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Abstract

To engineer complex synthetic biological systems will require modular
design, assembly, and characterization strategies. The RNA polymerase
arrival rate (PAR) is defined to be the rate that RNA polymerases
arrive at a specified location on the DNA. Designing and characterizing
biological modules in terms of RNA polymerase arrival rates provides
for many advantages in the construction and modeling of biological
systems.

PARMESAN is an in vitro method for measuring polymerase arrival
rates using pyrrolo-dC, a fluorescent DNA base that can substitute for
cytosine. Pyrrolo-dC shows a detectable fluorescence difference when
in single-stranded versus double-stranded DNA. During transcription,
RNA polymerase separates the two strands of DNA, leading to a change
in the fluorescence of pyrrolo-dC. By incorporating pyrrolo-dC at spe-
cific locations in the DNA, fluorescence changes can be taken as a direct
measurement of the polymerase arrival rate.
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Chapter 1

Introduction

1.1 Motivation

The desire of engineers is to design and build complex systems. With
the most complex systems existing in Nature, understanding, simpli-
fying, and engineering living systems is an irresistible challenge. Both
biologists and engineers have begun the process of engineering compu-
tational units into living cells [38, 49, 156, 168].

However, the discipline of engineering synthetic biological systems
to date has been lacking several important tools [143]. Especially desir-
able is a system of modularity, with methods for designing, assembling,
and characterizing biological modules. Although some progress has
been made in these areas, most items remain unsolved. This thesis
addresses the specific problem of module characterization, in order to
create modules useful for engineering complex biological systems.

Not only is there no biological equivalent of a voltmeter, there is
not even a definition of a standard volt unit. As most biological net-
works begin with transcription, transcription is a natural boundary for
describing modules. We propose a standard unit of RNA polymerase
arrival rates (PAR), a measure of the rate that RNA polymerase arrives
at a location on the DNA, to define the boundaries between modules.

Modules can be defined as having some number of input PARs and
some number of output PARs. Transfer curves that relate the out-
puts as a function of the inputs can then be used to completely specify
the behavior of a module. In addition, modules can be connected in-
terchangeably as the input and output for all modules is specified in
identical units.
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PARMESAN is a method for measuring polymerase arrival rates
in an in vitro fluorescence assay. It relies on a DNA base analogue,
pyrrolo-dC, that shows differing fluorescence when in single-stranded
versus double-stranded DNA. RNA polymerase temporarily separates
the two strands of DNA during transcription, making single-stranded
DNA from double-stranded DNA. By incorporating pyrrolo-dC at spe-
cific positions in the DNA, fluorescence changes during transcription
reactions can be used to measure the rate of RNA polymerases arriv-
ing at that location.

1.2 Thesis Organization

Chapter 2 contains background information related to the transcrip-
tion process and existing methods to measure transcription. Chapter 3
describes modules based on PARs, the PARMESAN method, and the
theory motivating the measurements. Chapter 4 discusses the details of
the actual methods used and Chapter 5 contains some results. Finally,
Chapter 6 contains an analysis of the progress made and a comparison
with other methods.

1.3 Abbreviations

The following abbreviations will be used in this thesis:
Standard abbreviations:
A: adenine
bp: base pair
BSA: bovine serum albumin
C: cytosine
DNA: deoxyribonucleic acid
dNTP: deoxyribonucleoside triphosphate
dsDNA: double-stranded DNA
G: guanine
nt: nucleotide
NTP: ribonucleoside triphosphate
oligo: oligonucleotide
PCR: polymerase chain reaction
RNA: ribonucleic acid
RNAP: RNA polymerase
ssDNA: single-stranded DNA
T: thymine
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U: uracil
Specific to this thesis:
BB-F: BioBricks forward primer
BB-R-P: BioBricks reverse primer with 1 pyrrolo-dC
BB-R: BioBricks reverse primer
P: pyrrolo-dC
PAPS: polymerase arrivals per second
PAR: polymerase arrival rate
PARMESAN: polymerase arrival rate measurement method
TTB: Transcription Tester Bottom
TTT: Transcription Tester Top
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Chapter 2

Background

In biological systems, the primary function of gene expression is the
conversion of the genetic information stored as DNA into proteins, the
major functional units that maintain a cell. RNA serves as an inter-
mediate step between DNA and proteins. During transcription, the
information stored in DNA is converted into RNA messages by the
DNA-dependent RNA polymerase. Then through translation, RNA
can be made into proteins by the ribosomes and associated machinery.

This chapter provides the background that forms the basis for the
rest of the thesis, with an overview of the interactions between RNA
polymerase and DNA during transcription and existing techniques for
assaying transcription.

2.1 Transcription Overview

By convention, DNA bases are numbered relative to the location of
transcription initiation. The initiation point is numbered +1, and bases
that come after, also known as the downstream region, are numbered
with positive numbers. Bases before the initiation point, the upstream
region, are numbered negatively, with the base immediately preceding
the initiation point numbered −1. There is no base numbered zero.

The standard convention used here is to print DNA from left to
right in the 5’ to 3’ direction and for the top strand to contain the
promoter. Thus, the top DNA strand is the expected non-template
strand, and the RNA polymerase will use the bottom DNA strand as
the template strand.

‖ 17 ‖‖ 17 ‖‖ 17 ‖
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For studying the transcription process, much work has been done
with T7 RNA polymerase, as it contains a single subunit and is well
characterized. However, T7 promoters do not have much variation and
their regulation is much less interesting. Unless otherwise specified,
the RNA polymerase and systems described in this thesis all come
from Escherichia coli.

2.1.1 RNA Polymerase

E. coli RNA polymerase is a complex enzyme with several protein sub-
units. The complete RNA polymerase has two α subunits, a β subunit,
a β′ subunit, and a σ subunit. The core RNA polymerase consists of
all the subunits except the σ subunit, that is α2ββ′, and is capable
of synthesizing RNA from nucleoside triphosphate (NTPs) molecules
using DNA as a template. The α subunits are required for assembly of
the core enzyme and play a role in promoter recognition. The β and β′

subunits are important for binding DNA nucleotides and in catalyzing
RNA synthesis [119].

With a σ subunit attached, the RNA polymerase is known as a
holoenzyme. The role of the σ subunit is to allow the RNA polymerase
to selectively initiate at specific regions of DNA [101]. The core enzyme
binds tightly and non-specifically to dsDNA. Holoenzyme, on the other
hand, binds loosely to dsDNA and tightly to specific regions of DNA.

Multiple σ-factors are present in almost all bacterial genomes. The
most abundant σ factor in E. coli, transcribing genes fundamental to
cell function, is called σ70, with the 70 representing its molecular weight
in kilodaltons. The total molecular weight of the holoenzyme contain-
ing σ70 is around 450 kilodaltons [30].

Other σ-factors are activated in response to certain events in the
environment. For example, σ32 is activated in response to heat shock
and σ54 is involved in nitrogen regulation [120]. The expression of
different σ-factors allows a biological system to switch resources to
transcribing different sets of genes depending on the conditions.

Two commonly used drugs targeting RNA polymerase are heparin
and rifampicin. Heparin sequesters free RNA polymerase [131], pre-
venting binding or initiation by the polymerase. Rifampicin specifically
inhibits bacterial RNA polymerases by binding to the β subunit [121].
In the presence of rifampicin, RNA polymerase cannot initiate tran-
scription chains but can bind to promoters and elongate existing RNA
chains [102]. Streptolydigin is another drug that inhibits RNA poly-
merase by decreasing the elongation rate.
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2.1.2 Promoters

Sequences, known as promoters, can direct the initial binding of RNA
polymerase to the DNA, affecting the rate of transcription. Many pro-
moters of differing strengths exist in biological systems. Although pro-
moter strength can be defined in a variety of ways, a general definition
of a promoter’s strength is the number of RNA transcripts it produces
per second [20].

As increased or decreased gene expression levels can be harmful for
an organism, transcription must be tightly regulated. In E. coli, the
transcription initiation rate varies by four orders of magnitude [119].
Some phage promoters, such as those from T4, are much stronger in
E. coli than any native E. coli promoters [137], indicating that the full
range of promoter strength that could be used is not normally found
in E. coli.

Through statistical studies of many E. coli promoters, two highly
conserved 6 bp regions located around −10 and −35 have been found.
The −10 consensus sequence is 5’-TATAAT-3’ and the −35 consensus
sequence is 5’-TTGACA-3’. The sequence of most promoters match
at least 7 of the 12 bp in the consensus sequence [119]. Reducing
a promoter’s degree of homology to consensus generally reduces its
strength. However, promoters matching the consensus sequence too
closely may not be able to initiate transcription effectively due to the
extremely stable binding of RNA polymerase [37].

Another crucial factor in determining promoter strength is the num-
ber of bases and the sequence between the −10 and −35 regions [7, 139].
The spacer region between the two regions is commonly about 17 bp
in length, but can range from 15–21 bp [119]. Extra TG sequences lo-
cated slightly upstream of the −10 have also been shown to enhance
promoter activity [17].

The strength of promoters can also depend on upstream regions,
called UP elements found from −40 to −60 [125]. The strongest UP
elements derived from in vitro selection have an A+T-rich consensus
sequence containing two A-tracts with an intervening T-tract. [42].
The downstream region (DSR), from +1 to +20 can affect promoter
strength 10-fold both in vivo and in vitro [66]. Promoter strength due
to variations in the downstream region depend on the RNA polymerase
concentration.

The interactions between RNA polymerase and these regions of
DNA has been studied extensively. The −10 and −35 recognition hex-
amers of promoters is recognized by σ70 and UP elements are recognized
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by the C-terminal domain of the α subunit [126]. Evidence indicates the
polymerase primarily interacts with the non-template strand [18, 44].

In one study, specific bases on two promoters in the −10 and −35
regions have been shown to make physical contact with RNA poly-
merase, with the physical contacts showing more homology across pro-
moters than the DNA sequence itself [136]. Others have found large
differences in promoter activity due solely to the curvature of DNA be-
tween the −35 and −10 region [27]. A strongly curved region of DNA
next to a weak −10 region can have promoter activity even without the
−35 region. The strongest promoters appear to be those that have the
minor groove in the middle of the −10 region located on the inside of
a curve.

Promoter sequences for E. coli have been compiled in several pub-
licly available databases [36, 89, 55].

2.1.3 Operators

Regulators of transcription have been studied heavily [11, 131]. Some
regulator proteins, called activators, can bind to operator sites on DNA
and increase the rate of transcription. Other proteins, called repres-
sors, bind to operator sites and have the opposite effect, inhibiting
transcription.

Activators and repressors can affect any of the steps in transcrip-
tion initiation. The simplest mechanism of repression is to have an
operator site that overlaps with the promoter. The repressor and poly-
merase compete for the same piece of DNA, effectively lowering the free
promoter concentration [119].

2.2 Transcription Process

The standard model for transcription initiation involves the following
steps [34, 101, 119]. First, RNA polymerase binds a promoter to form
the closed complex. The closed complex is then turned into an in-
termediate closed complex. In the last step, an active open complex
is formed, initiating transcription. After a short RNA chain is tran-
scribed, the polymerase switches to stable elongation.

In theory, any of the steps could be rate limiting and, therefore,
determine the strength of the promoter [66]. No obvious correlation
has been seen between the stability of the RNA polymerase-promoter
complex and the in vivo promoter activity [16, 69], so the binding of
RNA polymerase is probably not the major determinant of promoter
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strength. Promoter melting is also not limiting, as tested with pre-
melted, bulged double-stranded DNA [60]. For the rrnB promoter,
experiments suggest that the dissociation rate of the open complex
may be the rate determining step for transcription [11]. Other results
suggest that the conformational change of the RNA polymerase may
be the rate limiting step [44, 63, 60].

2.2.1 Closed Complex

Transcription begins with RNA polymerase binding to DNA to form
the closed complex. The complex is called closed because the promoter
DNA remains double stranded [119]. The closed complex results from
the RNA polymerase binding to DNA covering the −55 to −5 region,
but likely involves sequence-specific contacts at the −35 region only
[54].

The next step involves a polymerase rearrangement, extending the
downstream DNA footprint of the polymerase to about +20. The σ
subunit is believed to play a role in DNA strand separation and the
transition to the open complex [54, 140].

2.2.2 Open Complex

The open complex is formed when a region of DNA is “melted”, i.e.
the strands are separated. For E. coli RNA polymerase, the melted
DNA region extends from −10 to +1 [109]. The adenine base at −11
on the non-template strand is believed to play a crucial role in forming
the open complex [54].

The open complex can be stable in some promoters and only tran-
siently stable in others with measured half-lives ranging from minutes
to hours [16, 54].

2.2.3 Initiation

Most promoters appear to have a set of potential initiation start sites,
with one predominating [119]. RNA polymerase strongly prefers to
initiate with a purine, an adenine or guanine, with adenine preferred
over guanine. To initiate transcription, two template DNA bases, two
NTPs, and a magnesium ion need to come together with the RNA
polymerase.

The initiation complex is unstable. The RNA polymerase may form
and release short abortive RNAs, from 2–12 nucleotides long, before
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promoter escape occurs and the polymerase switches to a stable elon-
gation mode. Even in vitro with excess of all NTPs, abortive RNA
transcripts are made [119]. After about 10 to 15 nucleotides, the σ
subunit may be released, with the core RNA polymerase stably elon-
gating the RNA chain [20]. However, some evidence indicates the σ
subunit is not released in the majority of transcription complexes and
is part of the elongation machinery [10, 110].

The maximum transcription initiation frequency can be estimated
at about 1 initiation per second, assuming an elongation rate of 50 nt/s
and a space requirement of 50 bp for a RNA polymerase molecule [101].
Transcription initiation rates vary from about 1 initiation per genera-
tion for lac repressor to 1 initiation per second for the ribosomal pro-
moter, PrrnB [31, 152].

2.2.4 Elongation

Whereas the RNA polymerase contacts about 75 bases of DNA at the
promoter, during elongation, the polymerase only contacts 30 to 40 bp
of DNA [121].

The locally melted region of DNA during transcription is called the
transcription bubble. In the transcription bubble, part of the nascent
RNA is paired with the DNA template. For E. coli RNA polymerase,
the transcription bubble is estimated at 17 ± 1 bp with a 12 ± 2 bp
RNA:DNA hybrid region [48]. However, considerable debate exists
about the length of this RNA:DNA hybrid, with other estimates of
8–9 bp [72, 115, 145] to less than 3 bp [105].

Average elongation rates for E. coli RNA polymerase can range
from 30 to 100 nt/s in vivo [109]. RNA polymerase in vitro synthesizes
about 10 to 35 nt/s [149] and has been measured at 17 nt/s when
transcribing T7 DNA [21]. Elongation does not proceed at a constant
rate, with the discontinuous movement of RNA polymerase observable
by microscopy [28].

Unlike DNA polymerases, RNA polymerase is processive, meaning
that once the RNA polymerase dissociates from the RNA and DNA, it
cannot reassociate and resume synthesis [76]. Processivity requires the
elongation complex be extremely stable with a half-life greater than sev-
eral hours [121], allowing the transcription of long operons, on the order
of 104 nucleotides in bacteria. But processivity also means transcription
termination can be a complex process requiring massive destabilization
[151].

The movement of the RNA polymerase and melting of the DNA
is chemically powered from energy stored in NTPs, releasing one py-
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rophosphate per nucleotide incorporated into the RNA chain [149]. The
RNA:DNA hybrid may also have a role in stabilizing interactions dur-
ing elongation [135].

2.2.5 Pausing

RNA polymerase pauses at points in some sequences, contributing sig-
nificantly to the time to synthesize a complete transcript [121]. Pausing
slows RNA synthesis and provides a chance for other cell machinery to
interact with the polymerase [154]. RNA polymerase is quite stable
when stalled on a DNA template in vitro [160].

