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Embedded Neural Recording With TinyOS-Based
Wireless-Enabled Processor Modules

Shahin Farshchi, Member, IEEE, Aleksey Pesterev, Paul Nuyujukian, Eric Guenterberg, Istvan Mody, and
Jack W. Judy, Senior Member, IEEE

Abstract—To create a wireless neural recording system that
can benefit from the continuous advancements being made in
embedded microcontroller and communications technologies, an
embedded-system-based architecture for wireless neural recording
has been designed, fabricated, and tested. The system consists
of commercial-off-the-shelf wireless-enabled processor modules
(motes) for communicating the neural signals, and a back-end
database server and client application for archiving and browsing
the neural signals. A neural-signal-acquisition application has
been developed to enable the mote to either acquire neural signals
at a rate of 4000 12-bit samples per second, or detect and transmit
spike heights and widths sampled at a rate of 16670 12-bit samples
per second on a single channel. The motes acquire neural signals
via a custom low-noise neural-signal amplifier with adjustable
gain and high-pass corner frequency that has been designed, and
fabricated in a 1.5- m CMOS process. In addition to browsing
acquired neural data, the client application enables the user to
remotely toggle modes of operation (real-time or spike-only), as
well as amplifier gain and high-pass corner frequency.

Index Terms—Biomedical electronics, embedded sensor,
low-power circuit design, neural amplifier, unit detection.

I. INTRODUCTION

N EUROSCIENTISTS typically acquire neural signals
from implanted depth electrodes interfaced with a

recording apparatus via a bundle of fine wires. However, in
many cases it is preferable to acquire these signals when
the test subjects are untethered, freely behaving, and even
interacting. Existing wireless neural-recording systems range
from fully integrated analog transmitters [1], [2], to analog
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transmitters with threshold-based spike detection [3]–[5] to
digital application-specific integrated circuits (ASICs) [6],
to microcontroller-based embedded systems [7], to com-
mercial-off-the-shelf (COTS) PC-based systems [8]. Fully
integrated transmitters and ASICs benefit from being very
small (several ) and low-power (several mWs), thus en-
abling them to be implanted with the electrode and inductively
powered. However, fully integrated approaches provide limited
user-configurability while requiring considerable re-engi-
neering for incorporating minor design or algorithmic changes.
Microcontroller-based embedded systems are larger (several
cm ), and consume more power (tens of mWs), to the point
where their lifetime is limited when using small batteries.
However, these systems require less engineering to develop
and to provide users with a higher degree of signal-processing
flexibility. COTS PC-based systems are large and heavy
(greater than 0.1 kg), while providing nearly the level of signal
processing and communications that is available to a PC-class
device. In the interest of increasing channel count and sampling
rate while maintaining reasonable battery life, some groups
have demonstrated solutions with some on-board signal-pro-
cessing capability, such as thresholding as demonstrated in [3]
and [4]. Unfortunately, these threshold-based systems typically
cannot differentiate spikes from artifacts, and require circuit
redesign for modifying the detection algorithms. The limited
adoption of existing wireless neural recording systems by the
neuroscientific community may be an indicator that users could
benefit from a greater degree of flexibility in terms of methods
for spike detection. An attractive solution would leverage ad-
vances in an underlying, commercial architecture, in a manner
similar to PCs, but without the upfront power penalty associated
with the platform (as seen in [8]). Researchers have developed a
wireless platform for small, low-power, and low-cost embedded
sensors using COTS microcontrollers and transceivers. This
effort led to the development of nesC [9], an extension to the
C programming language designed to embody the structuring
concepts and execution model of TinyOS [10]. TinyOS is an
event-driven operating system designed for sensor-network
nodes that have limited memory and computational resources
(e.g., 8 kB of program memory, 512 B of RAM). TinyOS en-
ables developers to access low-level hardware resources at the
application level, thus resulting in a level of data-acquisition
and communications flexibility that is unavailable to other
existing mainstream wireless communications technologies.
This inherent flexibility enables TinyOS developers to realize
high-frequency real-time peer-to-peer communications systems
(e.g., one node streaming neural signals captured at over 10 kHz
to another node), as well as low-duty-cycle mesh networks.

