CISE BWR benchmark problem is a QUANDRY

solution [S3] using 64 nodes per assembly (25 in the fuel region, 11 in each quarter of the

control blade, and 28 in the water gaps). The heterogeneities in each fuel assembly are

explicitly represented in the reference solution. Because it explicitly models many BWR

heterogeneities, the CISE BWR problem has been used to benchmark spatial

homogenization methods [S3]. Assembly homogenization parameters may be

determined by modelling each fuel assembly type using zero net-current boundary

conditions [S4]. Assembly homogenized cross sections (AXS) may be determined using

the conventional flux-volume weighting procedure. Assembly discontinuity factors

(ADFs) for each fuel assembly type may be determined by taking the ratio of the surface-

averaged flux to the assembly-averaged flux for each surface of the assembly and each

energy group. Smith [S3] used QUA NDRY to determine the AXS and ADFs for the

CISE BWR problem. The QUANDRY AXS and ADFs for the CISE BWR problem are

also provided in Section C.6 of Appendix C.
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The CISE BWR problem was solved by QUAGMIRE using AXS and ADFs. The

QUAGMIRE solution was performed using a quartic flux expansion with a quadratic

transverse-leakage approximation in the core and a flat transverse-leakage approximation

in the reflector. The QUAGMIRE solution is summarized in Table 4-12, and it is

compared a QUANDRY solution using AXS and ADFs. The error in the normalized

assembly power densities is presented in Figure D-6. The QUAGMIRE solution

compares well with the QUANDRY solution using AXS and ADFs, however the errors

in the eigenvalue and nodal power densities are slightly larger than the equivalent

QUANDRY solution.

Table 4-12

Summary of Results for the CISE BWR Benchmark Problem

a Eigenvalue shift = X + 0.05, 1 inner/outer iteration, maximum of 32 flux/inner iterations

b Reference: 0.95240
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4.3.7 HAFAS BWR Benchmark Problem

The HAFAS (Heterogeneously-Arranged Fuel Assembly) BWR problem more

accurately models the heterogeneities present in BWR fuel assemblies than the CISE

BWR problem. It was originally developed to benchmark assembly homogenization

method [S3]. In the HAFAS BWR benchmark problem radial enrichment zones in the

fuel region of the assemblies are explicitly represented. Sixteen enrichment zones in each

fuel assembly are modelled, each zone consisting of a cluster of four fuel pins with

constant enrichment. The radial enrichment zones in each fuel assembly type are

modelled using three different fuel enrichments. Both wide and narrow water gaps are

explicitly modelled in each fuel assembly. In addition, several of the central fuel

assemblies are modelled as partially voided (both 40% and 70% voided).

The HAFAS BWR problem is a two-dimensional, two-group model of a BWR.

The reactor core consists of 308 fuel assemblies, each 15.31 cm in width, and the core is

surrounded by a 15.31 cm water reflector. The reflector is deeper along the reactor

diagonal. The core is arranged in a checker board pattern with fresh and depleted

assemblies. Sixteen control blades are modelled in their inserted positions. The

specifications for this benchmark problem are provided in Section C.7 of Appendix C.

The reference solution to the HAFAS BWR problem is a QUANDRY [S3]

solution using 49 nodes per assembly (16 in the fuel region, 9 in each quarter of a control

blade, and 24 in the water gap regions). QUANDRY was also used to determine the

assembly homogenization parameters, assembly cross sections (AXS) and assembly

discontinuity factors (ADFs), for each fuel assembly type. The QUANDRY assembly

homogenization parameters [S3] for this problem are also provided in Section C.7 of

Appendix C.

The HAFAS BWR problem was solved by QUAGMIRE using AXS and ADFs.

The QUAGMIRE solution was performed using a quartic flux expansion with a quadratic

transverse-leakage approximation in the core and a flat transverse-leakage approximation
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in the reflector. The QUAGMIRE solution is summarized in Table 4-13 and it is

compared to a QUANDRY solution using AXS and ADFs. The error in the QUAGMIRE

normalized assembly power densities is displayed in Figure D-7. The QUAGMIRE

solution compares well to the QUA NDRY solution using AXS and ADFs. Is is actually

slightly more accurate than the equivalent QUANDRY solution. These results and the

results from the CISE BWR problem verify that the flux discontinuity factors have been

correctly incorporated into the QUAGMIRE nodal method. In addition, they verify that

the polynomial nodal method with a quartic flux expansion used by QUAGMIRE yields

results comparable to the analytic nodal method used by QUA NDRY.

Table 4-13

Summary of Results for the HAFAS BWR Benchmark Problem

QUAGMIRE QUANDRY
[S3]

# outer iterations a 19

Eigenvalue error (%)b -0.067 -0.06

Emax (%) 5.84 5.91

-F (%) 1.20 1.22)'

Erel ( 5.23 5.29

Trel (%) 1.29 1.33

Execution time 4.17
(sec SGI 4D/210)

a Eigenvalue shift = X + 0.02, 1 inner/outer iteration, maximum of 32 flux/inner iterations

b Reference: 1.04420
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4.3.8 Two-Group Source Benchmark Problem

The Two-Group Source benchmark problem is a simple model of a two-

dimensional, two-group bare core with extraneous neutron sources. This benchmark was

originally developed by Jacqmin [J2] to validate a new version of the QUANDRY

analytic nodal method [J1] which had been extended to model the effects of extraneous

neutron sources. The reactor consists of sixteen assemblies, each 21 cm wide. A uniform

extraneous neutron source is present in each assembly, and the reactor has zero flux

boundary condition on all external reactor boundaries. The problem may be modelled in

quarter core geometry. Specifications for the Two-Group Source benchmark problem are

provided in Section C.8 of Appendix C.

The Two-Group Source benchmark problem was solved by QUAGMIRE using

1x1 and 2x2 nodes per assembly. The QUAGMIRE solutions were obtained using a

quartic flux expansion and a quadratic transverse-leakage approximation throughout the

reactor. The results are summarized in Table 4-14. The reference is a CITATION

solution, mesh-centered finite difference method, with a uniform 1.0 cm mesh (21x21

nodes/assembly) [J2]. Table 4-14 also compares the QUAGMIRE results to a lx I nodes

per assembly QUANDRY solution [J21. Figure D-8 presents the relative error in the

group-1 and group-2 node-averaged flux distributions. With assembly sized nodes

QUAGMIRE produces a maximum relative error in the group I and group 2 fluxes of

2.15% and 2.38%, respectively. However, the 2x2 nodes per assembly QUAGMIRE

solution yields a maximum error in the group-1 and group-2 fluxes of 0.29% and 0.45%,

respectively, which is smaller than the Ixl QUANDRY solution.
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Table 4-14

Summary of Results for the Two-Group Source Benchmark Problem

QUAGMIRE

(1x1)
QUAGMIRE

(2x2)

QUANDRY[J2]
(1x1)

Group-1 Flux, Ere 2.15 % 0.29 % 0.52 %

Group-1 Flux, iij 1.80 % 0.13 % 0.22 %

Group-2 Flux, Erel 2.38 % 0.45 % 0.57 %

Group-2 Flux, imj 1.83 % 0.21 % 0.22 %

109



4.4 3D STATIC RESULTS

In this section, results from three 3D static benchmark problems are presented.

As with the 2D problems, these problems contain large homogenized regions so that they

may be analyzed using coarse spatial meshes. All of the results were obtained from the

QUAGMIRE polynomial nodal method using a quartic (fourth-order) flux expansion. In

addition, a relatively tight eigenvalue and pointwise flux convergence criteria of 10-6 has

been used.

4.4.1 3D IAEA PWR Benchmark Problem

The 3D IAEA PWR benchmark problem was introduced in 1971 by Micheelson

[M1] and has proven to be a very important standard for the comparison of reactor

analysis method. Following the introduction of this benchmark problem, many solutions

were obtained, but the large discrepancies in these solutions indicated that many of the

existing multi-dimensional calculation methods were inadequate. The specifications for

the 3D IAEA PWR benchmark problem are provided in Section C.3 of Appendix C.

The results of the QUAGMIRE solution to the 3D IAEA PWR problem are

summarized in Table 4-15 for two different spatial meshes. The coarse mesh solution

uses a 20 cm spatial mesh in both the radial and axial directions. The fine mesh solution

uses a 10 cm radial mesh and a 20 cm axial mesh, except in the axial reflectors where a

10 cm mesh is used. Both solutions use a quartic flux expansion and a quadratic

transverse-leakage approximation in the core and a flat transverse-leakage approximation

in the reflector. The error and relative error in the normalized assembly power densities

are given in Figure D-9 and Figure D-10, respectively.

The reference eigenvalue was taken from a finite difference solution by Vondy,

obtained using the VENTURE code [A3]. Vondy performed a series of calculations with

refined mesh spacings and applied a Richardson extrapolation to obtain a reference

solution in which the mesh spacing was extrapolated to zero. The finest mesh
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VENTURE solution used a 1-2/3 cm radial mesh and contained approximately 1.2

million meshpoints. However, Smith [S2] has indicated that the nodal power density

from the extrapolated VENTURE solutions does not appear to be spatially converged.

Therefore, the reference nodal power density for the 3D IAEA PWR problem was taken

from a fine mesh IQSBOX solution by Finnemann [A3]. The IQSBOX solution used a

fifth-order nodal expansion method with a lOx10x20(1O) cm spatial mesh.

Table 4-16 presents a comparison between the coarse mesh nodal solutions by

QUAGMIRE, QUANDRY, and IQSBOX. The errors in the QUAGMIRE and

QUANDRY assembly power densities are comparable. The errors in the IQSBOX

assembly power density are approximately half of the QUAGMIRE and QUANDRY

solutions. This is consistent with the fact that IQSBOX uses a fifth-order flux expansion

and the reference was a fine mesh IQSBOX solution.

As discussed in Section 4.3.4, the physical unknowns in QUAGMIRE are the

node-averaged flux and the u-directed net-currents. For QUANDRY the physical

unknowns are the node-averaged flux and the u-directed leakages. For IQSBOX the

physical unknowns are the node-averaged flux and the u-directed incoming and outgoing

partial currents. For the 3D IAEA PWR problem, Table 4-16 shows that, adjusting for

differences in symmetry, the number of physical unknowns required by QUAGMIRE and

QUANDRY are roughly equal. However, the number of physical unknowns required by

IQSBOX is approximately 7/4 more than QUAGMIRE and QUANDRY.
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Table 4-15

Summary of Results for the 3D IAEA PWR Benchmark Problem

# unknowns

# outer iterationsa

Eigenvalueb

Emax (node, %)

E (node, %)

Ere (node, %)

iFl (node, %)

Emax (assembly, %)

F (assembly, %)

Erej (assembly, %)

imi (assembly, %)

Execution time
(sec SGI 4D/210)

20x20x20 cm

19998

20

1.029031

1.32

0.34

2.12

0.43

0.87

0.31

1.46

0.33

93.04

aEigenvalue shift = X + 0.05, 1 inner/outer iteration, maximum of 16
bReference: 1.02903

10x10x20(10) cm

76674

28

1.029059

0.83

0.25

1.60

0.33

0.57

0.21

0.76

0.21

520.26

flux/inner iterations.
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Table 4-16

Comparison of Coarse Mesh 3D IAEA PWR Benchmark Solutions

QUAGMIRE QUANDRY IQSBOX
_[S2] [A3]

Physical unknowns 11350 5776 10260

Eigenvaluea 1.029031 1.02902 1.02911

Emax (assembly, %) 0.87 0.72 0.40

i (assembly, %) 0.31 0.27 0.11

Erel (aSsembly, %) 1.46 1.18 0.57

Erel (assembly, %) 0.33 0.30 0.14

Symmetry 1/4 core 1/8 core 1/8 core

Execution time (sec) 93. 0 4b 29.0c 50d

aReference: 1.02903

bSGI 4D/210

cIBM 370/168

dCDC 6600
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4.4.2 3D LRA BWR Static Benchmark Problem

The 3D LRA BWR benchmark problem was originally introduced as a full-core

kinetics problem and has proven to be an extremely difficult benchmark problem. The

static version of this benchmark problem is simply the initial condition of the transient

problem. The specifications for the 3D LRA BWR Static benchmark problem are

presented in Section C.4 of Appendix C.

