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Abstract

We consider an online learning scenario in which the learner can make
predictions on the basis of a fixed set of experts. The performance
of each expert may change over time in a manner unknown to the
learner. We formulate a class of universal learning algorithms for this
problem by expressing them as simple Bayesian algorithms operating on
models analogous to Hidden Markov Models (HMMs). We derive a new
performance bound for such algorithms which is considerably simpler
than existing bounds. The bound provides the basis for learning the
rate at which the identity of the optimal expert switches over time.
We find an analytic expression for the a priori resolution at which we
need to learn the rate parameter. We extend our scalar switching-rate
result to models of the switching-rate that are governed by a matrix of
parameters, i.e. arbitrary homogeneous HMMs. We apply and examine
our algorithm in the context of the problem of energy management in
wireless networks. We analyze the new results in the framework of
Information Theory.
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Chapter 1

Introduction

1.1 Problem Overview

Online Learning refers to a problem in Machine Learning in which
training examples are only received one at a time, and the learner
must make a prediction at each time-step. We consider a problem
framework in which the learner knows nothing about the generation of
the observations, i.e. the learner is not given any process statistics for
the observation sequence, let alone any stationarity information. Thus
there are no statistical assumptions that the learner can safely make
about the observation sequence; observations could even be generated
online by an adaptive adversary. It is important to differentiate this
framework from some other solution techniques referred to as “online,”
in which the learner has access to the data in batch form, but chooses to
process examples sequentially, for performance gains or due to resource
constraints. Here the limitation of viewing data sequentially is part of
the problem, as is the requirement that the learner make a prediction
on each example, and seek to minimize cumulative prediction loss over
the examples seen.

Since no statistical assumptions can be made in advance, a key
problem is to be able to adapt to the potentially non-stationary nature
of the observation sequence. It may be possible to model the sequence
as being non-stationary due to occasional switches between different
stationary processes that in turn govern the observations. Thus the
ability to shift emphasis and resources from one prediction method, or
“expert,” to another, in response to such changes in the observations,
would clearly be valuable in many applications, from financial portfolio
management to energy management in wireless networks.
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More concretely, we consider here an online learning scenario in
which the learner can make predictions on the basis of a fixed set of ex-
perts. The learner does not know the mechanisms by which the experts
arrive at their predictions, but is able to observe the losses incurred by
the experts on each new observation, where loss is a deterministic func-
tion of a prediction, and the true observation. At each learning iteration
t, the learner observes the predictions of the experts, a1,t, . . . , an,t, and
then must make its own prediction ŷt. Then the learner observes the
true observation value, yt, and can update its model. It can compute
a loss function, L(· , yt) on it’s own prediction and on the predictions
of each of the experts. The learner’s goal is to minimize its cumulative
loss over the learning iterations.

1.1.1 Possible Approaches

In the typical online learning framework of the type we consider, in a
classification problem for example, the learner can gain information on
the prediction accuracy of its current model, by predicting the label
of the incoming example, before observing the true label. Then it
can update its model in light of the prediction error incurred on that
example. The problem becomes how the learner ought to represent
and update its model, in order to minimize prediction error over time,
subject to limits on computational resources such as access to examples
only one at a time, and not being allowed to store all previously seen
examples.

In the framework we have described, no sampling assumptions can
be made about the sequence to be predicted, and thus the design of
algorithms has to be guided by relative performance measures. For ex-
ample, we can aim to do as well as the best method chosen in hindsight,
where hindsight refers to full knowledge of the sequence to be predicted.
The analysis of algorithms is therefore focused on establishing bounds
on the regret, or the difference between the cumulative loss of the al-
gorithm and the loss of the best method in the same class, chosen in
hindsight. Note that the observation sequences that would give rise to
the maximal regret for an algorithm are not unpredictable (quite the
opposite). Designing algorithms on the basis of optimizing worst-case
regret can therefore be useful in practice. Other relative performance
measures can be constructed by comparing across systematic variations
in the sequence [Foster and Vohra, 1999].

Previous work has taken the following approaches to this learning
problem. A simple learner might try to quickly identify a single best
expert to rely on throughout the prediction task [Littlestone and War-
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muth, 1989]. Such predictions are suboptimal when we can, perhaps
with hindsight, identify segments in the observation sequence where
a different expert consistently outperfoms others. When considering
switches from one expert to another in response to the changes in the
observation sequence [Herbster and Warmuth, 1998], the learner has to
make some assumptions about the level of non-stationarity expected
in the observations. This can be done, for example, by setting the
rate at which switches are expected to occur between such segments of
observations.

In previous work, this switching-rate parameter had to be set a pri-
ori. However, any fixed setting of the rate parameter (such as zero
which corresponds to finding a single best expert) is liable to lead to
poor predictions when little or no prior knowledge is available about the
process governing the observations. The learner could reap substantial
gains by adjusting the expected switching-rate on the basis of the ob-
servations. Thus we seek to better model the possible non-stationarity
of the observation sequence by learning its switching dynamics online.

1.2 Related Work

1.2.1 Online Learning

We have outlined the type of online learning problem we are concerned
with. Within this framework, Littlestone and Warmuth proved relative
loss bounds for algorithms that have access to a fixed set of experts, and
attempt to do as well as the best expert chosen with hindsight [1989].
Herbster and Warmuth extended this work to algorithms whose cumu-
lative loss can be bounded relative to the loss of the best k-partitioning
of the sequence, where a partitioning defines segment boundaries and
maps segments to experts [1998]. The bound on the learner’s regret is
expressed in terms of the match between the actual switching-rate (or
the best in hindsight) and the rate at which the learner assumes that
the switching occurs. Similar algorithms, also with relative loss guar-
antees, have been developed for adaptive game playing [Freund and
Schapire, 1999], online portfolio management [Helmbold et al., 1996],
paging [Blum et al., 1999], and the k-armed bandit problem [Auer et
al., 1995].
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1.2.2 Information Theory

Coding

Coding theory is a principled way of establishing and analyzing limits
on the compressibility of information, which we consider due to the
duality between prediction and compression [Feder et al., 1992]. Feder
et al. showed that, in the upper and lower bounds, the redundancy
of a sequence is equivalent to its predictability, and conversely, incom-
pressibility is equivalent to unpredictability [1992]. We consider here
results which pertain to instantanous codes, i.e. coding that can be
done sequentially, in regards to our focus on online learning.

Universal Source Coding refers to the problem of being able to code
all input sources that are i.i.d. and have entropy below a certain rate,
with a single instantanous coding scheme, and achieve arbitrarily small
probability of error (asymptotically with increasing block size) [Cover
and Thomas, 1991; Rissanen, 1984]. In order to achieve universal source
coding, a larger block size is needed to ensure good performance on all
the input sources considered, than would be needed with knowledge of
the true input source. This is a different problem framework than ours
however, as our problem does not provide limitations on the observation
process, such as bounded entropy, or stationarity assumptions.

Feder and Merhav give a Hierarchical Universal Coding algorithm,
which at first seems similar to the hierarchical learning algorithm we
introduce in Chapter 2, but the problem we solve is different. The HUC
algorithm can achieve the minimal redundancy, i.e. the channel capac-
ity, when the encoder knows that the active class, i.e. the true input
source, must fall into a known set of classes [1996]. In this framework,
the set of possible channels is known, as well as the one-to-one mapping
from source to channel. In our framework however, the learner is not
given the information that the observed source must belong to a known
set of classes.

Universal Prediction

Feder et al. extend the notion of universal source coding to universal
prediction of binary sequences [1992]. This notion of universality is
stronger however, in that the input sequence is arbitrary, and optimal-
ity is judged by minimizing regeret with respect to the best predictor
in a given class, computed in hindsight. They derive a universal predic-
tion algorithm from an incremental, variable-rate coding algorithm due
to Ziv and Lempel [1978], and show that it asymptotically attains the
minimum error of any finite-state predictor. The universal framework
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considered by [Littlestone and Warmuth, 1989; Haussler et al., 1998;
Herbster and Warmuth, 1998] is this one, but with an attempt to pro-
vide bounds that hold for finite sequence length, as opposed to asymp-
totically, and where the comparison class of predictors is finite [Haussler
et al., 1998].

1.2.3 Stochastic Complexity

Another area of related work is the notion of stochastic complexity [Ris-
sanen, 1986; 1989]. Rissanen shows that optimal prediction is possible
with the model that is formed by computing the stochastic complexity
of the sequence to be learned. The stochastic complexity of a sequence
is defined as its complexity in relation to a certain class of probabilistic
models. Formally, that value is the “fewest number of binary digits
with which the data can be encoded,” by using that class of models
[1986]. In this framework, there are no given statistical assumptions on
the data generation process. However to analyze the stochastic com-
plexity of a sequence, specifically to upper bound it with respect to
a class of probabilistic models, such assumptions are needed. This is
not the case in the analysis done in [Littlestone and Warmuth, 1989;
Herbster and Warmuth, 1998], and in this work, in which upper bound-
ing the regret of online learning algorithms, with respect to a class of
prediction models, does not require any assumptions about the obser-
vation sequence.