1534-4320/$26.00 © 2010 IEEE
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Fig. 1. Top-level system architecture.

TinyOS is available open-source and wireless-enabled pro-
cessor modules (motes) that operate with it are commercially
available.

II. SYSTEM ARCHITECTURE

Our modular neural-recording system can benefit from ad-
vances in embedded microcontroller technologies and enable
the user to implement custom filtering algorithms without re-im-
plementing the entire application. Hardware and software has
been designed to enable motes to acquire, process (in a pro-
grammable and modular fashion), and transmit neural signals.
Specifically, we have developed 1) a neural-signal amplifier chip
that can be interfaced directly to a microcontroller ADC for
the selective acquisition of spikes and field potentials, 2) an ap-
plication based upon a dynamically tunable signal-acquisition,
filtering, and transmission framework [11] for spike detection,
and 3) a back-end system architecture for receiving, archiving,
hosting, and browsing the neural signals (Fig. 1).

A. Hardware

The type of mote used in this work is the TelosB mote
produced by Crossbow Technology Inc. (San Jose, CA) and
Moteiv (El Cerrito, CA). Data is processed by a microprocessor
(MSP430, Texas Instruments, Dallas, TX). The TI MSP430
has 8 analog input channels that are time-multiplexed onto a
single analog-to-digital converter (ADC). Data transmission
is handled by a ZigBee-compliant (IEEE 802.15.4) 2.4-GHz
transceiver (CC2420, Chipcon, Oslo, Norway). An antenna
embedded on the printed-circuit board is used for wireless
communication.

The mote is interfaced with neural tissue via a custom mono-
lithic low-noise neural-signal amplifier with adjustable gain and
bandwidth [12]. The novel amplifier is capable of many things.
Specifically, it can 1) reject the dc offset that occurs at the tissue-
electrode interface, 2) amplify the neural-signal potential from
the order of to volts for acquiring the signal with the best
possible fidelity given the 12-bit resolution provided by the mi-
crocontroller ADC, 3) dc-reference the neural signal (which os-
cillates above and below the animal ground) to half the battery
supply voltage, to operate from the single supply used by the
mote to avoid requiring additional batteries that add mass and
volume to the system, 4) provide the current necessary to drive
an off-chip load (i.e., the microcontroller ADC), 5) provide ad-
justable high-pass-filtering and gain so that LFP or spikes can be
acquired selectively, 6) have low input-referred noise to acquire
the neural signals with satisfactory signal-to-noise ratio, and 7)
be monolithic to enable its integration with a recording head-
stage, as well as the opportunity to integrate it onto the same
silicon as that of a future-generation single-chip mote.

Fig. 2. Top-level schematic of the neural-signal-amplifier circuit.

Fig. 3. First-stage OTA with bias voltages and currents.

A major challenge in realizing a single-chip amplifier that
meets the above criteria is realizing the large passive elements
necessary to achieve a high-pass filter in the near-dc range (to
avoid filtering the slow-moving LFP) on silicon [13]. One ap-
proach is to use a metal–oxide–semiconductor (MOS) transistor
biased in subthreshold (referred to as a subthreshold MOS re-
sistor from here on), to achieve a very large resistance, although
other groups have explored alternative techniques [14]. How-
ever, this approach limits the achievable gain in a single stage
due to the small voltage drop the subthreshold MOS resistor
can sustain before its resistance drops. High-pass corner-fre-
quency adjustability is realized by modifying the gate voltage
of the subthreshold-MOS resistors. To achieve high gain, the
current necessary to drive an off-chip microcontroller, as well
as dc referencing (to set the dc signal level to the middle of the
ADC input range), a low-power instrumentation amplifier has
been designed, with the addition of gain adjustability via a triode
MOS transistor.