A pause refers to the stopping of RNA polymerase for a temporary
and finite period of time. A more permanent block to elongation is
transcriptional arrest. An arrested polymerase cannot efficiently re-
sume elongation without the help of other molecules [149] and may slip
backwards along the DNA [71].

Pause and arrest sites can be characterized by the half-life and the
recognition efficiency [149]. The half-life is the time required for half
of the stalled polymerase to resume elongation and the recognition
efficiency is the percent of polymerases becoming stalled at the pause
site. Half-lives range from too short to measure to several minutes.
Recognition efficiencies range from a few percent to 90%.

Two well-studied pause sites are attenuation control regions for the
trp and his amino acid biosynthesis operons [77]. The leader regions for
these operons include a pause site where the RNA polymerase pauses,
allowing transcription to be regulated by the translation machinery [45].
At the trp pause site, the half-life of the pause is about 4 seconds at in
vivo conditions [161].

Many pause sites, including the trp and his leader regions, can form
an inverted repeat hairpin or short stem-loop structure. The hairpin
interacts with RNA polymerase to mediate pausing [6], but the hairpin
is not the only important structure. The relevant region of DNA affect-
ing pause strength is probably between 38 nt upstream of the pause site
to 14 nt downstream [22, 80]. The transcription bubble for the poly-
merase at the trp and his pause sites has been determined using the
sensitivity of single-stranded DNA to DEPC or KMnO4 [79].

2.2.6 Termination

The role of transcriptional terminators in biological systems is comple-
mentary to that of promoters [122]. Termination occurs when the RNA
polymerase releases both the DNA template and the RNA strand.
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Some DNA sequences require the presence of a hexameric RNA-
binding protein called rho to terminate transcription [109]. Intrinsic
terminators do not require rho and are called rho-independent termi-
nators. Rho-independent terminators are similar to pause sites, usu-
ally containing an inverted repeat forming a stable stem-loop hairpin
structure. Cells appear to use rho-independent terminators for routine
termination and rho-dependent terminators for error correction and in
special cases [122].

When the RNA polymerase reaches an intrinsic termination signal,
the polymerase slows down and pauses [52, 78]. The stability of the
complex decreases and depending on the sequence following the hairpin,
the RNA polymerase can either fall off, terminating the RNA chain or
continue elongating again. Studies suggest that termination efficiency
depends on the elongation rate [160]. In general, termination may de-
pend on the competition between the free energy for normal elongation
and termination [151].

Unlike pause sites, terminators usually have many As on the tem-
plate strand after the stem-loop, leading to a RNA sequence containing
many uracil bases. However, mutating the downstream region of the
trp pause site to contain a U-rich RNA region did not convert it to
a terminator, indicating that more is involved to termination than a
hairpin followed by many U bases [80].

Terminators also differ from pause sites with fewer bases between
the hairpin signal and the site where the polymerase pauses. There
are about 7 to 9 bases for terminators instead of 10 or 11 for pause
sites [24].

2.3 Transcription Assay Techniques

Many methods have been developed to study the interaction of RNA
polymerase and promoters. Some of the most common and useful meth-
ods are described here. General background on fluorescence is also pro-
vided, as fluorescence is an often used tool to study molecular activity,
including RNA polymerase and transcription [25].

2.3.1 Fluorescence

Fluorescent molecules are called fluorophores and each fluorophore has
a characteristic light excitation and emission spectrum [99]. The emis-
sion wavelength is necessarily longer than the excitation wavelength,
with the emission energy less than the excitation energy. Fluorescent
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Figure 2.1: 2-Aminopurine is a fluorescent base useful for probing protein-
DNA interactions that separate the strands of DNA.

probes are easy to measure without significantly disturbing its environ-
ment.

Fluorescence is relatively sensitive with single molecule detection
possible at picomolar concentrations. The fluorescence limits are due
primarily to the background, such as Raman scattering from the sol-
vent [134, 158]. Reduction in fluorescence can occur due to prolonged
exposure to light, called fading or bleaching, or due to the presence of
nearby molecules, called quenchers.

Other than measuring the fluorescent intensity of a fluorophore,
there are other fluorescence techniques, such as fluorescence resonance
energy transfer (FRET) or fluorescence recovery after photobleaching
(FRAP) [99]. Another technique is to measure fluorescence anisotropy,
also known as fluorescence polarization, which measures the rotation
of molecules, with a molecule in a complex expected to rotate more
slowly than when in solution alone [56].

The fluorescence of the normal nucleic acid bases is low, and, in
proteins, only tryptophan usually has significant fluorescence. Thus,
to study protein and DNA interactions, non-natural fluorescent probes
are often used.

A fluorescent probe often used is the base analogue 2-aminopurine
(2-AP) that is identical to adenine except the amino group is moved
from the 6- to the 2- position (Figure 2.1). 2-Aminopurine substitutes
for adenine and base pairs with T only slightly weaker than the A-
T pair. In addition, the fluorescence of 2-aminopurine is sensitive to
whether it is base paired. 2-Aminopurine has been used as a sensitive,
real time method to measure the kinetics of E. coli RNA polymerase
binding with DNA [44, 142], for measuring the kinetics of T7 RNA
polymerase binding [58, 148], and for measuring DNA helicase activ-
ity [118].
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2.3.2 in vivo Methods

Methods for measuring transcription in cells usually either focus on
measuring protein or RNA levels.

Reporter Proteins

Reporter proteins are easily detectable from the rest of the cellular
soup, making them used frequently for studying transcriptional activity.
Many proteins are available with different characteristics [4, 83].

Common methods for detecting the activity of reporter proteins
include enzymatic assays and fluorescence measurements. Some ex-
amples of using reporter proteins to measure promoter strength in-
clude green fluorescent protein (GFP), alkaline phosphatase, luciferase
genes [94], β-galactosidase (lacZ) [107], chloramphenicol acetyltrans-
ferase (CAT) [57], galK [1, 108], and trpA [40].

Enzyme Assays

One way to measure the strength of expression of a reporter protein is
to provide a substrate that interacts with the gene to form a measurable
product. A common reporter gene is lacZ, coding for the enzyme β-
galactosidase [11, 86, 107]. Various substrates can be provided that
form colored products when hydrolyzed by β-galactosidase.

Other enzymatic assays exist to measure expression of β-lactamase,
chloramphenicol acetyltransferase, and luciferases [43]. For example,
firefly luciferase reacts with ATP and oxygen to produce light.

The most sensitive assays include chemiluminescent detection of
alkaline phosphatase with a detection limit of 103 molecules and lu-
ciferase with a detection limit of 105 molecules [4]. β-Galactosidase
has a detection limit on the order of 109 molecules.

Fluorescence Assays

Green fluorescent protein (GFP) from Aequoria victoria is extensively
used as a reporter protein in vivo. The fluorescence of GFP can be
measured easily. Using fluorescence-activated cell sorting (FACS) along
with GFP, it is possible to select from a random library for promoter
sequences [146]. The strength can then be measured using flow cytom-
etry.
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RNA Measurements

Protein reporters are an indirect measure of transcription. A more
direct measurement of transcription would be to measure the RNA
levels in a cell. PCR-based methods to quantitatively measure RNA
levels include real-time reverse transcription PCR [127] and titration
of the target RNA using competitive PCR [12].

Another approach is to label all RNA by incubating a culture briefly
with radioactive [3H]uridine [159]. It is then possible to hybridize with a
known sequence and measure the amount of hybridization to determine
the expressed RNA level.

One problem with using mRNA is that varying degradation rates
can interfere with measurements. The half-lives of mRNAs can range
from 40 seconds to 20 minutes [74]. When cloning a promoter re-
gion, the 5’ transcription initiation point is often not known, and the
sequence on the 5’ end can have a large effect on RNA stability [13].
Mutated tRNAs or tRNAs from other organisms have been used as bet-
ter reporter RNAs [93, 116]. The tRNAs are more stable than mRNAs
as they fold to become resistant to degradation and mutations can be
introduced to knock out any tRNA functional activity.

Relative Strengths

Measuring promoter strength relative to a fixed promoter can normalize
for some experiment variability. One method for determining relative
promoter strength is from the ratio of the activities of two promoters
expressing different reporter proteins, such as β-lactamase under con-
trol of a test promoter and β-galactosidase under control of a fixed
promoter [137].

Similarly, promoter activities can be measured as a ratio of RNA
synthesis in relation to a standard under control of a fixed promoter.
For example, it is possible to characterize promoter strengths relative
to the β-lactamase promoter (Pbla) [31, 68]. In addition, transcription
rates can be measured by taking samples at different times and plotting
a time course of the relative mRNA expression [150].

The absolute promoter activity is more difficult to measure. For the
rrnB promoter, the absolute activity was measured in vivo by taking the
number of rrn transcripts per minute per unit of culture mass divided
by the number of rrn genes per unit of culture mass [169, 170]. The
measurements rely on the observation that the rrn operons produce
stable rRNA present at a relatively constant fraction of the total RNA.
To calculate absolute activity of rrn promoters, the number of copies
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of the gene is calculated based on the gene’s location relative to the
replication origin and the replication speed.

The absolute transcription activity of other promoters, measured
as the number of transcription initiations per second, can be estimated
based on their strength relative to the rrnB promoter [31, 84]. For
example, the lac promoter can be estimated to have a transcription
initiation frequency of about 4.6 initiations per minute.

2.3.3 in vitro Methods

Promoter measurements done outside of cells and in well-defined solu-
tions, usually involve in vitro transcription and a way to assay the RNA
products formed [147]. The major benefit of in vitro transcription is
the ability to control the conditions of transcription.

For example, several methods have been used to synchronize tran-
scription initiation, such as preincubating all components except NTPs
for several minutes or preincubating all components except MgCl2 and
initiating synthesis by adding MgCl2 and rifampicin [51]. By control-
ling when transcription begins, the effects of transcription can be more
easily assayed.

RNA Measurements

A straightforward method for studying transcription in vitro is to set up
a transcription reaction, stop the reaction after some amount of time,
and run the product on a gel to quantify the amount of RNA generated.
It is even possible to measure the strengths of several promoters in the
same solution by having each transcribe a RNA sequence of a distinct
size [65].

Radioactive Labeling Methods

RNA levels in vitro can be measured using radioactively labeled NTPs
[97]. By using a standard DNA template such as T7 DNA, properties
of RNA polymerase such as specific activity and elongation rate can be
measured [21, 119].

To measure transcription initiation rate, experiments can be done
with excess active RNA polymerase and a sufficiently short transcribed
sequence. A short transcribed sequence ensures that the elongation rate
will be quick in comparison to binding and initiation, and, thus, the
incorporation of radioactive NTPs over time becomes a measure of the
initiation rate.
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The abortive initiation method also measures transcription initia-
tions, and relies on only adding the first two NTPs needed by RNA
polymerase to extend the RNA chain [100, 103]. Thus, the RNA poly-
merase would initiate RNA synthesis but would abort soon after due to
the lack of NTPs. The rate of initiations can be measured by following
radioactive 32P labeled NTP.

Fluorescent Measurements

The abortive initiation method can be simplified by using fluorescent
labeling rather than radioactive labeling. ANS (1-amino-naphthalene-
5-sulfonate) is an example of a fluorescent label that has been used
[14, 131]. The ANS fluorophore attached to the γ-phosphate of a NTP
is a good substrate for E. coli RNA polymerase, with about 60-80%
of the activity of an unmodified NTP [164]. In addition, when RNA
polymerase cleaves the α-β phosphoryl bond during insertion of a NTP
into a RNA strand, a change in the fluorescence spectrum is measurable,
thus providing a continuous assay for transcription [130].

Another fluorescence method uses FRET to measure absolute dis-
tances during protein interactions with nucleic acids [87]. For exam-
ple, the movement of RNA polymerase along DNA can be measured
with FRET [110], by attaching one fluorophore to the polymerase and
another fluorophore to the end of the DNA. Kinetic analysis of the
polymerase movement should be possible with this method.

Multiple fluorescence probes can be used simultaneously, as long as
the excitation and emission wavelengths do not overlap significantly.
A real-time in vitro system has been developed using three differ-
ent fluorescent probes that measures three properties simultaneously:
protein/DNA complex formation, transcription bubble formation, and
RNA production [33]. Tetramethylrhodamine is used to label the 5’
end of DNA such that its fluorescence polarization properties change
as a result of RNA polymerase binding the DNA. The transcription
bubble is measured using 2-aminopurine that changes its fluorescence
intensity when the strands of DNA are pulled apart. The third assay
for RNA production is done with the ANS-like fluorophore, 5-amino-2-
naphthalenesulfonic acid, connected to the γ-phosphate of the NTPs.
This system has the advantage of obtaining information about binding
and transcription simultaneously.

Measuring DNA Binding

Although the strength of DNA binding by RNA polymerase is usually
not an accurate predictor of promoter strength, the binding charac-
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teristics does contribute to the behavior of a promoter. Methods to
measure binding include inserting a fluorescent tryptophan analogue
into σ70 and measuring its quenching due to binding [18], measuring
the change in intrinsic protein fluorescence due to binding [58], and re-
lease assays measuring the stability of the RNA polymerase and DNA
complex at points along a DNA strand [5].

Another method is the filter binding technique, using nitrocelullose
fiters that bind protein-DNA complexes and not free DNA to assay
for RNA polymerase-promoter complexes. Labeled DNA can be mixed
with polymerase and the extent of binding can be measured [101].

Binding strengths can also be measured by a template competition
assay [63]. The binding on a test promoter can be compared with
another piece of DNA by initiating one round of transcription from
both and comparing the relative transcription from each template.

With solid-phase transcription, the strength of polymerase bind-
ing to arbitrary regions of DNA can be measured by “walking” the
polymerase to the desired location on a known sequence of DNA. The
polymerase is hexahistidine-tagged and immobilized on Ni-NTA beads
[70]. Immobilization allows for walking the polymerase to arbitrary
positions on the DNA by alternating between providing limited NTPs
and washing the beads to remove old NTPs.
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Chapter 3

PARMESAN Theory

In this chapter, we present the theory motivating the experiments that
follow to measure transcription events. The objective is to design,
assemble, and characterize synthetic biological systems in a modular
fashion. Modular design is facilitated by abstracting module inputs
and outputs as RNA polymerase arrival rates. PARMESAN, an in
vitro fluorescence assay, is one potential method that can be used for
measuring polymerase arrival rates.

3.1 Modularity

A key feature necessary for designing and building complex biological
systems is modularity. Modularity simplifies the process of engineering,
facilitating reuse and abstractions. Biological components should be
capable of being built as interchangeable modules.

Requirements for modularity include a module design strategy, a
module assembly strategy, and a module characterization strategy. The
choice of one of these strategies influences the choice of the others, and
so these strategies cannot be selected independently.

The primary focus here is on module characterization, with the
goal of simplifying the design and assembly process. Modules will be
assumed to be specified entirely as a single linear sequence of DNA. Al-
though other types of modules are possible, DNA modules are currently
the easiest to work with in practice.
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3.1.1 Characterization

Modules need to be characterized and their behaviors specified in a way
useful for module and system design. There are potentially many ways
a module can be characterized. Some desirable properties for a module
characterization system are:

� Abstraction. Module characterization should promote the goals of
modularity. A non-abstract characterization would be the DNA
sequence of the module itself. Although the sequence, in theory,
contains all the information about the module within it, it lacks
a useful abstraction layer needed for modular design.

� Generality. All modules should be characterized in a similar fash-
ion, independent of what is inside the module. It is not general
to characterize one module in terms of protein expression level
and another module in terms of DNA binding strength.

Another way to define generality is that the characterization
strategy should not limit the type of modules allowed during mod-
ule design. For example, characterizing modules as protein levels
immediately rules out all modules not expressing proteins but
operating at the RNA level.

