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14.03 Fall 2004

Agenda

• Optimization

— single variable

— multi-variable

• Implicit Function Theorem and comparative statics

• Envelope Theorem: constrained and unconstrained

• Constrained optimization (Lagrangian method)

• Duality
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1 Single Variable Optimization

Say π(q) is the profit function and we choose q∗ to maximize π(q)
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Q: Is q∗ necessarily the profit max?
A: No, FOC is necessary, but not sufficient for profit maximization. The point that

satisfies FOC could well be a minimum.
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but q∗ is a profit minimum.
We have to look at second order condition (SOC):

∂2π

(∂q)2

¯̄̄̄
q∗

< 0

This guarantees that q∗ is a local maximum.
This method doesn’t help when the function is not well behaved.
Examples:
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We’ll generally work with ”well-behaved” functions: continuous, differentiable, con-
cave. Hence we will not focus on SOC (read about them in Chapter 2 however)

2 Multivariate Optimization

Given a function:
y = f(x1, x2, ..., xn)

and given all partial derivatives:

∂f

∂x1
≡ f1,

∂f

∂x2
≡ f2, ...,

∂f

∂xn
≡ fn

First order condition (FOC) for maximum (or minimum):

f1 = f2 = ... = fn = 0

Example
Optimization of a function in 2 variables
Any concave function will be maximized at its ”flat spot”.

Definition 1 A concave function is a function that always lies below any hyperplane
that is tangent to it.

For example a function of one variable is concave if it always lies below any line
tangent to it.

−1000x2 − 1000y2 − xy + 200
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The Second Order Condition for functions of more than one variable is of the following
form:

f11(dx1)
2 + 2f12dx1dx2 + f22(dx2)

2 < 0

3 Concave Functions

This set of functions satisfies the condition for concavity,
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while this set of functions doesn’t satisfy the condition for concavity.
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4 Implicit Functions

Functions can be written in their implicit form or in their explicit form.
Examples:

1. y = mx+ b Explicit

2. y −mx− b = 0 Implicit

3. f(y, x;m, b) = 0 Implicit

Functions 2 and 3 are called implicit because the relationship between the variables
is implicitly present rather than explicitly shown as y = f(x)

Many times in economics we end up with implicit functions where exogenous and
endogenous variables are all mixed together.

We may have no closed form expression for y(x), but the derivative ∂y
∂x may still exist

and this is often exactly what we need.
It’s easy to work with implicit functions.

f(x, y) = 0

f(x, y(x)) = 0

fxdx+ fydy = 0

dy

dx
= −fx

fy

Caveat: dy
dx may not exist...
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4.1 Example

Graph 21
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We can write the equation for this function as follows:

f(x∗, y(x∗)) = 0

which yield the following equation:

x2 + y2 − 1 = 0

We can differentiate and find the derivative:

2xdx+ 2ydy = 0
dy

dx
= −f1

f2
= −x

y

This derivative is not defined when y = 0.

Q: What is the intuition for the non-existence of dy
dx at (x, y) = (1, 0)?

A: dy
dx could be positive or negative here. Undefined.

You can see how this works formally.
Suppose there is a continuous solution y = y(x) for the equation F (x, y) = c ⇒

F (x, y(x)) = c
We want to know ∂y

∂x for some (x0, y(x0)).
Use the chain rule to differentiate.
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dF (x0, y(x0))

dx
=

∂F (x0, y(x0))

∂x

dx

dx
+

∂F (x0, y(x0))

∂y

dy(x0)

dx
= 0

0 =
∂F (x0, y(x0))

∂x
+

∂F (x0, y(x0))

∂y
y0(x0)

y0(x0) = −
∂F (x0,y(x0))

∂x
∂F (x0,y(x0))

∂y

Necessary condition for y0(x0) to exist is that
∂F (x0,y(x0))

∂y 6= 0 (Implicit function
theorem)

It turns out that this is sufficient also.
In the multivariate case this condition can be written as ∂F (x∗1,...,x

∗
n,y

∗)
∂y 6= 0

4.2 Example

Given the following function:
2x2 + y2 = 225

we want to find dy
dx .

1. One way to find the derivative we are looking for is to find y as a function of x

y =
p
225− 2x2

dy

dx
=

1

2

¡
225− 2x2

¢− 1
2 (−4x) =

=
−4x

2
√
225− 2x2

= −2x
y

2. The other way to find it is to use the implicit function method:

• Write: 2x2 + y2 − 225 = 0

• Find the total differential: 4xdx+ 2ydy = 0

• Rearrange:
dy

dx
= −2x

y

4.3 Example

Take a more complicated example:

x2 − 3xy + y3 − 7 = 0

What is dy
dx

¯̄̄
x=4,y=3

?