1.3 Our Approach

We consider learning algorithms of the type from [Herbster and War-
muth, 1998; Littlestone and Warmuth, 1989] which rely on a collec-
tion of experts. We re-derive these online learning algorithms from the
point of view of simple Bayesian prediction methods operating on mod-
els similar to HMMs, where the hidden state dynamics corresponds to
a learner’s model of switching between experts or segments in the se-
quence. This switching-rate characterizes how quickly the correspond-
ing learner can respond to changes. Existing relative loss bounds are
not formulated in such a way as to provide reasonable guarantees for
such algorithms, and specifically to learn the parameter controlling the
switching-rate at the appropriate resolution. We derive bounds on the
regret of such algorithms that are considerably simpler than previous
results, and whose form facilitates such guarantees. We introduce a hi-
erarchical algorithm for updating the switching-rate parameter, based
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on the observation sequence, while performing the learning task. Us-
ing the new performance bound, we derive an analytic form for the
computation of the optimal resolution at which to learn the switching-
rate parameter, which can be computed a priori, independent of the
process to be observed. We then generalize the relative loss bound to
models that allow a matrix of parameters to govern the switching-rate,
as opposed to a single scalar.
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Chapter 2

Approach and Analysis

Our approach to the problem of better modeling non-stationary se-
quences, by learning their switching-rates online, starts with deriv-
ing existing online learning algorithms [Herbster and Warmuth, 1998;
Littlestone and Warmuth, 1989], but starting from a different view-
point than previously in the literature. These algorithms can be seen
as simple Bayesian estimation algorithms operating on HMM models,
in which the hidden states correspond to the set of experts, and the
observations relate to expert predictions. Thus the state transition
probabilities in the HMM model are the parameters governing the rate
of switching from favoring one expert as the current best predictor of
observations, to favoring another expert. We will re-derive existing
algorithms to show that the updates on the weights of each expert
are analogous to performing Bayesian updates of an appropriately de-
fined HMM. In Section 2.1 we will specify the form of HMM for which
performing such Bayesian updates yields existing online learning algo-
rithms.

2.1 Deriving Online Learning Algorithms

from HMMs

We consider here Bayesian algorithms for combining expert opinions in
non-stationary environments. As introduced in Chapter 1, the learner
has access to n experts, a1, . . . , an. Each expert makes a prediction
at each time-step over a finite (known) time period t = 1, . . . , T . We
denote the ith expert at time t as ai,t to suppress any details about
how the experts arrive at their predictions and what information is
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available to facilitate the predictions. These details may vary from one
expert to another and may change over time. From the point of view
of deriving the combination method we can think of the experts as
making probabilistic predictions of the form

P (yt|ai,t) = P (yt|ai, y1, . . . , yt−1) (2.1)

where yt is the observation at time t. This form is akin to specifying
emission probabilities in a generalized HMM.

It is important to note that, throughout this work, the form of
graphical model that we refer to is more general than a typical HMM,
for which the term is standardly used. In our model, we allow the
current observation to depend on past observations, not just hidden
state. It is a conditional Markov model in that conditioning on the
observations induces a Markov distribution over the hidden states. For
the sake of simplifying terminology however, we will continually use the
term “HMM” to refer to our model class.

As described in Chapter 1, after making its prediction, the learner
receives the true observation, yt, and can then apply a loss function
L to its prediction and the experts’ predictions, where L measures the
prediction loss given the true observation. Since the learner does not
know the mechanisms by which the experts arrive at their predictions,
it ought to exploit the information obtained by observing the losses of
the experts. By defining the log-likelihood of the observation given the
expert as the negative of the expert’s prediction loss on that observa-
tion, the learner can then perform Bayesian updates of its distribution
over experts. Bayesian updating is the optimal way to update a sta-
tistical model, assuming the predictions were generated from such a
model. In cases where this assumption need not hold, Bayesian updat-
ing still has good relative performance guarantees. It entails updating
the model parameters so as to minimize the negative log-likelihood of
the observations given the model [Berger, 1985].

Thus the learner should update an HMM in which the hidden state
is the identity of the expert that is the best predictor of the current
observation, and the emission probabilities are defined as

P (yt|ai,t) = e−L(i,t) (2.2)

where L(i, t) is the loss of expert i at time t. This allows the interpre-
tation of the prediction loss of expert i at time t as

L(i, t) = − log P (yt|ai,t) (2.3)

where “log” refers to the natural logarithm throughout this work.
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Such a model makes predictions by conditioning over the experts’
predictions, subject to the distribution pt(i) = P (i|y1, . . . , yt−1), its
current weighting of the experts, which is updated as forward proba-
bilities in an HMM (which we will show below). Then the prediction
loss of such an algorithm is naturally given by

L(pt, t) = − log
n∑

i=1

pt(i)P (yt|ai,t) (2.4)

= − log
n∑

i=1

pt(i)e−L(i,t) (2.5)

This general form need not only pertain to models in which the
prediction function is the weighted mean of the experts’ predictions,
and prediction loss is is expressible as log-loss, i.e. the negative log-
likelihood mentioned above. As shown in [Haussler et al., 1998; Herb-
ster and Warmuth, 1998], by appropriate setting of the constants, c
and η the condition

L(pred(�a, t), t) ≤ −c log
n∑

i=1

pt(i) e−ηL(i,t) (2.6)

(where �a is the set of expert predictions and pred is the algorithm’s
prediction function), holds as an upper bound for many possible joint
choices of loss function and prediction function. Since all these other
pairings are related, through appropriate choices of c and η, to using the
log-loss function and the weighted mean prediction function, in which
case c = η = 1, we do not include these constants in our exposition.

For the purpose of deriving these algorithms, we make the following
assumptions, although they are not required for our new relative loss
bound. We assume that conditioned on all the past observations, the
experts’ current predictions are independent of one another. Addition-
ally, we assume that experts make predictions causally, i.e. they do
not have access to future observations at the time they predict. Now
to evaluate pt(i) we actually only need access to the history of expert
losses L(i, τ), i = 1, . . . , n, τ = 1, . . . , t− 1. For example, in the case of
finding the best single expert, we would update pt(i) according to

pt(i) =
1
Zt

pt−1(i)P (yt−1|ai,t−1) (2.7)

=
1
Zt

pt−1(i) e−L(i,t−1) (2.8)
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where Zt normalizes the distribution. This is consistent with Bayesian
estimation, with the identity of the best expert as a discrete parame-
ter. These updates are analogous to the weight updates of the online
learning algorithm Static-expert, due to [Littlestone and Warmuth,
1989].

For a more general model, we can allow the identity of the best
expert to change over time. We focus here on a simple Markov model
of the switching between experts, P (it|it−1, α), where α denotes the
parameters of the assumed transition model. For now, the parameter
vector α can be viewed as fixed. The updating of the weighting over
the experts is in this case analogous to computing forward probabilities
in an HMM:

pt(i) =
1
Zt

n∑
j=1

pt−1(j)P (yt−1|aj,t−1)P (i|j, α) (2.9)

=
1
Zt

n∑
j=1

pt−1(j) e−L(j,t−1) P (i|j, α) (2.10)

where Zt normalizes the distribution. We assume that the weighting is
initially uniform p1(i) = 1/n, since the learner has no knowledge about
the experts, so introducing an arbitrary preference for a given expert
could hurt performance if that expert turns out to be a poor predictor.

When the Markov dynamics consists of only two types of transitions,
a self transition with probability 1 − α, and a transition to another
expert with probability α/(n − 1), for a scalar 0 ≤ α ≤ 1, the update
equation reduces to the Fixed-share algorithm, due to [Herbster and
Warmuth, 1998]. We will restrict ourselves in this chapter to this simple
fixed share Markov model although our analysis extends directly to any
Markov (Chapter 3) and higher order models of switching.

The cumulative loss of such an online learning algorithm is the loss
incurred over a time horizen of T training iterations,

LT (α) =
T∑

t=1

L(pt, t) (2.11)

We use this quantity as a performance metric for these types of algo-
rithms.

2.1.1 Existing Relative Loss Bounds

Having specified the existing online learning algorithms, we can now
state the existing relative loss bounds of such algorithms.
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For the Static-expert algorithm, the existing relative loss bound
is given by the following theorem.

Theorem 2.1.1 [Herbster and Warmuth, 1998] Let LT (alg) be the
cumulative loss of the Static-expert algorithm on an arbitrary se-
quence of T observations, and let LT (a∗

i ) be the cumulative loss of the
best expert (in the given set of experts) for that particular sequence,
chosen in hindsight. Then

LT (alg) ≤ LT (a∗
i ) + log n (2.12)

Proof This is proven in [Herbster and Warmuth, 1998], but here we
use our notation. When the algorithm is instantiated with a pairing of
a loss function and prediction function that satisfy the condition (2.6),
then

L(pt, t) ≤ − log
n∑

i=1

pt(i) e−L(i,t) (2.13)

= − log
n∑

i=1

pt(i)P (yt|ai, y1, . . . , yt−1)

(2.14)

Thus the cumulative loss of the algorithm over the sequence of T ob-
servations can be expanded as follows

LT (alg) =
T∑

t=1

L(pt, t) ≤ −
T∑

t=1

log
n∑

i=1

pt(i)P (yt|ai, y1, . . . , yt−1)

(2.15)

= −
T∑

t=1

log P (yt|y1, . . . , yt−1) (2.16)

= − log p1(y1)
T∏

t=2

P (yt|y1, . . . , yt−1) (2.17)

= − log P (y1, . . . , yT ) (2.18)

We can compute the probability of the joint observation sequence by
summing over all hidden states, the probability of the observation se-
quence given that hidden state at every time-step, times the probability
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of being in that hidden state at every time-step.