� Connectivity. The modules should be characterized in a way al-
lowing for connections among modules. Connectivity means that
an output for one module needs to match the input of another
module. This allows for both easy design and assembly of mod-
ules.

� Usefulness. The characterization of a module must be useful in
connecting and designing complex systems. An example of a
probably non-useful characterization of a module is the %GC
content, as it does not contribute much to the goal of assembling
systems from modules.

� Measurable. Requiring that modules be characterized with prop-
erties that cannot be measured is not useful. To be practical, the
measurements should be easy to perform, not time consuming,
accurate, and repeatable.
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PAR1 PAR2

Promoter 1 → Pause Site → Promoter 2 → Some Sequence →
Figure 3.1: The two polymerase arrival rates in this example integrate in-
formation from multiple promoters and pause sites. RNA polymerase can
initiate transcription from one of the two promoters and travel from left to
right, arriving at the PAR1 and PAR2 locations on the DNA at some rate.

3.2 PAR

3.2.1 Definition

The proposed method for characterizing modules is to use RNA poly-
merase arrival rates as inputs and outputs of the modules. The poly-
merase arrival rate (PAR) is the number of times a polymerase arrives
at a certain position on the DNA per second, with units of polymerase
arrivals per second (PAPS).

The polymerase arrival rate integrates information from an entire
system, taking into account polymerase binding rates, transcription ini-
tiation rates, elongation rates, and unbinding rates. For example, in
Figure 3.1, the polymerase arrival rate, PAR1, depends on a variety
of factors. Promoter 1 may be strong allowing polymerases to initiate
transcription quickly, but the pause site may slow down those poly-
merases and kick some of them off the DNA. Promoter 2 may also al-
low some polymerases to bind and initiate. The number of polymerases
arriving at PAR1 must take into account the number of polymerases
initiating from promoter 1 that pass the pause site and the number of
polymerases initiating from promoter 2. The polymerase arrival rate
PAR2 at a location further downstream may not be the same as PAR1

depending on the intervening DNA sequence. PAR2 depends on the
elongation rate through that intervening sequence and the rate of poly-
merases falling off, in addition to everything that determined PAR1.

3.2.2 Modules

Figure 3.2 shows the general form for a module containing some number
of input polymerase arrivals, INPARs, and some number of output
polymerase arrivals, OUTPARs. A module that has i inputs and o
outputs will be denoted as an {i/o} module. The inputs and outputs
of modules should be able to connect to other modules independently of
each other. So the two outputs of a {1/2} module could be connected to
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INPAR OUTPARModule

Figure 3.2: Modules will have some number of inputs and outputs measured
in PARs. This is an example of a {6/5} module.

the inputs of two different modules or to the inputs of a single module.
Some example modules are given below.

Examples

Figure 3.3 shows a {1/1} module with a single input and output. The
polymerases arriving at its input lead to transcription and production of
the transcriptional regulator protein A. Protein A regulates polymerase
binding and initiations from its regulatory region, causing polymerases
to leave the module at a certain rate. Note that the polymerases leaving
the module at the output are not necessarily the same polymerases that
entered the module. The regulatory region for A does not necessarily
have to, and should not, be physically located immediately after the
coding sequence for A.

If the regulator protein A in Figure 3.3 were a repressor, then the
output PAR signal would be inverted from the input PAR, and the
module would implement a logical NOT function. If the regulator pro-
tein were an inducer instead, then the output PAR could be amplified
based on the input, and the module would act as an amplifier.

The important Insulator module in Figure 3.4 can be considered a
{1/0} module. This module contains a transcriptional terminator that
fixes the output at zero polymerase arrivals and so can be considered
to not have an output. To make the module even more useful, the
terminator is made bidirectional so that in both directions, the output
PAR is zero. The bidirectional transcriptional terminator could be
a standard hairpin terminator with the correct bases on both sides to
terminate transcription going in either direction. In effect, polymerases
are blocked from going through the module in either direction.

Other {1/0} modules may be useful to convert non-transcriptional
events into PAR units, relying on non-transcriptional side effects for
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INPAR
Coding Sequence A Regulatory Region A

mRNA
transcription

A

translation

regulate
transcription

OUTPAR

Figure 3.3: This simple {1/1} module has a regulatory protein mapping the
input PAR to the output PAR.

Bidirectional
Transcriptional Terminator

OUTPAR=0

OUTPAR=0

INPAR

INPAR

Figure 3.4: An example of an Insulator {1/0} module consisting of a
bidirectional transcriptional terminator. The output PAR on both sides is
zero regardless of the inputs, thus insulating the modules on either side from
each other.
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Repressor R

Regulatory Region R

IN OUT
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1
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Figure 3.5: A {1/2} inverting module where OUT1 =IN and OUT2 =
NOT(IN).

their primary function. For example, a {1/0} reporter module may
contain only the coding sequence for a reporter protein like GFP. The
input PAR is translated into some amount of GFP fluorescence. Mod-
ules of this sort are useful in designing systems that need to have an
effect that is not purely transcriptional. A PAR-based signal is mapped
into some other type of signal, for example protein levels.

A {0/1} module would have no inputs and a single constant output
PAR as it is a function of no inputs. The typical {0/1} module con-
sists of a single un-regulated, constitutive promoter connected to the
output. The promoter initiates transcription at a fixed rate, leading to
a constant output PAR.

Several slightly more complex modules are shown in Figure 3.5 and
Figure 3.6. The {1/2} module in Figure 3.5 is an inverter that also
passes through the input PAR as an output. Polymerases entering
from the input travel through the module and exit as OUT1, with the
OUT1 PAR roughly equal to the input PAR.The output PAR at OUT2

is the logical NOT of the input.
Figure 3.6 shows a {2/1} module where the output PAR is the

logical NOR of the two inputs. The two inputs both cause the same
repressor protein to be transcribed and translated. As the repressor
negatively regulates the output, if either input is high, the output will
be low. The output will be high only if both inputs are low.
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Repressor R
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Figure 3.6: A {2/1} module implementing the NOR logic function.

3.2.3 Assumptions

Several important assumptions are made in order to effectively use
PAR-modules.

� All desired modules can be defined in terms of input and output
transcriptional activity, in the form of polymerase arrival rates as
shown in Figure 3.2.

� Each molecule of RNA polymerase, at any time, is in one of a
finite number of states. For example, the states may include:
unbound, bound to promoter, paused, arrested, or stably elon-
gating.

One state, denoted as s0, is defined as the normal state. For
our purposes, a stably elongating RNA polymerase is the normal
state. Module inputs and outputs are defined in terms of the rate
of polymerases in state s0 arriving at the input boundary of the
module or leaving at the output boundary.

We assume polymerases in other states either do not arrive at the
inputs and outputs or, if they arrive in another state, they have
no effect on the perceived behavior of the module.

� To ensure modules can be arbitrarily connected together, the in-
put and output PARs are assumed to be relatively independent
of the sequences coming before and after them. In other words,
at the output locations, there should be little look-ahead by the
polymerase, with the transcription rates being relatively indepen-
dent of the downstream DNA sequence. At the inputs, the poly-
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merase should behave independently of the sequence that comes
before it.

For example, as it is known that promoter strength can depend on
a large number of bases both upstream and downstream of the
transcription start, extra bases may need to be inserted before
and after some promoters during module design. The extra bases
would serve an insulating function for the promoters near the
inputs or outputs of the module, guaranteeing that their behav-
ior does not change significantly due to another sequence being
attached to the module.

� The rates are assumed to reach a steady-state relatively quickly
and maintain that state indefinitely. In addition, an output PAR
should be a deterministic function of the input PARs. This is
probably not a necessary assumption as one could imagine proba-
bilistic outputs or outputs that vary with time. However, making
the output a deterministic function of the inputs simplifies the
discussion of the model and is a useful abstraction.

� It is required that the outputs do not depend on any variables
other than the inputs, allowing us to treat the module as a black
box. Any module can, therefore, be abstracted or defined as a
set of transfer curves that specify the outputs as a function of the
inputs.

Of course, in practice, biological systems have little insulation,
and so there will be external effects on the system. The problem
of cross-talk or interference among modules is an important issue,
but it will not be addressed here. The goal is to minimize as many
unwanted interactions as possible either by specifying them as an
input PARs or by clever design of the module.

3.2.4 Motivation

PAR is defined in terms of a physically well-defined property of the
system rather than based on some indirect and relative measurement
of transcription. Relative definitions of transcription strength such as
those measuring RNA produced or protein expressed often are in arbi-
trary units such as amount of GFP fluorescence or enzymatic activity
relative to another promoter. With relative definitions, measurements
of transcription only have meaning when compared with other measure-
ments of the same type. PAR is an intrinsic feature of the biological
system that is defined independently of how it is measured.
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lacZYA operonlacIlactose

cAMP CRP-cAMPglucose

Figure 3.7: A conventional model representing a biological network of the
lac operon. The pointed arrows represent positive regulation and the straight
line heads represent negative regulation.

Although the polymerase arrival rate concept uses transcription
rates to characterize modules in an unconventional way, specifying
modules as PAR provides many advantages for the engineer over the
standard biological models.

Conventional Models

Figure 3.7 shows a conventional network diagram for the well-studied
lac operon and its regulation by glucose and lactose [111]. The boxes in
the diagram represent nodes and different arrows are used to represent
positive or negative regulation. For example, the repressor LacI nega-
tively regulates the genes in the lac operon. High levels of the protein
LacI lead to low levels of transcription for the lacZYA genes.

Although these models may be useful to biologists studying a fixed
system, it is not at all useful for the engineer trying to build a new
system. Conventional biological networks do not use a common unit for
specifying connections, so the nodes are not modular and cannot be “re-
wired” in any meaningful way. The inputs and outputs for the nodes
are usually either not specifically defined or are defined in incompatible
units, such as in levels of different proteins.

For example, the output for the lacI node is the level of LacI protein
and the output for the CRP-cAMP node is the level of the CRP-cAMP
complex, making these two nodes not interchangeable even though they
both have the same number of inputs and outputs. In addition, the
negative regulation connections between lacI and lacZYA and between
lactose and lacI may look the same in the diagram, but the underlying
mechanism is completely different. Some interactions involve transcrip-
tional regulation, other interactions involve allosteric control, and there
is no way to know the difference from the network diagram, making it
difficult to reuse the modules in another system.
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Another more detailed type of standard model for biological systems
involves differential equations with many different rate constants. To
obtain values for the rate constants often requires many different types
of measurements. For example, obtaining a model for a transcriptional
event may require several techniques to measure the binding affinity
and the initiation rate. But these techniques are of no use for mea-
suring other events such as translation. As the purpose here is not to
understand the detailed mechanism for a process, all these rates add
complexity without providing a convenient abstraction layer.

It is preferable to have a layer of abstraction similar to Figure 3.7.
For seeing the overall relationships in a biological system, this tradi-
tional level of abstraction is sufficient. But for designing and engineer-
ing synthetic systems, a different type of model is needed, such as one
based on polymerase arrival rates, that provides for consistency and
modularity.

Rates vs. Levels

The conventional boundary for a module is at the level of translation
and the signal conveying information is often taken to be the level
of protein expressed. Based on the biological mechanism, this makes
sense, as the amount of protein is usually directly related to the func-
tional expression level. For example, the expression of the lac genes
depends on the total amount of the repressor LacI and not the rate at
which LacI expression is changing.

However, as discussed above, using protein levels leads to incompat-
ible inputs and outputs among modules. One module with an output
in terms of one protein level is incompatible with another module that
may also be described by protein levels but by a different protein.

A similar problem occurs when using RNA transcript levels as the
signal connecting modules. To allow arbitrary connections among mod-
ules, inputs and outputs need to be generic and not based on a partic-
ular RNA sequence or protein. Thus, instead of levels, the rate that a
common molecule, such as RNA polymerase, crosses between modules
is used as the signal.

In a dynamic system, rates can convey more meaningful information
than an amount at a single point in time. We can think of PAR as
analogous to electrical current, with the RNA polymerase analogous to
charge. The RNA polymerase is used as the common signal transferred
among the modules. The absolute number of RNA polymerase in a
module is not important. The rate that polymerases travel between
modules provides the critical link needed to connect modules.
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Transcription vs. Translation

PAR is based on transcription events as opposed to some other biolog-
ical event such as translation. Instead of polymerase arrival rates, it is
possible to imagine using a similar rate for translation, the ribosome
arrival rate. However, there are several reasons why the analogous
approach for translation does not work as well as for transcription.

Whatever is used to define modules immediately restricts the type
of modules allowed. If modules are defined at the translation level,
then everything that does not get translated is immediately ruled out.
Transcription, the process of making RNA from DNA is common to
the expression of all genes, but not all genes are necessarily translated.
In addition, anything that does not operate at the level of transla-
tion cannot be used in translational modules. For example, LacI is
a transcriptional repressor and so could not be used as an output in
a translational module system. None of the parts in the lac operon
from Figure 3.7 operate at the level of translation and so none of those
parts could be utilized as useful modules if modules are defined around
translation boundaries.

In a sense, using modules based on translation provides a higher
layer of abstraction than modules based on transcription. Translation
implicitly assumes transcription happens first, requiring abstracting
the details of transcription inside modules. But the lower layer of ab-
straction provided by transcriptionally-based modules also brings more
freedom and power for the module designer, with fewer abstraction re-
quirements.

Another important consideration is what type of modules need to
be built and used. For building interesting networks, modules should
perform some type of control decision, so we will focus on regulatory
modules. Although translation can be regulated, most regulation in
existing biological systems appears to be transcriptional. One advan-
tage of translational over transcriptional regulation is faster switching
of expression levels. Transcriptional regulation is limited by the mRNA
half-life, which can present an undesirable time-lag [138].

The major issue with using translation is that it much more difficult
to separate into modules compared with transcription. Most regulators
are proteins that themselves have to be transcribed and translated and,
for these and other proteins, the desired protein sequence should be
expressed. The problem with translation is that most regulation occurs
around the start codon, which conflicts with the goal of controlling the
exact protein sequence to be translated.
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The basic mechanisms of translational regulation can be similar to
transcriptional regulation. Translational initiation is the step usually
regulated and there are translational operators. For translation to ini-
tiate, the ribosome binding site (RBS) needs to be physically near the
AUG start codon. There are usually only 5 to 9 nucleotides separating
the RBS and the start codon [138].

Translational operator sites that are targets for regulatory pro-
teins often are found immediately upstream of the translation initiation
site [138]. Operators can include the RBS and the first codons for the
protein to be translated. The mechanism of translational control can
involve important changes in the secondary structure of the RNA near
and including the initiation site.

With PAR-modules, insulating sequences are inserted to guaran-
tee that the inputs and outputs do not depend on the surrounding
sequences. These insulating sequences can lead to an extra transcribed
RNA sequence. However, this extra RNA does not affect translation,
so the final translated protein is exactly the desired protein. The same
cannot be done easily in the case of translational modules. Inserting
insulating sequences would add unwanted initial amino acids to the
front of the desired protein.

For example, Figure 3.8 shows a connection between two modules.
Module X contains a regulatory region that is controlled in some fash-
ion, with the regulatory region overlapping the initiation point shown
with the arrow. The output of Module X will be either the initiation
of transcription or translation. Module Y contains a protein coding
sequence that should be placed under the control of the output from
Module X.

The non-buffered scheme for connecting modules in Figure 3.8(a)
allows transcription or translation to start exactly at the beginning of
the sequence in Module Y. However, as part of the regulatory region for
Module X extends past the initiation point, the initial sequence from
Module Y becomes part of the regulatory region, affecting the behavior
of Module X. This scheme is not usable due to its lack of modularity, as
the behavior of Module X is dependent on the module that is connected
to it.