A summary of the QUAGMIRE results for the 3D LRA BWR static benchmark

problem is presented in Table 4-17. The coarse mesh solution uses a 15 cm radial mesh

spacing and a 25 cm axial mesh spacing in the core and a 15 cm axial mesh spacing in the

axial reflectors. The fine mesh solution uses a 7.5 cm radial mesh spacing and a 12.5 cm

axial mesh spacing in the core and a 7.5 cm axial mesh spacing in the axial reflectors.

The reference solution is a very fine mesh QUAGMIRE solution with a 5 cm radial mesh

spacing and a 12.5 cm axial mesh spacing in the core and a 7.5 cm axial mesh spacing in

the axial reflectors. All of the QUAGMIRE solution used a quartic flux expansion and a

quadratic transverse-leakage approximation in the core and a flat transverse-leakage

approximation in the reflector. The error and relative error in the normalized assembly

power densities are provided in Figure D-1 1 and Figure D-12, respectively. The errors in

the normalized assembly power densities for the 3D LRA BWR problem are similar to

the errors in the 2D LRA BWR problem.

The coarse mesh QUAGMIRE and QUANDRY solutions are compared in

Table 4-18. The number of physical unknowns, adjusting for the difference in symmetry,

required by QUAGMIRE and QUANDRY are roughly equal. The accuracy of the

QUANDRY solution is superior to the QUAGMIRE solution of assembly sized nodes.

In addition, QUANDRY runs significantly faster than QUAGMIRE for this problem.

This is believed to be primarily due to the additional data requirements of QUAGMIRE.
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Summary of

Table 4-17

Results for the 3D LRA BWR Static Benchmark Problem

Coarse Mesh
15x15x25(15) cm

Fine Mesh
7.5x7.5x12.5(7.5) cm

-I 4 I-

# unknowns

# outer iterationsa

Eigenvalue

Emax (node, %)

" (node, %)

Erel (node, %)

rel (node, %)

Emax (assembly, %)

E (assembly, %)

Erel (assembly, %)

'tE (assembly, %)

Execution time
(sec SGI 4D1/210)

28996

22

0.996360

2.16

0.39

1.62

0.45

1.33

0.36

1.41

0.37

154.72

224400

19

0.996391

0.36

0.04

0.19

0.04

0.24

0.04

0.18

0.04

1132.59

Very Fine Mesh
5x5x12.5(7.5) cm

500676

22

0.996381

Ref.

Ref.

Ref.

Ref.

Ref.

Ref.

Ref.

Ref.

3165.07

aEigenvalue shift = X + 0.02, 1 inner/outer iteration, maximum of 32 flux/inner iterations.
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Table 4-18

Comparison of Coarse Mesh 3D LRA BWR Static Benchmark Solutions

aSGI 4D/210

bIBM 370/168
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4.4.3 3D LMFBR Static Benchmark Problem

The 3D LMFBR static benchmark problem is a simplified model of the MARK I

core design of the SNR 300 prototype LMFBR. It is a rather challenging benchmark

because it models the physics of a LMFBR using four energy groups. Unfortunately,

because it is a relatively new benchmark and because it requires methods which can solve

problems with more than two energy groups this problem has relatively few published

solutions. The specifications for this benchmark problem are presented in Section C.5 of

Appendix C.

The results of the QUAGMIRE solution to the 3D LMFBR static benchmark

problem are presented in Table 4-19. The QUAGMIRE solution used a quartic flux

expansion and a quadratic transverse-leakage approximation throughout the reactor. The

solution used a 5.4 cm radial mesh spacing, 9.5 cm axial mesh spacing in the core, and a

10.0 cm axial mesh spacing in the axial blankets (19x 19x 18 meshpoints). Table 4-19

also compares the QUAGMIRE solution to a NEMBOX solution by Finnemann [A4].

The NEMBOX solution also uses a quartic flux expansion and the same spatial

discretization. The QUAGMIRE solution is believed to be more accurate because it uses

a tighter convergence criterion and should be considered the reference for this

benchmark.
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Table 4-19

Summary and Comparison of Results for the 3D LMFBR Static Benchmark Problem

QUAGMIRE NEMBOX [A4]

# unknowns/group 47450 45486

# outer iterationsa 17

Eigenvalue 1.013695 1.013746

Execution time (sec) 1014.65b 462c

aEigenvalue shift = X + 1.0, 1 inner/outer iterations, maximum 32 flux/inner iterations.

bSGI 4D/210

cCDC CYBER 176
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4.5 STABILITY CONSIDERATIONS

For three-dimensional problems experience has shown that iterative stability

problems may arise if the axial and radial mesh sizes are very different. For both the 3D

LRA and 3D LMFBR problems stability problems were encountered if the axial mesh

size was greater than three times the radial mesh size, hz> 3hxy. However, if the axial

and radial mesh sizes were comparable, hz < 3hxy, no stability problems were

experienced.

The cause of the instability was traced to the flux expansions for some of the

nodes adjacent to the external reactor boundary. In some of these nodes, at some time

during the iteration, the u-directed flux expansion became negative in the region adjacent

to the external reactor boundary. The negative face-averaged flux estimate on the

external reactor boundary resulted in a change of sign of the u-directed current on the

external reactor boundary. The change in sign of the u-directed current on the external

reactor boundary resulted in a negative CMFD discontinuity factor, refer to Equations

(2-32) and (2-34). Unfortunately, the Aragonds and Ahnert procedure (refer to Section

3.2) is not able to correct for the change in sign of the face-averaged currents on the

external reactor boundary and the negative CMFD discontinuity factors induced the

instability.

In order to demonstrate this phenomena, the z-directed fast and thermal flux for

nodes (1,1,k) of the 3D LRA BWR problem with a 7.5x7.5x25(10) cm mesh for the

iteration prior to the instability is shown in Figure 4-9. The z-directed fast flux in the

lower axial reflector is shown in Figure 4-10. The fast flux clearly becomes negative in

the region adjacent to the external reactor boundary. Figure 4-11 shows the thermal flux

in the lower axial reflector. The thermal flux also is negative in the region adjacent to the

external reactor boundary. The negative face-averaged fast and thermal fluxes on the

reactor boundary results in a positive net-current on the boundary. From Equation (2-32)

we see that the positive net-current produces a negative CMFD discontinuity factor.
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3D LRA BWR Problem
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3D LRA BWR Static Benchmark Problem: Z-Directed Fast and Thermal
Flux Traverse for Nodes (1,1,k) Prior to Instability, 7.5x7.5x25(10) cm
Spatial Mesh.
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3D LRA BWR Problem
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Figure 4-10. 3D LRA BWR Static Benchmark Problem: Z-Directed Fast Flux Traverse
in the Lower Axial Reflector for Nodes (1,1,k) Prior to Instability,
7.5x7.5x25(10) cm Spatial Mesh.
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3D LRA BWR Problem
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Figure 4-11. 3D LRA BWR
Traverse in the

Static Benchmark Problem: Z-Directed Thermal Flux
Lower Axial Reflector for Nodes (1,1,k) Prior to

Instability, 7.5x7.5x25(10) cm Spatial Mesh.
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4.6 SUMMARY

In this chapter, the results of several two- and three-dimensional static reactor

benchmark problems were presented. The QUAGMIRE polynomial nodal method was

shown to be an accurate and efficient method for solving the multidimensional, few-

group static neutron diffusion equation, provided that the reactor can be homogenized

over large spatial regions (nodes).

The QUAGMIRE Polynomial Nodal Method was shown to require significantly

fewer unknowns than finite difference methods to achieve equivalent accuracy. The

QUAGMIRE Polynomial Nodal Method was shown to be approximately two orders of

magnitude more computationally efficient than finite difference methods. The accuracy

of QUAGMIRE was found to be comparable to other nodal methods. However,

QUAGMIRE requires more unknowns than the Analytic Nodal Method and the Nodal

Expansion Method. The computational efficiency of QUAGMIRE was shown to be

slightly lower than the Analytic Nodal Method and the Nodal Expansion Method. The

relatively higher numbers of unknown and lower computational efficiency of the

QUAGMIRE nodal method compared to other nodal methods is directly related to its

increased generality. The QUAGMIRE Polynomial Nodal Method permits more than

two energy groups and discontinuities in both the face-averaged fluxes and currents. In

order to guarantee stability, three-dimensional problems require similar axial and radial

mesh spacings, hz < 3hxy.
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CHAPTER 5

SUMMARY

5.1 OVERVIEW OF THE INVESTIGATION

The objective of this thesis was the development of an efficient, general purpose

polynomial nodal method for solving the multidimensional, few-group, static neutron

diffusion equation. Discontinuities in both the face-averaged flux and net-current were

permitted in order to support future research in advanced spatial homogenization

methods. The number of energy groups or the structure of the energy groups was not

restricted. The nodal method also models the presence of extraneous neutrons sources.

Thus, both eigenvalue and source problem may be solved.

A novel nonlinear iteration scheme based on the coarse mesh finite-difference

(CMFD) method was developed. The polynomial nodal method is used to determine the

inter-nodal coupling and to determine CMFD discontinuity factor ratios. The CMFD

discontinuity factor ratios are defined such that they permit the CMFD method to

reproduce the solution of the higher-order polynomial nodal method.

In Chapter 2 the CMFD method and the polynomial nodal method both which

permit discontinuities in the face-averaged flux and net-current were derived. First the

CMFD method was derived. CMFD discontinuity factor ratios which permit the CMFD

method to reproduce a reference solution were defined. A polynomial nodal method

which permits discontinuities in the face-averaged flux and net-current was derived.

Finally, a procedure for determining CMFD discontinuity factor ratios from the

polynomial nodal method solution was described.

In Chapter 3 the numerical properties of the nodal method were discussed. A

procedure for guaranteeing the stability of the iterative solution was presented. The

iterative schemes used to solve eigenvalue and source problems were described. Finally,

issues regarding the optimization of the iterative solution were discussed.
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In Chapter 4 the QUAGMIRE code was described. QUAGMIRE solutions for

several two-dimensional and three-dimensional benchmark problems were presented and

compared to other nodal methods and finite-difference methods. The accuracy of the

QUAGMIRE code was found to be consistent with other nodal codes. The computational

efficiency of QUAGMIRE was found to be slightly less than other nodal methods. For

three-dimensional problems it has been found, empirically, that in order to guarantee

stability an additional constraint must be placed on the axial mesh size. The axial mesh

size must be less than three times the radial mesh size, hz < 3hxy. In practice this

constraint will not place an undo restriction on the problems being modelled.