= − log
n∑

i=1

P (y1, . . . , yT |ai,1, . . . , ai,T )P (ai,1, . . . , ai,T )

(2.19)

In the Static-expert algorithm (i.e. updates of the form (2.8)), no
switches between hidden states are modeled. Thus we can expand as
follows

= − log
n∑

i=1

p1(i)P (y1|ai,1)
T∏

t=2

P (yt|ai, y1, . . . , yt−1) (2.20)

= − log
1
n

n∑
i=1

e−L(i,1)
T∏

t=2

e−L(i,t) (2.21)

= − log
1
n

n∑
i=1

e−
∑ T

t=1 L(i,t) (2.22)

Since − log(·) decreases monotonically, we can upper bound this by the
same function of any of the terms in the summation, yielding

LT (alg) ≤ − log
1
n

e−
∑ T

t=1 L(i,t) = LT (ai) + log n (2.23)

Since this holds for all i, this yields the result, by choosing to com-
pare with the loss of a∗

i , the cumulative loss minimizing expert.

�

For the Fixed-share(α) algorithm, the existing relative loss bound
is given by the following theorem.

Theorem 2.1.2 [Herbster and Warmuth, 1998] Let LT (α) be the cu-
mulative loss of the Fixed-share algorithm on an arbitrary sequence
of T observations, where 0 ≤ α ≤ 1, and for any k < T , let LT (best
k-partitioning) be the cumulative loss of the best segmentation of that
sequence into k segments and mapping of each of the segments to a
member of the given expert set, computed in hindsight. Then

LT (α) ≤ LT (best k-partitioning) + (T − 1)[H(α∗) + D(α∗||α)] +
k log(n − 1) + log n

(2.24)

where α∗ = k/(T − 1) is the hindsight-optimal (cumulative loss min-
imizing) setting of switching-rate parameter, α, given k, and where
D(α∗‖α) = α∗ log α∗

α + (1 − α∗) log 1−α∗
1−α .
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We refer the reader to [Herbster and Warmuth, 1998] for the proof.

The existing relative loss bound (Theorem 2.1.1) for the Fixed-share
algorithm is not formulated in a way that can provide sufficiently strong
guarantees for our purposes. Specifically the value of the bound does
not go to zero when α = α∗, which makes it inaccurate for measur-
ing the cost of not using α∗, when only discrete values of α are tested
in learning that parameter online. Thus we cannot use the existing
bound to obtain tight guarantees for our computation of the optimal
resolution at which to learn α (Section 2.5).

For the goal of designing an algorithm that can learn the switching-
rate online, a bound based on the comparison class of Fixed-share(α)
algorithms will provide stronger guarantees than the existing bound
which compares to the loss of the best k-partitioning, a quantity that
need not be attainable by any Fixed-share(α) algorithm.

2.2 A New Relative Loss Bound

We will provide here a substantially simpler bound, and one whose form
is based on the comparison class of all Fixed-share(α) algorithms.

Theorem 1 Let LT (α) be the cumulative loss of the Fixed-share al-
gorithm on an arbitrary sequence of T observations, where 0 ≤ α ≤ 1,
and let LT (α∗) = minα LT (α) be the cumulative loss of the best such
algorithm chosen in hindsight for the same sequence. Then

LT (α) ≤ LT (α∗) + (T − 1)D(α∗‖α) (2.25)

where D(α∗‖α) = α∗ log α∗
α + (1 − α∗) log 1−α∗

1−α .

Proof As we show in Chapter 3, this is a direct result of Theorem
3, the Main Theorem for arbitrary, homogeneous HMMs.

Unlike earlier results, this worst-case bound vanishes when α = α∗

and does not depend directly on the number of experts. The depen-
dence on n may appear indirectly through α∗, however. In comparison
with the existing bound [Herbster and Warmuth, 1998], note that the
cumulative loss of the best k-partitioning is less than the cumulative
loss of Fixed-share(α∗), since for a given sequence, the loss of the
best k-partitioning may not be attainable by any Fixed-share(α) al-
gorithm. Thus the difference in comparison class explains why the
existing bound does not go to zero for α = α∗. Note also that, in

17



the new bound, while the regret appears proportional to T , this depen-
dence vanishes for any reasonable learning algorithm that is guaranteed
to find α = α∗ + O(1/

√
T ), as we will show in Section 2.5.

The bound holds for a more general class of algorithms than the
ones we have described above. Some of our assumptions in deriving
the algorithms, namely that expert predictions are causal, and condi-
tionally independant across experts, given the previous observations,
are not required for the bound. In fact, the bound does not require any
assumptions at all about the sequence of observations, nor the experts.
The bound can be generalized to arbitrary transition probabilities in
the HMM interpretation, which we will show in Chapter 3, and give
the Main Theorem and proof in the general form.

2.2.1 Information Theoretic Interpretation

The form of the new bound (Theorem 1) is more intuitive than the ex-
isting bound for such algorithms (Theorem 2.1.1). This difference can
be explained in an information theoretic framework, as follows. First
note that it differs from the form of Theorem 2.1.1, by no longer includ-
ing H(α∗) in the term that scales with T . The information theoretic
explanation in [Herbster and Warmuth, 1998], for the form of their
bound, is that it is the bound on the expected optimal code length
for coding whether a shift between which expert is currently best will
occur at any time-step, but by coding with α as the probability of a
shift occuring, as opposed to α∗, the true probability. This formula,
the bound on the expected optimal codelength when coding with α, if
the true probability is actually α∗, is of the form:

H(α∗) + D(α∗||α) (2.26)

[Cover and Thomas, 1991]. Our new bound just contains the second
quantity in the term that scales with T . We use a related analysis to
the information theoretic one used in [Herbster and Warmuth, 1998],
but the important difference is that even by coding the shifts with α∗,
one has to pay H(α∗) in the expected optimal codelength. So what
our bound actually formulates is the difference between the expected
optimal codelength when coding with α from that when coding with
α∗. Thus the H(α∗) terms cancel, and we are left with D(α∗||α). This
also explains why we could not obtain strong guarantees by using the
existing bound in solving for the optimal search resolution for learning
α. Since the dependence on α is the same in the two bounds, optimizing
their bound to solve for the resolution would give the same resolution
as ours, but the bound on the regret from learning α at that resolution
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would be much looser than ours (Section 2.4). This is because even
at the optimal α = α∗, there is always the additional H(α∗) term in
their bound, since their bound was formulated with respect to the best
k-partitioning.

2.3 Algorithm Learn-α

We now give an algorithm to learn the switching-rate simultaneously
with updating the weighting over the experts. Since the cumulative loss
LT (α) of each Fixed-share algorithm running with switching param-
eter α can be interpreted as a negative log-probability, we can evaluate
the posterior distribution over the switching-rate according to

pt(α) = P (α|y1, . . . , yt−1) ∝ e−Lt−1(α) (2.27)

assuming a uniform prior over α ∈ [0, 1]. Note that, as before, we
use pt(α) as a predictive weighting and thus it does not include the
observation at the same time point. We can view this algorithm as
finding the single best “α-expert,” where the collection of α-experts
is given by Fixed-share algorithms running with different switching-
rates, α.

Allocation of Computational Resources

As mentioned in Chapter 1, the online learning framework derives from
certain limitations on resources: access to a data-set only one sample
at a time, and a memory limit preventing the learner from storing all
previously viewed examples. Additionally, one can analyze solutions
to such problems based on computation time, and memory usage. In
light of limited computation time and memory, we will consider a finite
resolution version of this algorithm, allowing only m possible choices
for the switching-rate, αj = j/(m + 1), where j = 1, . . . , m. For a
sufficiently large m we expect to be able to find αj ≈ α∗, i.e., suffer
only a minimal additional loss due to not being able to represent the
hindsight optimal value.

Let pt,j(i) be the distribution over the α-experts, bj , defined by the
jth Fixed-share algorithm taking parameter α = αj , and let ptop

t (j)
be the top-level algorithm producing a weighting over these α-experts.
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The top level algorithm is given by

ptop
t (j) =

1
Zt

ptop
t−1(j)P (yt−1|bj,t−1) (2.28)

=
1
Zt

ptop
t−1(j)e

−L(j,t−1) (2.29)

=
1
Zt

ptop
t−1(j)

n∑
i=1

pt−1,j(i)P (yt−1|ai,t−1) (2.30)

where ptop
1 (j) = 1/m, p1,j(i) = 1/n, and pt,j(i) is updated according to

(2.10). The loss of the top-level algorithm per time-step is defined as

Ltop(ptop
t , t) = − log

m∑
j=1

ptop
t (j)e−L(pt,j ,t) (2.31)

= − log
m∑

j=1

n∑
i=1

ptop
t (j)pt,j(i)P (yt|ai,t)

(2.32)

as is appropriate for a hierarchical Bayesian method.

