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We present a search for a new particle T0 decaying to a top quark via T0 ! tþ X, where X goes

undetected. We use a data sample corresponding to 5:7 fb�1 of integrated luminosity of p �p collisions withffiffiffi
s

p ¼ 1:96 TeV, collected at Fermilab Tevatron by the CDF II detector. Our search for pair production of

T0 is focused on the hadronic decay channel, p �p ! T0 �T0 ! t�tþ X �X ! bq �q �b q �qþ X �X. We interpret our

results in terms of a model where T0 is an exotic fourth generation quark and X is a dark matter particle.

The data are consistent with standard model expectations. We set a limit on the generic production

of T0 �T0 ! t�tþ X �X, excluding the fourth generation exotic quarks T0 at 95% confidence level up to

mT0 ¼ 400 GeV=c2 for mX � 70 GeV=c2.

DOI: 10.1103/PhysRevLett.107.191803 PACS numbers: 14.65.Jk, 12.60.�i, 13.85.Rm, 14.80.�j

There are many hints, from astronomical observations
and cosmological theories, for the existence of dark matter
(DM) particles, which must be long lived on cosmological
time scale [1]. The long lifetime of DM can be explained
by the conservation of a charge of a new symmetry. Direct-
detection experiments based on ultralow noise devices
have recently obtained interesting results. The DAMA/

LIBRACollaboration [2], searching for annual modulation
in the interaction rate due to Earth’s motion through the
DM galactic halo, has claimed a ’ 9� observation of DM.
The CoGeNT Collaboration has also reported evidence of
DM [3]. If confirmed, these results would imply, unlike
astronomical observations, that DM interactions with stan-
dard model (SM) particles are not only gravitational. DM
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interactions with SM particles could be allowed by weak
interactions, or by connector particles carrying both dark
and SM charges, so that they could be produced in col-
liders. The second hypothesis is favored in the case that
DM particles have mass of a few GeV=c2, as DAMA and
CoGeNT results seems to indicate. In a recent model [4]
the role of a connector particle is played by an exotic fourth
generation T0 quark, which is supposed to decay to a top
quark and dark matter, T0 ! tþ X. The pair production of
such exotic quarks and their subsequent decay has a col-
lider signature consisting of top quark pairs (t�t) and miss-
ing transverse energy ( 6ET) [5] due to the invisible dark
matter particles. These types of signals are of great interest
as they also appear in other models containing DM candi-
dates, such as scalar top quark production and their decay
to top quarks and neutralinos [6] or top quarks and grav-
itinos [7], and in many other new physics scenarios such as
little Higgs [8] and models where baryon and lepton num-
bers represent local gauge symmetries [9].

A first search for the T0 �T0 ! t�tþ X �X process has been
performed in the semileptonic channel: t�tþ X �X !
bW �bW þ X �X ! bl� �bq �qþ X �X [10]. This Letter reports
the first search for such a process in the all-hadronic t�t
decay channel, characterized by a larger branching ratio
and a lower physics background rate. Events were recorded
by CDF II [11], a general purpose detector designed to
study collisions at the Fermilab Tevatron p �p collider atffiffiffi
s

p ¼ 1:96 TeV. The tracking system consists of a cylin-
drical open-cell drift chamber and silicon microstrip de-
tectors in a 1.4 T magnetic field parallel to the beam axis.
Electromagnetic and hadronic calorimeters surrounding
the tracking system measure particle energies, and drift
chambers located outside the calorimeters detect muons.
Jets are reconstructed in the calorimeter using the JETCLU

[12] algorithm with a clustering radius of 0.4 in azimuth-
pseudorapidity space [13]. The detector response for all
simulated samples is modeled by a detailed CDF detector
simulation. Production of T0 pairs and their subsequent
decays to top quark pairs and two dark matter particles
would appear as events with missing transverse energy
from the two dark matter particles, and six jets from the
two b quarks and the hadronic decays of the twoW bosons.
We model the production and decay of T0 pairs with
the MADGRAPH Monte Carlo (MC) generator [14], and
normalize to the next-to-next-to-leading order (NNLO)
cross-section calculation [15]. Additional radiation, hadro-
nization and showering are described by PYTHIA [16].

