IsoRankN: spectral methods for global alignment of multiple protein networks
Chung-Shou Liao1,2,3, Kanghao Lu3,4, Michael Baym3,4, Rohit Singh3 and Bonnie Berger3,4,∗
1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan, 3Computer Science and Artificial Intelligence Laboratory and 4Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ABSTRACT
Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species.

Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient.

Availability: Our software is available freely for non-commercial purposes on request from: http://isorank.csail.mit.edu/

Contact: bab@mit.edu

1 INTRODUCTION
Almost every biological process is mediated by a network of molecular interactions. A few examples of these include: genetic regulatory networks, signaling networks, metabolic networks and protein–protein interaction (PPI) networks. The structure of these networks is becoming increasingly well known, especially with the advent of high-throughput methods for network inference (Ito et al., 2001; Kroger et al., 2006; Uetz et al., 2000). As with the genome, there is significant conservation of network structure between organisms (Matthews et al., 2001; Yu et al., 2004). Thus, knowledge about the topology of a network in one organism can yield insights about not only the networks of similar organisms, but also the function of their components. A problem with accurate cross-species comparison of such networks is that the known networks, however, are both incomplete and inaccurate (Han et al., 2005; Huang et al., 2007).

The specific problem we address is that of global alignment of multiple PPI networks. A PPI network is an undirected collection of pairwise interactions on a set of proteins, where an edge represents interaction between two proteins. Given a pair of PPI networks, and a list of pairwise sequence similarities between proteins in the two networks, the pairwise alignment problem is to find an optimal mapping between the nodes of the two networks that best represents conserved biological function. We distinguish such global network alignment from local alignment where the goal is to find multiple network motifs, i.e. independent regions of localized network similarity. In the multiple global network alignment case, with k networks, the problem is extended to finding clusters of proteins across the networks such that these clusters best represent conserved biological function.

The search for such an alignment is motivated by the intuition that evolution of genes occurs within the context of the larger cellular system they are part of. Global network alignment can be interpreted as an evolutionary analysis done at this systems level rather than in a piecemeal, local fashion. Once a global network alignment has been estimated, we can analyze it to gather more localized, granular insights, e.g. estimating functional orthology across species.

Alignment of multiple networks poses two key problems. The first is that the computational complexity (i.e. the number of possible alignments) grows exponentially in the number of networks. The second is that the genomes corresponding to the various networks being aligned may vary widely in size (e.g. because of differing degrees of gene duplication). A multiple network alignment algorithm must thus efficiently identify a biologically appropriate mapping between the genes.

Here, we introduce IsoRankN (IsoRank-Nibble), which takes the approach of deriving pairwise alignment scores between every pair of networks, using the original IsoRank methodology (Singh et al., 2007, 2008, Box 1); then finds alignment clusters based on these scores. To find clusters, we use a spectral partitioning method that is both efficient and automatically adjusts to the wide variation in sizes of the species-specific networks. The algorithm is similar to the recently developed PageRank-Nibble algorithm (Anderson et al., 2006), which approximates the Personalized PageRank vector. A PageRank vector (i.e. one that describes a ranking of graph nodes for, say, search) is called a Personalized PageRank vector if, given a particular graph node, its preference scores are concentrated on a small set of vertices, the set being tailored to the given node. This notion of vertex-specific rankings is applied in IsoRankN to find dense, clique-like clusters of proteins when computing the global alignment of multiple PPI networks. We tested IsoRankN on the five known eukaryotic PPI networks, i.e. human, mouse, fly, worm, and yeast. Much of the related previous work has focused on local network alignment; hence, a direct comparative evaluation of our results was difficult. As a
gold standard alignment does not yet exist, we instead evaluate our alignment method on a variety of indirect criteria, including number of clusters predicted, within-cluster consistency and GO/KEGG enrichment (Ashburner et al., 2000; Kanehisa and Goto, 2000). In order to measure within-cluster consistency, we introduce a novel metric based on the entropy of the GO/KEGG annotations of predicted clusters. We believe that the characteristic of a correct global network alignment would be to preserve the relative functions of various network parts; this can be well-measured by the various GO enrichment analyses described above.

A number of related techniques for PPI network alignment exist. Most notably, these include NetworkBLAST-M (Kalacov et al., 2008), Gramlin 2.0 (Flannick et al., 2008) and IsoRank (Singh et al., 2008), though a number of other techniques exist as well (Berg and Lässig, 2006; Dutkowski and Tiuryn, 2007; Kelley et al., 2003, 2004; Koyutürk et al., 2005; Sharan et al., 2005; Srinivasan et al., 2006). NetworkBLAST-M computes a local alignment by greedily finding regions of high local conservation based on inferred phylogeny. Gramlin 2.0, in contrast, computes a global alignment by training how to infer networks from phylogenetic relationships on a known set of alignments, then optimizing the learned objective function on the set of all networks.