A top-level schematic of the neural-signal amplifier circuit is
depicted in Fig. 2. The first stage is a high-pass adjustable, low-
noise operational transconductance amplifier (OTA), shown in
Fig. 3; which is a fully differential version of the amplifier in-
troduced in [15] that operates on a single 3-V supply, rather
than dual, 2.5-V supplies. The high-pass corner frequency of
this stage is

(1)
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where is the resistance of the subthreshold MOS resistors.
The resistance of a subthreshold MOS resistor is governed by

(2)

where , , , , and are the device width, length, car-
rier mobility, subthreshold-slope factor, and gate capacitance,
respectively [16]. In addition, is the thermal voltage, is
the gate-source voltage (controllable by the 12-bit mote DAC),

is the drain-source voltage, and is the carrier Fermi en-
ergy [17]. Although the resistance can vary exponentially with
a linear change in the applied gate voltage, since the purpose of
the filtering action is to isolate spikes from LFPs, it is only nec-
essary for the resistor to be set at a value to yield a high-pass
corner frequency on the order of 100 Hz, rather than a precise
resistor value. The gain of this stage is limited to 100 by the ratio
of the input and feedback capacitors ( and , respectively),
since the subthreshold MOS resistors can only sustain a small
voltage (e.g., on the order of tens of milivolts) before their re-
sistance drops exponentially. The input-referred thermal noise
power of this OTA can be described by

m
m
m

m
m

where m and m are the transconductances of the PMOS
and NMOS current-mirror devices, respectively, m is the
transconductance of the input devices, is Boltzmann’s con-
stant, is temperature, and is frequency. The input-referred
noise power of the OTA is proportional to the ratio of the
transconductance of the current-mirror devices (M3, M4, M5,
and M6) to the transconductance of the input devices (M0
and M1). Low noise is achieved by biasing the input devices
in the subthreshold region of operation (where they exhibit
a high transconductance-to-drain-current ratio), and all other
devices in strong inversion (where they exhibit a low transcon-
ductance-to-drain-current ratio). The input devices are biased
in subthreshold by sizing them with a large gate area (approx
6400 m ) and sinking a small drain current (approximately
8 ) through them. The current-mirror devices are biased
in strong inversion by sizing them with small ratios.
The cascade devices are biased with a Sooch bias circuit [18].
The dc level of the output nodes is set by a continuous-time
common-mode feedback circuit [19], which senses the voltage
of the output nodes and modifies the gate voltage of the
p-channel current-source devices (M7 and M8) to maintain a
dc voltage of 1.5 V (half the 3-V supply voltage) at the output.

The second stage is a gain-adjustable instrumentation ampli-
fier circuit, composed of three identical compensated two-stage
OTAs. The gain of this stage is

(3)

where is the resistance of a voltage-controlled triode MOS
resistor, which is also controlled by the 12-bit mote DAC. This
stage also provides differential-to-single-ended conversion,
with dc referencing to half the supply voltage. Individual
transistor sizes, as well as other more detailed information on

Fig. 4. Data and control flow through the Neuromote application.

this circuit can be found in [20]. Two circuit boards have been
designed for mounting the recording system to the test subject.
One circuit board, carrying the neural-signal amplifier chip, is
mounted to the headstage carrying the electrodes. A second
circuit board carries a coin-cell battery and voltage buffer for
creating the reference voltage (half the battery supply), which
is provided to the headstage-mounted neural-signal-amplifier
chip and is also used to bias the test subject. Leads from the
headstage connect the output of the neural-signal amplifier
circuit to the ADC input of the mote, as well as the mote
DAC0 and DAC1 outputs to the high-pass-filtering control,
and gain-control nodes of the neural-signal amplifier chip,
respectively.