In this case making use of the implicit function theorem is the only way to find the
derivative we are interested in.
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1. Find total differential:

2xdx− 3ydx− 3xdy + 3y2dy = 0

3y2dy − 3xdy = −2xdx+ 3ydx
dy

dx
=

3y − 2x
3y2 − 3x

2. To find the derivative at the point we simply substitute:

dy

dx

¯̄̄̄
x=4,y=3

=
9− 8
27− 12 =

1

15

3. What is y at x = 4.3?

We can approximate it by:

y(4) +
dy

dx

¯̄̄̄
x=4

(0.3)

y(4.3) ≈ 3 + 0.3× 1

15
= 3.02

If we solve numerically for y at x = 4.3 we get 3.01475.

4.4 Applications of Implicit Functions

Being able to handle implicit functions turns out to be useful when one deals with utility
functions and indifference curves.
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Along an indifference curve, we have U(x, y) = U
The implicit function U(x∗, y∗(x∗)) = U tells how much y we’d give up for a little

more x (at the margin) while holding total utility constant.

U(x∗, y∗(x∗)) = U

∂U

∂x
dx+

∂U

∂y
dy = 0

dy

dx
= −U

0(x)

U 0(y)

5 Envelope Theorems

A shortcut for taking derivatives of optimized functions with respect to their parameters.

Theorem 2 (Envelope Theorem for the unconstrained case). Let f(x, a) be a C1 func-
tion of x ∈ Rn and the scalar a. For each a consider the unconstrained maximization:

max f(x; a) w.r.t. x

Let x∗ (a) be a solution of this problem. Suppose that x∗(a) is a C1 function of a. Then,

d

da
f(x∗(a), a)

Total derivative

=
∂

∂a
f(x∗(a), a)

Partial derivative

Proof.

d

da
f(x∗(a), a) =

X ∂f

∂xi
(x∗(a), a)

∂x∗i (a)

∂a| {z }
=0

+
∂f

∂a
(x∗(a), a) =

=
∂f

∂a
(x∗(a), a)

where the first term of the derivative is zero because:

∂f

∂xi
(x∗(a), a) = 0 ∀i = 1, 2, ..., n

These are the FOC of the maximization problem to obtain x∗.
Note: much more intuitive - and useful than it looks
Example:
Take the following function

y = −x2 + ax

We want to know dy∗

da where y∗ is the maximized value of the above function. We can
proceed in the two ways:
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1. Find x∗ through single variable optimization and then substitute.

dy

dx
= −2x+ a = 0

x∗ =
a

2

y∗ = −
³a
2

´2
+ a

³a
2

´
=

a2

4
dy∗

da
=

a

2
= x∗

2. Find the derivative using the envelope theorem:

y∗ = − (x∗)2 + ax∗

∂y

∂a

¯̄̄̄
x=x∗

= x∗ =
dy∗

da

5.1 Visual Explanation of the Envelope Theorem

Remember that y = −x2 + ax and y∗ = f(a, x∗(a)) = a2

4

a1

a2

a3

a4

x

y

y*

Note: Envelope Theorem is a linear approximation and hence holds in an ”envelope”
surrounding x∗(a).

It is called Envelope Theorem because we are evaluating the upper envelope of a
function.
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a1 a2 a3 a

y*

y*(a3)

y*(a2)

y*(a1)

dy*/da

The function drawn in this graph is such that its derivative at each point is

∂y∗

∂a
= x∗(a)

Remember: Envelope Theorem is multi-variate

y∗ = f [x∗1(a), x
∗
2(a), ..., x

∗
n(a); a]

dy∗

da
=

∂f

∂x1

∂x1
∂a

+ ...+
∂f

∂xn

∂xn
∂a| {z }

=0

+
∂f

∂a

dy∗

da
=

∂f

∂a

6 Constrained Maximization

Most maximization problems in economics are subject to constraints:

• maximize utility subject to budget constraint

• maximize social welfare subject to a resource constraint

• maximize profits subject to a technological constraint

The tool for maximizing constrained functions is the Lagrangian Method.
This a ”trick” that turns out to have very useful economic content.
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6.1 Lagrangian Method

Problem:

max y = f(x1, x2, ..., xn)

s.t. g(x1, x2, ..., xn) = 0

Setup:

L = f(x1, x2, ..., xn) + λg(x1, x2, ..., xn)

FOC’s

∂L

∂x1
= f1 + λg1 = 0

...
∂L

∂xn
= fn + λgn = 0

∂L

∂λ
= g = 0

This way we obtain as many equations as unknowns, since we introduced another
unknown, λ.

One solves simultaneously for x∗1, x
∗
2, ..., x

∗
n and λ.

λ has a special interpretation that we will discuss.

6.2 Example: Optimal fence dimensions

Given a fencing perimeter of length p how do we maximize the fenced area (provided
that the area must have a rectangular shape)?