5.2 CONCLUSIONS AND RECOMMENDATIONS

An efficient general purpose polynomial nodal method for solving the

multidimensional, few-group, static neutron diffusion equation has been developed. The

nodal method is capable of solving problems with any number of energy groups and

permits upscattering. The nodal method also models discontinuities in both the face-

averaged flux and net-current, permitting the use of advanced spatial homogenization

methods. The accuracy of the nodal method was found to be comparable to other nodal

methods. The computational efficiency of the nodal method was found to be slightly

lower than other nodal methods. The lower computational efficiency is believed to be a

consequense the increased generality of the nodal method. The nonlinear iteration

scheme was effective in reducing the number of unknowns. For three-dimensional

problems the axial mesh size should be comparable to the radial mesh size. Empirically

it has been found that the axial mesh size must be less than three time the radial mesh

size, hz< 3hxy.
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5.2.1 Removing Axial Mesh Restriction

The instability experienced by three-dimensional problems with axial mesh sizes

greater than three times the radial mesh size is believed to be due to a nonlinear

interaction between the polynomial nodal method and the CMFD method. As discussed

in Chapter 3, Aragonds and Ahnert [A1] have shown that the stability of the CMFD

method can be guaranteed if the CMFD discontinuity factor ratios are positive. They

also have proposed a stability condition which may be used to force the CMFD

discontinuity factor ratios to be positive. However, the Aragon6s and Ahnert procedure

breaks down on the external reactor boundary if the face-averaged flux is negative. Two

possible approaches for removing the axial mesh size restriction are proposed.

The first approach is to increase the coupling to the boundary conditions during

the third-order and fourth-order expansion coefficient calculation. This may be

accomplished by substituting the polynomial nodal coupling equation, Equation (2-67),

into Equations (2-60). This will result in two tridiagonal systems of equations for each

row, energy group, and direction. This revised expression for the expansion coefficients

should have the additional advantage of being more computationally efficient.

Another, more general, approach would be to place an addition constraint on the

nodal flux expansions. The flux expansions could formally be required to be positive or

equal to zero,

I mn
* gu(u) > 0 , u = x, y, z.

If this constraint were developed it could be applied to all polynomial nodal methods.

5.2.2 Conjugant Gradient Methods

The cyclic Chebyshev semi-iterative (CCSI) method, which is used in the flux

iterations, requires an accurate estimate of the spectral radius of the Gauss-Seidel

iteration matrix in order to achieve its optimal convergence rate. In nodal methods the
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spectral radii of the group iteration matrices tends to vary widely as the problem

converges. Consequently, most nodal methods tend to use unaccelerated iterations

techniques, such as the Gauss-Seidel method, until a coarse eigenvalue convergence

criterion has been satisfied. Once the coarse eigenvalue convergence criterion has been

satisfied the spectral radii of the Gauss-Seidel iteration matrices are estimated and the

CCSI method may be used. The selection of the proper coarse eigenvalue convergence

criterion tends to be difficult and, as a result, the overall convergence rate of the flux

iterations tends to be significantly lower than the optimal convergence rate. In general

this problem will apply to all the iteration methods which use Chebyshev acceleration.

One may achieve significantly higher overall convergence rates by using iterative

techniques, for example conjugant gradient method, which do not require estimates of the

spectral radii of the iteration matrices. The convergence rate of the conjugant gradient

and CCSI methods are equivalent [H I]. The convergence rate of the cyclic conjugant

gradient method, a red/black version of the basic conjugant gradient method, is superior

to the CCSI method [H1]. The use of conjugant gradient methods is strongly

recommended.

5.2.3 Thermal-Hydraulic Feedback

The nodal method should be extended to include thermal-hydraulic feedback.

Ideally, the thermal-hydraulic model or models should be general enough to accurately

represent the thermal-hydraulic conditions present in light water reactors, gas cooled

reactors, and liquid metal cooled reactors. It would also be useful to include a more

general model of the dependence of the cross sections and discontinuity factors on

thermal-hydraulic parameters.
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5.2.4 Time Dependence

The neutronic and thermal-hydraulic models of the nodal method should be

extended to permit time dependence. For the neutronic model options should exist for

solving time-dependent problems using the frequency transform method and a fully-

implicit time differencing method.

5.2.5 Other Coordinate Systems

Finally, a useful enhancement would be the extension of the nodal method to

coordinate systems other than Cartesian. Extension to the cylindrical (r-O-z) and

hexagonal-z coordinate systems should be sufficient to model all of the currently

proposed reactor designs.
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APPENDIX A

DERIVATION OF THE FLUX AND CURRENT MOMENTS

In this Appendix the flux and current moment are derived. The flux and current

moments are required by the weighted residual procedure used to determine the higher-

order (N > 3) flux expansion coefficients. The transverse-integrated flux is expanded as a

low order polynomial. For a fourth-order polynomial (N = 4) the flux expansion for node

(lmn) is

Imn Inn I mn 2 1 In[ -6*gu"(U) = *Igu"(u+f ) [3 -4 + 1] + Ig!"u ,[)32 - 2 9 +A ""61-)
r (A-i)

gu3 22J u45

where,
U - U

h lu

Before we begin the derivation of the flux and current moments, the definition of the

following identities will prove to be useful:

~=do -2d)

2- d

j

f - -4 d1

12

12

12

-3
40

1
15

Jo'3 2 3 + )d0
f13 -2 3' + ) d

Jo+ (3 2~ )2d

f'3 -2 3 + 3d5

f 3 2 -3 + "4

Jo0323i~d
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The flux moments are defined by

uI+ 1

ImnJ w,, (U) gu (u) du

.wn ( ) ()d (A-2)

Imn
gun

where wn(u) this the weighting function. For the first flux moment, the weighting

function is set equal to the first-order basis function, w I (u) =f 1 (u) = - 1.
2

The first flux

moment is obtained by substituting Equation (A-1) into Equation (A-2),

*g = *u (u ) - (3%2 - 4 + 1)d

+ +g "(uj )

+mn

fo 2

and after some algebra we get

Imn 1 Im 1u gUPgul = -g~U +1 )-L-4 mn(u 1 ) + ..Lalmn
12 12 120 gu3

An equivalent expression for the first flux moment in terms of the first-order and third-

order expansion coefficients may be obtained by substituting Equation (2-40b) into

Equation (A-3),
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(wn (U) , *'gmn(u) ) 31

2( - -1 _ 6_ )d,4) (32

i)(6 - 6 2)d
2

+ 3 2

+ 3 - 6 2 + I
5 5



Imm1an
gi 1 2 gu120~~ u (A-4)

Similarly, for the second flux moment the weighting function equal to the second-

order basis function, w2 (u) =f 2(u) = 3- 3 + . The second flux moment is obtained

by substituting Equation (A-1) into Equation (A-2),

g2= 'guj' (U+ -3 J )(3 24 + 1)d
IJo2

+ + (up+ ) 10

+ 3mnf -

1

+ al3 (32 -

(3 2 - 3 + (3 2 - 2 d

+

3 + L 6 - 6% 2)d

3%+ 3 + 3 2 - d

3 + -$+ 2153 _ 2 + Id

and after some algebra we get

Imn 1 mn (U + _ "(I ) - +
~20~4 u(t 20 10 700 gu3 (A-5)

The equivalent expression for the second flux moment in terms of the second-order and

fourth-order expansion coefficients may be obtained by substituting Equation (2-40c) into

Equation (A-5),

I mn I lm+ a,_,m
lg 2 0 g 700 gu4 (A-6)
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The current moments are defined by

U1+
d (u), _Jgj(u) = wn (u) dJug"(u) du

The first current moment is obtained by setting the weighting function equal to the first-

order basis function and then integrating Equation (A-7) by parts,

wi(u), -J u"(u))
1

U1+
- 2 J 1 "(u) du

=1 J~mn~l~rUl+1
- J (u)

hiU t hu 2 u

u1+ 1

"hmn (u) du
(h'ul IF g

1 n(u,1)+ jlmn(
2hu

I1 lmn(u+ 1 ) + jign(
2hu I

U+
D '

u+,) ]+ g

(h'uY
u +

ugf(u) du
gu

ui) + FImn(u,) - Im )

(h' g g uf)

Substituting Equation (2-40b) into Equation (A-8) yields an alternate expression for the

first current moment

Ji1"( ut)] + galmn

h'Ygul
(A-9)

The second current moment is obtained by setting the weighting function equal to

the second-order basis function and integrating Equation (A-7) by parts twice,
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(A-8)

I

wli(u), d{ju""(u) igt"lm(u,1) +



1

(32 - 3 + ')dJg"(u) du

- - mn (u) [32 - 3 +

hu

I jm(u,) - jigm"

j]Uj~

2i +
- U' (hu

U-1+

f
ul +1

6Dlmn(u)+ g

1

(6 - 3)Jgu"(u) du

(A-10)

- )mn(u) du

Imn(u+ gu 3D I u (uI+ 1 ) + #gu (ui) - 2$
2hgu (If

Substituting Equation (2-40c) into Equation (A- 10) yields an alternate equation for the

second current moment,

3DIm""
-u Jg " Jgu (ui, )-JL'}(u+)]+ ( al3 . (A-11)w2(U), -gTn(U) + I jlImn

'Wdu /2hl (hgug
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APPENDIX B

DERIVATION OF TRANSVERSE-LEAKAGE MOMENTS

In this Appendix the transverse-leakage moments will be derived. The u-directed

transverse-leakage moment for node (Imn) is defined as

Sgt" - -n wn (u) S1gm"(u) du, (B-1)

bl

where wn(u) is the weight function. The weight functions we will consider are the first-

order and second-order basis functions:

wi(u) = - i (B-2a)
2

w1(u) = 3 3+ . (B-2b)
2

where,
pu - u1

h lu

Several approximations of the shape of the u-directed transverse-leakage within a

node will be considered. These approximations are:

1. Quadratic Transverse-Leakage Approximation,

2. LHS-Biased Quadratic Transverse-Leakage Approximation,

3. RHS-Biased Quadratic Transverse-Leakage Approximation,

4. Flat Transverse-Leakage Approximation.

In the quadratic transverse-leakage approximation the shape of the u-directed transverse-

leakage in three adjacent nodes is fit to a quadratic polynomial centered on the node in

the middle. In addition, the quadratic fit is required to preserve the average transverse-

leakages in each of the three adjacent nodes. The quadratic transverse-leakage

approximation may be used for any node in the interior of the reactor. However, for
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nodes adjacent to the external reactor boundary there is insufficient information to

determine a quadratic fit for the central node. In this case a biased quadratic fit may be

used. Finally, the crudest approximation that may be made regarding the shape of the

transverse-leakage is that it is flat. Typically, the flat transverse-leakage approximation is

used in nodes adjacent to the external reactor boundary.