B. Software

To create a system that can be easily reconfigured to the needs
of the investigator, a dynamically-tunable, high-rate data acqui-
sition, filtering, and transmission framework called VanGo [11]
was used as a basis for the application. VanGo is a fast (i.e., 10s
of kHz) and low-jitter data-acquisition system for resource-con-
strained motes, which provides an interface to activate and con-
trol mote-side and gateway-side processing of signals. VanGo is
used to realize high-throughput applications with dynamically
configurable filter chains, which are a series of software mod-
ules for filtering data (i.e., extracting useful information from
raw analog signals). The VanGo software stack can be viewed
as a filter chain that spans across a mote and a gateway de-
vice (Fig. 4). The gateway device consists of a PC-class de-
vice running Emstar [21] interfaced with a TelosB mote via
USB. On the mote side, a driver has been written to acquire data
from the direct memory access (DMA) controller packaged with
the MSP430 microcontroller (Texas Instruments, Dallas, TX).
Using the DMA allows data to be sampled without having to in-
terrupt the processor for each sampled data point, which was a
major factor that limited the performance of the MICA2-based
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system described in [22]. In contrast, the DMA generates an in-
terrupt each time a RAM buffer is filled with data.

Neuromote, a VanGo-based neural-signal acquisition, fil-
tering, compression, and communication application has been
designed (see [11] for a complete description of its design and
operation). Neuromote can be configured to 1) acquire and
transmit a single channel of neural signals in real time at a rate
of 4000 12-bit samples per second or 2) send summary spike
information (i.e., spike time of occurrence, peak-to-trough
time and peak-to-trough height) with data acquired at 16670
12-bit samples per second. Eliminating the processor overhead
required to packetize and transmit neural signals in real time
enables the mote to sample data at the higher speed achieved in
the summary mode of operation.

In the real-time mode of operation, the neural signals are
acquired via the DMA and stored in a sample set consisting
of 168 12-bit samples. In the spike-acquisition mode of op-
eration, an adaptive absolute threshold is used to identify
the occurrence of spikes. The rationale behind this choice of
spike-acquisition algorithm is that its computational require-
ments allow it to be implemented on this hardware-constrained
platform, and it has been identified as a very efficient method
to acquire spikes in comparison to other known spike-detec-
tion algorithms when taking required memory, computations,
missed-spike frequency, and false-positives frequency into
account [23]. When a spike is detected, peak-trough height and
peak-trough width are recorded in a new sample set and marked
for transmission over the radio, while the original sample set
is marked for deletion. Specifically, the user must define two
thresholds (i.e., peak height and trough depth) as multiples of
root-mean-square of the background noise level. Spike data
is processed in the form of 1024-point sample sets. When the
absolute value of the signal crosses the peak threshold, the algo-
rithm pauses the mean and standard-deviation calculation, waits
for a zero crossing followed by a trough-threshold crossing
within a user-specified amount of time (typically 500 ). If
a trough crossing is detected subsequent to a zero crossing,
the time of the peak-threshold crossing, the peak-to-trough
time, and peak-to-trough height are recorded in a buffer. If a
zero-crossing followed by a trough crossing is not detected
within the user-defined period of time, the crossing is regarded
as noise and discarded. Signal mean and standard deviation
is subsequently resumed until the algorithm comes across
another peak-threshold crossing. When 10 spikes are detected
(a user-adjustable value), a packet is generated and transmitted
over the radio to the gateway device.

III. BENCH TESTING

Hardware and software sub-systems were initially tested on
a bench to assess their specific performance parameters.

A. Neural-Signal Amplifier Chip

The integrated circuit was fabricated in a dual-metal, dual-
poly 1.5- m CMOS process (Fig. 5). Bench testing was per-
formed with a fully-differential signal source created by ap-
plying a sinusoid from a signal generator (Agilent 33120A, Palo
Alto, CA) to the input of a discrete unity-gain inverting ampli-
fier circuit. The output of the signal generator was connected

Fig. 5. Die micrograph of the ��� � ��� �� neural-signal-amplifier chip.
(a) Gain-adjustable instrumentation-amplifier circuit. (b) Replica of the com-
plete amplifier with fixed gain and high-pass corner frequency. (c) Outlines
the MOS subthreshold resistors. (d) Wide-swing constant-�m bias circuit for
biasing the current-source loads. Section (e) outlines the input capacitors.
(f) High-pass adjustable, fully-differential, low-noise input stage. (g) Sooch
bias circuit for biasing the cascode loads of the first amplifier stage. (h) Outlines
the common-mode-feedback circuit.