We use a data sample corresponding to an integrated
luminosity of p �p collisions of 5:7 fb�1, collected by re-
quiring 6ET > 50 GeV and two or more jets with transverse
energy ET � 30 GeV and j�j � 2:4. We then require
5 � Njets � 10, where Njets is the number of jets, and

where all jets satisfy the requirement j�j � 2:4. We also
require the transverse energy ET of the subleading jets, Ji,
to be greater than 20 GeV for (i ¼ 3; 4; 5) and 15 GeV for

(i > 5). We veto events with at least one isolated electron
or muon to suppress events with semileptonic t�t decay. We
refer to this sample as the preselection sample. At this stage
of the event selection, multijet QCD background where 6ET

arises from jet energy mismeasurement accounts for more
than 95% of the expected backgrounds. The second domi-
nant background is t�t production. We model this process
using PYTHIA with mt ¼ 172:5 GeV=c2 [17], normalized
to the next-to-leading order (NLO) cross section [18].
Associated production of W=Z boson and jets is also a
significant background source. Samples of simulated
W=Zþ jets events with light- and heavy-flavor jets are
generated using the ALPGEN [19] MC generator, interfaced
with the parton shower model of PYTHIA. A matching
scheme is applied to avoid double counting of partonic
event configurations [20]. The W=Zþ jets samples are
normalized to the measured W and Z cross section [21].
Diboson and single top production are modeled using,
respectively, PYTHIA and MADGRAPH, and normalized to
NLO cross sections [21–24]. Because of the large produc-
tion rate for QCD multijet events at a hadron collider and
the statistics needed in order to describe this process ade-
quately in an analysis looking for a very small signal, the
Monte Carlo simulation of QCD multijet events is prohibi-
tive. More importantly, the systematic uncertainties asso-
ciated with the Monte Carlo simulation of QCD jet
production are large. For these reasons, we estimate the

QCD background solely from data. Similarly to ~6ET , it is

possible to define a missing transverse momentum ~6pT

using the spectrometer as the negative vector sum of the

charged particles momenta. ~6ET and ~6pT are correlated in
magnitude and direction in events with undetected parti-

cles. In QCD multijet events ~6ET originates from the mis-

measurement of a jet energy in the calorimeter, while ~6pT

depends on fluctuations in the number of charged particles
in a jet, so they are usually aligned or antialigned in dijet-
like events like energetic QCD multijet events, as is shown

in Fig. 1. QCD multijet events in which ~6ET and ~6pT are
aligned or antialigned have the same kinematic character-
istics, as we have verified studying QCD multijet samples

with 2 and 3 jets [25]. We reject events with��ð ~6ET;
~6pTÞ>

�=2, and use them to model QCD multijet events in the

signal region ��ð ~6ET;
~6pTÞ<�=2. To further suppress the

QCD multijet background, we require the azimuthal dis-

tance between the directions of ~6ET and subleading jets,

��ð ~6ET; ~JiÞ, to be greater than 0.4 for i ¼ 1; 2; 3 and 0.2 for

i ¼ 4; 5. We also require 6pT > 20 GeV and 6ETsig>

3 GeV1=2, where 6ETsig is defined as the 6ET divided
by the square root of the total energy collected in the
calorimeter. Finally, we require

P
jetsE

i
T > 220 GeV to re-

move soft QCD events. All these cuts have been chosen to

optimize the S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSþ BÞp

figure of merit, where S and B
are, respectively, the expected numbers of signal and
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background events. Table I shows the expected number of
events in the signal region for SM backgrounds and for
several signal hypothesis.