B.1 QUADRATIC TRANSVERSE-LEAKAGE APPROXIMATION

In the Quadratic Transverse-Leakage Approximation we approximate the u-

directed transverse-leakage in node (Imn) using the following a quadratic function,

Sigu(u) 9 -gm" + (g-u''"- -rn")p1 1 (u) + (S 1m" - gImn41(u)

= +Simng'"+ IS." (u) + Imn p1(u) (B-3)
5gu+ gu ,(u+ ASgu+ PU u

where

Sgimn huhmvh"h = average net-rate at which neutrons leave node (lmn) through

the faces transverse to direction u,

and

p1-1 (u) = a-1 + b-1 + cjj1$ , (B-4a)

pl (u) =a+, + be)+ca .(-bul ul qul -(B- 4b)

In addition, we require the quadratic transverse-leakage expansion, Equation (B-3), to

preserve the average transverse-leakages in each of the three adjacent nodes. Thus, we

require the following constrains on Equations (B-4a) and (B-4b):
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Ui

-- f pl1u-1(u)du = 1,
U +

U+1

ifpLu(u)du = 0, (B-5a)
uU

U 1+2

~1J ,p -i(u)du = 0,
hU+1
U1

hlf pi 1(u)du = 0,
U+

U+1

p f plj(u) du = 0, (B-5b)
hU

U 1+2

h1+ p U+(u) du = 1.
U U

Integrating Equation (B-3) over the three adjacent nodes and applying the constraints,

Equations (B-5a) and (B-5b), yields the coefficients of the transverse-leakage expansion:

au, =h(h + hp)
(hm + h + hp)(hm + h)

b -= 2h(2h + h)
(hm + h + hp)(hm + h)

c = 3h 2

(hm + h + hp)(hm + h) (B-)

a+ h hm
"I ~ (hm + h + hp)(h + hp)

b+ = 2h(hm - h)
UI (hm + h + hp)(h + hp)

+ =3h 2
ul (hm + h + hp)(h+ hp)

where
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hm= h1u 1

h = hiu

h 1 i+1.

Note that the transverse-leakage expansion coefficients are functions of only the reactor

geometry. For equal-sized nodes, hm = hp = h, the expansion coefficients are:

a-U = I., a+ - -1-,
3 a 1  6

b = -1, b+1  =0,

C+

An equivalent, and more convenient, expression for the quadratic transverse-

leakage expansion may be obtained by rearranging Equation (B-3) to isolate the flat,

linear, and quadratic term

SIg"(u) = g + Kgi"+ n 2,(B-7)

where
-imn im -Imn -Imn
Sgf = Sgu + au, ASgu. + au+ ASgu+

-Im - Imn -ImnS = b- ASgu + b+ AS

-imn --- Imn -Imn
Sgu,q = ca1ASgu. + cu, ASgu+

The transverse-leakage moments are then obtained by substituting Equation (B-7) into

Equation (B-1),

iif= w()[S + Sgp + g d. (B-8)

0

After some algebra and applying the identities given in Appendix A, the first and second

transverse-leakage moments are obtained

Sg"= -(g i + g") (B-9)

Sim = gg . (B-10)gu2 6 0 guq. B 0
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Expanding the linear and quadratic terms yield the first and second transverse-leakage

moments for the quadratic transverse-leakage approximation

SI"' 1(b- + cni)isg'nm - (b-I + c-1 + b+j + c iu)Sl'" + (bi1 + e (B-li)

gu 2 12u1 g 1 1  u 1  g

Sg"2 = Ic- I U U UU g -eI + e+J)Sg'"+ eC+ i~n (B3-12)

B.2 LHS-BIASED QUADRATIC TRANSVERSE-LEAKAGE APPROXIMATION

For nodes adjacent to the LHS external reactor boundary, we may approximate

the u-directed transverse-leakage in node (lmn) using the following biased quadratic

function,

Slgn(u) Sg' + ( m _ i 1(u) + (1+2,ni n I P n1)p+2(u)

=Sgu + ASgu p u+(u) + ASg +pul2(u) (B-13)

where

pu+1(u) = a+ + b+(u -uI)+ c+ Iu- I) 2 (B- 14a)

p u+2(u) = a + b+(u-I)+ ci+(uuI)2 , (B- 14b)

Rearranging Equation (B-13) and combining its flat, linear, and quadratic terms yield an

alternate expression for the LHS-biased transverse-leakage expansion

SI"(u) = g" + u im u- u 2
hi h+ (B- 15)

where
-v a kage Imn (ImnTeeoe w + ains A Sgu++ati(1AS 4)n(-

gU+ Uj gu++

-Slmn - Im c-ASImcAgn+
guq- b+u, 1 u b+~u

In addition, we require the LHS-biased quadratic transverse-leakage expansion to

preserve the average transverse-leakages in nodes (lmn), (1+1 ,mn), and (l+2,mn).

Therefore, we place the following constraints on Equations (B- 14a) and (B- 14b):
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Ui, 1  ujs1

P u+1(u)du = 0 - 1 pL+2(u)du = 0
u u+

u 1+2 u 1+2

1 +1 p1(u)du = 1 1+2(u)du 0
hiu+ hiu+

u1+1 uf+1
uI+3  U I+3

11(u)du = 0 f p 1+2(u) du =1.
hI+2f PUb +2

+2 U 1 +2u11+2 ut. +'

The expansion coefficients are obtained by integrating Equation (B- 15) over hL, hIU+1 , and

hu2 and applying the above constraints. The coefficients for the LHS-biased quadratic

transverse-leakage expansion are:

h[h(h + 4hp + 2hpp) + 3hp(hp + hpp) + hp]

au1  (h + hp)(hp + hppi)(h + hp + hpp)

2h[h(2h + 6hp + 3hpp)+ 3hp(hp + hyo)+ hpp]
u - (h + ho)(hp + hpp)(h + hp+ hpp)

C - 3h 2(h + 2hp + hpp)u -(h + hp)(hp + hpp)(h + hp + hpp)
(B-16)

a++ - h(h + hp)
u1 (hp + hpp)(h + hP + hpp)

b++ - 2h(2h + hp)
Ui (hp+ hpp)(h+ hp+ hpp)

c++ = 3h 2

u1 (hp+ hpp)(h + hP + hpp)

where
h = hl

F 1hp b+1

hP, = bl+2

For equal sized nodes, h =P h= hpp, the expansion coefficients are:
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a -=-, ++6 U1 3

b+ = 3, b = -1,

ec+ = -1, eC+=+

Substituting Equation (B-15) into Equation (B-1) and solving the resulting

equations yields the first and second transverse-leakage moments for the LHS-biased

transverse-leakage approximation

Sl"= (b + c)il)I)*''mn - (b+, + c+ + b+ + caj)K,"" + (bi+ + c++)K 12,mnn (B-17)

gu2 c ,mg' - ,+ + gu (B-18)
-601 l(~ i)~P c+I2n

B.3 RHS-BIASED QUADRATIC TRANSVERSE-LEAKAGE APPROXIMATION

Similarly, for nodes adjacent to the RHS external reactor boundary, we may

approximate the u-directed transverse-leakage in node (Imn) using the following biased

quadratic function,

S Ig"(U) L, Sg" + (Kg j'mn - SJpn)p 11(u) + (Sig2.nmn - ni 2

Imn Imn imn (B3-19)
= Sgu + Agl p (; (u) + ASgu pu)

where

pk1
1(u) = a-1 + b- u-uI)+ c_ 1 u - ui 2 (B-20a)

\ ble h

p12(u) = a-j + b-. u u)+ c u - ui2. (B- 20b)

Rearranging Equation (B-19) and combining its flat, linear, and quadratic terms yield an

alternate expression for the LHS-biased transverse-leakage expansion

Sign(u) = Klmn+ is2n u I ui u -(ui)2 (B-21)
whereu \ hiu I

where
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Sgumf -1 mnImn -Imn
In gu + aU1 ASgu_ + au Agu__

g14 bU1 ASu_+ b-ASu-

9~ CL 1 ASglP + cUIASu.

In addition, we require the RHS-biased quadratic transverse-leakage expansion to

preserve the average transverse-leakages in nodes (lmn), (1- 1,mn), and (1-2,mn).

Therefore, we place the following constraints on Equations (B-20a) and (B-20b):

uI+1  UI+1

p 11(u) du = 0 -f pL1
2(u) du =0

u+ U U

uj ui

pu,'(u)du = 1 fpu,2(u) du = 0

uI1 utiUu+_ u_ +

puI-(u)du = 0 p 1-2(u) du = 1.
hI 2 h 21f u

1-2 U1+2

The expansion coefficients are obtained by integrating Equation (B-21) over hl, h"1 , and

hI 2 and applying the above constraints. The coefficients for the RHS-biased quadratic

transverse-leakage expansion are:

h[hmm(hmm + 3hm + h)+ hm(3hm + 2h)]
au (hm + h)(hmm + hm)(hmm + hm + h)

2h[hmm(hmm + 3hm)+ 3h2- h2]

u (hm + h)(hmm + hm)(hmm + hm + h)

S_- 3h 2 (hmm + 2hm + h)
(hm + h)(hmm + hm)(hmm + hm + h)

(B-22)

a--= hhm
(hmm + hm)(hmm + hm + h)

b - 2h(hm - h)
(hmm + hm)(hmm + hm + h)

c-- = 3h 2

(hmm + hm)(hmm + hm + h)
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where
h = hiu

hm = h"

hmm = hl 2

For equal sized nodes, h = hm = hmm, the expansion coefficients are:

au, =- a----

b = -1, b = 0,

cu = -1, e-- = .

Substituting Equation (B-21) into Equation (B-1) and solving the resulting

equations yields the first and second transverse-leakage moments for the RHS-biased

transverse-leakage approximation

Sign = ji-[(b-1 + cn l)-ii 1m - (b-1 + c 1 + b-- + cn)5}' + (b-- + c j)Kg-2] (B-23)

g"2= e60 SuI igm - (cl + cI)5|'" + c gu (B-24)

B.4 FLAT TRANSVERSE-LEAKAGE APPROXIMATION

In the Flat Transverse-Leakage Approximation, the shape of the u-directed

transverse-leakage is assumed to be spatially uniform (flat) and equal to the node-

averaged u-directed transverse-leakage,

Sg(u) = (B-25)

Since the u-directed transverse-leakage is uniform, both the first and second transverse-

leakage moments are equal to zero,

Si"= 0 (B-26)

S"nn = (B-27)
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APPENDIX C

DESCRIPTION OF BENCHMARK PROBLEMS
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C. 1 TWO-GROUP HOMOGENEOUS BARE CORE BENCHMARK PROBLEM

Geometry:

y (cm)

60

x (cm)
60

*g = 0 boundary conditions on all external boundaries.

Material Properties:

Group, g Dg (cm) lag (cm- 1) V2fg (cm-1) Igi (cm- 1) Ig2 (cm- 1)

1 1.4176 0.00855 0.00536 0.5 0.0

2 0.37336 0.06630 0.10433 0.01742 1.25

v = 2.43

X1 = 1-0, X2= 0.0
Bz2= 0.0 cm- 2

The flux is normalized such that,

VCref

G

Xvlrg *g dV = 1.

VCore

The reference reactor eigenvalue, Xref = 0.946900410386976
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y (cm)

13.5t

C.2 SEVEN-GROUP HOMOGENEOUS BARE CORE BENCHMARK PROBLEM

Geometry:

*g = 0

ax= %%I =

0.01 x (cm)

0.0 67.5

0Y

Material Properties:

W = 0.0 cm- 2

The flux is normalized such that,

G1f
Vcore

VCore

vIfg gg dV = 1 .

The reference reactor eigenvalue, Xef = 0.7745451357

148

1 1.62 02. 0. 0g5 0.0 0.0

1 1.6 0.01 0.02 0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 1.4 0.02 0.01 0.09 0.015 0.0 0.0 0.0 0.0 0.0 0.0

3 1.2 0.03 0.02 0.01 0.01 0.02 0.0 0.0 0.0 0.0 0.0

4 1.0 0.10 0.04 0.0 0.01 0.02 0.02 0.0 0.0 0.0 0.0

5 0.8 0.05 0.10 0.0 0.005 0.01 0.02 0.03 0.0 0.02 0.02

6 0.6 0.07 0.12 0.0 0.0 0.01 0.01 0.02 0.05 0.0 0.06

7 0.4 0.09 0.15 0.0 0.0 0.0 0.01 0.01 0.03 0.08 0.0



C.3 IAEA PWR BENCHMARK PROBLEM

Geometry:

Quadrant of Reactor Horizontal Cross Section, Axial Midplane

y (cm)_

170.