Fig. 6. Bode plots of the amplifier circuit with varying high-pass-filtering con-
trol voltages �� �.

to the non-inverting input of the neural-signal amplifier via a
10000:1 voltage-divider circuit (100 and 10 ). The output
of the inverting amplifier was connected to the inverting input of
the neural-signal amplifier via a similar voltage-divider circuit.
The reference voltage of the circuit was tied to half the supply
voltage.

The ac-magnitude response of the amplifier for several high-
pass-filtering control settings at the maximum gain setting of
80 dB have been plotted in Fig. 6. Fig. 6
reveals that there is an exponential increase in high-pass-corner
frequency for a linear drop in

(4)

By comparing (2) with (4), a subthreshold slope factor of 0.761
can be derived, which verifies that the devices are in the sub-
threshold region throughout the high-pass control range.

Amplifier gain was measured as a function of gain-control
voltage , which was applied at the gate of the triode
MOSFET resistor in the instrumentation amplifier circuit.
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Fig. 7. Amplifier gain as a function of gain-control voltage �� �. A 1-kHz,
100-�� peak-to-peak sinusoid was applied at the input of the amplifier with
� set at 1 V for a high-pass corner frequency near 0.5 Hz.

Amplifier gain as a function of has been depicted in Fig. 7.
Common-mode rejection is beyond 80 dB, and power-supply
rejection is measured at 61 dB. The input-referred offset
(primarily due to the second stage) is approximately 18 .
Total harmonic distortion is less than 1%. Amplifier noise was
measured with a spectrum analyzer (Agilent 35670A, Palo
Alto, CA), with the amplifier high-pass corner frequency set to
0.5 Hz and gain set to 80 dB. Noise power was measured with
the inputs of the spectrum analyzer floating (to measure the
instrument noise), and with the input to the spectrum analyzer
attached to the amplifier chip, from which the amplifier noise
referred to the input was calculated. The inputs of the amplifier
chip were shorted together for this test. To improve resolution
at lower frequencies, one FFT (10 000 points averaged over 100
measurements) was taken from 250 mHz to 400 Hz, and another
was taken from 400 Hz to 51.2 kHz for each test configuration.
Integrating the input-referred noise of the amplifier from 0.5 Hz
to 50 kHz yields an integrated input-referred noise power
of 3.12 . To compare the input-referred thermal noise
against that of several recently-reported low-noise neural-signal
amplifier circuits, we use the following noise-efficiency-factor
(NEF) figure of merit introduced in [23]

(5)

where is the total current consumed by the amplifier cir-
cuit, is the thermal voltage, is Boltzmann’s constant,
is absolute temperature, and is the amplifier bandwidth.
Given that a single bipolar-junction transistor will have an NEF
of 1, the NEF of any practical amplifier circuit will be more than
1. The NEF of this amplifier is measured at 13.8.

A performance summary of this amplifier relative to several
other recently-reported neural-signal amplifier circuits [24], is
outlined in Table I.