Figure 3.8(b) takes care of the modularity problem by adding an
extra buffer region between the initiation point and the desired cod-
ing sequence. If the modules were transcriptionally-based, then there
would be an extra 5’ untranslated region of RNA attached to the coding
sequence RNA. In most cases, this untranslated region is not impor-
tant, as the ribosome will find and translate the correct protein coding
sequence. However, if the modules are translationally-based, then the
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(a)

..... Regulatory Region Protein Coding Sequence

X Y

(b)

... Regulatory Region Protein Coding SequenceBuffer

X Y

Figure 3.8: Two ways of connecting modules X and Y are shown. In (a),
Module Y is directly connected to Module X, and in (b), a buffer region is
inserted between the two modules. Scheme (a) is not modular, as part of the
regulatory region for X depends on the sequence that it is connected to in Y.
Scheme (b) is more modular but requires transcribing/translating the extra
buffer region in between.
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buffer region would lead to extra amino acids being inserted at the N-
terminus of the protein. Thus, to get the desired protein to be trans-
lated, while maintaining modularity, it is necessary that the modules
work at the transcriptional level.

Modularity

The most important motivating factor for the use of polymerase arrival
rates has been the benefits from modularity. PAR has the identical
meaning across different types of modules, because a polymerase ar-
riving to transcribe one gene is equivalent to a polymerase arriving to
transcribe another gene.

Using polymerase arrival rates satisfies many of the desirable prop-
erties for a module characterization system:

� Abstraction. Using PAR effectively abstracts away the inner
workings of the module, allowing a module to be specified as
transfer curves mapping inputs to outputs.

� Generality. Transcription is fundamental to most cell processes.
The functional parts inside a cell, whether it be protein or RNA,
are all transcribed at some point. However, this approach is not
completely general as modules can only be defined around tran-
scription boundaries. Protein interactions can not be explicitly
specified as inputs or outputs and must be hidden within mod-
ules.

� Connectivity. Modules need to connect with each other. The
easiest way to ensure connectivity among modules is to have the
inputs and outputs for modules be in the same units. As all
inputs and outputs are defined in terms of the same polymerase
arrival rates, with the polymerase always arriving in the same
state, one module that outputs x polymerase arrivals per second
can be connected to another module that accepts an input of x
polymerase arrivals per second.

� Usefulness. Several possibilities for designing and modeling sys-
tems characterized by polymerase arrival rates are described later.

� Measurable. A method to measure polymerase arrival rates forms
the majority of the rest of the thesis.

To increase the generality and usefulness of PAR-systems, it is feasi-
ble to have non-transcriptional events interact with PAR-modules. For

‖ 44 ‖‖ 44 ‖‖ 44 ‖



‖ 3.2. PAR ‖‖ 3.2. PAR ‖‖ 3.2. PAR ‖

example, although module inputs and outputs were specified as PARs,
it would be straightforward to generalize modules to have inputs and
outputs that could be in different units in addition to PARs.

For example, a {0/1} module could have an output that depended
on the concentration of some molecule in the environment. The module
would have no input PAR, but would have an input determined by
the concentration of another molecule. These types of modules could
increase the generality of PAR-based systems by allowing modules to
map non-PAR signals into PAR signals to be used by other modules.

Examples of real biological systems that have been separated into
transcriptional modules include the phage λ lysogenic and lysis decision
pathway and part of the eukaryotic MAPK signaling pathway [26]. The
MAPK pathway is particularly interesting, as it involves many kinases
that function non-transcriptionally, but by defining module boundaries
around transcription events, useful abstractions can still be formed.

3.2.5 Design and Assembly

Using PAR-modules only makes sense if it facilitates the design and
assembly of systems that need to be built. Characterizing modules
with polymerase arrival rates influences module design and assembly
in a variety of ways.

Design

Modules must be designed around transcriptional events, as inputs and
outputs are defined in terms of RNA polymerase arrival rates. Depend-
ing on the system that needs to be built, this may limit the inherent
modularity possible. As all non-transcriptional events must be inside
a module, if there are many non-transcriptional events, then modules
may need to be larger, and therefore less modular, than desired.

Also, modules need to be designed carefully to limit undesirable in-
teractions that affect the behavior of the module in an undefined man-
ner. This may require adding insulating sequences within the module
or describing the conditions under which a module can be used suc-
cessfully with the specified behavior.

Assembly

The desired end system needs to be physically assembled into one piece
of linear DNA that contains all the modules connected correctly. To
facilitate assembly of modules, which may have many inputs and out-
puts to be connected together, every input and output for a module
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should be in its own separate tube of DNA if possible. Connecting
the output of one module to the input of another module would then
involve ligating the two corresponding pieces of DNA together using
standard methods.

For some modules, it may not be possible to separate an input and
output into different tubes. For example, for the module in Figure 3.5,
OUT1 cannot be disconnected from the input as the polymerases ar-
riving at this output come directly from those that arrive at the input.
On the other hand, OUT2, can be separated and placed into its own
tube as it does not need to be physically near the repressor DNA for it
to function correctly.

This inseparability of some inputs and outputs puts restrictions on
how some modules can be connected, due to the limitations of physi-
cally assembling the DNA. For example, OUT1 above cannot be con-
nected back to the module’s input, as this would require circularizing
the DNA. Circular DNA cannot be ligated with other pieces of DNA
or cloned into plasmids so is not practical or useful. More complex
cases also exist where the outputs cannot be connected to some inputs,
because assembly would require circularizing the DNA.

Aside from the above restriction, modules that have separable in-
puts and outputs can be designed and assembled at will, leading in the
end to several pieces of DNA that can be put together in any order.
The module designer ensures that inputs and outputs from different
modules can be connected together by inserting insulating sequences
within the module. The module assembler, on the other hand, needs
to ensure that the behavior of the system is not changed by assembling
the pieces of DNA and, so, needs to insert insulating sequences between
modules.

To ensure that the partially assembled input and output pieces can
be connected together, the Insulator from Figure 3.4 or a similar
module should be inserted between each piece of DNA. The role of the
Insulator is to guarantee that polymerase arrivals from one piece do
not carry over to the next, allowing the system to be assembled to the
design specifications.

The linear piece of DNA representing the assembled system needs to
then be cloned and maintained, probably on a plasmid vector. Again,
to ensure that the sequences on the plasmid do not affect the behavior of
the system, insulating transcriptional terminator sequences are needed
on both ends of the system. Figure 3.9 depicts an overview of the
assembly process.
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Figure 3.9: An example 2-module system is assembled from a schematic of
how the modules should be connected. Each module has its inputs and outputs
physically separated as tubes of DNA. The connections between modules are
made by ligating the corresponding input and output tubes. The pieces are
then assembled with additional insulating sequences, cloned into a plasmid,
and expressed in a cell.

‖ 47 ‖‖ 47 ‖‖ 47 ‖



‖ Chapter 3. PARMESAN Theory ‖‖ Chapter 3. PARMESAN Theory ‖‖ Chapter 3. PARMESAN Theory ‖

����

�� ��O

��

��
�� ��

����
��

N

N
N

H

CH3

O

OH

HOH2C

����

�� ��O

�� ��

����
�� N
N

N H
H

O

OH

HOH2C

pyrrolo-dC deoxycytidine (dC)

Figure 3.10: The chemical structure of pyrrolo-dC allows it to substitute
for dC. Both dC and pyrrolo-dC can base pair with guanine by forming 3
hydrogen bonds.

3.3 PARMESAN

For PAR-modules to be practical, a method is needed to measure poly-
merase arrival rates. PARMESAN is a technique for measuring poly-
merase arrival rates and stands for Polymerase Arrival Rate Measure-
ments in (En) Standard Assay iN vitro. The proposed method involves
the use of a fluorescent DNA base, pyrrolo-dC, that is sensitive to the
local melting of DNA.

3.3.1 Pyrrolo-dC

Pyrrolo-dC shown in Figure 3.10 is a synthetic base able to form 3
hydrogen bonds with guanine and, thus, is able to substitute for cyto-
sine in DNA [91, 92]. In addition, pyrrolo-dC has different fluorescence
properties when it is in single-stranded or double-stranded DNA. This
effect may be partly related to hypochromism, the effect of stacked
bases in nucleic acids absorbing less light than unstacked bases.

The fluorescence of pyrrolo-dC in ssDNA is approximately double
its fluorescence in dsDNA. The fluorescence when pyrrolo-dC is in a
mismatched base pair in double-stranded DNA (e.g. paired with ade-
nine) is even higher than in ssDNA. Also, the pyrrolo-dC fluorescence is
low when in a RNA:DNA heteroduplex [92]. These fluorescence prop-
erties of pyrrolo-dC are summarized in Figure 3.11.

Although 2-aminopurine has similar properties and been used much
more extensively than pyrrolo-dC to study proteins that separate the
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DNA pairing Fluorescence
dsDNA mismatched High

ssDNA Medium
dsDNA or RNA:DNA Low

Figure 3.11: The relative fluorescence intensity of pyrrolo-dC in DNA
varies depending on its environment.

strands of DNA, the excitation spectrum of 2-aminopurine overlaps
with the intrinsic fluorescence of proteins making subtracting back-
ground measurements necessary [148].

Pyrrolo-dC has excitation maxima at 260nm and 350nm and an
emission maximum at 460nm, far from the protein and nucleic acid
fluorescence range [92]. The shifted spectrum of pyrrolo-dC should in
theory lead to less background than 2-aminopurine.

The letter P will be used to represent pyrrolo-dC in sequences.

3.3.2 Transcription Assay

To measure polymerase arriving at a specific location, pyrrolo-dC is
incorporated into the desired DNA region. At time 0, RNA polymerase
is added and the fluorescence change is measured over time. As RNA
polymerase melts the DNA and the transcription bubble passes through
the pyrrolo-dC location, the fluorescence of the base will change. Thus,
the change in fluorescence measures polymerase arriving at the location
in the DNA marked with the pyrrolo-dC.

The method could also be called “polymeracing,” as we are mea-
suring the time it takes for polymerases to reach a certain point, much
like in a race.

Theory

The rate of transcription initiation (V) can be written as follows [119]:

V = Vmax
[R]F

Km + [R]F

[R]F is the concentration of free, unbound RNA polymerase, Km

is the RNA polymerase concentration when promoter activity is half
Vmax, and Vmax is the maximum initiation rate with saturating RNA
polymerase, when [R]F → ∞.
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At low polymerase concentrations, when [R]F � Km, V/[R]F =
Vmax/Km, and this ratio is a measure of a promoter’s strength [170].
Therefore, to avoid saturating promoters, a low concentration of poly-
merase relative to DNA should be used.

To determine actual concentrations to use, the in vivo conditions
can be approximated. In a cell, estimates of [R]F range from 10nM to
100nM and a promoter DNA concentration of about 8nM [119, 131].
The effective [R]F in vivo will be much less due to competition with
other pieces of DNA.

Measurement Issues

Pyrrolo-dC bases can be inserted on either the template or the non-
template strand, leading to potentially large differences in the fluores-
cence effect due to transcription.

An increase in fluorescence is only seen if a DNA region with pyrrolo-
dC is separated and no RNA:DNA hybrid is formed. If the pyrrolo-dC is
located on the template strand, then a RNA:DNA hybrid could quench
the fluorescence, with increased fluorescence only when the pyrrolo-dC
is in the transcription bubble but not paired with RNA.

The length of the RNA:DNA hybrid was determined using pyrrolo-
dC for T7 RNA polymerase [92]. The transcription bubble for T7
RNA polymerase was determined to collapse close to the exiting RNA,
meaning that the length of the RNA:DNA hybrid is about the same size
as the transcription bubble. This means fluorescence from pyrrolo-dC
bases on the template strand will almost always be quenched, either
being in a DNA:DNA duplex or RNA:DNA heteroduplex.

For E. coli, there is disagreement about the length of the RNA:DNA
pairing in the transcription bubble, and consequently, the amount of
unpaired DNA on the template strand. If the length of the RNA:DNA
hybrid is small, then there would be a large number of exposed bases
on the template strand in the bubble, providing more time for a fluo-
rescence signal to be seen.

One proposed model for RNA organization during elongation pro-
vides for 10 unpaired nucleotides on the non-template strand and only
1 nt on the template strand that is unpaired with either RNA or DNA
[72]. Other estimates include 3–6 nt of single-stranded DNA on the
template strand upstream of the RNA:DNA hybrid [73].

Unlike the disagreement about bases on the template strand, the
bases on the non-template strand in the transcription bubble are ori-
ented away from the enzyme, with the bases being susceptible to nu-
cleases [153]. Thus, pyrrolo-dC bases should be unstacked on the non-
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template strand, causing a change in fluorescence during strand sepa-
ration by RNA polymerase. When possible, it is preferable to insert
the pyrrolo-dC on the non-template strand rather than the template
strand.

3.4 Applications

As part of the motivation driving the development of PARMESAN,
applications related to synthetic biology can be facilitated by the use
of polymerase arrival rates to characterize modules. Some examples
are given here, but the full potential for applications in this area has
yet to be thoroughly explored.

3.4.1 Promoter Library

The promoters used here are all from natural biological systems. But
one can also imagine creating a collection of random sequences of DNA
and characterizing their strength as promoters, thus creating a pro-
moter library. From a promoter library, one could pick out promoters
of a desired strength depending on the application.

Simple modules could also be generated using the library of promot-
ers and designing transcriptional factors that bind to those promoters
as either repressors or inducers, perhaps by using synthetic zinc-finger
proteins [32, 133].

3.4.2 Controlling Gene Expression

A library of promoters and modules could provide biologists more con-
trol over the expression of target genes. For simple cases, a gene can be
placed under the control of characterized promoters from the promoter
library, and, then, the effect of the gene on the biological system can
be studied.

For more complex systems, there may be several target genes, each
of which needs to be controlled. Building regulatory networks that
could control desired genes would provide biologists an incredibly useful
tool for studying biological pathways and gene interactions.

The currently existing methods to regulate expression are relatively
crude. For example, inducible promoters such as the lac promoter are
often used to regulate a gene’s expression by varying the level of an ex-
ternal inducer, such as IPTG for the lac promoter. This is useful when
a gene’s expression level needs to be varied dynamically and quickly.
However, induction may have unintended effects, such as activating the
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cell’s native promoters, and there exist only a handful of known and
useful inducible promoters, limiting the applicability of controlling a
wide variety of genes simultaneously.

In addition, the level of induction is not quantitatively known or
comparable across systems. For example, the level of IPTG used does
not provide useful information about the physical expression level of
the gene and cannot be compared with the level of another inducer,
such as arabinose in a different system. This may partially explain
why current experiments mostly involve either the over-expression or
the knockout of certain genes, instead of looking at the entire range of
expression possible.

It may be preferable to fix the expression of a set of genes to known
static levels. A library of constitutive and characterized promoters of
constant strength would make this a much easier task. The expression
level for any number of genes can be simultaneously fixed, and the
promoter strengths would be comparable across genes and systems.

For dynamic control, inducible or other more complex modules can
still be used, if they are characterized with PAR as a standard unit
of measurement. Standard characterization allows for the ability to
compare results under different inducers and systems, as polymerase
arrivals for one gene is identical to polymerase arrivals for another gene.
Two genes with the same input PAR may be transcribed or translated
with different efficiencies, leading to different protein expression levels,
but they can still be characterized and controlled in the same way.

3.4.3 Transfer Curves

Provided a module specified as input and output polymerase arrival
rates, transfer functions or curves can be calculated to describe the
behavior of the module. For any output, a transfer curve exists to
specify the output value as a function of the inputs.

It is desirable to have an easy method for measuring the transfer
curves that specify a PAR-module. With a direct measure of PAR
and a library of promoters of varying strength, it becomes possible to
sample points along the curve.