150.

130.

110.

0. 10. 70. 90. 130. 150. 170.

149

x (cm)



Vertical Reactor Cross Section, y = 0

380.

360.

280.

=_/a~g - 0
ax

20.

0.

z (cm)
a gjin - 0

5 4 5 4 5 4

3*

1

4 i-

0. 10. 70. 90. 130. 150. 170.

*Position of partially-inserted rod: 30.0 < x < 50.0, 30.0 < y < 50.0

150

,jg = 0

, x (cm)



Material Properties:

Region Material Group Dg lag VIfg 121

_ _ _(cm) (cm1) (cm-1) (cm-1)

1 Fuel 1 1 1.5 0.01 0.0 0.02

2 0.4 0.08 0.135

2 Fuel 2 1 1.5 0.01 0.0 0.02

2 0.4 0.085 0.135

3 Fuel 2 + Rod 1 1.5 0.01 0.0 0.02

2 0.4 0.13 0.135

4 Reflector 1 2.0 0.0 0.0 0.04

2 0.3 0.01 0.0

5 Reflector + Rod 1 2.0 0.0 0.0 0.04

2 0.3 0.055 0.0

Axial buckling of 0.8 x 10-4 cm-2 for all regions in the 2D problem.

X1 = 1-0, X2= 0-0

Normalization:

The flux is normalized such that

VCore

VCore

vlfg bg dV 1 .
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C.4 LRA BWR STATIC BENCHMARK PROBLEM

Geometry:

Quadrant of Reactor Horizontal Cross Section

y (cm)

165.

135.

120.

105. 3 4

2 2

75.

/ 1 3
= 0

a4r 0
ay

152

*g = 0

x (cm)



Vertical Cross Section, y = 0

-u U U

A
360.

330.

_/

=0
ax

30.

0.

105. 135.

Pg =0

I-b x (cm)
165.

z (cm)
6 *g = 0

-~ I

0. 15. /A
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Material Properties:

Region Material Group Dg Xag VIfg 121
_ (cm) (cm-1) (cm-1) (cm-1)

1 Fuel 1 1 1.255 0.008252 0.004620 0.02533
(controlled)

2 0.211 0.1003 0.1091

2 Fuel 1 1 1.268 0.007181 0.004609 0.02767
(uncontrolled)

2 0.1902 0.07047 0.08675

3 Fuel 2 1 1.259 0.008002 0.004663 0.02617
(controlled)

2 0.2091 0.08344 0.1021

4 Fuel 2 1 1.259 0.008002 0.004663 0.02617
(uncontrolled)

2 0.2091 0.0073324 0.1021

5 Reflector 1 1.257 0.0006034 0.0 0.04754

2 0.1592 0.01911 0.0

Axial buckling of 10-4 cm-2 for all regions in the 2D problem.

X1 = 1.0, X2= 0.0
v = 2.43

Normalization:

The Flux is normalized to produce a core-averaged power density of 1.0 Wm-3,

E X 106 cm3  G
'= Vrm3 1 Irg gdV = 1.0 Wm-3,

Core g=1

VCore

where

E = 3.204 x 10-11 J/fission.
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C.5 LMFBR STATIC BENCHMARK PROBLEM

Geometry:

:l Inner Core Region [M1]

Outer Core Region [M2]

D Radial Blanket Region [M3]

Em Axial Blanket Region [M4]

Absorber Region [M5]

Follower Region [M6]

Horizontal cross section of the lower core (rods out):

5.4 cm 8.1 cm

105.3 I I I

14-71 ~ziiif~~F~f
-~ I,

0
ax

T L
0

00
ay

8.1 cm
5.4 cm

jn= 0

105.3
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Horizontal cross section of the upper core (rods in):

105.3

-= 0
ax

0

Zi.iIII-I-I-I I I

0

=y

Jin= 0

Ji"= 0

105.3

156

I 1 1 I



Axial cross section at y = 0:

Jn= 0
175

135

87.5

= 0
ax

40

0
jgi" = 0

157

J= 0

105.3



Material Properties:
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Material Properties: (continued)

Group
Material 9 I gi Ig2 Ig3 Ig4

1 1 0.0 0.0 0.0 0.0

2 2.3597x10-2  0.0 0.0 0.0

3 4.0791x10- 6  1.6153x10-3  0.0 0.0

4 4.4493x10-8  4.2309x10-8  4.6838x 10-3 0.0

2 1 0.0 0.0 0.0 0.0

2 2.3262x10-2  0.0 0.0 0.0

3 4.6451x10-6  1.5718x10-3  0.0 0.0

4 4.9968x10- 8  4.0724x 10-8 4.3414x 10-3 0.0

3 1 0.0 0.0 0.0 0.0

2 3.2071x10- 2  0.0 0.0 0.0

3 3.8880x10-6  2.7776x 10-3 0.0 0.0

4 4.5039x10-8  9.0018x 10-8  5.8971x 10-3  0.0

4 1 0.0 0.0 0.0 0.0

2 2.6322x10-2  0.0 0.0 0.0

3 2.8907x10-6  2.2889x 10-3  0.0 0.0

4 3.3248x10-8  6.2133x 10-8 5.3536x 10-3 0.0

5 1 0.0 0.0 0.0 0.0

2 2.2946x10-2  0.0 0.0 0.0

3 1.0320x10-6  3.7687x10-3 0.0 0.0

4 1.0489x10-8  7.0361x10- 12  8.6815x10-3  0.0

6 1 0.0 0.0 0.0 0.0

2 1.2942x10-2  0.0 0.0 0.0

3 6.8780x10-7  1.2871x10- 3  0.0 0.0

4 6.9903x10-9  4.3633x10- 12  3.4533x 10-3 0.0
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Note:

Erg = 1tg - Egg

Zero axial buckling for all material regions in the 2D problems.

Normalization:

The flux is normalized such that

VCoref Vzfg
g=1

$g dV = 1 .

VCore

In this expression the core is considered to be all fuel bearing material in the reactor.
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C.6 CISE BWR BENCHMARK PROBLEM

Geometry:

Quadrant of the 2D Reactor

y (cm)

135.0

4g - 0
ax

0.0

Jin= 0

B A B B A A W W

A+ B A B+ A+ A A W

B+ A B+ A+ B+ B A W W

A B+ A+ B A B A A W

B A+ B+ A B A B A W

A
- I & I - I - I I

a = - 0
ay

Axial Buckling of 0.0 cm 2 for all materials.
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X (Cm)

135.0

B+



Fuel Assembly Description by Zone:

12.5

7t
412.5 - - - - -

Material to Zone Assignments by Assembly Type:

162

4--

1.0

1.0 4 -- * 1.0

13.0

13.0 III

0.25

1.0

Assembly Type

Zone A A+ B B+ W

I 3 3 4 4

u 2 1 2 1

III 2 2 2 2 2



Material Properites of Fuel Assembly Zones:

X1 = 1.0

X2 = 0-0

v = 2.5

163

Group Dg lag Vxfg l2g
Material 9 (cm) (cm- 1) (cm-1) (cm-1)

1 1 3.00 0.08 0.0 0.0

(Control Blade) 2 0.15 1.00 0.0

2 1 2.00 0.0 0.0 0.04

(Water) 2 0.30 0.01 0.0

3 1 1.80 0.008 0.006 0.012

(Fresh Fuel) 2 0.55 0.085 0.110

4 1 1.80 0.008 0.005 0.012

(Depleted Fuel) 2 0.55 0.085 0.100

Material Properites of Fuel Assembly Zones:



Flux-Weighted Constants for the CISE BWR Problem:

X1 = 1.0

X2 = 0.0

v = 2.5

164

Group Dg Zag Vifg 22g

Assembly Type 9 (cm) (cm-1) (cm-1) (cm-1)

A 1 1.8440 0.00607 0.004556 0.01874

(Fresh Fuel) 2 0.4284 0.05946 0.07254 0.0

A+ 1 1.8580 0.00804 0.004565 0.01772
(Fresh Fuel,
controlled) 2 0.4283 0.07416 0.07558 0.0

B 1 1.8440 0.00608 0.003796 0.01874

(Depleted Fuel) 2 0.4284 0.05946 0.06595 0.0

B+ 1 1.8580 0.00804 0.003804 0.01772
(Depleted Fuel,

controlled) 2 0.4283 0.07415 0.06870 0.0

W 1 2.0000 0.0 0.0 0.04

(Water) 2 0.3000 0.01 0.0 0.0



Assembly Discontinuity Factors for the CISE BWR Problem:

Assembly Surface Orientation:

165

Group f+f

Assembly Type GL ____ ___________

A 1 0.9623 0.9623 0.9623 0.9623

2 1.4510 1.4510 1.4510 1.4510

A+ 1 0.8955 1.0150 0.8955 1.0150

2 0.6492 1.8880 0.6492 1.8880

B 1 0.9625 0.9625 0.9625 0.9625

2 1.4510 1.4510 1.4510 1.4510

B+ 1 0.8949 1.0160 0.8949 1.0160

2 0.6488 1.8890 0.6488 1.8890

w 1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0



p.-

C.7 HAFAS BWR BENCHMARK PROBLEM

Geometry:

Quadrant of the 2D Reactor

y (cm)

153.1

ax

0.0

Jgn= 0

w w w w w w w w w w

A B A B A B A W A W

B A B A B A B W W W

A B+ A+ B A B A B A W

B A+ B+ A B A B A B W

A+ B A B+ A+ B A B A W

B+ A B A+ B+ A B A B W

A70 B40 A40 B A B+ A+ B A W

B70 A40 B40 A B A+ B+ A B W

A70 B70 A70
________ a ________ a ________ a

a=g = 0
ay

Axial Buckling of 0.0 cm-2 for all materials.
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jin- 0

+0 x (cm)

153.1



Fuel Assembly Description by Zone:

0.4 0.97 0.9

Material to Zone Assignments by Assembly Type:
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0.9

3.26

3.26

3.26

3.26

40.970.4

Assembly Type

Zone A A40 A70 A+ B B40 B70 B+ W

I 1 5 9 1 2 6 10 2 15

II 2 6 10 2 3 7 11 3 15

III 3 7 11 3 4 8 12 4 15

IV 13 13 13 14 13 13 13 14 15

V 13 13 13 13 13 13 13 13 15



Material Properites of Fuel Assembly Zones:

Group Dg Xag V2fg 12g
Material g (cm) (cml) (cm- 1) (cm1)

1

(Fuel a, void = 0%)

2

(Fuel b, void = 0%)

3

(Fuel c, void = 0%)

4

(Fuel d, void = 0%)

5

(Fuel a, void = 40%)

6

(Fuel b, void = 40%)

7

(Fuel c, void = 40%)

8

(Fuel d, void = 40%)