B. Neuromote Application

The data throughput capability of the TelosB’s Chipcon
CC2420 radio (Oslo, Norway) limits real-time data trans-
mission to 4000 12-bit samples per second after ADPCM
compression. Likewise, the mote on the receiving end can
only receive real-time neural signals (at a rate of 4000 12-bit
ADPCM-compressed bits per second), also due to bandwidth
limitation. This limits the receiver to communicating with only
a single mote operating in real-time signal-acquisition mode.
However, operating the motes in spike-detection mode enables

TABLE I
COMPARISON OF THE NEURAL-SIGNAL AMPLIFIER CIRCUIT WITH

SEVERAL RECENTLY-REPORTED CIRCUITS

data to be acquired at 16700 12-bit samples per second, and
several motes to communicate simultaneously with a single
gateway module. The percentage of received packets as a func-
tion of spike firing rate (which affects data throughput) for one
to four motes communicating with a single gateway module
has been measured. It has been observed that packet loss begins
to occur at spike rates over 20 spikes/s/mote with 4 or more
motes communicating with a single gateway device (a more
in-depth analysis can be found in [20]). The number of spikes
that can be detected per second is limited to 50. Exceeding
this rate of spike acquisition results in the sensors attempting
to resend data that was not successfully sent previously due to
network congestion (when there are more than two motes com-
municating with a single gateway device) while acquiring data
from the ADCs, which eventually fills up the mote memory and
causes the mote to cease sampling data. The measured power
consumption with a single 3-V 160-mAh photo cell (CR-1/3N,
Energizer, St. Louis, MO) for real-time and spike-detection
was measured. In the real-time mode of operation, the mote
consumes 48.46 mW of power. In the spike detection mode
of operation, the mote consumes 4.62, 3.87, 3.16, 2.13, and
1.25 mW when detecting spikes at a rate of 50, 40, 30, 20, and
10 spikes per second, respectively.

IV. BIOLOGICAL TESTING

To validate the spike-acquisition and filtering capabilities of
Neuromote, the multiunit activity acquired by the neural-signal
amplifier was saved and applied to the mote in an EmStar mote-
simulation environment [21].

The positive and negative thresholds were set to 6 and
2 standard deviations from the calculated baseline noise,

respectively. The measured parameters of the detected spikes
indicate the presence of three general classes of spikes in
the 1-s dataset (more information on these results can be
found in [20]). The performance was tested against a popular
threshold-based spike-detection algorithm; Powernap [25], by
setting the threshold to the same level. The detected spikes were
then analyzed by the PowerNAP Pricipal Component tool for
classification. Among five cluster-group choices, three spike
clusters provided the most pronounced clusters.

The neural-recording system was initially tested by obtaining
neural signals from a 350- m-thick coronal hippocampal slice
preparation from an adult C57/B16 mouse. The brain slice was
induced to exhibit neural-spike activity through the application
of 8 mM KCl. The sample bath was biased at half the 3-V
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Fig. 8. Action potentials acquired from a 350-�m-thick coronal slice prepara-
tion (adult C57/B16 mouse) with 8 mmol KCl applied to depolarize the slice
and evoke action potentials.

supply and was used as the reference voltage. The neural sig-
nals were acquired differentially by a bipolar stainless steel dif-
ferential electrode (PlasticsOne, Roanoke, VA), with the gain of
the neural-signal amplifier set to 80 dB, and its high-pass corner
frequency set to 1 kHz. Since the sampling rate of our signal-ac-
quisition equipment was limited to 20 kHz, the output of the am-
plifier was applied to an eight-pole low-pass Butterworth filter
with its corner frequency set at 10 kHz. A considerable amount
of 60-Hz noise was coupled into the system due to the need for
long wires to attach the electrodes to the prototype neural-signal
amplifier chip. However, setting the high-pass corner frequency
to 1 kHz lowered the 60-Hz interference to an acceptable level.
A recorded spike is depicted in Fig. 8.