The inputs of a module can be fixed to known values using pro-
moters with characterized PARs. The output PAR of the module can
then be measured, obtaining a single point on one transfer curve. The
entire transfer curve can be interpolated by measuring as many points
as desired, and used for modeling, comparisons, biological insights or
for other purposes.
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3.4.4 Modeling Biological Networks

Many interesting biological phenomena can be modeled using a tran-
scriptional rate model and by abstracting away all non-transcriptional
events into modules [26]. The previous work used the concept of tran-
scription initiations per second (TIPS), which is similar to polymerase
arrival rates, but PAR is more general and applicable to a wide range
of situations. “Initiations” can be misleading as the polymerase may
not be initiating anything.

Using modules such as in Figure 3.2 and with accurate measurement
methods for transfer curves, complex systems can be easily modeled.
In theory, the transfer curves completely describe the behavior of mod-
ules, making simulation straightforward [26]. In addition, as the entire
transfer curve can never be known exactly in a real system, simulations
can be done relatively accurately even with only limited points sampled
from the transfer curve.

3.4.5 Synthetic Biology

A current engineering challenge is to build reliable and functioning syn-
thetic biological networks that perform some function, such as calcu-
lating a logic operation or responding to inputs. A critical component
missing to facilitate this form of engineering is the knowledge of how
to put the right components together.

One way to design systems is to use evolution as a tool for finding
the correct parameters [168]. Although evolution is a powerful tool, it
would be preferable to be capable of rationally selecting and combining
the correct components to make a system work from the start.

To design and build a system that has a reasonable chance of func-
tioning correctly requires fully characterized components. A quantita-
tive characterization of the behavior of all biological components from
ribosome binding sites to promoters to protein sequences is essential.
PARMESAN is one potential method for standardly quantifying the
strength of promoters and general modules by measuring the ability to
promote transcription activity.

The benefits of modularity quickly become obvious as more com-
plex systems are being built. One potentially desirable application is
the construction of digital logic circuits using biological components.
To do this would require a collection of modules that implement a
variety of logic functions and the ability for the modules to work cor-
rectly when assembled together. PAR-modules provide many benefits
for modularity and the construction of such systems.
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Chapter 4

Measurement Methods

The focus of the experimental work has been on applying the
PARMESAN method to single promoters as a means for measuring
polymerase arrival rates.

4.1 Protocol Overview

The following is the standard methodology used to measure fluorescence
and transcription levels.

1. Synthesize standard oligos with pyrrolo-dC.

2. Use the standard oligos to incorporate pyrrolo-dC into promoters
or other DNA regions to be measured. The two main ways of
attaching a pyrrolo-dC are through ligation or through PCR.

3. Perform an in vitro transcription reaction by adding purified RNA
polymerase.

4. Measure the fluorescence change after addition of the polymerase.

5. Interpret the data as polymerase arrivals at the location of the
pyrrolo-dC.

4.1.1 BioBricks

BioBricks is an example of a modular assembly system and a collection
of modular parts [15]. BioBricks specifies a standard prefix and suffix,
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EcoRI NotI XbaI SpeI NotI PstI
5’ GAATTCGCGGCCGCTTCTAGAG-Module-TACTAGTAGCGGCCGCTGCAG 3’
3’ CTTAAGCGCCGGCGAAGATCTC-Module-ATGATCATCGCCGGCGACGTC 5’

Figure 4.1: The BioBricks standard form for biological modules includes
several restriction sites, allowing for structured assembly.

EcoRI NotI XbaI

5’ — G
↓
AATTC — 3’ 5’ — GC

↓
GGCCGC — 3’ 5’ — T

↓
CTAGA — 3’

3’ — CTTAA↑G — 5’ 3’ — CGCCGG↑CG — 5’ 3’ — AGATC↑T — 5’

SpeI PstI

5’ — A
↓
CTAGT — 3’ 5’ — CTGCA

↓
G — 3’

3’ — TGATC↑A — 5’ 3’ — G↑ACGTC — 5’

Figure 4.2: The restriction enzymes in the BioBricks standard form recog-
nize and cut the above DNA sequences.

allowing for assembly using restriction enzymes and standard molecular
cloning techniques.

The BioBricks prefix and suffix contains several restriction enzyme
sites as shown in Figure 4.1 and Figure 4.2. Any module conforming to
the BioBricks standard must contain the given set of restriction sites
before and after the module and not contain any of those sites within
the module.

For this work, all promoters and other pieces of DNA to be measured
are assumed to be in a standard BioBricks format. Pyrrolo-dC oligos
are synthesized that allow for the incorporation of the pyrrolo-dC into
all BioBricks-conforming modules.

4.2 Materials

Klenow exo- DNA polymerase, T4 polynucleotide kinase, T4 ligase,
restriction enzymes, and bovine serum albumin (BSA) were from New
England Biolabs. PCR SuperMix was from Invitrogen.

Purified E. coli RNA polymerase holoenzyme was obtained from
Epicentre. The holoenzyme contained the major σ70 subunit and came
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in a concentration of about 0.4µg/µl (870nM). NTPs were also from
Epicentre.

Fluorescence was measured on a Bio-Tek FL600 fluorescence plate
reader using fixed wavelength filters.

4.2.1 RNA Polymerase Purification

Other than using the commercially available polymerase, a higher con-
centration of E. coli RNA polymerase was purified using a histidine-
tagged α subunit [144]. The purification protocol involved expressing
the plasmid pHTT7f1-NHalpha, containing a hexahistidine tag on the
N-terminus of the α subunit, in a BL21(DE3) (Novagen) strain. After
induction with IPTG, the α subunit was isolated using a Ni-NTA spin
column (Qiagen).

The remaining subunits were isolated separately using the plas-
mids pHTT7f1-sigma (σ70), pMKSe2 (β), and pT7beta’ (β′) in the
BL21(DE3) strain. After induction, inclusion bodies were collected,
washed, and then solubilized with guanidine hydrochloride as a denat-
urant.

The α, β, and β′ subunits were mixed together and dialyzed using
a Slide-a-lyzer (Pierce) to remove the denaturant. The σ subunit was
dialyzed separately. After dialysis, the σ subunit was mixed with the
other subunits and incubated at 30� to allow the formation of the
holoenzyme. The reconstituted holoenzyme was then purified through
a Ni-NTA spin column.

The final solution was concentrated with a Microcon YM-100 (Mil-
lipore). Protein concentrations at each step were measured using the
Bradford assay (Pierce).

4.3 Oligos

4.3.1 Oligo Synthesis

Oligonucleotides were synthesized on an ABI 394 synthesizer using
standard phosphoramidite chemistry. Table 4.1 shows the sequences
for several of the oligos synthesized.

For synthesis of oligos containing pyrrolo-dC, anhydrous acetoni-
trile was added to pyrrolo-dC-CE phosphoramidite (Glen Research) to
a 0.05M concentration. A standard 40nmoles CE cycle was used for the
synthesis. After synthesis, the oligos were deprotected in ammonium
hydroxide at room temperature for 24 hours. The liquid was then evap-
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Oligo Name Sequence
BB-F 5’-GCGCGAATTCGCGGCCGCTTCTAGAG-3’
BB-R 5’-GCGCCTGCAGCGGCCGCTACTAGTA-3’
BB-R-P 5’-CTGCAGCGGCCGCTAPTAGT-3’
BB-R-5P-TE 5’-CCGCAGAAAGGCCCACCCGAAGGTGAGCC ...

... CTGPAGPGGPPGPTAC-3’
TTT 5’-ACACACACACACACACACACGTCTAGAPG-3’
TTB 5’-ACACACACACACACACACAPGTCTAGACG-3’
TT control 5’-ACACACACACACACACACACGTCTAGACG-3’
TT complement 5’-CGTCTAGACGTGTGTGTGTGTGTGTGTGT-3’
TT-10P-top 5’-CTAGCPPPPPPPPPPAAATACAGGAGTGCGG-3’
TT-10P-bottom 3’ GGGGGGGGGGGTTTATGTCCTCACGCC-5’
his-rev-2P 5’-CGCTACTAGTTCTGAATGTCTTPPAGGAGAGATC-3’

Table 4.1: Sequences for several synthesized oligos.

orated at 55�, the oligo resuspended in 1ml TE (10mM Tris pH 8.0,
1mM EDTA), and stored at -20�.

4.3.2 BB-R-P

One method of incorporating pyrrolo-dC into sequences is to run a PCR
with primers containing pyrrolo-dC. The PCR primer BB-R-P, shown
in Table 4.1 includes one pyrrolo-dC and was designed to match the
BioBricks suffix. A PCR with BB-R-P and a forward primer incorpo-
rates the pyrrolo-dC on to the template strand immediately after the
test promoter.

Another primer, BB-R-5P-TE, also matched the BioBricks suffix
but contained 5 pyrrolo-dC and the TE terminator from T7. The
terminator was to both slow down the polymerase and to terminate
transcription normally rather than have the polymerase fall off the end
of the DNA.

4.3.3 TTT/TTB

The sequences for Transcription Tester Top (TTT) and Transcription
Tester Bottom (TTB) are identical except for the location of a sin-
gle pyrrolo-dC (Table 4.1). Two other related oligos, a TT control
oligo without pyrrolo-dC and an oligo complementary to all of these
sequences, were also synthesized.
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(a)
XbaI

5’ ACACACACACACACACACACGTCTAGAPG...................
3’ ...................GPAGATCTGCACACACACACACACACACA

(b)
5’ CTAGAPGTGTGTGTGTGTGTGTGTGT 3’
3’ TGCACACACACACACACACACA 5’

Figure 4.3: (a) TTT has self-complementary 3’ ends allowing it to anneal.
Extension of the oligo, shown in dots, forms a completely double stranded
oligo. After extension, digestion with XbaI forms two identical pieces shown
in (b). By ligating with another piece of DNA, a single pyrrolo-dC can be
incorporated on the top strand.

TTT and TTB were designed to be made double stranded by self-
annealing and extension. For example, TTT shown in Figure 4.3(a)
has self-complementary 3’ ends. To prepare TTT, an extension is done
with the self-primed TTT.

Extension was done using the Klenow fragment DNA polymerase
and only dTTP and dGTP in the reaction. After extension at 37�,
a digestion with XbaI forms the two identical pieces in Figure 4.3(b),
making purification unnecessary.

Starting with TTT, the final double stranded product contains a
single pyrrolo-dC on the top strand. TTB is identical to TTT except
the pyrrolo-dC in the final product ends up on the bottom strand in-
stead of the top strand.

Note that there was no heat inactivation step after the extension.
Heating the oligo before cutting in order to kill the DNA polymerase
was experimentally determined to not give good results. As the oligo
is perfectly self-complementary, a single strand can fold over on itself,
forming a hairpin, making it impossible to cut. After digestion with
XbaI, both XbaI and the DNA polymerase are heat inactivated. The
DNA polymerase is not able to fill in the overhang during the digest as
it requires dCTP. Thus, not inactivating the DNA polymerase before
the restriction digest is not a problem.

To attach either TTT or TTB to a promoter, the promoter was cut
with SpeI. TTT and TTB have compatible ends and can be ligated
to the end of the promoter. After ligation, one pyrrolo-dC will be
incorporated either into the non-template or template strand after the
promoter DNA.
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<--------------------- his-top-6P ----------------------->
65 bubble 116
| <------------> |
v *** * * * ! v

CTAGCACCATCATCCTGACTAGCGCTTPAGGPGATPTPTPPTGGAAGACATTCAGACG
GTGGTAGTAGGACTGATCGCGAAGTCCGCTAGAGAGGACCTTCTGTAAGTCTGC
<------------------ his-bot ------------------------->

<----- his-rev-2P ----->

Figure 4.4: The two oligos his-top-6P and his-bot anneal to form a fragment
of the his pause site with 6 pyrrolo-dC bases on the non-template strand.

4.3.4 TT-10P

The two strands of TT-10P (Transcription Tester with 10 pyrrolo-dC),
were synthesized as the two separate oligos in Table 4.1. An NheI
overhang was added to one end and a high GC content was used at
the other end to clamp it tightly, reducing the chance of polymerase
binding to the ends. The top, non-template strand contains ten pyrrolo-
dC bases, and the remaining sequence was randomly chosen.

4.3.5 his-6P

A pause site was synthesized as a means of slowing down the polymerase
at a specified location, allowing for easier fluorescence measurements.
Two oligos, his-top-6P and his-bot, were created to allow for the inser-
tion of the his pause site containing 6 pyrrolo-dC bases.

The sequence for the his pause site was from [22]. The bases are
numbered as they are in other experiments with +1 referring to the
start of the wild-type his transcript. The sequence from 65–116 was
used and is shown in Figure 4.4.

The pause site, indicated with an exclamation point, is located after
the T at 102 and before the G at 103. The sequence included 14 bp
downstream of the pause site, as this is the region determined to affect
the pause strength [80]. The experimentally determined transcription
bubble at the pause site is shown [79].

Several changes were made from the native his pause sequence. The
mutations from the wild-type sequence are indicated with an asterisk on
the top strand and given in Table 4.2. The complementary mutations
were made on the bottom strand. The native pause sequence contains
a SpeI site in the hairpin loop that was mutated out. Also, mutations
were added in the bubble region to increase the number of possible
places to insert pyrrolo-dC into the region.
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Mutation Pause Change
TCT→CGC (top of hairpin) 110%
G96 →C 110%
G98 →C 130%
G100→C 110%

Table 4.2: Mutations were made to the wild-type his pause sequence. Each
individual mutation has been shown to increase the pause strength [22].

NheI XbaI SpeI

5’ — G
↓
CTAGC — 3’ 5’ — T

↓
CTAGA — 3’ 5’ — A

↓
CTAGT — 3’

3’ — CGATC↑G — 5’ 3’ — AGATC↑T — 5’ 3’ — TGATC↑A — 5’

Figure 4.5: NheI leaves compatible overhangs with XbaI and SpeI.

It is desirable for the pause site to be as strong as possible. Ide-
ally, RNA polymerase would completely stop at a fixed location con-
taining pyrrolo-dC. Each of the mutations made, at least individually,
has been shown experimentally to increase the strength of the pause
site [22]. The previously determined change in pause strength are given
in Table 4.2.

The NheI restriction enzyme creates compatible overhangs with
XbaI and SpeI (Figure 4.5). The his-6P oligos were designed with
the NheI site pre-cut with a CTAG overhang, allowing for ligation with
another strand of DNA cut with SpeI. In addition, if a his-6P oligo
ligates to itself, it would re-form a NheI site, and if the SpeI cut DNA
ligates to itself, it would re-form a SpeI site. Therefore, the ligation can
be incubated in the presence of both SpeI and NheI to cut any his-6P
or DNA that incorrectly ligates to itself.

Another oligo, his-rev-2P (Table 4.1), was synthesized to be used as
a reverse PCR primer. After ligation with his-6P, it is possible to PCR
with his-rev-2P to incorporate 2 pyrrolo-dC on the template strand at
the pause site and the site that follows. If the polymerase pauses at
the expected pause site, then the region of DNA around the pause site
would be melted and a fluorescence change should be detectable.

A SpeI site was also added to the 5’ end of his-rev-2P. After a PCR,
the resulting fragment could be cut with SpeI and ligated with another
BioBricks compatible component. This could be used to test the effect
of downstream DNA regions on transcription rates or pausing.
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<------- rrnB-front-top ---------->
-65 -35
| |
v v

5’ GCGGTCAGAAAATTATTTTAAATTTCCTCTTGTCA ...
3’ CGCCAGTCTTTTAATAAAATTTAAAGGAGAACAGT ...

<---------

<-------- rrnB-top-3P -------->
-10 +1 +19
| | |
v v v

... GGCCGGAATAACTCCCTATAAT GPGPPACC ACTGACACGGAACAACGGC 3’

... CCGGCCTTATTGAGGGATATTA PGPGGTGG TGACTGTGCCTTGTTGCCG 5’
-rrnB-middle-bottom-><------- rrnB-bot-2P -------->

Figure 4.6: The rrnB promoter was synthesized from 4 separate oligos with
3 pyrrolo-dC on the top strand and 2 pyrrolo-dC on the bottom strand. The
pyrrolo-dC were placed within the region of DNA expected to be melted when
RNA polymerase binds to form the open complex.