1

1.400

0.375

1.400

0.375

1.400

0.375

1.400

0.375

1.680

0.530

1.680

0.530

1.680

0.530

1.680

0.530

0.009

0.080

0.009

0.070

0.009

0.060

0.009

0.050

0.008

0.077

0.0085

0.067

0.009

0.057

0.009

0.047

0.0065

0.1220

0.0057

0.1000

0.0051

0.0800

0.0051

0.0700

0.0063

0.1180

0.0055

0.0960

0.0049

0.0780

0.0049

0.0680

0.016 1

0.017

0.018

0.018

0.010

0.0105

0.0110

0.0110
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Material Properites of Fuel Assembly Zones: (continued)

Group Dg Xag VIfg 12g

Material g (cm) (cm-1) (cm-I) (cnrl)

9 1 2.000 0.0078 0.0061 0.0052

(Fuel a, void = 70%) 2 0.800 0.073 0.1140

10 1 2.000 0.0082 0.0053 0.0053

(Fuel b, void = 70%) 2 0.800 0.0630 0.0920

11 1 2.000 0.0086 0.0047 0.0054

(Fuel c, void = 70%) 2 0.800 0.0530 0.0720

12 1 2.000 0.0086 0.0047 0.0054

(Fuel d, void = 70%) 2 0.800 0.043 0.0620

13 1 1.530 0.0005 0.0 0.031

(Fuel can and water) 2 0.295 0.0090 0.0

14 1 1.110 0.08375 0.0 0.00375

(Control blade) 2 0.185 0.950 0.0

15 1 2.000 0.0 0.0 0.04

(Water) 2 0.300 0.010 0.0

X1 = 1.0

v = 2.5
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Flux-Weighted Constants for the HAFAS BWR Problem:

Group 1 g J ag } E Vfg 1 22g
Assembly Type 9 (cm) (cm-i) J (cm-i) J (cm-i)

A
(Fresh fuel
0% void)

A40
(Fresh fuel,
40% void)

A70
(Fresh fuel,
70% void)

A+
(Fresh fuel,
controlled)

B
(Depleted fuel,

0% void)

B40
(Depleted fuel,

40% void)

B70
(Depleted fuel,

70% void)

B+
(Depleted fuel,

controlled)

1.4320

0.3414

1.6380

0.4097

1.8500

0.4890

1.4160

0.3441

1.4320

0.3424

1.6380

0.4128

1.8500

0.4955

1.4160

0.3451

0.00678

0.04713

0.00639

0.04486

0.00616

0.04221

0.00927

0.06099

0.00678

0.04144

0.00667

0.0392

0.00638

0.03655

0.00926

0.05405

0.004255

0.06249

0.004099

0.05972

0.003946

0.05661

0.004304

0.06894

0.003879

0.05255

0.003725

0.05052

0.003573

0.04677

0.003924

0.05773

0.02065

0.01588

0.01208

0.01974

0.02121

0.01617

0.01214

0.02031
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Flux-Weighted Constants for the HAFAS BWR Problem: (continued)

Group Dg Eag V:fg

Assembly Type g (cm) (cm-1) (cm-1)

W 1 2.0 0.0 0.0

(Water) 2 0.3 0.01 0.0

xI = 1.0

X2 = 0.0

v = 2.5
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Assembly Discontinuity Factors for the HAFAS BWR Problem:

GroupIf1
Assembly Type G, ____ fgx+ fgy fgy+

A

A40

A70

B

B40

B70

0.9311

1.4740

0.9368

1.5330

0.9406

1.5830

0.8169

0.6264

0.9313

1.4070

0.9372

1.4610

0.9407

1.5060

0.8151

0.5902

1.0

1.0

0.9677

1.2470

0.9709

1.2550

0.9739

1.2560

1.0570

1.7320

0.9694

1.2130

0.9724

1.2200

0.9759

1.2210

1.0610

1.6830

1.0

1.0

0.9311

1.4740

0.9368

1.5330

0.9406

1.5830

0.8169

0.6264

0.9313

1.4070

0.9372

1.4610

0.9407

1.5060

0.8151

0.5902

1.0

1.0
________ I A.

0.9677

1.2470

0.9709

1.2550

0.9739

1.2560

1.0570

1.7320

0.9694

1.2130

0.9724

1.2200

0.9759

1.2210

1.0610

1.6830

1.0

1.0
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Assembly Surface Orientation:
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C.8 TWO-GROUP SOURCE BENCHMARK PROBLEM

Geometry:

y

42.0

48= 
0

0.0

0.0

*g = 0

2 3

1 2

4g= 0

ay

Material Properties:

174

42.0

#g = 0

-10

Material Group Dg Xag V~fg E21

g (cm) (cm-1) (cm- 1) (cm- 1)

1 1 1.4719 0.017864 0.0060282 0.018824

2 0.39021 0.21535 0.22912

2 1 1.5150 0.009325 0.0046245 0.021126

2 0.3957 0.14157 0.16483

3 1 1.5150 0.009325 0.0046245 0.021126

2 0.3957 0.14157 0.16483



Material Properties: (continued)

X1 = 1.0

X2 = 0.0

v = 2.5

Axial Buckling of 0.0 cm 2 for all materials.

Energy Conversion Factor: 3.204 x 10-11 i/fission
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APPENDIX D

CORE MAPS
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Reference ----------
CMFD Error (%) -------
Quadratic Error (%)-
Cubic Error (%) --------
Quartic Error (%) -------

Figure D-1. Seven-Group Homogeneous Bare Core Problem: Error in Normalized
Nodal Power Density.
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Max
2.3443

0.02
0.03
0.02
0.02

0.6281 0.6091 0.5715 0.5165 0.4459 0.3617 0.2665 0.1632 0.0550
0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01
0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01

1.7161 1.6640 1.5613 1.4111 1.2181 0.9881 0.7280 0.4459 0.1501

-0.01 -0.01 -0.01 0.00 0.01 0.01 0.01 0.00 0.01
-0.01 -0.02 -0.01 0.00 0.01 0.01 0.01 0.00 0.01
0.00 0.00 0.00 0.01 0.01 0.00 0.00 -0.02 0.00
0.00 0.00 0.00 0.01 0.01 0.00 0.00 -0.02 -0.01

2.3443 2.2730 2.1327 1.9276 1.6640 1.3497 0.9945 0.6091 0.2051
-0.02 -0.01 -0.01 0.00 0.00 0.02 0.01 0.00 0.00
-0.03 -0.01 -0.01 0.00 0.00 0.02 0.01 0.01 0.00
0.00 0.01 0.01 0.02 0.01 0.01 0.00 -0.02 -0.01
0.00 0.01 0.01 0.02 0.01 0.01 0.00 -0.02 -0.01



Reference -------------------
Error (%), 20x2O cm -----------
Error(%), 1Ox10 cm -----------
Error(%),5x5cm-------------

0.7549
-0.85
-0.05
0.01

0.9343
-0.50

-0.01
0.01

0.9351
0.25
0.02

0.00

0.7358
-0.93
-0.03
0.00

0.9504

-0.63

-0.02
0.00

1.0361
0.00
0.01
0.01

0.6921
-1.13
0.01
0.00

0.9752
-086

-0.03
0.00

1.0705
-0.14

-0-01
0.00

0.8461

-1.07
0.00

-0.01
0.9064

-0.44

0.02

0.00

0.5972
-1.11
0.00
-0.01

0.6856
-0.51

0.03
-0.01

0.5849

-1.51
0.02

-0.01
0.6100 1.0697 1.1792 0.9670 0.4706 0.6856 0.5972

0.10 0.66 054 0.44 -0.45 -0.51 -1.11
-0.05 0.02 0.01 0.02 -0.04 0.03 0.00
0.00 0.00 0.01 0.00 0.00 -0.01 -0.01

1.2107
1.01
0.02
0.00

1.3149
0.98
0.02
0.00

1.3451

1.03
0.00
0.00

1.1929
0.71
0.01
0.00

0.9670
0.44

0.02
0.00

0 9064

-0.44

0.02
0.00

0.8461

-1.07

0.00
-0.01

1.4537 1.4799 1.4694 1.3451 1.1792 1.0705 0.9752 0.6921
1.10 1.31 1.19 1.03 0.54 -0.14 -0.86 -1.13
0.00 -0.01 -0.02 0.00 0.01 -0.01 -0.03 0.01
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

1.3097 1.4351 1.4799 1.3149 1.0697 1.0361 0.9504 0.7358
1.19 1.26 1.31 0.98 0.66 0.00 -0.63 -0.93
0.02 0.01 -0.01 0.02 0.02 0.01 -0.02 -0.03

-0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.7456 1.3097 1.4537 1.2107 0.6100 0.9351 0.9343 0.7549

0.77 1.19 1.10 1.01 0.10 0.25 -0.50 -0.85
-0.07 0.02 0.00 0.02 -0.05 002 -0.01 -0.05
0.00 -0.01 0.00 0.00 0.00 0(00 0.01 0.01

Figure D-2. 2D IAEA PWR Benchmark Problem: Error in Normalized Assembly
Power Density.
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~rn

Average

1.0000
0.77
0.02
0.00



Average

Reference ------------------- - 1.0000
Relative Error (%), 20x20 cm ----- --- 0.74

Relative Error (%), 1Ox 10 cm ----- --- 0.02

Relative Error (%), 5x5 cm ------- --- 0.00

0.7549

-1.30
-0.07

0.01
0.9343

-0.58
-0.01
0.01

0.9351
0.23
0.02
0.00

0.7358
-1.37
-0.04

0.00
0.9504

-0.65

-0.02
0.00

1.0361
-0.02
0.01
0.01

0.6921
-1.39
0.01
000

09752
8078

-003
0 00

1 0705

-0.12
-0.01
0.00

0.9461

-1.29

0.00
-0.01

0.9064
-037
0.02

0.00

0.5972
-1.57
0.00
-0.02

0.6856

-0.33
0.04

-0.01

0.5849

-2.01
0.03

-0.02

0.6100 1.0697 1 1792 0.9670 0.4706 0.6856 0.5972
0.09 0.56 0.43 0.48 -0.80 -0.33 -1.57

-0.08 0.02 0.01 0.02 -0.08 0.04 0.00
0.00 0.00 0.01 0.00 0.00 -001 -0.02

1.2107
0.74

0.02

0.00

1.3149

0.66
0.02

0.00

1.3451
0.70
0.00
000

1.1929
0.57
0.01
0.00

0.9670
0.48

0.02
0.00

0,9064
-0.37

0.02
0.00

0.8461

-1.29
0.00

-0.01
1.4537 1.4799 1 4694 1.3451 1.1792 1.0705 0.9752 0.6921

0.64 0.78 0.72 0.70 0.43 -0.12 -0.78 -1.39
0.00 -0.01 -0.01 0.00 0.01 -0.01 -0.03 0.01

0.00 0.00 0.00 0.00 0.01 0 00 0.00 0.00
1.3097 1.4351 1.4799 1.3149 1.0697 1.0361 0.9504 0.7358

0.79 0.76 0.78 0.66 0.56 -0-02 -0.65 -1.37
0.02 0.01 -0.01 0.02 0.02 0 01 -0.02 -0.04

-0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.7456 1.3097 1.4537 1.2107 0.6100 0.9351 0.9343 0.7549

0.90 0.79 064 0.74 0.09 0.23 -0.58 -1.30
-0.09 0.02 0.00 0.02 -0.08 002 -0.01 -0.07
0.00 -0.01 0.00 0.00 000 0(X) 0.01 0.01

Figure D-3. 2D IAEA PWR Benchmark Problem: Relative Error in Normalized
Assembly Power Density.
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Average
Reference ------------------ 1.0000
Error (%), 15x15 cm ---------- 0.39
Error (%), 7.5x7.5 cm --------- 0.04
Error (%), 5x5 cm ----------- 0.02