The system was also tested in-vivo on a living mouse. An
adult C57/B16 mouse was anesthetized with 100 mg/kg ke-
tamine, 5.2 mg kg-1 xylazine, and 1.0 mg kg-1 acepromazine
according to a protocol approved by the UCLA Chancellor’s
Animal Research Committee. A hippocampal depth electrode
(Plastics One, Roanoke, VA) was placed 2.2 mm posterior to
the bregma and 1.7 mm lateral to the midline at a depth of 2.9
mm. The electrode was fixed to the skull using dental cement
and the mouse was allowed to recover for 48 h. Recordings were
started 10 min before an intraperitoneal injection of 15 mg kg-1
kainic acid. The amplifier chip was packaged in a 16-pin SOIC
package and mounted upon a cm circuit board and
mounted directly upon an implanted depth electrode (Plastic-
sOne, Roanoke, VA). The amplifier board was connected via
copper wires to the 23-g TelosB mote running the Neuromote
application, was powered by two AA batteries and placed near
the anesthetized mouse. The neural signals were obtained dif-
ferentially, with the animal tied to the reference voltage (half
the 3-V supply) via a clip on its back. Field potentials were ac-
quired with the amplifier gain set to 60 dB and the high-pass
corner frequency set to 500 Hz. A screen shot of the Java appli-
cation depicting the acquired neural signals stored on the archive
server is depicted in Fig. 9.

Fig. 9. Custom Java-based neural-signal browser application depicting neural
signals acquired by the system in vivo. The user can select a portion of the
waveform from the bottom panel to be displayed with adjustable resolution in
the top panel. The top slider adjusts the zoom level, while the bottom slider
scrolls through the dataset. The user can save zoom states, which are listed in
the left-hand panel, as well as step back and fourth through zoom states.

V. CONCLUSION

In conclusion, an embedded neural recording system has
been designed and tested. The animal-mounted sensor is a
COTS wireless-enabled processor module that has been inter-
faced with neural tissue via a custom neural-signal amplifier
chip. The custom neural-signal amplifier chip provides an ad-
justable gain between 50 and 80 dB, and an adjustable high-pass
corner frequency from 500 mHz to 1 kHz, while consuming
0.1 mA of current per channel from a single 3-V supply to
drive the off-chip ADC. The sensor operates on a modular
signal-acquisition, filtering, and communication framework
upon which an application for real-time neural-signal compres-
sion and absolute-threshold-based spike-detection application
has been developed. Furthermore, a gateway device, archive
server, and client application has been designed to acquire the
analog signals and control the sensor mode of operation (i.e.,
real-time or spike detection), and tune amplifier parameters
(i.e., gain and high-pass corner frequency).

The system is capable of transmitting a single channel of
real-time spike signals at a rate of 4000 12-bit samples/s, or a
single channel of spike information (peak-trough height, peak-
trough depth, and time of occurrence) sampled at 16.7 kHz. A
single sensor can communicate with a single gateway device
in real-time, but three sensors can communicate with a single
gateway device while communicating up to 40 spikes/s/mote in
spike-detection mode. Power consumption ranges from 48.46
mW in the real-time mode of operation, and 1.25 mW to 4.62
mW in spike detection mode with spike detection rates ranging
from 10 spikes/s to 50 spikes/s. The increased power consump-
tion for increased detection rates results from transmitting the
data assocated with the spike heights, widths, and times of oc-
curence. A quick comparison reveals the higher power dissipa-
tion and noise associated with the amplifier introduced in this
paper, since it has been designed to drive on off-chip ADC, and
has hence been over-specified to be used on other/future gener-
ations of embedded sensors.
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Although a major limitation of this system is its limited
channel count, the biological interface circuit (if redesigned for
driving a known on-chip load rather than an uncertain off-chip
load), the Neuromote application, and the Vango framework,
can scale up to hundreds of channels. Scaling up the system
requires a TinyOS-based wireless-enabled processor module
with the computational and communications ability to ac-
quire, process, and transmit multiple channels of data. It has
been predicted that motes will follow Moore’s law from the
perspective of performance, size, and power efficiency [26],
which would inevitably lead to a chip-scale mote that could
handle many channels. However, the market made cost and
performance the priority, which has delayed the availability of
advanced, chip-scale, high-performance motes that could yield
systems, when augmented with the software and hardware
described in this paper, with a performance comparable to the
custom-integrated alternatives.
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