2.4 Hierarchical Relative Loss Bound

We can now derive a relative loss bound for the top-level algorithm.
The resulting bound can be used to find the optimal search resolution
for the switching-rate parameter by minimizing the overall loss.

The tradeoff in finding the optimal learning resolution, i.e. the op-
timal search resolution in the space of 0 ≤ α ≤ 1, is between 1) the
ability to identify the best Fixed-share expert, which degrades for
larger m, and 2) the ability to find αj whose loss is close to that of
α∗, the optimal α for that sequence, which improves for larger m. The
regret arising from having to consider a number of non-optimal values
of the parameter in the search comes from the relative loss bound asso-
ciated with tracking the best single expert, i.e. the relative loss bound
for the Static-expert algorithm. [Herbster and Warmuth, 1998; Lit-
tlestone and Warmuth, 1989]. From that bound (Theorem 2.1.1) we
see that this regret is simply log(m) in our context, since we are using
m α-experts.

Theorem 2 Let Ltop
T be the loss of the hierarchical Learn-α algorithm

for any sequence of T observations and any m ≥ 2 as the search res-
olution. Let LT (α∗) = minα LT (α) be the cumulative loss of the best
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Fixed-share algorithm chosen in hindsight for that sequence, and let
αj∗ be the best discrete choice (at resolution m) of the switching-rate
chosen in hindsight for that sequence. Then

Ltop
T ≤ LT (α∗) + log(m) + (T − 1)D(α∗||αj∗)

(2.33)

Proof The result follows directly from successive application of
the two relative loss bounds, the Static-Expert bound and our new
Fixed-share bound.

When running Learn-α(m), m possible values αj are tested. The
loss of the top-level algorithm, which updates its distribution over these
α-experts, or sub-algorithms running Fixed-share(αj), is updated via
the Static-Expert algorithm, and thus adheres to the relative loss
bound (Theorem 2.1.1)

Ltop
T ≤ LT (αj∗) + log(m) (2.34)

where LT (αj∗) is the loss of the cumulative loss minimizing
Fixed-share(αj) chosen in hindsight for the same sequence.

Now we replace the LT (αj∗) term with our new relative loss bound
(Theorem 1) for Fixed-share algorithms running with arbitrary set-
tings of the parameter α, yielding

Ltop
T ≤ LT (α∗) + log(m) + (T − 1)D(α∗||αj∗) (2.35)

�

2.5 Computing the Optimal Learning Res-

olution

Having introduced a new online learning algorithm, Learn-α, it is im-
portant to quantify its performance in regards to its computation time,
and memory usage. By solving for the optimal resolution at which to
learn the switching-rate parameter, we are able to specify how many
sub-algorithms need to be run in order to achieve near-optimal predic-
tion accuracy, for a given number of learning iterations.

Since the relative loss bound we attain from Section 2.4 is thus

Ltop
T − LT (α∗) ≤ log(m) + (T − 1)D(α∗||αj∗) (2.36)

in order to find the optimal resolution for learning α, we must solve for
m that minimizes the worst-case regret:

log(m) + (T − 1)D(α∗||αj∗) (2.37)
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To facilitate this optimization we can proceed to bound the relative
entropy term by using the fact that |α∗−αj∗ | ≤ 1

2(m+1) for the majority
of the range of α∗. This is because Learn-α tests αj values spaced at

1
(m+1) intervals along the range from zero to one, so (unless it is towards
the endpoints of the range) the farthest α∗ could be from some setting
of αj is half that interval, or 1

2(m+1) .

Lemma 2.5.1 For large m, the bound is

≤ log(m) + (T − 1)
1

m2
(2.38)

Proof We first note that in the original expression, in order for D(α∗||αj∗)
to be finite, αj∗ must being bounded away from zero and one, which
is actually the case, since Learn-α tests αj = j

(m+1) just on the range
j ∈ {1, . . . , m}.

Now define δ = |α∗ − αj∗ |. So δ ≤ 1
2(m+1) for almost all values

of α∗, except for α∗ in [0, 1
2(m+1) ), or (1 − 1

2(m+1) , 1], (ranges that are
smaller for larger m, but for which we can at least bound δ ≤ 1

(m+1)).
Now, in the case α∗ ≥ αj∗ , the relative entropy term is approximately

α∗ log
α∗

α∗ − δ
+ (1 − α∗) log

(1 − α∗)
(1 − α∗) + δ

(2.39)

Applying Jensen’s inequality, this is

≤ log
[
α∗ α∗

α∗ − δ
+ (1 − α∗)

(1 − α∗)
(1 − α∗) + δ

]
(2.40)

= log
[
1 +

δ2

(α∗ − δ)(1 − α∗ + δ)

]
(2.41)

Now using the upper bound on log, i.e. log x ≤ x − 1, we attain

log
[
1 +

δ2

(α∗ − δ)(1 − α∗ + δ)

]
≤ δ2

(α∗ − δ)(1 − α∗ + δ)
(2.42)

Note that this term will never have zero in the denominator. This
follows from αj∗ being bounded away from zero and one.

We can continue to upper bound this quantity by

δ2

(α∗ − δ)(1 − α∗ + δ)
≤ 4δ2 (2.43)

where the upper bound comes from the maximizing α∗ = 1
2 + δ. By

symmetry, the approximation bound still holds for the case α∗ ≤ αj∗ ,
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where the right hand side of Equation 2.43 comes from the maximizing
α∗ = 1

2 − δ.
Now plugging into the regret bound (2.37) yields

log(m) + (T − 1)D(α∗||αj∗) ≤ log(m) + (T − 1) 4δ2 (2.44)

≤ log(m) + (T − 1)
4

4(m + 1)2

(2.45)

≤ log(m) + (T − 1)
1

m2
(2.46)

for almost all values of α∗. (Note that for α∗ in the small intervals
mentioned above, using the same analysis but the looser bound on δ,
the loss bound is thus ≤ log(m) + (T − 1) 4

m2 ).

�

We can now minimize with respect to m, yielding m∗ = O(
√

T ) as the
optimal resolution at which to learn α.

2.5.1 Interpretation of Optimal Resolution

Having solved for the optimal learning resolution allows us to address
the resource allocation issues mentioned above, as the resolution tells
us how many sub-algorithms must be run in parallel. This quantity
scales with the number of training iterations for which one would like
to judge the algorithm’s performance, but it does so sublinearly. An
additional benefit of our solution is that the resolution at which the
parameter needs to be learned is not affected by n, the number of
original experts.

We can now evaluate the value of the regret bound for our Learn-α
algorithm, at the optimizing m. Taking the upper bound shown in
Lemma 2.5.1 on our hierarchical loss bound (Theorem 2), we attain

Ltop
T ≤ LT (α∗) + log(m) + (T − 1)D(α∗||αj∗) (2.47)

≤ LT (α∗) + log(m) + (T − 1)
1

m2
(2.48)

This holds for all m, and thus plugging in the optimizing m∗ yields

Ltop
T ≤ LT (α∗) +

1
2

log(T ) + O(1) (2.49)

So the regret bound is

Ltop
T − LT (α∗) ≤ 1

2
log(T ) + O(1) (2.50)
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Thus we have shown an algorithm to learn α online, while performing
its original learning task, that can do almost as well as the hindsight-
optimal Fixed-share algorithm for that sequence, with regret upper
bounded by half the natural logarithm of the number of training exam-
ples. This is significant, because without knowledge of the observation
sequence, one does not know α∗ for that sequence, and thus there is no
justifiable way to set α for the Fixed-share algorithm, a priori.

We note that the accuracy corresponding to our optimal resolution,
i.e. 1√

T
, is the same as the asymptotic accuracy of estimating a pa-

rameter from a sequence of T i.i.d. observations of that parameter.
In the case of learning α, these observations correspond to whether
the identity of the current best expert switched from one time-step to
the next. So our resolution computation, based on worst-case regret
bounds for a learner with no prior knowledge about the observation
sequence, actually agrees with the learning resolution for a “typical”
sequence.

2.6 Stochastic Complexity Theoretic Anal-
ysis

We now compare our results with the notion of stochastic complexity
[Rissanen, 1986; 1989]. In the framework of the predictive Minimum
Description Length (MDL) criterion, Rissanen defines the stochastic
complexity of a sequence relative to a class of models as

C(�x) = min
k

{L(�x|k) + log∗(k) + c1} (2.51)

where the form is exactly as in the formula for “(semi) predictive
(stochastic) complexity” [1986], with a few symbols swapped for this ex-
position. Formally, in the stochastic complexity framework, L(�x|k) =
−

∑
t log fk,θ̂(t)(xt+1|�xt), where θ̂(t) is the current estimate of θ, the

parameter vector with k components, and fk,θ̂(t)(xt+1|�xt) is the prob-
ability of the (t+1)th datum, given the the previous observations, and
θ̂(t).

For such a metric, the upper bound is given by the following the-
orem, which we will quote from [Rissanen, 1986] with minor notation
changes.