4.3.6 PrrnB

To test directly the effect of pyrrolo-dC due to DNA separation, a
promoter was synthesized containing pyrrolo-dC incorporated in the
region melted during polymerase binding.

The promoter used was 85 bp from the E. coli rrnB promoter. The
sequence from −65 to +19 was used. As the melted region in the open
complex extends from −10 to +1 [109], several of the cytosines in this
region can be replaced with pyrrolo-dC. The entire promoter shown in
Figure 4.6 was synthesized as four separate oligos. By synthesizing it
in pieces, in principle, variants of the promoter can be easily tested by
replacing a part of the promoter with a different oligo.

To form the complete promoter, two oligos, rrnB-top-3P and rrnB-
middle-bottom, were first separately phosphorylated on the 5’ end using
T4 polynucleotide kinase. Then all four oligos were mixed together,
allowed to anneal, and ligated together with T4 ligase. After ligation,
Klenow DNA polymerase and dNTPs were added to extend and fill in
the rest of the promoter.

4.4 Experiments

To incorporate the above pyrrolo-dC oligos into promoters, promoters
were amplified via PCR, and then either another PCR or a ligation was
used to insert the pyrrolo-dC oligo into the promoter DNA.

‖ 62 ‖‖ 62 ‖‖ 62 ‖



‖ 4.4. Experiments ‖‖ 4.4. Experiments ‖‖ 4.4. Experiments ‖

4.4.1 Promoters

Promoter sequences were taken from PromEC and checked for un-
wanted restriction sites [55]. All promoter sequences were the same
length, 100 bp, and have at least 25 bp after the transcription start,
ensuring that the initial melted region does not include the downstream
pyrrolo-dC DNA. The actual promoters used included PaccA, Pada,
PampC, Plac, PribAP2, and Pzwf, with the initial P in the names
added to indicate “promoter.”

To amplify the promoters, specific primers were designed with Bio-
Bricks ends and a PCR done using E. coli genomic DNA as the tem-
plate. The result was gel purified using Qiagen spin columns.

To test termination, some promoters were attached to the TE tran-
scriptional terminator from bacteriophage T7 via ligation and PCR.

4.4.2 PCR

Standard BioBricks primers, BB-F and BB-R shown in Table 4.1 and
corresponding to the forward and reverse BioBricks sequences, were
used to PCR BioBricks sequences. After using specific primers to PCR
the promoters above, another PCR with the BioBricks primers was
done to amplify the promoters again using standard primers.

To incorporate pyrrolo-dC, BB-R-P was substituted for BB-R in the
PCR. Thus, the results from a PCR using BB-R can be easily compared
with a PCR using BB-R-P, providing a control for the pyrrolo-dC effect.

4.4.3 Ligations

Although the PCR method is an extremely simple and straightfor-
ward way of incorporating pyrrolo-dC, it has the disadvantage that the
pyrrolo-dC can only be incorporated on the template strand. Liga-
tions can place the pyrrolo-dC on either the template or non-template
strands.

Several pyrrolo-dC oligos were designed to be incorporated by lig-
ations. All oligos contained a SpeI compatible overhang. For his-6P
and TT-10P, they were first phosphorylated on the 5’ end using T4
polynucleotide kinase.

Promoters were amplified by PCR as above and then cut with SpeI.
After the digest, the DNA was purified using Microcon filters (Milli-
pore) to both concentrate the DNA and to remove the short fragments.
A ligation reaction was then set up with the SpeI cut promoter, the
pyrrolo-dC oligo, and T4 ligase. Most ligations were allowed to run
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overnight at 16�. The resulting mixture was filtered again through a
Microcon filter and checked for correctness on a 4% agarose gel.

4.4.4 Transcription Experiments

For transcription experiments, the temperature in the plate reader was
set to 31�.

Transcription Buffer

The 4x transcription buffer used for the following results (same as in
[33]) contained the following:

- 200mM Tris-HCl (pH 7.9)
- 600mM KCl
- 40mM MgCl2
- 0.4mM EDTA
- 0.4mM DTT

Transcription Reactions

80µl transcription reactions were done with the following:

- 20µl 4x transcription buffer
- 1µl 25mM each NTP mix
- rest water and DNA

Assay Protocol

The following is an example of a typical protocol used to determine
fluorescence changes due to RNA polymerase:

1. The well on the plate is pre-treated with BSA in water and al-
lowed to sit for at least an hour.

2. The well is emptied and allowed to dry.

3. The above 80µl transcription mix is placed in the well and the
baseline fluorescence is measured.

4. 1.5µl of RNA polymerase holoenzyme from Epicentre is added to
the well (about 16nM final concentration).

5. The fluorescence kinetics is measured from the well and compared
with the baseline.
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Chapter 5

Results

This chapter describes some selected results, many that were unex-
pected and still not fully explained.

5.1 Fluorescence Detection

Fluorescence was initially measured on a Bio-Tek FL600 fluorescence
plate reader using an excitation filter of 360nm/40nm and emission fil-
ter of 460nm/30nm (center wavelength/bandwidth). These filters were
chosen based on published data about the spectrum of pyrrolo-dC [91]
and from the manufacturer (Glen Research). Fluorescence values are
in arbitrary units and were usually normalized to the first fluorescence
reading.

5.1.1 Plates

Some plates showed uneven background fluorescence between wells. It
was discovered that at some wavelengths being used, dust can have
a large impact. A wash with water and a drying of the plate could
usually reduce the well to well variation in fluorescence.

The type of plate used was found to have an enormous effect on
fluorescence readings. All 96-well plates used were black, in order to
minimize the background fluorescence. Across different types of plates
from different sources, large variations were seen in background fluo-
rescence readings.
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Figure 5.1: Fluorescence kinetics of bovine serum albumin (BSA) and his-
top-6P in water on Dynex high binding plates show unexplained increases and
decreases in fluorescence.

Dynex High Binding Plates

The first plates used were Dynex Microfluor 2 high-binding polystyrene
plates. Transcription reactions done on these plates showed a curious
effect. Kinetics measurements showed a noticeable bell-shape curve,
with both a dramatic increase and decrease in fluorescence over time.

However, the bell-shaped curve was seen even when only RNA poly-
merase, BSA, or other proteins were placed into wells with only water.
An increase in fluorescence but no decrease was seen when the oligo
his-top-6P was used (Figure 5.1).

Protein or DNA could have been binding to the wells, leading to the
observed increase and decrease in fluorescence. However, the excitation
and emission wavelengths used should have been far from any intrinsic
protein or DNA fluorescence. It is therefore not known why the fluores-
cence kinetics appear as they do. By varying the measurement times
and durations, the decrease in fluorescence seen in the curve does not
appear to be due to photobleaching.

‖ 66 ‖‖ 66 ‖‖ 66 ‖



‖ 5.1. Fluorescence Detection ‖‖ 5.1. Fluorescence Detection ‖‖ 5.1. Fluorescence Detection ‖

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 500 1000 1500 2000 2500 3000 3500 4000

flu
or

es
ce

nc
e 

(n
or

m
al

iz
ed

)

time (sec)

Plac-his-6P
PribAP2-his-6P

BSA

Figure 5.2: Measurements on Dynex polystyrene non-high-binding plates
show the same type of trend as seen on the high-binding plates.

Dynex Non-treated Polystyrene

Another type of plates tried were Dynex clear bottom polystyrene
plates, not treated to be high-binding and believed to be medium bind-
ing. With a clear bottom, fluorescence readings could be made from
either the top or the bottom. However, bottom readings were much less
sensitive, so top measurements were used for all experiments involving
clear bottom plates.

Figure 5.2 shows the fluorescence measured for BSA in water. Al-
though the magnitude of the increase was less than for the high-binding
plates, a similar shaped curve is present on these medium-binding
plates. Transcription reactions done with several promoters attached
to his-6P also show upward and downward trends in fluorescence as
shown in Figure 5.3.

Less fluorescence change is expected if a transcriptional termina-
tor is added between the promoter and the pyrrolo-dC, due to fewer
polymerase arrivals. Most polymerases would be expected to terminate
before arriving at the pyrrolo-dC. In Figure 5.4, a promoter, termina-
tor, and his-6P were ligated together and placed into a transcription
reaction. However, even with the terminator, there is the characteristic
increase and decrease in fluorescence after adding RNA polymerase.
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Figure 5.3: On a polystyrene non-high-binding plate, the fluorescence kinet-
ics of transcription reactions for several promoters attached to his-6P show
relatively similar curves.

The downward trends again appear not to be due to bleaching. In
several experiments, decreasing the number of measurements did not
significantly change the time to reach the peak, as would be expected
if the peak was due to a bleaching effect.

In Figure 5.5, transcription reactions were run lacking either NTPs
or the polymerase. In both cases, the fluorescence increases and de-
creases over time. Also, in Figure 5.6, the his-6P oligo by itself without
polymerase shows a similar behavior as on the high-binding plates, with
an increase but no decrease in fluorescence.

However, unlike the results on the high-binding plates, controls with
only the polymerase or transcription reactions with promoters attached
to a single pyrrolo-dC using BB-R-P, did not show the same bell curve
but was flat (data not shown). The results indicates that the his pause
site or the extra pyrrolo-dC signals on the his-6P oligo may have been
producing a measurable fluorescence effect, although probably not the
expected effect due to transcription.
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Figure 5.4: The kinetics of a transcription reaction with a promoter attached
to a terminator and his-6P shows an upward trend immediately after addition
of RNAP. The vertical line indicates the time of addition of RNAP.

Costar Polypropylene Plates

To test potential problems with protein binding to wells, polypropylene
plates were tried, as the amount of binding on polypropylene was ex-
pected to be less than untreated polystyrene. As seen in Figure 5.7, a
control well on a Costar clear bottom plate containing RNA polymerase
and no DNA shows relatively flat kinetics for a long time before a de-
crease in fluorescence, presumably due to bleaching.

Transcription reactions with Plac-his-6P and one that includes the
TE terminator, Plac-TE-his-6P, were done simultaneously with the pre-
vious control. As can be seen in Figure 5.8, the bell-shaped curve was
present again but could no longer be attributed to protein binding.
Similar results were obtained with another promoter, PribAP2-his-6P
and PribAP2-TE-his-6P, as seen in Figure 5.9.

Different curves were seen depending on the promoter and whether
there was an attached transcriptional terminator. The increase in flu-
orescence was faster for the PribAP2 curves compared with the Plac
curves. In addition, the terminator for both promoters shifted the peak
to the left.

‖ 69 ‖‖ 69 ‖‖ 69 ‖



‖ Chapter 5. Results ‖‖ Chapter 5. Results ‖‖ Chapter 5. Results ‖

0.9

0.95

1

1.05

1.1

1.15

1.2

0 500 1000 1500 2000 2500 3000 3500 4000

flu
or

es
ce

nc
e 

(n
or

m
al

iz
ed

)

time (sec)

Pzwf-his-6P -NTP
Plac-his-6P -RNAP

Figure 5.5: Fluorescence was measured during transcription reactions for
promoters attached to his-6P. The reactions were done either without NTPs
(Pzwf) or without RNA polymerase (Plac).
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Figure 5.6: The kinetics of the his-6P oligo in buffer with NTPs and without
RNA polymerase shows an increase but no decrease in fluorescence.

‖ 70 ‖‖ 70 ‖‖ 70 ‖



‖ 5.1. Fluorescence Detection ‖‖ 5.1. Fluorescence Detection ‖‖ 5.1. Fluorescence Detection ‖

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 500 1000 1500 2000 2500 3000 3500 4000 4500

flu
or

es
ce

nc
e 

(n
or

m
al

iz
ed

)

time (sec)

empty well
control

Figure 5.7: A fluorescence control without DNA on a polypropylene plate
shows relatively flat kinetics followed by a decrease. The control well con-
tained buffer, NTPs, and RNA polymerase.

Corning NBS Plates

The Corning NBS (non-binding surface) treated polystyrene, clear bot-
tom, plates were expected to bind less than either untreated polypropy-
lene or polystyrene plates.

Equal molar amounts of his-top-6P and his-bot (about 100 pmoles
each) were added to 80µl of buffer and water and measured in NBS
half-well plates. In Figure 5.10, the fluorescence kinetics clearly show
a decrease in fluorescence over time, indicating a quenching of fluores-
cence as the strands anneal.

Unlike the previous plates, transcription reactions and BSA controls
on these NBS plates do not show a bell-shaped fluorescence curve and
are essentially flat. One example is seen in Figure 5.11 with one pro-
moter. As all measured fluorescence curves were flat, not many useful
results could be determined using these plates.

Greiner Fluotrac 200 Plates

The last set of plates tried were Greiner Fluotrac 200, polystyrene,
medium binding plates. At the same sensitivity setting, the background
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Figure 5.8: The kinetics of transcription reactions with the Plac promoter
with and without a terminator show bell-shaped curves not present in the
control. The control well is the same as in Figure 5.7.

fluorescence of an empty well from a Greiner plate is about half that
of a well from a Corning NBS plate.

In Figure 5.12, the fluorescence for BSA measured on these plates
showed the now familiar bell curve. After the BSA was measured,
the well was emptied and rinsed with water. Then fresh BSA was
put into the well and the fluorescence measured again. The second
measurements were extremely flat, not showing the same curve.

Thus, the bell-shaped curves seen on the various plates are probably
due to binding of protein to the well. After the protein saturates the
well, it blocks any further protein from binding, even after a rinse with
water.

For all further experiments, these Greiner plates were used, and,
before use, the wells were pre-soaked with BSA and allowed to bind to
protect the well from binding during the experiment.

The same annealing experiments were done as in Figure 5.10 on the
Greiner plates. As seen in Figure 5.13, the fluorescence curve for the
annealing condition shows a decrease over time, whereas the control
reaction containing only the top oligo does not show an appreciable
decrease in fluorescence.
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Figure 5.9: Transcription reactions with the PribAP2 promoter with and
without a terminator show similar results to the reactions with Plac above.
The control well is the same as in Figure 5.7.

5.1.2 Machine

Other plate readers were tried to compare their sensitivity and to obtain
a fluorescence spectrum, something that was not possible on the Bio-
Tek FL600 machine. The most useful results came from a Tecan Safire
plate reader.

Plate Background

Using the Safire, the background fluorescence from empty wells of all
the previous plates was measured. Excitation was fixed at 360nm/12nm
and the emission scanned between 400nm and 500nm. All the plates
had extraordinarily high fluorescence compared with the Greiner plates.
Figure 5.14 shows the data for a couple of the plates. In addition to a
high background, there is an unexplained sharp drop off at 450nm for
most of these plates.
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Figure 5.10: Fluorescence of his-top-6P annealing with his-bot shows a
gradual decrease, due to quenching of the pyrrolo-dC fluorescence in double-
stranded DNA.
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Figure 5.11: A transcription reaction with plac-his-6P on Corning NBS
plates does not show much change in fluorescence over time.
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Figure 5.12: BSA measured on a Greiner Fluotrac 200 plate shows a bell
shaped curve similar to other plates.
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Figure 5.13: The kinetics of his-top-6P annealing with his-bot on Greiner
plates shows a decrease in fluorescence as would be expected. No change in
fluorescence is seen with only his-top-6P.

‖ 75 ‖‖ 75 ‖‖ 75 ‖



‖ Chapter 5. Results ‖‖ Chapter 5. Results ‖‖ Chapter 5. Results ‖

0

200

400

600

800

1000

1200

1400

400 420 440 460 480 500

flu
or

es
ce

nc
e 

(a
rb

itr
ar

y 
un

its
)

Emission Wavelength (nm)

Dynex black, clear bottom
Corning black NBS

Greiner Fluotrac 200

Figure 5.14: The emission spectrum measured from empty wells of different
types of plates show that the Greiner plates have a much lower background
fluorescence. Excitation was set at 360nm/12nm.