Inverting one of the event selection cuts, keeping others
unchanged, allows us to define a signal-depleted control

region. We use 6ETsig< 3 GeV1=2, Njets ¼ 4, and 6pT <

20 GeV control regions to validate the overall background
modeling. The normalization factor of the QCD back-
ground is given by the average ratio of QCD events that

pass the��ð ~6ET;
~6pTÞ<�=2 cut to QCD events that fail the

cut in these three control regions. Figure 2 shows good
agreement of background modeling with data in these
regions. We consider several sources of systematic uncer-
tainties. The dominant components are the uncertainties on
the QCD normalization factor, the jet energy scale (JES)
[26], and the theoretical cross sections. We also take into
account the differences of t�t predicted rates using different
hadron fragmentation models in the HERWIG [27] Monte Carlo program, and varying the initial or final state

radiation and color reconnection effects [28]. The variation
of the JES was found to significantly change the 6ETsig
distribution in addition to its normalization, and its varia-
tion is thus taken into account. Figure 3 shows the 6ETsig
distribution for expected signal events and SM back-
grounds. The signal is expected to contribute significantly
in the high tail of the 6ETsig distribution. There is no evi-
dence for the presence of T0 ! tþ X events in the data.
We calculate 95% C.L. upper limits on the T0 ! tþ X
cross section by performing a binned maximum-likelihood
fit on the 6ETsig distribution. The limits are calculated using
a Bayesian likelihood method with a flat prior for the signal
cross section, integrating over Gaussian priors for the
systematic uncertainties. The results are shown in
Table II. We convert the observed upper limits on the
pair-production cross sections to an exclusion curve in
mass parameters space (mT0 ; mX). As shown in Fig. 4, a
significant enhancement in sensitivity is obtained when
comparing to the previous analysis in semileptonic channel.
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TABLE I. Number of expected signal events for five bench-
mark scenarios compared to data and expected SM backgrounds.

T0 �T0 ! t�tX �XðhadronicÞ [GeV=c2] Events

mT0 ; mX ¼ 260; 80 88:5� 11:9
mT0 ; mX ¼ 330; 100 66:4� 8:9
mT0 ; mX ¼ 360; 100 39:7� 5:3
mT0 ; mX ¼ 380; 1 27:3� 3:7
mT0 ; mX ¼ 400; 1 17:5� 2:3
QCD 745:4� 124:3
t�t 498:2� 66:8
W þ jets 119:7� 48:4
Zþ jets 39:4� 15:9
Diboson 17:9� 2:2
Single top 5:3� 0:8

Total background 1423� 150

Data 1507
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In conclusion, we performed the first search for new
physics in the t�tþ 6ET ! b �bq �qq �qþ 6ET final state. Data
are consistent with the background-only hypothesis, and
we thus set a 95% C.L. upper limit on the production cross
section for fermionic T0 pairs decaying to top quarks and
dark matter candidates X, increasing the existing mass
exclusion range up to mT0 ¼ 400 GeV=c2 for mX �
70 GeV=c2. Finally, this study shows that the b �bq �qq �qþ
6ET final state is the most sensitive to the generic production
of top quarks plus dark matter candidates, and thus the
most promising to probe the supersymmetric ~t ! tþ �=g
scenarios at the LHC.
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TABLE II. Expected 95% C.L. upper limits on T0T0 produc-
tion, where the uncertainty range covers 68% of the pseudoex-
periments, and observed exclusion limits for representative
signal points.

ðmT0; mXÞ GeV=c2
�expect95%C:L:exclude

(pb)

�obs95%C:L:exclude

(pb)

ð200; 40Þ 2:02� 0:65 1.90

ð220; 40Þ 2:14� 0:75 3.00

ð260; 1Þ 0:23� 0:08 0.18

ð280; 1Þ 0:15� 0:05 0.12

ð280; 40Þ 0:18� 0:07 0.15

ð300; 1Þ 0:09� 0:03 0.09

ð300; 80Þ 0:20� 0:06 0.16
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ð330; 100Þ 0:13� 0:04 0.18

ð360; 1Þ 0:03� 0:01 0.02

ð360; 100Þ 0:06� 0:02 0.04

ð380; 100Þ 0:06� 0:02 0.05

ð400; 1Þ 0:023� 0:008 0.016
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