Theorem 2.6.1 [Rissanen, 1986] Let the family of densities satisfy the
conditions for independence for each k and θ ∈ Ωk, namely, fk,θ(�x) =∏T

t=1 fk,θ(xt), and let fk,θ(xt) be three times continuously differentiable
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with respect to θ in the interior of a compact set Ωk. Further, let the
central limit theorem hold for some estimates θ̂(�x) of θ in the interior
points such that the first four moments of

√
T (θ̂(�x)−θ) converge. Then

C(�x) is optimal in that for all k and for all θ ∈ Ωk,

C(�x) ≤ −Ek,θ log fk,θ(�x) +
k

2
log T + o(log T ) (2.52)

where C(�x) is defined by Equation 2.51, and T is the length of the
sequence �x.

We refer the reader to [Rissanen, 1986] for the proof.

We compare this to the relative loss bound for algorithms of the
form Learn-α(m), evaluated at the optimizing m.

Ltop
T ≤ LT (α∗) +

1
2

log(T ) + O(1) (2.53)

Here we are considering sequences of length T , and models for which
there is only one parameter, α, so k = 1. In this case, the stochastic
complexity bound is

C(�x) ≤ −Eα log fα(�x) +
1
2

log T + o(log T ) (2.54)

where α is a scalar. This bound holds for all α, i.e. all predictive
models using one parameter, and all settings of that parameter.

The bounds are quite similar. LT (α∗) is not necessarily less than
−Eα log fα(�x), since the expectation is taken over all predictive mod-
els with one parameter, whereas LT (α∗) refers to the best model of
the type we specified in this chapter, HMMs with switching-rate α,
i.e. learners running Fixed-share(α). Our bound on the loss of
Learn-α(m∗) can be seen as an upper bound on the statistical com-
plexity of a sequence with respect to that class of models. For “typical”
sequences (assuming the switches are i.i.d.), our worst-case bound is
comparable to Rissanen’s bound.

In stating the stochastic complexity bound, Rissanen terms as “op-
timal,” prediction algorithms that adhere to it [1986], so in a prelimi-
nary comparison of the bounds, Learn-α(m∗) seems to be optimal in
the stochastic complexity theoretic framework. Additionally our bound
makes absolutely no assumptions about the sequence or α∗, whereas
the value of the stochastic complexity bound depends on the process
that generated the sequence.
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Chapter 3

Generalized Result

3.1 Generalized Framework

To better model a non-stationary observation sequence, a richer model
of the switching dynamics could increase the learner’s prediction ac-
curacy. So far we have treated models of the switching-rate of the
sequence that use a single parameter, α. We now consider learning
algorithms that use many parameters to model the switching dynamics
of the observation process. While the model is homogeneous with time,
we allow the transition probabilities to vary by hidden states. In the
view of the previous exposition, this corresponds to allowing different
switching-rates based on which expert the model currently believes to
be best. Thus we allow a matrix of parameters to govern the switching
dynamics between the hidden states, as opposed to a single scalar.

In the view of HMMs, this generalized bound now covers any gener-
alized HMM that is homogenous with time, yet has an arbitrary tran-
sition matrix. Thus by specifying such a transition matrix, an online
learning algorithm can be derived from Bayesion updates of such an
HMM, in the method we described in Chapter 2, and any such algo-
rithm is subject to the relative loss bound we present below. Here the
transition probabilities between hidden states are specified per hidden
state, as opposed to the simple scenario in Chapter 2. Thus we are ex-
tending our single parameter result to the multi-dimensional parameter
case.
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3.1.1 Preliminaries

We now consider an arbitrary homogeneous HMM with n hidden states,
a1, . . . , an, parameterized by Θ, an n×n matrix, where θij is the prob-
ability of transitioning from hidden state i to hidden state j from one
time interval to the next. Thus stated, this implies that

∑
j θij = 1, ∀i.

From such a model, we can derive an online learning algorithm that
is a generalization of the one derived in Section 2.1. To generalize the
Bayesian update step of the distribution over hidden states, now

pt(i) =
1
Zt

n∑
j=1

pt−1(j) e−L(j,t−1) P (i|j, θji) (3.1)

=
1
Zt

n∑
j=1

pt−1(j) e−L(j,t−1) θji (3.2)

where Zt normalizes the distribution, and p1(i) = 1
n . The loss func-

tion is specified as in Section 2.1, i.e. L(i, t) = − logP (yt|ai,t) =
− logP (yt|ai, y1, . . . , yt−1), as are the remaining algorithm preliminar-
ies.

3.2 Main Result for Arbitrary Transition
Matrices

We now state the generalized theorem.

Theorem 3 (Main Theorem) Let LT (Θ) be the cumulative loss of
an online learning algorithm of the type we proposed, (using Bayesian
updating of a homogeneous HMM), on an arbitrary sequence of observa-
tions, where 0 ≤ θij ≤ 1,

∑
j θij = 1, and let LT (Θ∗) = minΘ LT (Θ)

be the loss of the best such algorithm chosen in hindsight for the same
sequence. Then

LT (Θ) − LT (Θ∗) ≤ (T − 1)
∑

i

ρ∗i D(Θ∗
i ||Θi) (3.3)

≤ (T − 1)max
i

D(Θ∗
i ||Θi) (3.4)

where D(·||·) is the relative entropy measure between two discrete distri-
butions, D(Θ∗

i ||Θi) =
∑

j θ∗ij log
θ∗

ij

θij
, and ρ∗i is the posterior probability

of being in hidden state i, at any time-step but the final one, computed
in hindsight with the best such HMM for that sequence.

Proof Given in Appendix A.
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3.3 Derivation of Single Parameter Case

We can now derive a simple case in which the learner’s model describes
the switching dynamics with a single parameter α, via a particular func-
tion stated below. This is the case discussed in earlier chapters, that
yields the Fixed-share algorithm [Herbster and Warmuth, 1998], and
for which we stated Theorem 1, and designed the algorithm Learn-α.

Lemma 3.3.1 Theorem 3 (Main Theorem) implies Theorem 1 (Single
Parameter Case):

LT (α) − LT (α∗) ≤ (T − 1)D(α∗||α) (3.5)

Proof From Theorem 3, we have that

LT (Θ) − LT (Θ∗) ≤ (T − 1)
∑

i

ρ∗i D(Θ∗
i ||Θi) (3.6)

In the case we are considering, the distribution over hidden states is
the distribution maintained over the experts, and there are n experts.
We will now instantiate the parameters in Θ, for the special case we
are considering, i.e. HMM’s in which the transition probabilities do
not vary by expert (i.e. starting state), and are specified by

θij =
{

(1 − α) i = j
α

n−1 i 
= j
(3.7)

Substituting in these parameter settings, and the definition of relative
entropy, the bound becomes

LT (Θ) − LT (Θ∗) ≤ (T − 1)
n∑

i=1

ρ∗i
n∑

j=1

θ∗ij log
θ∗ij
θij

(3.8)

= (T − 1)
n∑

i=1

ρ∗i


θ∗ii log

θ∗ii
θii

+
n∑

j �=i

θ∗ij log
θ∗ij
θij


 (3.9)

= (T − 1)
n∑

i=1

ρ∗i


(1 − α∗) log

(1 − α∗)
(1 − α)

+
n∑

j �=i

α∗

n − 1
log

α∗
n−1

α
n−1




(3.10)

= (T − 1)
n∑

i=1

ρ∗i

[
(1 − α∗) log

(1 − α∗)
(1 − α)

+ α∗ log
α∗

α

]
(3.11)
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Within the brackets, we now have the expression for the relative entropy
between two Bernoulli variables, and so we continue to attain

= (T − 1)
n∑

i=1

ρ∗i D(α∗||α) (3.12)

= (T − 1)D(α∗||α)
n∑

i=1

ρ∗i (3.13)

We attain the final result, since the posterior distribution over states
sums to one, and noting that by definition of the transition probabilities
in this scenario, the parameter vector Θ can be fully instantiated by
instantiating the scalar α. Thus we attain the exact form of Theorem 1,
i.e.

LT (α) − LT (α∗) ≤ (T − 1)D(α∗||α) (3.14)

�

3.4 Implications

The bound we have given covers all online learning algorithms that can
be derived as Bayesian updates of any generalized HMM that is ho-
mogenous with time. To interpret the bound, note that if we are able
to compare with the loss of the best such model computed in hindsight,
the relative loss bound is just an average of the relative entropies be-
tween rows of the transition matrix of the algorithm and that of the
optimal such transition matrix, where the average is weighted by the
hindsight frequencies of being in each state. Note that if we are instan-
tiating the value of the bound, meaning we can compare with Θ∗, then
we can compute ρ∗ from Θ∗, approximately, with better accuracy for
larger T . Additionally, since a convex combination can always be up-
per bounded by its largest term, we note that the relative loss is upper
bounded by the largest value of D(Θ∗

i ||Θi), i.e. for the row, i, whose
distribution differs most between the algorithm’s transition matrix, and
the hindsight-optimal one. Thus, even without assuming large T , the
bound is feasible to compute.