Pyrrolo-dC Fluorescence

Using a Greiner plate, the emission spectrum of a sample containing
4µM of a two nucleotide test oligo, PG, was measured on the Safire
reader. As seen in Figure 5.15, the fluorescence of the pyrrolo-dC is
easily detectable above the background.

The exact same plate and wells used in Figure 5.15 was also mea-
sured on the Bio-Tek machine. With excitation at 360nm/40nm, the
emission was measured using both 460nm/30nm and 485nm/40nm fil-
ters. The fluorescence at 460nm was higher than at 485nm, unlike the
spectrum measured on the Safire machine. Furthermore, the signal-to-
noise ratio was about 1.5 on the Bio-Tek versus 7 on the Safire.

In Figure 5.16, the emission and excitation spectrum of pyrrolo-dC
was measured using the two nucleotide test oligo, PG. The excitation
spectrum used an emission filter at 440nm and was similar to published
data. The emission spectrum was measured using an excitation at
350nm/7.5nm, similar to that used in a previously published report [91].
Surprisingly, the emission spectrum shows a peak around 440nm and a
minima at 460nm. The shape of the spectrum curve was quite different
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Figure 5.15: The emission spectrum was measured on a Safire plate reader
of a sample containing a test PG oligo in water. Excitation was set at
360nm/12nm.

from the published emission spectrum and the data used as the original
basis for choosing a 460nm emission filter.

The relative insensitivity of the Bio-Tek fluorescence readings may
partially explain some lack of results, especially on the original plates
with high background. In addition, the emission filters being used
may have been suboptimal. The highest sensitivity with the Bio-Tek
machine using available filters was found with the excitation at 360nm
and emission measured at 516nm/20nm.

5.2 Transcription Experiments

All following measurements were made on the Bio-Tek machine using
Greiner plates with excitation at 360nm and emission at 516nm.

5.2.1 PrrnB

To test that a change in fluorescence is measurable due to strand sep-
aration by RNA polymerase, the rrnB promoter was synthesized as
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Figure 5.16: (a) The emission spectrum of pyrrolo-dC was measured with
the oligo PG with excitation at 350nm/7.5nm. (b) The excitation spectrum
of pyrrolo-dC was measured with the oligo PG with emission measured at
440nm/7.5nm.
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-RNAP +RNAP ratio
Plac 1062 833 0.78

Plac-P 812 778 0.96
Plac-5P-TE 766 793 1.03

PribAP2 891 601 0.67
PribAP2-P 903 842 0.93

PribAP2-5P-TE 742 815 1.10

Figure 5.17: Fluorescence of several constructs with the promoters Plac
and PribAP2 before and after addition of RNA polymerase shows a possible
effect due to transcribing polymerase. The -TE samples contained the TE
transcriptional terminator from T7.

described in �4.3.6 with 5 pyrrolo-dC bases in the initial melting re-
gion.

The fluorescence of only PrrnB was distinctly higher than that of
an empty well. After addition of 1.5µl RNA polymerase without any
NTPs, the fluorescence noticeably increased (136%) but also decreased
after some time in a manner that could not be attributed to bleaching.
Under the same conditions, a control containing the RNA polymerase
in water showed no change in fluorescence over time.

5.2.2 BB-R-P

Figure 5.17 shows an example of measuring fluorescence during a tran-
scription experiment. Two promoters, Plac and PribAP2 had pyrrolo-
dC incorporated on to the template strand via PCR with BB-R-P or
BB-R-5P-TE. Controls were also done with BB-R to leave the promoter
unlabeled. All PCRs were verified on an agarose gel.

For all promoter constructs, fluorescence was measured before and
after addition of RNA polymerase. The ratio of the fluorescence with
RNA polymerase to without is calculated. For the controls, the fluores-
cence with polymerase goes down, giving ratios less than 1. However,
the ratios are significantly higher for the promoters with either a single
or 5 pyrrolo-dC attached to the end, indicating a potential increase in
fluorescence due to the RNA polymerase melting the region around the
pyrrolo-dC.

In an independently run experiment, the same methodology used in
Figure 5.17 was repeated, with similar final fluorescence ratios shown
in Figure 5.18. In this experiment, several additional data points were
collected. Fluorescence measured immediately after the addition of
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(a) (b) (c) (d)
Empty -RNAP +RNAP +RNAP ratio

(-mix) (+mix) (d/b)
Plac 809 821 812 671 0.82

Plac-P 845 757 742 720 0.95
Plac-5P-TE 821 775 739 772 1.00

PribAP2 845 949 943 699 0.74
PribAP2-P 842 821 748 748 0.91

PribAP2-5P-TE 851 742 739 726 0.98
Empty 861 912 964 949 1.04

Figure 5.18: A separate experiment gives results similar to Figure 5.17.
Column (a) gives the fluorescence of the empty well without the sample. Col-
umn (b) shows the fluorescence after adding the sample. Column (c) and (d)
show the fluorescence after adding polymerase, with (c) measured immedi-
ately after adding polymerase and (d) measured after thorough mixing of the
wells. The final column gives the ratio of column (d) to (b). The last row of
the table shows a well that was left empty for all measurements.

RNA polymerase, without mixing, showed little change in fluorescence
across the conditions. Fluorescence was measured again after mixing
the wells, and the fluorescence for the control promoters went down
while all other samples remained relatively constant.

It is unclear why fluorescence decreases for the promoter samples
without pyrrolo-dC and does not decrease for the samples with pyrrolo-
dC. In addition, the lack of a significant increase in fluorescence for the
pyrrolo-dC samples is puzzling.

Kinetic measurements were made during separate transcription re-
actions. Typical results showed up and down swings of fluorescence,
possibly due to noise in the machine, and were seen with or without
temperature control. The data in Figure 5.19 was measured with the
machine temperature set to 31�. In addition, the fluorescence fluctu-
ations exist even when measuring empty wells.

Although the results in Figures 5.17 and 5.18 could be due to ex-
perimental and measurement noise, the similar results in independent
experiments indicate some effect probably exists across sample condi-
tions. It is unknown whether the results reflect the expected effect due
to transcription or to another mechanism.
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Figure 5.19: Fluorescence variations were seen during transcription experi-
ments. An empty well was measured along with several promoter constructs.
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Chapter 6

Discussion

We have presented the motivation for using polymerase arrival rates as
the standard unit to describe modules. Although PAR-modules provide
a useful abstraction layer for engineering biological systems, a method
for measuring PAR is also critical.

PAR depends on many things including the strength of RNA poly-
merase binding, percent of abortive transcripts, promoter clearance
rate, elongation rate, dissociation rate, and re-transcription rates. The
purpose of many biochemical studies is to separate out many of these
effects to obtain individual kinetic rates, but this is not needed nor
desired for the measurement of polymerase arrival rates.

The goal of the PARMESAN method is to characterize PAR us-
ing a fluorescent assay. Below, we discuss potential problems with
PARMESAN, future work, and provide a comparison with other meth-
ods.

6.1 Potential Problems

6.1.1 Template DNA

There are several potential issues related to the DNA used as the tem-
plate for transcription. The linear PCR templates used may have prob-
lems with polymerases binding to the ends. The σ subunit of RNA
polymerase greatly reduces the amount of non-promoter interactions
but does not eliminate non-specificity completely. In particular, the
affinity of RNA polymerase holoenzyme for the ends of promoter-free
linear DNA fragments is as much as 600 times stronger than random
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interior sites [104, 152]. Circularizing DNA reduces the binding affin-
ity of holoenzyme, whereas the binding affinity of core enzyme is not
affected.

When possible, extra GC bases were added to the ends of the DNA
template to make them harder to pull apart. Another way to avoid
this potential problem would be to make the DNA circular, but then a
strong terminator would need to be inserted to ensure the polymerase
does not elongate around the circle multiple times.

There may also be issues involving runoff transcription. At the end
of a DNA template, the polymerase presumably just falls off, but this
is a boundary condition that may be handled differently than normal
transcription. Forcing the polymerase to terminate transcription nor-
mally may be a more accurate indicator of its behavior in a real system.

6.1.2 Fluorescence Measurements

The major experimental problems have related to the fluorescence mea-
surement itself, either with the plates or with the plate reader. Al-
though the issues with the plates may be resolved, unresolved issues
with the plate reader may still exist. It is not clear how important the
sensitivity of the plate reader is to obtain useful results. Boosting the
signal may be necessary by increasing the number of fluorescent bases
used.

When one uses different fluorescence dyes, their intensities need to
be normalized [127]. But even when using a single dye, the fluores-
cence can change over time due to storage conditions. Controlling for
this photodegradation may be necessary. Other fluorescence related
problems could include photobleaching or modification of the enzyme
or DNA due to prolonged excitation energy, although this has not yet
appeared to be a problem.

6.1.3 Reaction Conditions

The factors that affect promoter strength can be grouped into intrinsic
and extrinsic factors [20]. Intrinsic factors include the DNA template,
RNA polymerase, and transcription factors such as repressors or induc-
ers. Extrinsic factors include reaction conditions such as the buffer or
the temperature. It is desirable to measure the effect due to intrinsic
factors and control for extrinsic factors.

Previous in vitro studies of transcription with both T7 and E. coli
RNA polymerase have shown a strong and often complex dependence
on extrinsic reaction conditions. For example, the initial lag phase
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due to open complex formation has been shown to be proportional to
[Na+]12[RNAP]−1 [123]. Other variables such as source of RNAP, tem-
perature, and position of fluorescent bases can also affect this lag [33].
Even the measured relative strength of promoters has been shown to
vary depending on temperature, salt concentration, and enzyme to
DNA ratio [11, 63, 64, 81, 106].

Temperature

The activity of RNA polymerase is affected by temperature, but the
effect is not large around the temperature used for the experiments [96].

Salt Concentration

With increasing NaCl or KCl concentrations, the binding of RNA poly-
merase to DNA drops [95, 98, 123, 141]. However, kcat, a measure of
transcription rate, does not show the same dependence on salt concen-
tration. Lowering the ionic strength can have problems of causing the
polymerase to aggregate and can greatly increase polymerase binding
to nonspecific DNA sites [152].

The salt concentration also affects pausing at the his site [23], and
higher KCl concentrations and lower magnesium concentrations can
lead to increased termination efficiency [160]. Therefore, varying the
salt concentration could have a variety of separate effects on transcrip-
tion.

Salt concentration may also have an effect on the fluorescence read-
ings. Salts have been shown to have effects on 2-aminopurine fluores-
cence [162] and may also affect pyrrolo-dC.

Enzyme Concentration

The concentration of RNA polymerase almost certainly has an effect
on the observed polymerase arrival rates. Although there have been
results indicating the rate of polymerase binding to DNA is indepen-
dent of enzyme concentration [63, 124], much more than binding and
open complex formation needs to be measured to determine PAR. In
addition, these experiments usually limited the enzyme to one round
of transcription.

In other experiments, the elongation rate was dependent on RNA
polymerase concentration, due to cooperation among enzyme molecules
[41]. As the transcriptional activity being measured is due to many
complex factors, including elongation rate, the polymerase concentra-
tion is probably a significant factor.
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NTP Concentration

Like the concentration of enzyme, the concentration of NTPs as a nec-
essary substrate for transcription, has an effect on the transcription
rate. The concentration of the initiating NTP has been shown to affect
transcription efficiency for some promoters [47, 50], the concentration
of the next nucleotide to be added at a pause site can affect the pause
strength [82, 149].

At the pyrBI operon, the first six nucleotides are AAUUUG and at
high UTP concentrations, the polymerase repeatedly transcribes bases
3 to 5 to synthesize RNA containing 30 or more U residues, effectively
stalling transcription [30, 61]. In this case, the observed arrival of
polymerase downstream depends greatly on the UTP concentrations.

Other Conditions

Another potential variable is the buffer pH. Increasing the pH decreases
the association constant of the RNA polymerase for DNA but increases
the rate of formation of the open complex from the closed complex [14].

6.2 Future Work

In theory, the PARMESAN method is a relatively easy and inexpensive
way to assay transcription rates. In practice, after many failed exper-
iments, only some decent results were obtained, leaving many open
questions. Several possibilities for additional experiments follow.

6.2.1 Method Soundness

The first set of experiments should be to confirm the soundness of using
pyrrolo-dC fluorescence as a measure of transcription rates.

Controls with pyrrolo-dC located in other places, for example, be-
fore a promoter, can be used to test that fluorescence changes are due to
the location of the pyrrolo-dC. In addition, fluorescence changes across
promoters should be quantified and compared with known promoter
strengths to determine if there is a relationship between fluorescence
changes and promoter strength.

Another way to confirm that fluorescence changes are due to tran-
scription is to run the reactions at low temperatures where promoter
binding but no strand separation is expected to occur. In experiments
with 2-aminopurine at 4�, no fluorescence change was detected due to
the lack of strand separation [142].

‖ 86 ‖‖ 86 ‖‖ 86 ‖



‖ 6.2. Future Work ‖‖ 6.2. Future Work ‖‖ 6.2. Future Work ‖

6.2.2 Reaction Conditions

As described above, a measurement of transcriptional activity is only
meaningful at a given concentration of RNA polymerase, NTP, and
buffer salts. Different conditions may lead to different results. Before
settling on the transcription buffer in �4.4.4, experiments were initially
tried in several other buffers, including an Epicentre buffer designed
for T7 RNA polymerase and an E. coli buffer, but these gave some
misleading fluorescence measurements.

For measurements to be useful, the results should be applicable in
vivo or in whatever system is being used. To increase the applicability
of the in vitro PARMESAN method, the buffer and reaction condi-
tions need to be optimized to provide the most useful results. As the
goal of PARMESAN is to have standard conditions for measuring tran-
scription, it may be ideal to have conditions as similar to intracellular
conditions as possible. The cytoplasm of E. coli has been character-
ized to some extent [19]. For example, K+ is the primary intracellular
solute with a concentration varying from about 140 mM to 760 mM.
Even from this type of data, finding the solution conditions to achieve
the best results may be a difficult task.

In addition, in a real system, there will be other template DNA
floating around, competing for the RNA polymerase. To make more
realistic measurements, extra DNA such as pieces of the E. coli genome
could be added to compete for the RNA polymerase.

6.2.3 Strand Dependence

Although different results are expected depending on whether the
pyrrolo-dC is on the template or non-template strand, the current
experiments have not been able to provide decisive evidence to show
that one strand should be preferred over the other. The non-template
strand is a safer choice for pyrrolo-dC incorporation, as the fluores-
cence of pyrrolo-dC on the non-template strand is not quenched during
transcription. However, it is easier to incorporate pyrrolo-dC on the
template strand via a PCR reaction, and if the template strand is a
workable alternative, then it may be the preferred strategy.

6.2.4 Transcription Regulators

This method is not only useful for measuring promoter strength, but
also to characterize various transcriptional signals. For example, the
difference in PAR of a promoter followed by a terminator and the pro-
moter alone is a measure of the terminator efficiency. Other transcrip-
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tional signals that could be characterized include pause sites or perhaps
the speed of transcription through various sequences of DNA.

It has been assumed that downstream DNA has little effect on tran-
scription rates. That is, the polymerase does not look-ahead during
elongation. This is likely not a valid assumption, but the conditions
when DNA downstream does have an effect can be easily tested using
the PARMESAN method. The pyrrolo-dC can be incorporated in the
middle of a strand of DNA and, by varying the downstream DNA, the
dependence of PAR on the downstream region can be tested.

In addition to the signals located on the DNA template, many pro-
teins and transcription factors influence transcription. The RNA poly-
merase must integrate all this information in deciding where and when
to transcribe [109]. Transcription experiments have been done in vitro
before to test the effects of repressors and activators [11, 131].