0.9242
-0.84
-0.11
0.00

1.4810
-0.36
-0.06
0.02

0.8672
-0.74
-0.10
-0.01

1.2810
-0.19
-0.04
0.01

0.8268
-0.75
-0.09
-0.01

1.1730
-0.42
-0.05
-0.02

0.8530
-0.72
-0.09
-0.03

1.2210
-0.31
0.01
0.01

0.9325
-0.65
-0.07
-0.03

1.4220
0.00
-0.03
-0.07

0.9716
-0.63
-0.02
-0.03

1.6790
-0.12
0.08
-0.01

0.8465
-0.81
-0.01
-0.06

1.6210
-0.27
0.07
-0.03

1.3280
-0.37
0.19

-0.04
1.6610 1.1510 0.9667 1.0220 1.3390 2.0510 2.1610 1.6210 0.8465

0.91 -0.24 -0.15 -0.11 -0.15 1.17 1.09 -0.27 -0.81
-0.01 -0.09 -0.02 0.02 0.01 0.13 0.14 0.07 -0.01
0.00 -0.01 0.01 0.03 0.01 -0.04 -0.05 -0.03 -0.06

1.3860 0.9398 0.7826 0.8432 1.1520 1.8520 2.0510 1.6790 0.9716
0.90 0.04 0.06 0.05 0.01 1.18 1.17 -0.12 -0.63

-0.04 -0.03 0.00 0.02 0.01 0.14 0.13 0.08 -0.02
-0.05 0.01 0.01 0.01 -0.01 -0.02 -0.04 -0.01 -0.03

0.7902 0.6705 0.6181 0.6782 0.8643 1.1520 1.3390 1.4220 0.9325
0.10 0.31 0.21 0.21 0.36 0.01 -0.15 0.00 -0.65

-0.02 -0.02 0.00 0.01 0.01 0.01 0.01 -0.03 -0.07
0.02 -0.01 0.01 0.00 -0.01 -0.01 0.01 -0.07 -0.03

0.5118 0.4904 0.4921 0.5524 0.6782 0.8432 1.0220 1.2210 0.8530
0.16 0.21 0.23 0.24 0.21 0.05 -0.11 -0.31 -0.72
0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.01 -0.09
0.03 0.01 0.00 0.00 0.00 0.01 0.03 0.01 -0.03

0.4130 0.4067 0.4240 0.4921 0.6181 0.7826 0.9667 1.1730 0.8268
0.23 0.23 0.23 0.23 0.21 0.06 -0.15 -0.42 -0.75
0.02 0.01 0.00 0.00 0.00 0.00 -0.02 -0.05 -0.09
0.02 0.01 0.01 0.00 0.01 0.01 0.01 -0.02 -0.01

0.4402 0.3995 0.4067 0.4904 0.6705 0.9398 1.1510 1.2810 0.8672
0.29 0.32 0.23 0.21 0.31 0.04 -0.24 -0.19 -0.74
0.02 0.01 0.01 0.00 -0.02 -0.03 -0.09 -0.04 -0.10
0.03 0.01 0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01

0.6122 0.4402 0.4130 0.5118 0.7902 1.3860 1.6610 1.4810 0.9242
0.87 0.29 0.23 0.16 0.10 0.90 0.91 -0.36 -0.84
0.04 0.02 0.02 0.01 -0.02 -0.04 -0.01 -0.06 -0.11
0.02 0.03 0.02 0.03 0.02 -0.05 0.00 0.02 0.00

Figure D-4. 2D LRA BWR Static Benchmark Problem: Error in Normalized
Assembly Power Density.
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Average
Reference ------------------ 1.0000
Relative Error (%), 15x15 cm ---- 0.42
Relative Error (%), 7.5x7.5 cm --- 0.04
Relative Error (%), 5x5 cm ----- 0.02

0.9242
-0.91
-0.12
0.00

1.4810
-0.24
-0.04
0.01

0.8672
-0.85
-0.12
-0.01

1.2810
-0.15
-0.03
0.01

0.8268
-0.91
-0.11
-0.01

1.1730
-0.36
-0.04
-0.02

0.8530
-0.84
-0.11
-0.04

1.2210
-0.25
0.01
0.01

0.9325
-0.70
-0.08
-0.03

1.4220
0.00

-0.02
-0.05

0.9716
-0.65
-0.02
-0.03

1.6790
-0.07
0.05

-0.01

0.8465
-0.96
-0.01
-0.07

1.6210
-0.17
0.04

-0.02

1.3280
-0.28
0.14

-0.03
1.6610 1.1510 0.9667 1.0220 1.3390 2.0510 2.1610 1.6210 0.8465

0.55 -0.21 -0.16 -0.11 -0.11 0.57 0.50 -0.17 -0.96
-0.01 -0.08 -0.02 0.02 0.01 0.06 0.06 0.04 -0.01
0.00 -0.01 0.01 0.03 0.01 -0.02 -0.02 -0.02 -0.07

1.3860 0.9398 0.7826 0.8432 1.1520 1.8520 2.0510 1.6790 0.9716
0.65 0.04 0.08 0.06 0.01 0.64 0.57 -0.07 -0.65

-0.03 -0.03 0.00 0.02 0.01 0.08 0.06 0.05 -0.02
-0.04. 0.01 0.01 0.01 -0.01 -0.01_ -0.02 -0.01 -0.03

0.7902 0.6705 0.6181 0.6782 0.8643 1.1520 1.3390 1.4220 0.9325
0.13 0.46 0.34 0.31 0.42 0.01 -0.11 0.00 -0.70
-0.03 -0.03 0.00 0.01 0.01 0.01 0.01 -0.02 -0.08
0.03. -0.01 0.02 0.00 -0.01 -0.01 0.01 -0.05 -0.03

0.5118 0.4904 0.4921 0.5524 0.6782 0.8432 1.0220 1.2210 0.8530
0.31 0.43 0.47 0.43 0.31 0.06 -0.11 -0.25 -0.84
0.02 0.00 0.00 0.02 0.01 0.02 0.02 0.01 -0.11
0.06 0.02 0.00 0.00 0.00 0.01 0.03 0.01 -0.04

0.4130 0.4067 0.4240 0.4921 0.6181 0.7826 0.9667 1.1730 0.8268
0.56 0.57 0.54 0.47 0.34 0.08 -0.16 -0.36 -0.91
0.05 0.02 0.00 0.00 0.00 0.00 -0.02 -0.04 -0.11
0.05 0.02 0.02 0.00 0.02 0.01_ 0.01 -0.02 -0.01

0.4402 0.3995 0.4067 0.4904 0.6705 0.9398 1.1510 1.2810 0.8672
0.66 0.80 0.57 0.43 0.46 0.04 -0.21 -0.15 -0.85
0.05 0.03 0.02 0.00 -0.03 -0.03 -0.08 -0.03 -0.12
0.07 0.03 0.02 0.02 -0.01 0.01 -0.01 0.01 -0.01

0.6122 0.4402 0.4130 0.5118 0.7902 1.3860 1.6610 1.4810 0.9242
1.41 0.66 0.56 0.31 0.13 0.65 0.55 -0.24 -0.91
0.07 0.05 0.05 0.02 -0.03 -0.03 -0.01 -0.04 -0.12
0.03 0.07 0.05 0.06 0.03 -0.04 0.00 0.01 0.00

Figure D-5. 2D LRA BWR Static Benchmark Problem: Relative Error in Normalized
Assembly Power Density.
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Reference -----------------
Error (%) ------------------
Relative Error (%), -----------

0.9722
-0.37
-0.38

1.3359
0.13
0.10

1.2581
0.80
0.64

0.8753
-0.49
-0.56

1.1008
-0.23
-0.21

1.4165
0.27
0.19

0.7515
-0.93
-1.23

1.0642
-0.42
-0.39

1.1197
-0.04
-0.04

0.8655
-0.99
-1.14

0.8841
-0.11
-0.13

0.6270
-1.42
-2.26

0.7850
-0.53
-0.67

0.6493
-1.79
-2.76

1.0294 1.2195 1.2814 0.7304 0.6846 0.7850 0.6270
-2.05 1.35 1.45 -1.77 -0.25 -0.53 -1.42
-1.99 1.111 1.13 -2.43 -0.36 -0.67 -2.26

0.8404
-0.32
-0.39

1.2566
2.49
1.98

1.0824
1.45
1.34

0.8820
-2.59
-2.94

0.7304
-1.77
-2.43

0.8841
-0.11
-0.13

0.8655
-0.99
-1.14

1.2094 0.8101 0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
3.17 -0.81 -1.30 1.45 1.45 -0.04 -0.42 -0.93
2.62 -1.00 -1.43 1.34 1.13 -0.04 -0.39 -1.23

1.0362 0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
2.61 -0.46 -0.81 2.49 1.35 0.27 -0.23 -0.49
2.52 -0.52 -1.00 1.98 1.11 0.19 -0.21 -0.56

0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722
-0.10 2.61 3.17 -0.32 -2.05 0.80 0.13 -0.37
-0.11 2.52 2.62 -0.39 -1.99 0.64 0.10 -0.38

Figure D-6. CISE BWR Benchmark Problem: Error in Normalized Assembly Power
Density.
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1.0000
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Reference ------------
Error (%), ------------
Relative Error (%) -------

Average
------- 1.0000

-------- 1.20
-- - -- 1.29

0.5503 0.4973 0.5737 0.5632 0.6332 0.5091 0.3936
0.42 0.67 0.49 0.77 0.69 0.70 0.61
0.77 1.36 0.86 1.37 1.10 1.37 1.55

0.7833
0.32
0.41

0.80%
0.37
0.46

0.7761
0.53
0.68

0.9988
0.10
0.10

0.9697
0.86
0.89

0.9887
0.50
0.50

0.6886
0.87
1.27

1.0152 0.6215 0.7339 1.0813 1.3550 1.1996 1.0885 0.6886 0.3936
1.13 -0.32 -1.42 1.77 1.33 1.64 1.35 0.87 0.61
1.12 -0.51 -1.93 1.64 0.98 1.37 1.24 1.27 1.55

0.9993 0.8282 0.7878 1.2401 1.2596 1.4634 1.19% 0.9887 0.5091
1.26 -3.42 -3.64 0.98 1.79 0.82 1.64 0.50 0.70
1.26 -4.13 -4.62 0.79 1.42 0.56 1.37 0.50 1.37

0.9239 1.2374 1.3736 0.8669 0.9642 1.25% 1.3550 0.9697 0.6332
-0.74 1.97 1.00 -1.81 -2.41 1.79 1.33 0.86 0.69
-0.80 1.59 0.73 -2.09 -2.49 1.42 0.28 0.89 1.10

1.0752 1.7175 1.5325 1.1174 0.8669 1.2401 1.0813 0.9988 0.5632
-4.66 0.30 0.91 -5.84 -1.81 0.98 1.77 0.10 0.77
-4.34 0.17 0.59 -5.23 -2.09 0.79 1.64 0.10 1.37

1.3517 1.5115 1.6583 1.5325 1.3736 0.7878 0.7339 0.7761 0.5737
-1.83 -0.07 -1.23 0.91 1.00 -3.64 -1.42 0.53 0.49
-1.36 -0.05 -0.74 0.59 0.73 -4.62 -1.93 0.68 0.86

1.2997 1.7191 1.5115 1.7175 1.2374 0.8282 0.6215 0.8096 0.4973
0.03 -0.38 -0.07 0.30 1.97 -3.42 -0.32 0.37 0.67
0.02 -0.22 -0.05 0.17 1.59 -4.13 -0.51 0.46 1.36

1.4962 1.2997 1.3517 1.0752 0.9239 0.9993 1.0152 0.7833 0.5503
-0.54 0.03 -1.83 -4.66 -0.74 1.26 1.13 0.32 0.42
-0.36 0.02 -1.36 4.34 -0.80 1.26 1.12 0.41 0.77

Figure D-7. HAFAS BWR Benchmark Problem: Error in Normalized Assembly
Power Density.
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Reference, CITATION (2 1*21) -------- -1.5351E+08
Relative Error, QUAGMIRE (I*1) ------ 1.24%
Relative Error, QUAGMIRE (2*2) ------ 0.03%
Relative Error, QUANDRY (1*1) ------- 0.23%

Group I Flux Group 2 Flux

Figure D-8. Two-Group Source Benchmark Problem:
Flux.