The bound is tighter than previous relative loss bounds [Herbster
and Warmuth, 1998] on online learning algorithms that fall into the gen-
eral class that our bound covers. Moreover, unlike previous bounds, our
bound does not scale with the number of hidden states (or “experts”
under that interpretation). The states appear only in the convex com-
bination, which as explained above, is upper bounded by its largest
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term. Thus increasing the complexity of our model, by increasing the
number of hidden states, will not directly affect the loss bound.

It is now possible to interpret our bound just in terms of maximum
likelihood parameter estimation in generalized HMMs, as opposed to
the online learning framework. It is actually a result about the pre-
diction accuracy of HMM parameter estimation algorithms that do
sequential Bayesian updates (i.e. only viewing one observation at a
time), versus the prediction accuracy of such models when the param-
eter estimation is done by viewing the observations in batch. So if all
the observations are available, we can bound the regret for doing the
parameter estimation sequentially, i.e. in one pass through the data, as
opposed to the multiple passes required for the batch version of maxi-
mum likelihood parameter estimation in HMMs. This view highlights
the convenience of the bound’s lack of dependance on the number of
hidden states of the HMM.
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Chapter 4

Application to Wireless
Networks

4.1 Energy/Performance Tradeoff in IEEE

802.11

We applied the Learn-α algorithm to an open problem in computer
networks to demonstrate its improvement over existing online learn-
ing algorithms, and to validate our computation of the optimal learn-
ing resolution. The problem is that of managing the tradeoff between
energy consumption and performance in wireless nodes of the IEEE
802.11 standard [IEEE, 1999]. Since a node cannot receive packets
while asleep, yet maintaining the awake state drains energy, the exist-
ing protocol uses a fixed polling time at which a node should wake from
the sleep state and poll its neighbors for buffered packets. Polling at
fixed intervals, however, does not respond optimally to current network
activity. We applied our algorithm to learn the polling time online, and
to allow the polling time to change with time, in response to changes
in network activity.

Such a problem is clearly an appropriate application for an online
learning algorithm, such as the Fixed-share algorithm due to [Herb-
ster and Warmuth, 1998]. Additionally however, this problem would
benefit from application of the Learn-α algorithm. Since we are con-
cerned with wireless, mobile nodes, there is no principled way to set the
switching-rate parameter a priori, since network activity varies not only
over time, but across location, and the location of the mobile node is
allowed to change. We can therefore expect an additional benefit from
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learning the switching-rate.

4.2 Previous Work

Previous work aimed at improving upon the IEEE standard includes
Krashinsky and Balakrishnan’s [Krashinsky and Balakrishnan, 2002]
Bounded Slowdown (BSD) algorithm which uses an adaptive control
loop to change polling time based on network conditions. Several fea-
tures of this algorithm are deterministic, in that it uses parameterized
exploration intervals, and the tradeoff is not managed optimally. A
machine learning approach to this problem was proposed by Stein-
bach, using Reinforcement Learning [Steinbach, 2002]. This approach
imposes the assumption that network activity possesses the Markov
property, which is an unrealistic assumption.

4.3 Formulation of Algorithm for Applica-
tion

For this application, we instantiate the experts as deterministic algo-
rithms assuming constant polling times. Thus we use n experts, each
corresponding to a different but fixed polling time in milliseconds (ms):
Ti : i ∈ {1 . . . n}. The experts form a discretization over the range
of possible polling times. In the Learn-α algorithm, we maintain m
α-experts. The α-experts are Fixed-share sub-algorithms that each
maintain a distribution over experts, pt,j(i) = pt;αj (i), which is ini-
tialized to the uniform weighting. Here αj = j/(m + 1) is the jth
sub-algorithm’s definition of the probability that the optimal polling
time changes from one discrete Ti to another, and thus pt;αj (i) is up-
dated according to Equation 2.10. The Learn-α algorithm, i.e. the top
of the hierarchy, chooses its current polling time Tt, i.e. its prediction
of the current amount of time it ought to sleep, using the weighted
mean,

Tt =
m∑

j=1

ptop
t (j)Tt,j (4.1)

where Tt,j is the prediction of the jth sub-algorithm of how long to
sleep for, computed as the weighted mean over the experts

Tt,j =
n∑

i=1

pt,j(i)Ti (4.2)
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The sub-algorithms do not actually sleep for this amount of time though,
as the polling time is chosen by the top-level. The algorithm’s polling
time is thus

Tt =
m∑

j=1

n∑
i=1

ptop
t (j) pt,j(i)Ti (4.3)

Using the loss function L that we will define in the next section, we
update ptop

t (j), the distribution over α-experts, according to Equa-
tion 2.30.

This particular problem imposes the constraint that the learning
algorithm can only receive observations, and perform learning updates,
when it is awake. Thus our subscript t here signifies only wake times,
not every time epoch at which bytes might arrive.

4.3.1 Objective Function

To fully specify the algorithm, we need to instantiate the loss function
L. The objective at each learning iteration is to choose the polling time
Tt that minimizes both the energy usage of the node, and the network
latency it introduces by sleeping. We define the loss function so as to
reflect the tradeoff inherent in these conflicting goals. Specifically, we
will design a loss function that is directly proportional to appropriate
estimates of these two quantities.

In the simple scenario in which we tested our algorithm, the obser-
vation, yt, that the learning algorithm receives upon awakening, is the
number of bytes that arrived while it slept during the previous interval.
We denote this quantity as It, and the length of time that the node
slept upon awakening at time t, as Tt. Since the algorithm was not
actually operating in an 802.11 wireless node, we did not have a way
to directly observe our current energy usage. Instead we modeled it as
proportional to 1

Tt
. This is based on the design that the node wakes

only after an interval Tt to poll for buffered bytes, and the fact that
it consumes less energy when asleep than awake. Additionally there
is a constant spike of energy needed to change from sleeping to awake
state, so the more times a node polls during a given time horizen, the
higher the energy consumption.

We modeled the latency introduced into the network due to sleeping
for Tt ms as proportional to It. In other words, there was an increased
latency for each byte that was buffered during sleep, by the amount
of its wait-time in the buffer. Since our learning algorithm does not
perform measurement or learning while asleep, and only observes the
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aggregated number of bytes that arrived while it slept, we have to ap-
proximate the amount of total latency its chosen sleep time introduced,
based on the individual buffer wait-times of each of the It packets. To
estimate the average latency that each of the It buffered packets would
have experienced, without knowledge of the byte arrival times, we can
use the maximal entropy assumption. This models all the bytes as
arriving at a uniform rate during the sleep interval, Tt, under which
assumption the average wait-time per byte would be Tt

2 . Thus the total
latency introduced by sleeping for Tt is approximated by the number of
bytes that arrived in that time, times the average wait-time per byte,
yielding Tt

2 It.
The form of our proposed loss function is thus:

L(t) = γ
TtIt

2
+

1
Tt

: γ > 0 (4.4)

In our weight updates however, we apply this loss function to each
expert i, indicating the loss that would have accrued had the algorithm
used Ti instead of Tt as it’s polling time. So the equivalent loss per
expert i is:

L(i, t) = γ
ItT

2
i

2Tt
+

1
Ti

(4.5)

where the first term scales It to the number of bytes that would have
arrived had the node slept for time Ti instead of Tt, under the assump-
tion discussed above that the bytes that arrived at a uniform rate. Note
that the objective function is a sum of convex functions and therefore
admits a unique minimum.

The parameter γ > 0 allows for scaling between the units of infor-
mation and time, as well as the ability to encode a preference for the
ratio between energy and latency that the particular node, protocol or
host network favors. For the purposes of experiments, we set it through
calibration on the same traces with the existing protocol and other al-
gorithms for this domain, so that the polling times attained would lie
within the ranges of what had been deemed acceptable to those in the
networks community.

Note that this is one of many possible loss functions that are pro-
portional to the tradeoff that must be optimized for this application.

Application of Loss Function

The loss function is applied exactly as in our exposition of the Learn-α
algorithm (Section 2.3), except only at time-steps when the algorithm
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is awake. At each wake interval, the loss function specified above is
applied to each of the experts, i.e. values of possible polling time Ti, by
the sub-algorithms. Using this loss function, we define the probability
of the observation given the expert to be e−L(i,t). Then the loss of the
jth sub-algorithm, or α-expert, is given by

L(pt,j, t) = − log
n∑

i=1

pt,j(i) e−L(i,t) (4.6)

and the loss of the top-level of the hierarchy is given by Equation 2.32.