IsoRank uses spectral graph theory to first find pairwise alignment scores across all pairs of networks, the details of which are provided later (Box 1); these pairwise scores, computed by spectral clustering on the product graph, work well in capturing both the topological similarity as well sequence similarity between nodes of the networks. However, to find multiple network alignments, IsoRank uses these scores in a time-intensive greedy algorithm. Instead, IsoRankN uses a different method of spectral clustering on the induced graph of pairwise alignment scores. The new approach provides significant advantages not only over the original IsoRank but also over other methods.

To test IsoRankN, we show that on the PPI networks from five different eukaryotic species, IsoRankN produces an alignment with a larger number of aligned proteins, higher within-cluster consistency and higher biological similarity than existing methods, as measured by GO/KEGG enrichment using GO TermFinder (Berg and Lässig, 2006). While other techniques for measuring GO enrichment exist (Segal et al., 2004; Schlicker et al., 2006), they did not apply directly to the context in which we work. Additionally, IsoRankN does not require training and does not rely on induced phylogeny; thus it is not sensitive to errors in the phylogenetic tree. While this is not a significant problem with eukaryotes, inference of accurate bacterial phylogeny has proven far more difficult.

Contributions: We introduce the IsoRankN algorithm which uses an approach similar to the PageRank-Nibble algorithm to align multiple PPI networks. In so doing, we bring a novel spectral clustering method to the bioinformatics community. We use IsoRankN to align the known eukaryotic PPI networks and find that it efficiently produces higher fidelity alignments than existing global multiple-alignment algorithms.

2 METHODS

2.1 Functional similarity graph

The central idea of IsoRankN is to build a multiple network alignment by local partitioning of the graph of pairwise functional similarity scores.

Box 1. The Original IsoRank Algorithm.

IsoRank works on the principle that if two nodes of different networks are aligned, then their neighbors should be aligned as well. In lieu of sequence similarity information, the functional similarity score R_{ij} between vertex v_i and v_j is the set of positive scores which satisfies:

$$R_{ij} = \sum_{v_k \in N(v_j)} \frac{1}{|N(v_k)||N(v_j)|} R_{uw},$$

where $N(v_j)$ is the neighborhood of v_j within its own network. This can also be viewed as the steady-state distribution of a random walk on the direct product of the two networks.

To integrate a vector of sequence homologies, E, IsoRank takes a parameterized average between the network-topological similarity and the known sequence homology. It uses the power method to find the unique positive R satisfying

$$R = \alpha AR + (1-\alpha)E,$$

where

$$A_{ij} = \frac{1}{\sum_i A_{ji}}, \quad v_i \in N(v_j), v_u \in N(v_j),$$

otherwise.

Given the resulting vector of pairwise functional similarity scores, R, a discrete network alignment is then greedily generated.

Specifically, given k PPI networks, G_1, G_2, \ldots, G_k, we first compute the functional similarity scores of every pair of cross-species proteins $(v_i, v_j) \in (G_1, G_2)$. This is done using the original IsoRank algorithm (Box 1), but without the final step of greedily selecting an alignment. The scores generated by IsoRank have the advantage of being highly noise tolerant, a result of using a spectral approach.

The result is a functional similarity graph, a weighted complete k-partite graph on the k sets of proteins, where each edge is weighted by its functional similarity score. If the PPI networks were complete and exact, the multiple alignment problem would simply be to find maximally weighted cliques. As the networks are not, we introduce the star spread method to find highly similar near cliques, which yields a multiple alignment. In addition, in contrast to the seed-path extension method used by NetworkBLAST-M, our method is similar to the star aligned approach in multiple sequence alignment introduced by Lipman et al. (1989) and CLUSTAL W (Thompson et al., 1994).