Error in Assembly-Averaged
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1.1453E+09 5.9976E+08
1.62% -2.15%

-0.10% 0.29%
0.17% -0.52%

1.6942E+09 1. 1453E+09

1.81% 1.62%
-0.01% -0.10%
0.00% 0.17%

1.6328E+08 8.7252E+07
1.84% -2.38%

-0.17% 0.45%
0.04% -0.57%

1.5351E+08 1.6328E+08
1.24% 1.84%

0.03% -0.17%
0.23% 0.04%



Average

Reference ---------------- 1.000
Error (%), 20x20 cm -------- 0.27
Error (%), 10x cm -------- 0.09

0.773
-0.08
-0.15
0.958
-0.11
-0.06

0.954

-0.20
-0.19

0.753
0.15

-0.08
0.974

-0.07
-0.04

1.055
-0.24

-0.08

0.707
0.39
0.11

0.997

0.16
0.15

1.088

0.00
0.07

0.864

0.49
0.21

0.923
0.15

0.00

0.608

0.72
0.24

0.699
0.58
0.10

0.597
0.20

0.17

0.610 1.072 1.181 0.972 0.475 0.699 0.608
0.07 -0.14 -0.34 0.04 -0.13 0.58 0.72
0.13 -0.08 0.00 0.00 0.17 0.10 0.24

1.195
-0.49
-0.12

1.292
-0.43
-0.09

1.311
0.00
0.07

1.179
-0.14

0.00

0.972
0.04

0.00

0.923
0.15
0.00

0.864
0.49

0.21

1.423 1.432 1.369 1.311 1.181 1.088 0.997 0.707
-0.68 -0.32 -0.27 0.00 -0.34 0.00 0.16 0.39
0.00 0.00 0.00 0.07 0.00 0.07 0.15 0.11

1.283 1.398 1.432 1.292 1.072 1.055 0.974 0.753
-0.68 -0.56 -0.32 -0.43 -0.14 -0.24 -0.07 0.15
-0.14 0.00 0.00 -0.09 -0.08 -0.08 -0.04 -0.08
0.729 1.283 1.423 1.195 0.610 0.954 0.958 0.773

0.22 -0.68 -0.68 -0.49 0.07 -0.20 -0.11 -0.08
0.17 -0.14 0.00 -0.12 0.13 -0.19 -0.06 -0.15

Figure D-9. 3D IAEA PWR Benchmark Problem: Error in Normalized Assembly
Power Density.
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F-

Average

Reference ---------------- 1.000
Relative Error (%), 20x20 cm - - 0.30
Relative Error (%), 1Ox 10 cm - - 0.11

0.773
-0.10
-0.19

0.958
-0.11
-0.06

0.954

-0.21
-0.20

0.753
0.20

-0.10
0.974

-0.07
-0.04

1.055

-0.23
-0.08

0.707
0.55
0.16

0.997
0.16
0.15

1.088
0.00
0.06

0.864

0.57
0.24

0.923
0.16
0.00

0.608
1.18
0.40

0.699
0.83
0.15

0.597
0.33
0.29

0.610 1.072 1.181 0.972 0.475 0.699 0.608
0.12 -0.13 -0.29 0.04 -0.27 0.83 1.18
0.22 -0.07 0.001 0.00 0.36 0.15 0.40

1.195
-0.41
-0.10

1.292
-0.33
-0.07

1.311
0.00
0.05

1.179
-0.12
0.00

0.972
0.04
0.00

0.923
0.16
0.00

0.864

0.57
0.24

1.423 1.432 1.369 1.311 1.181 1.088 0.997 0.707
-0.48 -0.22 -0.20 0.00 -0.29 0.00 0.16 0.55
0.00 0.00 0.00 0.05 0.00 0.06 0.15 0.16

1.283 1.398 1.432 1.292 1.072 1.055 0.974 0.753
-0.53 -0.40 -0.22 -0.33 -0.13 -0.23 -0.07 0.20
-0.11 0.00 0.00 -0.07 -0.07 -0.08 -0.04 -0.10

0.729 1.283 1.423 1.195 0.610 0.954 0.958 0.773
0.30 -0.53 -0.48 -0.41 0.12 -0.21 -0.11 -0.10
0.23 -0.11 0.00 -0.10 0.22 -0.20 -0.06 -0.19

Figure D-10. 3D IAEA PWR Benchmark Problem: Relative Error in Normalized
Assembly Power Density.
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0.92411
-0.83
-0.10!

1.4811
-0.36
-0.08

0.8671
-0.73
-0.09

1.2811
-0.19
-0.05

0.8267
-0.74
-0.08

1.1729
-0.39
-0.03

0.8527
-0.68
-0.05

1.2212
-0.30
0.00

0.9321
-0.59
-0.03

1.4212
0.13
0.05

0.9711
-0.54
0.02

1.6787
-0.02
0.09

0.8457
-0.69
0.06

1.6204
-0.13
0.10

1.3271
-0.21

0.24
1.6606 1.1510 0.%70 1.0225 1.3391 2.0499 2.1596 1.6204 0.8457

0.93 -0.26 -0.18 -0.16 -0.14 1.33 1.31 -0.13 -0.69
-0.01 -0.08 -0.03 -0.01 0.00 0.17 0.20 0.10 0.06

1.3851 0.9401 0.7830 0.8436 1.1520 1.8512 2.0499 1.6787 0.9711
0.95 -0.02 0.00 0.00 0.01 1.29 1.33 -0.02 -0.54
0.01 -0.04, -0.02 0.00 0.01 0.15 0.17, 0.09 0.02

0.7906 0.6706 0.6184 0.6784 0.8643 1.1520 1.3391 1.4212 0.9321
0.02 0.27 0.15 0.17 0.35 0.01 -0.14 0.13 -0.59
-0.05 -0.011 -0.01 0.01 0.03 0.01 0.00 0.05, -0.03

0.5123 0.4907 0.4923 0.5527 0.6784 0.8436 1.0225 1.2212 0.8527
0.08 0.15 0.18 0.18 0.17 0.00 -0.16 -0.30 -0.68

-0.02 -0.01 0.00 0.00 0.01 0.00 -0.01 0.00 -0.05
0.4134 0.4070 0.4243 0.4923 0.6184 0.7830 0.9670 1.1729 0.8267

0.15 0.17 0.17 0.18 0.15 0.00 -0.18 -0.39 -0.74
-0.01 -0.01 -0.01 0.00 -0.01 -0.02 -0.03 -0.03 -0.08

0.4406 0.3998 0.4070 0.4907 0.6706 0.9401 1.1510 1.2811 0.8671
0.21 0.25 0.17 0.15 0.27 -0.02 -0.26 -0.19 -0.73

-0.01 -0.01 -0.01 -0.01 -0.01 -0.04 -0.08. -0.05 -0.09
0.6124 0.4406 0.4134 0.5123 0.7906 1.3851 1.6606 1.4811 0.9241

0.78 0.21 0.15 0.08 0.02 0.95 0.93 -0.36 -0.83
0.01 -0.01 -0.01 -0.02 -0.05 0.01 -0.01 -0.08 -0.10

Figure D-11. 3D LRA BWR Static Benchmark Problem: Error in Normalized
Assembly Power Density.
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Average
Reference ------------------------- 1.0000
Error(%), 15x15x25(15) cm ----------- 0.36
Error (%), 7.5x7.5x12.5(7.5) cm ---------- 0.04



Average
Reference ------------------------- 1.0000
Relative Error (%), 15x15x25(15) cm ----- - 0.37
Relative Error (%), 7.5x7.5x12.5(7.5) cm --- 0.04

0.9241
-0.90
-0.11

1.4811
-0.24
-0.05

0.8671
-0.84
-0.10

1.2811
-0.15
-0.04

0.8267
-0.90
-0.10

1.1729
-0.33
-0.03

0.8527
-0.80
-0.06

1.2212
-0.25
0.00

0.9321
-0.63
-0.03

1.4212
0.09
0.04

0.9711
-0.56
0.02

1.6787
-0.01
0.05

0.8457
-0.82
0.07

1.6204
-0.08
0.06

1.3271
-0.16
0.18

1.6606 1.1510 0.%70 1.0225 1.3391 2.0499 2.15% 1.6204 0.8457
0.56 -0.23 -0.19 -0.16 -0.10 0.65 0.61 -0.08 -0.82

-0.01 -0.07 -0.03 -001 0.00 0.08 0.09 0.06 0.07
1.3851 0.9401 0.7830 08436 1.1520 1.8512 2.0499 1.6787 0.9711

0.69 -0.02 0.00 0.00 0.01 0.70 0.65 -0.01 -0.56
0.01 -0.04 -0_03 0_00 0.01 0.08 0.08 0.05 0.02

0.7906 0.6706 0.6184 0.6784 0.8643 1.1520 1.3391 1.4212 0.9321
0.03 0.40 0.24 0.25 0.40 0.01 -0.10 0.09 -0.63

-0.06 -0.01 -0.02 0.01 0.03 0.01 0.00 0.04 -0.03
0.5123 0.4907 0.4923 0.5527 0.6784 0.8436 1.0225 1.2212 0.8527

0.16 0.31 0.37 0.33 0.25 0.00 -0.16 -0.25 -0.80
-0.04 -0.02 0.00 0.00 0.01 0.00 -0.01 000 -0.06

0.4134 0.4070 0.4243 0.4923 0.6184 0.7830 0.9670 1.1729 0.8267
0.36 0.42 0.40 0.37 0.24 0.00 -0.19 -0.33 -0.90

-0.02 -0.02 -0.02 0.00 -0.02 -0.03 -0.03 -0.03 -0.10
0.4406 0.3998 0.4070 0.4907 0.6706 0.9401 1.1510 1.2811 0.8671

0.48 0.63 0.42 0.31 0.40 -0.02 -0.23 -0.15 -0.84
-0.02 -0.03 -0.02 -0.02 -0.01 -0.04 -0.07 -0.04 -0.10

0.6124 0.4406 0.4134 0.5123 0.7906 1.3851 1.6606 1.4811 0.9241
1.41 0.48 0.36 0.16 0.03 0.69 0.56 -0.24 -0.90
0.02 -0.02 -0.02 -0.04 -0.06 0.01 -0.01 -0.05 -0.11,

Figure D-12. 3D LRA BWR Static Benchmark Problem: Relative Error in Normalized
Assembly Power Density.
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