Form of Loss Function

From the look of the loss function for the experts, it may not seem
that this can be derived directly from an HMM, i.e. that P (yt|ai,t) =
e−L(i,t). The concern is that loss is not only a function of t and i, but of
Tt, the amount of time that the algorithm slept for upon awakening at
time t. And Tt, in turn, is a function of ptop

t (j), because at any given
learning iteration the amount of time that the algorithm decides to
sleep is a function of its current distribution over the α-experts. Note
however, that as described in Chapter 2, the form of models from which
we can derive online learning algorithms is more general than typical
HMM’s in that the emissions probabilities can also depend on previous
observations, i.e. P (yt|ai,t) = P (yt|ai, y1, . . . , yt−1). So as long as the
ptop

t distribution is only a function of previous observations, then our
loss function is still derivable from the type of model discussed in previ-
ous chapters. This is in fact the case. Each sub-algorithm, or α-expert,
has a constant value for its α setting, and its distribution over experts
is a function of this value and previous observations. The distribution
that the top of the hierarchy maintains over the α-experts is a function
of the observations and m, which is a constant, since it is a parame-
ter to the algorithm. This follows from the fact that the exact set of
αj values being used is directly computable from m, and thus coupled
with the observations, the losses of the α-experts are computable as
well, since the form of their updates is fixed. Thus this loss function
could correspond to an HMM, and is congruous with our discussions
thus far. Additionally, via our computation of the optimal resolution
(Section 2.5), m itself could be computed a priori and incorporated
into the loss.
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Figure 4.1: Cumulative loss comparison. The curve indicates the cu-
mulative loss of Fixed-share(α) along the range of α values. We
compare to the cumulative loss on the same trace of the 802.11 proto-
col, Static-expert, and Learn-α(m∗). The bottom figure zooms in
on the first 0.002 of the range for α.

4.4 Experiments

We ran experiments on traces of real network activity, using publicly
available data from [Berkeley, 1996], a UC Berkeley home dial-up server
that monitored users accessing HTTP files from home. The traces were
composed of multiple overlapping HTTP connections, originating from
multiple users, all passing through the collection node, over a duration
of several days.

Since the traces just provided us with the start and end times of
each connection, and the total number of bytes transferred during the
connection, for each connection we smoothed the total number of bytes
uniformly over 10ms intervals spanning its duration. In all the network
trace experiment results below, γ = 1.0 × 10−7.
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Figure 4.2: Cumulative loss of Learn-α(m). Circles at m =
√
T .=

162. By our computation for m∗, after m = O(
√
T ), cumulative loss

should level off.

4.4.1 Results and Analysis

Figure 4.1 compares the cumulative losses of the various algorithms
on a 4 hour trace, with observation epochs every 10ms. This cor-
responds to approximately 26,100 training iterations for the learning
algorithms. Note that in the typical online learning scenario, T , the
number of learning iterations, i.e. the time horizen parameter to the
loss bounds, is just the number of observation epochs. In this ap-
plication, the number of training epochs need not match the number
of observation epochs, since the application involves sleeping during
many observation epochs, and learning is only done upon awakening.
Since in these experiments the performance of the learning algorithms
(Static-expert, Fixed-share, and Learn-α) are compared by each
algorithm using n experts spanning the range of 1000ms at regularly
spaced intervals of 100ms, in order to get an a priori estimate of T , we
assume a mean sleep interval of 550ms, i.e. the mean of the experts.

It is important to note however that the polling times of each of the
runs graphed are set by the algorithm being run, and so for the learning
algorithms, the polling times change online. Another possible caveat of
this experimental evaluation is that the experts incurr losses without
their predicted polling times actually being realized, and the cumulative
loss of each learning algorithm is in turn computed as a function of
these expert losses. The form of the expert loss function addresses this
by taking the proportion of incoming bytes that would have arrived
had that expert’s polling time been used, although the assumption of a
uniform byte arrival rate is introduced. Additionally, this issue pertains
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to each of the three online learning algorithms being compared, with
the only significant difference being how the distribution over experts
is updated. This lends credibility to making this sort of comparison.

Since we calibrated our objective function (by choice of γ), to match
the level of this tradeoff deemed acceptable in the networks community,
it is no surprise that the deterministic setting of 100ms, used by the
existing IEEE 802.11 protocol, was the best expert. Static-expert,
the online learning algorithm with relative loss bounds against the best
fixed expert, achieved lower cumulative loss however, since it can pre-
dict with the best linear combination of the experts, as apposed to any
one of their values, i.e., it can choose the optimal smoothed value over
the desired range, as opposed to being limited by the discretization
imposed by the experts.

On this particular trace, the optimal α for Fixed-share turns out
to be extremely low, and so for most settings of α, one would be better
off using a Static-expertmodel. Yet as the second graph shows, there
is a value for α below which it is beneficial to use Fixed-share, which
lends validity to our fundamental goal of being able to quantify the
level of non-stationarity of a process, in order to better model it. This
also highlights the strength of the Learn-α algorithm, since without
prior knowledge of the stochastic process to be observed, there is no
optimal way by which to set α.

Since Learn-α tracks the performance of Fixed-share with the
best α, we might expect that there exists an α for which
Fixed-share(α)’s performance is better than that of Learn-α(m∗).
We did not find this to be the case. This could be an artifact of the
resolution of our experiments with Fixed-share, but is also explainable
using the logic for why Static-expert beat the best expert. Learn-α
can harness the predictions of the best linear combination of its sub-
algorithms, each of which operate with a fixed α. Thus it has the
potential to do better than any given one.

Figure 4.2 shows the cumulative loss of Learn-α as a function of m,
the resolution at which to learn α. We see that choosing m proportional
to

√
T , where T is the number of learning iterations, matches the

point in the curve beyond which one cannot significantly reduce loss
by increasing m. As expected, the performance of the algorithm levels
off after the optimal m that we can compute a priori. Our results also
verify that the optimal resolution m is not a function of the number of
experts n.
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Chapter 5

Conclusion

5.1 Summary

In summary, first we re-derived existing online learning algorithms as
simple Bayesian estimation algorithms, updating appropriately defined
probabilistic models. We then proved a substantially simpler relative
loss bound for such online learning algorithms than previously in the
literature, applicable for any sequence of observations. The loss bound
formed the basis for an analytic expression of the optimal resolution at
which to learn the switching-rate parameter. We analyzed the results
using tools from Information Theory. We then generalized the proof
of the bound to apply to richer models of non-stationary sequences,
extending the result from modeling the switching-rate with a single
scalar, to using a matrix of parameters to model the switching dynam-
ics of the sequence. We gave an algorithm to learn the switching-rate
parameter online, simultaneous to learning the target concept. The op-
timal learning resolution we computed was shown to be appropriate in
the context of an application of our new algorithm to an open problem
in wireless networks.

5.2 Future Work

Aside from the evident extensions which can already be unravelled from
our general result, i.e. specifiying particular transition matrices, and
instantiating the specific online learning algorithms they yield, there
are several interesting directions for future work. A more general re-
sult may be possible, where the form of graphical model need not be
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homogenous with time, or where the structure admits more parame-
ters than we currently treat. We have not yet extended our approach
of learning α, and computing the optimal resolution for learning α, to
learning the whole Θ matrix, but that may be feasible as well. Fur-
ther analysis of the current result, especially in light of existing work
in Information Theory, may yield a way to prove that our optimized
hierarchical loss bound is tight, i.e. that it is also the lower bound on
the relative loss of online learning algorithms that simultaneously learn
the switching-rate, achievable by the Learn-α algorithm we presented.
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Appendix A

Proof of Main Theorem

We consider an arbitrary homogeneous HMM, parameterized by Θ, where
θij is the probability of transitioning from state i to state j from one time
interval to the next. Thus stated, this implies that

∑
j θij = 1, ∀i.

We first analyze the cumulative loss achieved by the online learning al-
gorithm derived from our HMM formulation, i.e.,

LT (Θ) =
T∑

t=1

L(pt, t) (A.1)

Lemma A.0.1 This cumulative loss (A.1) can be expanded to the following
form:

LT (Θ) = − log


 ∑

i1,...,iT

p1(i1)e
−L(i1,1)

T∏
t=2

e−L(it,t)P (it|it−1, Θ)




where {i1, . . . , iT } is the set of all possible state sequences.

Proof Using the formulations introduced in Chapter 2, we can expand Equa-
tion A.1 as follows.

LT (Θ) = −
T∑

t=1

log
n∑

i=1

pt(i)P (yt|ai,t) (A.2)

= −
T∑

t=1

log

n∑
i=1

pt(i)P (yt|ai, y1, . . . , yt−1) (A.3)

= −
T∑

t=1

log P (yt|y1, . . . , yt−1) (A.4)

= − log p1(y1)
T∏

t=2

P (yt|y1, . . . , yt−1) (A.5)

= − log P (y1, . . . , yT ) (A.6)
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We can compute the probability of the joint observation sequence by sum-
ming over all possible hidden state sequences {i1, . . . , iT }, the probability of
the observation sequence given that hidden state sequence, weighted by the
probability of that hidden state sequence.

LT (Θ) = − log P (y1, . . . , yT )

= − log


 ∑

i1,...,iT

P (y1, . . . , yT |i1, . . . , iT )P (i1, . . . , iT |Θ)


 (A.7)

= − log


 ∑

i1,...,iT

p1(i1)P (y1|i1, . . . , iT )×

×
T∏

t=2

P (yt|i1, . . . , iT , y1, . . . , yt−1)P (it|i1, . . . , it−1, Θ)

]

(A.8)

= − log


 ∑

i1,...,iT

p1(i1)P (y1|i1)
T∏

t=2

P (yt|it, y1, . . . , yt−1)P (it|it−1, Θ)




(A.9)

= − log


 ∑

i1,...,iT

p1(i1)e
−L(i1,1)

T∏
t=2

e−L(it,t)P (it|it−1, Θ)


 (A.10)

�

We now seek to bound the cumulative loss LT (Θ) relative to the cu-
mulative loss the same algorithm running with Θ∗, i.e. the cumulative loss
minimizing setting of this matrix of parameters (computed in hindsight). i.e.,
Θ∗ : LT (Θ∗) = minΘ LT (Θ).