2.2 Star spread

We first compute, for every protein v in a chosen species, every neighbor connected to v by an edge with weight greater than a threshold; this is the star, S_i, of the protein (Fig 1a). We greedily order the proteins v by the total weight of S_i and for each find the subset $S'_i \subset S_i$ such that S'_i is a highly weighted neighborhood of v (Fig 1b). This is done using a spectral local graph partitioning algorithm with approximate Personalized PageRank vectors, similar to the PageRank-Nibble algorithm. The resulting S'_i represents a functionally conserved interaction cluster, a set of network-aligned proteins. This is repeated for every protein in all species not already assigned to an S'_i yielding assignments for all vertices. While it is not clear exactly how the order of vertex choice affects the results, this ordering performs better empirically than others we have tried, including random ordering. The ordering of species is discussed below.
The main algorithmic challenge in obtaining functionally conserved protein pairs is to approximate the size of the edge cut to separate two clusters. The random walk on the graph can be computed efficiently via the personalized PageRank vector of the source node. A personalized PageRank vector is the unique solution to:

\[\gamma \cdot v = \beta (1-\gamma) \cdot \Pr(y,v) \cdot W, \]

where \(\gamma \in (0,1) \), \(\Pr(y,v) \) is the indicator vector of \(v \), \(W \) is the transition matrix, and \(D \) is the diagonal of column sums of \(R \). For the purposes of this article, we instead use an efficient approximation \(\gamma \approx \Pr(y,v) \), the details of which can be found in (Anderson et al., 2006).

To compute the minimal conductance cut, we consider the sets \(T_{ij} = \{ v \mid \deg(v) \geq \sum_{i,j \in N(v)} \deg(v) \} \), or those vertices which contain at least as much of the mass of \(p \), normalized by \(R \). As in (Anderson et al., 2006), we then find the set \(S^* \) as:

\[S^* = \min \{ \Phi(T_{ij}) \}. \]

2.4 Star merging

While highly efficient, the star spread method has the limitation of not assigning other members of the original network to the neighborhood \(S^* \), and so \(S^* \) by necessity does not contain any other proteins in the same network as \(v \), even if it is appropriate to do so. To get around this, we introduce a procedure for merging stars, by looking at the neighbors of the neighbors of \(v \). For two stars, \(S^*_1 \) and \(S^*_2 \), where \(v_1 \) and \(v_2 \) are in the same PPI network, if every member of \(S^*_1 \setminus \{ v_1 \} \) has \(v_2 \) as a neighbor and vice versa, we merge \(S^*_2 \) and \(S^*_1 \).

2.5 The IsoRankN algorithm

Given a PPI network \(G_1, G_2, ..., G_6 \) and a threshold \(\beta \), IsoRankN proceeds as follows:

1. Run the originalIsoRank on every pair of networks to obtain scores \(R_{ij} \) on all edges of the functional similarity graph.
2. For every protein \(v \), compute the star \(S_v = \{ j \in N(v) \mid w(v,j) \geq \beta \max \{ w(v_1,j) \} \} \), where \(N(v) \) is the neighborhood of \(v \) in the functional similarity graph.
3. Pick an arbitrary remaining PPI network \(G_6 \) and order the proteins \(v \in G_6 \) by the sum of edge weights in the induced graph on \(S_v \). In order, excluding proteins already assigned to clusters, spectrally partition \(S_v \) to obtain \(S^*_1 \).
4. Merge every pair of clusters \(S^*_1 \) and \(S^*_2 \) in which \(\forall v_1, v_2 \in S^*_1 \setminus \{ v_1 \}, w(v_1,v_2) \geq \beta \max \{ w(v_1,j) \} \) and \(\forall v_1, v_2 \in S^*_1 \setminus \{ v_1 \}, w(v_2,v_1) \geq \beta \max \{ w(v_1,j) \} \).
5. Repeat steps 3 and 4 until all proteins are assigned to a cluster.

3 RESULTS

Experimental datasets: We tested IsoRankN on five eukaryotic PPI networks: Homo sapiens (human), Mus musculus (mouse), Drosophila melanogaster (fly), Caenorhabditis elegans (worm) and Saccharomyces cerevisiae (Yeast). IsoRankN requires two forms of data as input: PPI networks and sequence similarity scores. The PPI networks were constructed by combining data from the DIP (Xenarios et al., 2002), BioGRID (Stark et al., 2006) and HPRD (Mishra et al., 2006) databases. In total, these five networks contained 87,737 proteins and 98,945 known interactions. The sequence similarity scores of pairs of proteins were the BLAST similarity scores...
Table 1. Comparative consistency on the five eukaryotic networks

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean entropy</th>
<th>Mean normalized entropy</th>
<th>Exact cluster ratio</th>
<th>Exact protein ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsoRankN</td>
<td>0.274</td>
<td>0.179</td>
<td>0.380 (3079 of 8095)</td>
<td>0.261 (9284 of 35604)</td>
</tr>
<tr>
<td>IsoRank</td>
<td>0.685</td>
<td>0.359</td>
<td>0.253 (2166 of 8319)</td>
<td>0.165 (6408 of 38706)</td>
</tr>
<tr>
<td>Græmlin1</td>
<td>0.857</td>
<td>0.451</td>
<td>0.306 (843 of 2754)</td>
<td>0.159 (2393 of 15047)</td>
</tr>
<tr>
<td>Græmlin2</td>
<td>0.552</td>
<td>0.357</td>
<td>0.355 (1135 of 3198)</td>
<td>0.248 (2806 of 11729)</td>
</tr>
<tr>
<td>NetworkBLAST-M</td>
<td>0.907</td>
<td>0.554</td>
<td>0.291 (441 of 1518)</td>
<td>0.142 (1150 of 8092)</td>
</tr>
</tbody>
</table>

Mean entropy and mean normalized entropy of predicted clusters. Note that the boldface numbers represent the best performance with respect to each measure.