To measure the impact of these transcription factors on polymerase
arrival rates, these factors can be added to the in vitro transcription
reactions. For example, by adding a varying amount of repressor pro-
tein and measuring PAR, the effect of the repressor on transcription
can be determined.

For more complex modules, a cell-free translation system can be
added in addition to the transcription machinery [147]. An in vitro
transcription and translation system should still be a more controlled
environment, leading to more reproducible results, than in a free-living
cell.

Including the effects of transcriptional regulators would allow us to
obtain transfer curves for many simple types of modules as described
in Chapter 3. An output can be measured while varying the inputs,
obtaining the desired transfer curve.

6.2.5 Real-Time Kinetics

One benefit of using a non-destructive fluorescent assay with pyrrolo-
dC is the potential to obtain real-time kinetic information. Kinetic
measurements should be possible, having been done before in other
applications with 2-aminopurine [9, 33, 58, 59].

It may be necessary to slow reactions to resolve the signals. Some
ways to slow down the polymerase include lowering the temperature,
lowering the NTP concentration, and using various drugs and proteins.
Streptolydigin is a drug that slows the polymerase elongation rate and
NusA enhances polymerase pausing about threefold at the his pause
site [22]. However, these can affect the measurements in unknown ways,
making it unclear whether these manipulations should be done at all.
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6.2.6 Pyrrolo-dC Characterization

Not much is known about pyrrolo-dC and few experiments have been
done with it. For use as a measurement tool, pyrrolo-dC needs to be
characterized and understood better.

The sequence flanking 2-aminopurine has been shown to affect its
fluorescence [9]. For example, guanine residues next to 2-aminopurine
quenches its fluorescence. A similar effect may occur with pyrrolo-dC.
To maximize the signal, it is necessary to determine how the pyrrolo-dC
fluorescence depends on the nearby sequence.

Another issue may be unwanted disturbances in the system due to
the pyrrolo-dC measurement. The amount of disturbance an artificial
base like pyrrolo-dC has on the natural transcription process is not
known. Although pyrrolo-dC can pair with guanine, it is possible the
artificial base induces some change in the DNA structure that affects
the transcription process.

6.2.7 Polymerase States

In a theoretical module, the polymerase arrival rates should be in iden-
tical units, allowing them to be interchangeably connected together.
To do this, all polymerase arrivals were assumed to be measured at a
point when the polymerase is in a fixed standard state.

In the PARMESAN method presented here, the state of the poly-
merases is not checked. The measurement method cannot distinguish,
for example, between polymerase stalled at the pyrrolo-dC and poly-
merase actively transcribing. Although this method does not neces-
sarily have to distinguish among polymerase states, a separate method
may be required to guarantee that a module is valid and usable under
the assumptions described in Chapter 3.

In the current experiments, the pyrrolo-dC fluorescence should not
be measuring polymerases in the binding state and only measuring
elongating polymerases. The pyrrolo-dC labels were placed at least
25 bp downstream of the initiation point, which was assumed to be
far enough downstream to not lead to fluorescence changes upon RNA
polymerase binding. Promoters with strong binding do not necessarily
correlate with strong transcription initiation and elongation, and so it
is important to determine that it is not binding being measured.

Another possible problem is the non-directionality of polymerase
measurement using the pyrrolo-dC technique. The polymerase could
potentially be arriving and moving in the opposite direction from ex-
pected. The measurement may actually be directional if a difference
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exists in the fluorescence depending on whether the pyrrolo-dC is on
the template or non-template strands. But separating the effects from
the two directions may be difficult.

6.3 Method Comparison

A summary of some advantages and disadvantages of the PARMESAN
method are presented below, followed by comparisons with specific
methods.

6.3.1 Advantages

� Measurements can be done in vitro. It is not needed to make
plasmids or transform cells. Plasmid construction is not always
an easy task, especially for promoters [159].

� Desired transcriptional activity is isolated from the noise of other
events present in a cell.

� No radioactive labeling is needed, simplifying experiments and
eliminating radioactive waste.

� Pyrrolo-dC is a non-destructive method for determining single
stranded changes in DNA. Potassium permanganate (KMnO4)
or dimethyl sulfate (DMS) have been used to probe for single
stranded DNA but cannot be used for real-time assays, as they
can only permanently modify the DNA once [128, 132]. Similarly,
cross-linking techniques covalently modify the DNA and can only
be done once per experiment [114].

� The method is not limited to E. coli RNA polymerase and any
purified polymerase could be substituted.

� The data collection is fast, with the fluorescence change being
immediately detectable, providing the potential to look closely at
the kinetics of polymerase arrivals.

� It is not required to synthesize new labeled oligos for every piece
of DNA to be tested, as the oligos are designed to be general
enough to work with existing and future modules.

� The BioBricks assembly scheme is used here, but PARMESAN is
relatively independent of the module assembly strategy. Different
pyrrolo-dC oligos could be designed for another assembly method.
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� There is no need to worry about different RNA half-life times.

� There is minimal disturbance placed on the natural transcrip-
tional system. By not using a modified enzyme or modified NTPs,
most of the transcription process should proceed as normal. If
the artificial base does have an effect, it likely only has an effect
on the region around the site of incorporation. As we are mea-
suring the rate the polymerase arrives at that point and do not
care what happens after it passes, the disturbance on the system
being measured is probably minimal.

� The method is not limited to pyrrolo-dC. Other fluorescent bases,
such as 2-aminopurine, could be substituted for pyrrolo-dC.

� Simplicity. The method is theoretically simple and straightfor-
ward to do with materials common in molecular biology labs.

6.3.2 Disadvantages

� Results have not yet shown convincingly that the method as de-
scribed here is a reasonable assay for polymerase arrival rates.

� Measurements need to be done in vitro. Using a fluorescent base
is not directly adaptable to measurements in live cells, as the
non-natural base would be quickly replaced by a non-fluorescent
normal base. In addition, the precise incorporation of the fluo-
rescence base into DNA could not be easily controlled in growing
cells.

� The in vitro measurements may not accurately reflect in vivo
behavior. The cellular “noise” may be important for the behavior
of some systems.

� Pyrrolo-dC may disturb the transcription process.

� A source of purified RNA polymerase is required.

� It may be difficult to measure complex systems in vitro.

6.3.3 in vivo Methods

The standard method for measuring promoter strength in vivo is to
clone a promoter in front of some reporter gene into a plasmid. How-
ever, strong promoters on plasmids can interfere with cell replication.
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An inverse correlation between promoter strength and plasmid copy
numbers has been found [1, 75].

Also, the plasmid copy number can vary significantly during cellular
growth and can be estimated but not accurately determined. Thus,
the measured promoter activity from in vivo assays may depend on the
growth phase of the culture [150, 159].

Reporter Proteins

Using reporter protein levels has several potential problems. Reporter
proteins can easily change the system they are measuring. They build
up in the cell and do not measure transcription rates directly, making it
difficult to compare results across experiments using different reporters.
Also, there is stochastic noise when measuring protein expression lev-
els [39]. Reactions done in defined reactions in vitro should be less
noisy than in complex living cells.

Although testing promoter strength with reporter proteins is rela-
tively easy, post-transcriptional events may distort the results, requir-
ing precautions to protect the RNA or protein from being selectively
degraded [159].

Also, as increased mRNA does not necessarily mean an increase
in translation of that mRNA, using protein reporters for measuring
transcriptional activity should be avoided if possible.

RNA Assays

It makes sense to measure the product of transcription, the RNA level,
in assaying transcriptional activity. However, it is not always clear what
is being measured when looking at RNA levels. Is it the complete, entire
transcript or does it include aborted transcripts? Is RNA degradation
taken into account?

Bases downstream of the start can affect both promoter strength
and RNA degradation [66]. Using the same transcribed RNA for dif-
ferent promoters may limit this problem, but this is usually difficult
as it requires knowing the exact position of the transcriptional start.
This is also not applicable for measuring PAR in a general module that
may contain more than a single promoter, as nothing can be assumed
about the RNA produced or the degradation rates. In addition, the
degradation rate is a function of the RNA concentration and the stage
of bacterial growth [13], making RNA levels not an entirely accurate
indicator of transcription rate or promoter strength.

Hybridization of mRNA with a probe as used in Northern blots,
ribonuclease protection assays, and DNA microarrays are relatively in-

‖ 92 ‖‖ 92 ‖‖ 92 ‖



‖ 6.3. Method Comparison ‖‖ 6.3. Method Comparison ‖‖ 6.3. Method Comparison ‖

sensitive and cannot easily be done in a continuous, real-time assay
[127]. PCR-based methods can give greater sensitivity but are also
relatively indirect.

Obtaining absolute numbers from fluorescence readings requires
standards [127]. The concentration of ribosomal RNA relative to to-
tal RNA is relatively constant and useful as a standard. However, the
method used in [170] to find the absolute transcription rate of the rrn
promoters is tedious, and not easily applicable to measuring the PAR
for a general module.

RNA assays and reporter proteins can often provide differing mea-
surements of promoter strength. The strength of a T7 promoter and
the lac promoter have been measured using both a tRNA reporter and
a reporter protein [93]. Comparing the tRNA expression level, the T7
promoter was stronger, but using the protein expression level, the lac
promoter was stronger. Other results have shown that transcriptional
and reporter protein assays can be affected in opposite directions due
to changes in growth rate [85, 86].

6.3.4 in vitro Methods

Differences in promoter strengths have been found between in vitro
and in vivo experiments, undoubtedly due to many elements in living
systems we do not yet understand. Even if experiments done in vitro do
not accurately represent the system in a cell, they represent a system
that can be understood more completely.

Inside a cell, many additional reactions affect transcription, many
of which cannot be accounted for in a defined manner. For exam-
ple, DNA polymerase during replication interacts with the transcrib-
ing RNA polymerase [90]. Undoubtedly, these are important to real
systems, but for measurement and characterization purposes, these are
side effects that should be eliminated.

It is also arguably easier to perform experiments in vitro. In fact,
several attempts to clone promoters into cells failed, partially leading
to the development of the PARMESAN method. With in vitro experi-
ments, it is not necessary to worry about toxicity to cells due to strong
promoters putting an unbearable burden on cells.

Some in vitro methods use rifampicin or heparin to limit tran-
scription to a single round. As PAR measurements should include
re-initiation rates, techniques that limit transcription cannot be used.
Also, it has been determined that trailing RNA polymerase molecules
can bump and push forward RNA polymerase molecules in front of
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it [41]. To ensure the measurement system is similar to the cellular
environment, as few non-natural molecules as possible should be used.

Fluorescent Measurements

Most previous experiments using a fluorescent DNA base in a manner
similar to the PARMESAN method have been done with 2-aminopurine
(e.g. [8, 44, 117, 118, 142, 148, 163]). Usually, previous methods and
experiments with either 2-aminopurine and pyrrolo-dC synthesized the
fluorescent bases directly into the oligonucleotides to be tested. This
is not acceptable as we require a general method for characterizing
arbitrary modules.

Fluorescently labeled NTPs can be used to measure RNA formation
or the total transcription rate [14, 33]. What is needed, however, is a
system to test transcription rate at an arbitrary point in an arbitrary
strand of DNA and to ignore all other transcriptional activity. Thus,
polymerase arrival rates cannot be measured with techniques measuring
total transcription rate.

Other fluorescent measurement methods are possible to measure
PAR. In particular, FRET could be used as a potentially more sensi-
tive method. One fluorophore can be attached to the DNA, as done
here, and another fluorophone can be attached to either the polymerase
or perhaps on to nucleotides. This would allow us to measure poly-
merase arrivals at specific locations but would require the addition of
two fluorescent labels.

6.3.5 Computational Methods

Being able to accurately predict and model biological systems com-
putationally would eliminate or speed up measurements. Algorithms
and statistical methods have been used to predict promoter strengths
[35, 157]. Current methods mostly involve taking into account the base
composition of a piece of DNA. For example, as the GC bond requires
a higher melting temperature and DNA needs to be melted during
transcription, it may be expected that higher GC content leads to less
transcription initiations.

Another method is to use sequence homology scores based on simi-
larity to the consensus sequence. Homology scores have been effective
at locating promoter sequences [112]. Although, the homology score
for promoters shows high correlation with the association rate, it does
not show much correlation with in vivo promoter strength [37, 69].
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Experiments mutating existing promoters to be more like stronger
promoters often have little or the opposite effect [137]. The phage
PL promoter is an extremely strong promoter in E. coli yet differs from
the E. coli consensus sequence for promoters in several highly conserved
locations [69].

Even though computational methods are desirable, current meth-
ods cannot predict accurately how a biological system will behave. Real
measurements of the biological system will probably be necessary for
some time and may provide useful data to improve computational ap-
proaches.

6.3.6 Single Molecule Techniques

The current PARMESAN method involves measuring the average fluo-
rescence behavior from a large number of molecules and cannot obtain
the absolute PAR, as a number of polymerase arrivals per second. To
obtain an absolute number, it may be necessary to use single molecule
techniques. Measuring fluorescence from single molecules is possible in
theory. For example, FRET experiments have been done with single
molecules [53]. There are other advanced methods to measure tran-
scription activity from a single polymerase.

Single Molecule Transcription

Single molecules of RNA polymerase moving along DNA have been
visualized by attaching a rhodamine fluorophore to the β′ subunit of
RNA polymerase [62]. The DNA is fixed to a surface in a known
direction and the RNA polymerase can be visualized.

The tethered particle motion (TPM) method can be used to observe
transcription directly under a light microscope [129]. A nanometer size
gold particle is attached to DNA and a stalled RNA polymerase on the
DNA is immobilized on a glass surface. The measured Brownian motion
of the gold particle is used as an indication of the tether length and
increases as the RNA polymerase transcribes the DNA. Both elongation
rates and transcription termination can be observed from single RNA
polymerase molecules using surface immobilized polymerase [165, 166].

Single molecule studies of E. coli RNA polymerase measuring tran-
scription elongation rates have been done using optical-trap and mi-
croscopy techniques [2, 29, 46, 155, 167]. Atomic force microscopy
(AFM) has been used to observe the activity of polymerase by taking
sequential AFM images [67].
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Although these methods can show the overall movement of single
polymerases, measuring polymerase arrivals at a fixed point is diffi-
cult. Most of these single molecule techniques requires fixing either the
polymerase or the DNA, and there may be undesirable effects from a
non-mobile complex compared with a complex in solution. In addi-
tion, a major downside is that the needed equipment is not generally
available to almost everyone.

Single Molecule PAR

Using the current pyrrolo-dC method, it may be possible to dilute re-
actions to a few or single molecules and measure the activity of a single
polymerase. There could be detectable fluorescence spikes as a poly-
merase passes by pyrrolo-dC locations. Absolute polymerase arrival
rates would then be measured by counting the spikes over time.

However, single molecule resolution may not be needed or desir-
able. More variation is found in single molecule measurements and a
population average is more desirable for the purpose of module charac-
terization. Studying single molecules may also be inaccurate, as there
may be cooperativity among RNA polymerase molecules affecting tran-
scriptional activity [41].

6.4 Conclusion

This thesis has proposed several key ideas:

� Modularity is the ultimate goal.

� All modules are defined by a fixed set of inputs and outputs mea-
sured in units of polymerase arrival rates (PAR).

� The fluorescent DNA nucleotide, pyrrolo-dC, shows a fluorescence
change in single vs. double stranded DNA.

� PAR is measured by the fluorescence change of pyrrolo-dC as the
RNA polymerase locally melts the DNA region during transcrip-
tion.

� By standardizing the input and output units, modules can be
connected and modeled easily.

With modules designed around polymerase arrival rates and the
possibility of characterizing them using the PARMESAN method, en-
gineering more complex synthetic biological systems may become a less
daunting task.
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