Now, define �s = {i1, . . . , iT }

P (�s|Θ) = p1(i1)
T∏

t=2

P (it|it−1, Θ) (A.11)

φ(�s) =
T∏

t=1

e−L(it,t) (A.12)

With this notation we can write

LT (Θ) − LT (Θ∗) = − log

[∑
�s

φ(�s)P (�s|Θ)

]
+ log

[∑
�r

φ(�r)P (�r|Θ∗)

]

(A.13)
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= − log

[ ∑
�s φ(�s)P (�s|Θ)∑

�r φ(�r)P (�r|Θ∗)

]
(A.14)

= − log

[∑
�s φ(�s)P (�s|Θ∗) P (�s|Θ)

P (�s|Θ∗)∑
�r φ(�r)P (�r|Θ∗)

]
(A.15)

= − log

[∑
�s

(
φ(�s)P (�s|Θ∗)∑
�r φ(�r)P (�r|Θ∗)

)
P (�s|Θ)

P (�s|Θ∗)

]
(A.16)

= − log

[∑
�s

Q(�s|Θ∗)
P (�s|Θ)

P (�s|Θ∗)

]
(A.17)

where Q(�s|Θ∗) is a distribution over the choices of experts along the sequence
and also summarizes all the information about the observation sequence to-
gether with Θ∗.

We now attempt to write P (�s|Θ)/P (�s|Θ∗) more compactly. The proba-
bility of any sequence of hidden states is now defined by counting the number
of transitions.

P (�s|Θ)

P (�s|Θ∗)
=

p1(i1)

p1(i1)

∏n
i=1

∏n
j=1(θij)

nij (�s)∏n
i=1

∏n
j=1(θ

∗
ij)

nij (�s)
(A.18)

where nij(�s) is the number of transitions from state i to state j, in a sequence
�s = i1, . . . , iT .

Now we note that
∑

j nij(�s), is the number of times the sequence was
in state i, except at the final time-step. Thus

∑
j nij(�s) = (T − 1)ρ̂i(�s),

where ρ̂i(�s) is the empirical estimate, from the sequence �s, of the marginal
probability of being in state i, at any time-step except the final one. Thus
we can write

nij(�s) = T ′ρ̂i(�s)θ̂ij(�s) (A.19)

where T ′ = T − 1, and θ̂ij(�s) = nij(�s)/
∑

j nij(�s) is the empirical estimate
of the probability of that particular state transition, on the basis of �s.

We can now simplify to attain

P (�s|Θ)

P (�s|Θ∗)
=

n∏
i=1

n∏
j=1

(
θij

θ∗
ij

)T ′ρ̂i(�s)θ̂ij (�s)

(A.20)

= exp

{
T ′

n∑
i=1

n∑
j=1

ρ̂i(�s)θ̂ij(�s) log(
θij

θ∗
ij

)

}

(A.21)

Substituting the result back into Equation A.17, yields
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LT (Θ) − LT (Θ∗) = − log

[∑
�s

Q(�s|Θ∗)
P (�s|Θ)

P (�s|Θ∗)

]
(A.22)

= − log

[∑
�s

Q(�s|Θ∗) exp

{
T ′

n∑
i=1

n∑
j=1

ρ̂i(�s)θ̂ij(�s) log(
θij

θ∗
ij

)

}]
(A.23)

Note that this is an exact expression for the difference between the cumula-
tive losses. The expression depends on the actual sequence of observations
only through the distribution Q and Θ∗. We can find an upper bound on
this difference by maximizing the above result over all valid choices for the
distribution Q. The only constraint we impose is that Θ∗ has to remain the
optimal setting of the matrix of parameters. We can express this constraint
as

d

dΘ
LT (Θ)Θ=Θ∗ = �0 (A.24)

Lemma A.0.2 Constraint (A.24) is equivalent to∑
�s

Q(�s|Θ∗)ρ̂i(�s)θ̂ij(�s) = ρ∗
i θ∗

ij (A.25)

where ρ∗
i = E�s∼Q [ρ̂i(�s)].

Proof We can start by optimizing Equation A.23 with respect to Θ, since the
LT (Θ∗) term in this equation is constant with respect to Θ. So our objective
function is

J(Θ) = − log

[
E�s∼Q exp

{
T ′

n∑
i=1

n∑
j=1

ρ̂i(�s)θ̂ij(�s) log(
θij

θ∗
ij

)

}]

(A.26)

The constraint given, is equivalent to

d

dθij
LT (Θ)Θ=Θ∗ = 0 ∀i, j (A.27)

In our optimization, we will encode the constraint on Θ, that ∀i,
∑

j θij = 1,
using a Lagrange multiplier, λi. So we fix i, and evaluate

d

dθij


J(Θ) + λi(1 −

∑
j′

θij′)




Θ=Θ∗

=
d

dθij
J(Θ)|Θ=Θ∗ − λi

(A.28)
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=
d

dθij


− log


E�s∼Q exp


T ′

n∑
i′=1

n∑
j′=1

ρ̂i′(�s)θ̂i′j′(�s) log(
θi′j′

θ∗
i′j′

)










Θ=Θ∗

− λi

(A.29)

= − d

dθij


E�s∼Q exp


T ′

n∑
i′=1

n∑
j′=1

ρ̂i′(�s)θ̂i′j′(�s) log(
θi′j′

θ∗
i′j′

)







Θ=Θ∗

− λi

(A.30)

since the denominator yielded from taking the derivative of the log term, is
equal to one, for Θ = Θ∗. Continuing,

= − E�s∼Q


 d

dθij
exp


T ′

n∑
i′=1

n∑
j′=1

ρ̂i′(�s)θ̂i′j′(�s) log(
θi′j′

θ∗
i′j′

)







Θ=Θ∗

− λi

(A.31)

= − E�s∼Q


exp


T ′ ∑

i′j′
ρ̂i′(�s)θ̂i′j′(�s) log(

θi′j′

θ∗
i′j′

)


×

× T ′ d

dθij

∑
i′j′

ρ̂i′(�s)θ̂i′j′(�s) log(
θi′j′

θ∗
i′j′

)




Θ=Θ∗

− λi (A.32)

= − E�s∼Q


exp


T ′ ∑

i′j′
ρ̂i′(�s)θ̂i′j′(�s) log(

θi′j′

θ∗
i′j′

)


 T ′ρ̂i(�s)θ̂ij(�s)

1

θij




Θ=Θ∗

− λi

(A.33)

= − T ′

θ∗
ij

E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
− λi (A.34)

Now setting the derivative (Equation A.28) equal to zero, we attain

0 = − T ′

θ∗
ij

E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
− λi (A.35)

θ∗
ij = − T ′

λi
E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
(A.36)

This holds ∀j. Now we solve for λi in the constraint, by summing both sides
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on j. ∑
j

θ∗
ij = −

∑
j

T ′

λi
E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
(A.37)

1 = − T ′

λi
E�s∼Q

[
ρ̂i(�s)

∑
j

θ̂ij(�s)

]
(A.38)

λi = − T ′E�s∼Q [ρ̂i(�s)] (A.39)

We now define ρ∗
i = E�s∼Q [ρ̂i(�s)], and plug in λi to solve Equation A.36,

yielding

θ∗
ij =

−T ′

−T ′ρ∗
i

E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
(A.40)

E�s∼Q

[
ρ̂i(�s)θ̂ij(�s)

]
= ρ∗

i θ
∗
ij (A.41)

which holds ∀i, j.

�

We now wish to maximize Equation A.26 with respect to Q and subject to
the mean constraint (A.41). Since − log(·) is a convex function, we can upper
bound the expression by moving the expectation outside the logarithm:

− log

[
E�s∼Q exp

{
T ′

n∑
i=1

n∑
j=1

ρ̂i(�s)θ̂ij(�s) log(
θij

θ∗
ij

)

}]
≤

E�s∼Q

[
−T ′

n∑
i=1

n∑
j=1

ρ̂i(�s)θ̂ij(�s) log(
θij

θ∗
ij

)

]

(A.42)

= −T ′
n∑

i=1

n∑
j=1

ρ∗
i θ∗

ij log(
θij

θ∗
ij

) (A.43)

= T ′
n∑

i=1

ρ∗
i

n∑
j=1

θ∗
ij log(

θ∗
ij

θij
) (A.44)

= T ′
n∑

i=1

ρ∗
i D(Θ∗

i ‖Θi) (A.45)

where we have used the mean constraint and the definition of the relative
entropy D(·‖·) for discrete distributions. We have thus shown that

LT (Θ) − LT (Θ∗) ≤ (T − 1)

n∑
i=1

ρ∗
i D(Θ∗

i ‖Θi) (A.46)

This completes the proof.

�
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