3.1 Functional assignment
We tested IsoRankN as compared with IsoRank, Græmlin 2.0 and NetworkBLAST-M on the five available eukaryotic networks and found that it outperformed the other methods in terms of number of clusters predicted, within-cluster consistency and GO/KEGG enrichment.

Græmlin 2.0 requires a training set to learn the parameters of its scoring function. As in Flannick et al. (2008), we train Græmlin 2.0 on training sets of multiple sizes. The versions of Græmlin 2.0 trained on 1000 and 2000 KEGG clusters are denoted Græmlin1KG and Græmlin2KG, respectively. We additionally attempted to train Græmlin 2.0 on 4000 clusters, but have not included the data, as it showed strong evidence of over-fitting.
Yeast
Comparative GO/KEGG enrichment performance
Table 3.
Number of clusters/proteins predicted containing exactly k species

<table>
<thead>
<tr>
<th>Species</th>
<th>IsoRankN</th>
<th>IsoRank</th>
<th>Græmlin1</th>
<th>Græmlin2</th>
<th>NB-Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>632/2200</td>
<td>478/1551</td>
<td>194/545</td>
<td>272/811</td>
<td>66/182</td>
</tr>
<tr>
<td>Mouse</td>
<td>605/1124</td>
<td>383/1371</td>
<td>191/538</td>
<td>266/794</td>
<td>65/178</td>
</tr>
<tr>
<td>Fly</td>
<td>574/1787</td>
<td>398/924</td>
<td>208/533</td>
<td>261/771</td>
<td>41/135</td>
</tr>
<tr>
<td>Worm</td>
<td>552/1698</td>
<td>376/901</td>
<td>104/257</td>
<td>140/389</td>
<td>32/124</td>
</tr>
<tr>
<td>Yeast</td>
<td>368/938</td>
<td>257/554</td>
<td>208/486</td>
<td>137/316</td>
<td>45/136</td>
</tr>
</tbody>
</table>

The k-th row contains, for each program, the number of predicted clusters for covering exactly k species and number of constituent proteins in those clusters. Note that the boldface numbers represent the best performance with respect to each row. NetworkBLAST-M is not included, as it always outputs $k = 5$ species in each cluster.

All clusters obtained by IsoRankN contain at least two species.

We further measure as in Kalaelv et al. (2008) coverage by the enrichment of predicted groups with respect to known ontology as derived from GO and KEGG. We find that IsoRankN enriches more GO and KEGG categories in every species, with a lower overall p-value [computed by GO TermFinder Boyle et al. (2004)], than any other technique (Table 3).

Ordering: While we chose a particular order of genomes in the multiple alignment to report our general results, we also include all clusters obtained by IsoRankN contain at least two species.

Running time: Given the weighted similarity graph, the star spread component of IsoRankN (Section 2.5, steps 2–5) took under 5 min for the five eukaryotic networks above. The computation of the graph, given by the original IsoRank (Section 2.5, step 1), took ∼7 h on a single processor, though can be easily 10-way parallelized.

4 CONCLUSION
In this article, we present an efficient method for computing multiple PPI network alignments. Based on spectral clustering on the induced graph of pairwise alignment scores, our program IsoRankN automatically handles noisy and incomplete input data. Our method differs from others in that it does not require training or phylogeny data and seeks vertex-specific rankings in the spectral clustering.

We demonstrate the effectiveness of this technique on the five available eukaryotic PPI networks. Our results suggest that IsoRankN has higher coverage and consistency compared to existing approaches, which should lead to improved functional ortholog prediction.

In future work, we plan to more fully explore and evaluate the database of functional orthologs as predicted by IsoRankN. Additionally, it may be possible to modify the star spread to account for existing gold standard network homology data, yielding even higher fidelity multiple network alignments.
ACKNOWLEDGEMENTS

We thank Leonid Chindelevitch, Jen Kelner, and Michael Schnall-Levin for helpful comments.

Conflict of Interest: none declared.

REFERENCES