So the problem can be summarized as follows:

max xy

s.t. 2x+ 2y = p

The Lagrangian for this problem is:

L = xy + λ(p− 2x− 2y)
∂L

∂x
= y − 2λ = 0

∂L

∂x
= x− 2λ = 0

∂L

∂λ
= p− 2x− 2y = 0

y

2
=

x

2
= λ

x = y =
p

4

λ =
p

8
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• We can conclude that the optimal fence is square (x = y).

• What is the interpretation of λ = p
8?

Observe that:
f1
−g1

=
f2
−g2

= λ

where f1 is the marginal gain to the lagrangian from adding one more unit of x and
g1 is the marginal cost of adding more x in terms of tightening the constraint and hence
reducing feasible y.

This ratio, λ, is called the ”shadow price” of the constraint.
λ is, in other words, the opportunity cost of the constraint at the margin expressed

in units of the maximand. It is the gain in terms of maximand obtained by relaxing the
constraint by one unit.

In our example λ tells us the increase in area we can obtain by increasing the size of
the perimeter by one unit.

λ = p
8 implies that relaxing the constraint that 2x+ 2y = p by one unit would allow

us to increase the maximand area by p
8 .

Let’s check this:
Let p = 40 ⇒ x = y = 10, A = 100
Now let p = 41 ⇒ x = y = 10.25, A = 105.06 which confirms that ∆A = 5.06 ≈ 40

8
The multiplier λ is quite close to the actual change in A for a one-unit change in the

constraint (and it would be exactly correct for a small enough change in the perimeter).

6.3 Example

max U = x
1
2 y

1
2

s.t. x+ y = 4

L = x
1
2 y

1
2 + λ (4− x− y)

∂L

∂x
=

1

2
x−

1
2 y

1
2 − λ = 0

∂L

∂y
=

1

2
x
1
2 y−

1
2 − λ = 0

∂L

∂λ
= 4− x− y = 0

x = y = 2, λ =
1

2

Let’s just check the multiplier’s implication:

f(x, y, 4) = 2
1
2 2

1
2 = 2

f(x, y, 5) = 2.5
1
2 2.5

1
2 = 2.5

∆f =
1

2
= λ
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6.4 Envelope Theorem for Constrained Problems

Let x∗(a) denote the solution to the following problem:

max y = f(x)

s.t. g(x; a) = 0

Let λ be the lagrange multiplier for the constraint in this problem.
Then:

d

da
f(x∗(a))| {z }

Total derivative of
the original function f

=
∂

∂a
L(x∗(a), λ(a), a)| {z }

Partial derivative
of Lagrangian

Why is this true?
L = f(x) + λg(x; a)

L (x∗, y∗, a) = f (x∗) + λ∗0

Because at x∗(a) constrained function is already maximized w.r.t. each xi so:P
i

∂f(x∗(a), a)

∂xi

∂x∗i
∂a

= 0

The only non-zero partial derivative is

∂L

∂a
= λ

∂g

∂a

This is much more obvious than it looks. Consider our previous problem:

max x
1
2 y

1
2

s.t. x+ y = 4

We found:
x∗ = y∗ = 2, λ∗ =

1

2

What is:

1. ∂f(x∗(a),y∗(a),a)
∂x∗ ?

2. ∂f(x∗(a),y∗(a),a)
∂y∗ ?

3. ∂f(x∗(a),y∗(a),a)
∂a ?
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7 Duality

Every primal maximization problem subject to a constraint has a corresponding dual
problem that minimizes the constrained function subject to the original objective func-
tion being equal to its optimal value in the original problem.

Primal:

max z = f(x, y)

s.t. x+ y = k

z∗ = f(x∗, y∗)

Dual:

min k = x+ y

s.t. f(x, y) = z∗

k∗ = k

The two problems will yield the same optimal values:

x∗P = x∗D
y∗P = y∗D
z∗P = z∗D

where P stands for primal and D stands for dual.

7.1 Example

Primal problem:

max z = x
1
2 y

1
2

s.t. x+ y = 4

L = x
1
2 y

1
2 + λ(4− x− y)

x∗ = y∗ = 2, λ∗ =
1

2
, z∗ = 2

Dual problem:

min k = x+ y

s.t. 2 = x
1
2 y

1
2

LD = x+ y + λD(2− x
1
2 y

1
2 )

x∗D = y∗D = 2, λ∗D = 2, z
∗ = 2, k = 4

Notice the value of the multipliers in the two problems.
Recall that in the primal problem:
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λP = −
fi
gi

In the dual problem we invert the two functions therefore the multiplier will be:

λD = −
gi
fi

Therefore:

λP =
1

λD

Why should we care about duality?

• cost minimization is the dual problem of profit maximization

• expenditure minimization is the dual problem of utility maximization

We will be relying on these duality relationships all semester. Furthermore the dual
problem often has useful economic interpretation and so it may be more informative to
solve and interpret than the primal problem.
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