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ORIGINAL ARTICLE

IL-11 is a parietal cell cytokine that induces
atrophic gastritis

Meegan Howlett,1 Heather V Chalinor,1 Jon N Buzzelli,1 Nhung Nguyen,2

Ian R van Driel,2 Katrina M Bell,1 James G Fox,3 Eva Dimitriadis,4

Trevelyan R Menheniott,1 Andrew S Giraud,1,5 Louise M Judd1,5

ABSTRACT
Background and Aims IL-is important in gastric
damage, mucosal repair and gastric cancer progression.
We analysed IL-11 expression in H.pylori infected mouse
stomach, the site of gastric IL-11 expression in mice and
humans, and the effect of exogenous IL-11 on gastric
mucosal homeostasis.
Methods IL-11 protein was localised in mouse and
human stomach. The impact of chronic, exogenous IL-11
on normal mouse stomach was examined histologically
and transcriptionally by microarray, confirmed by mRNA
and protein analysis. Functional impact of IL-11 on
gastric acid secretion was determined.
Results In mice infected with H.pylori, IL-11 was
increased in fundic mucosa with temporal expression
similar to IL-1b. IL-11 protein was localised
predominantly to parietal cells in mouse and human
stomach. Application of exogenous IL-11 to resulted in
fundic parietal and chief cell loss, hyperplasia, mucous
cell metaplasia and inflammation. Coincident with
cellular changes were an increased gastric pH,
altered parietal cell ultrastructure and altered gene
expression, particularly genes involved in immune
response and ion transport which could result in
compromised acid secretion. We confirmed that a single
dose of IL-11 effectively ablated the gastric response to
histamine.
Conclusions IL-11 is a parietal cell cytokine that blocks
gastric acid secretion, likely via reducing expression of
parietal cell ion transport genes, CCKb and histamine H2
receptors. IL-11 expression is increased in H. pylori
infected mouse stomach and treatment of wild type
mice with IL-11 induced changes in the gastric fundic
mucosa reminiscent of chronic atrophic gastritis,
a precursor to gastric cancer.

Recent evidence suggests that the cytokine IL-11
may play a pivotal role in gastric cancer develop-
ment. Gastric cancer has a very high mortality
rate, largely due to diagnosis post-metastasis,1 2

and so it is crucially important to define precan-
cerous characteristics and identify transitional
markers to allow for screening of at-risk individ-
uals. Gastric cancer occurs as a result of chronic
Helicobacter pylori infection.3 Most infections are
asymptomatic, but susceptible individuals
develop progressive gastric pathology including
atrophic gastritis, metaplasia, dysplasia, carci-
noma in situ and metastatic carcinoma.4 Host

genetic factors,5e10 environmental triggers and
dietary factors11 12 contribute to an individual’s
susceptibility, on the background of chronic
inflammation.
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Significance of this study

What is already known about this subject?
< IL-11 is a pleiotrophic cytokine with known anti-

inflammatory actions.
< Expression of IL-11 mRNA and protein is

increased in human gastric precancer and
cancer, and in mouse models of gastric
damage including atrophic gastritis and cancer.

< IL-11 is protective in mouse models of exper-
imental colitis.

What are the new findings?
< IL-11 is upregulated in chronic murine H pylori

infection with temporal expression similar to IL-
1b.

< IL-11 is expressed by the acid-secreting parietal
cells of the normal human and mouse stomach.

< Acute administration of IL-11 causes activation
of the downstream transcription factor STAT3 in
parietal cells, demonstrating that these cells are
most responsive to IL-11.

< IL-11 causes inhibition of histamine stimulated
acid secretion through reduced expression of
associated ion transporters.

< Chronic administration of IL-11 results in
reversible atrophic gastritis characterised by
a loss of parietal and chief cells, mucous cell
metaplasia, epithelial cell proliferation and Th2
skewed inflammatory response.

How might it impact on clinical practice in the
foreseeable future?
< Here we demonstrate that IL-11 can cause

atrophic gastritis, as such it could be used as
a diagnostic marker in humans to indicate
progression to H pylori-induced intestinal meta-
plasia, an early marker of progression to cancer.

< Understanding the signalling pathways down-
stream of IL-11 and the mechanisms of action
could lead to more targeted therapies to halt the
progression from atrophic gastritis to gastric
cancer.
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IL-11 is a multifunctional cytokine regulating haematopoi-
esis,13 bone function and cytoprotective abilities in the gut.14e21

It belongs to the IL-6 cytokine family and initiates signal
transduction by binding to the IL-11 receptor alpha (IL-11Ra)
thereby recruiting the signal transducing receptor gp130.14 22 23

IL-6 and IL-11 are prevalent in the stomach where they modu-
late the inflammatory response, angiogenesis, proliferation and
programmed cell death in the context of neoplastic progres-
sion.15 16 Although IL-11 induction is not associated with early
H pylori inflammation, chronic bacterial infection and the
attendant atrophic gastritis and intestinal metaplasia are
accompanied by increased IL-11, particularly in the fundic
mucosa.17 18 Atrophic gastritis and intestinal metaplasia are
precancerous lesions, requisites in intestinal-type adeno-
carcinoma, the most common gastric cancer in humans.4

Elevated IL-11 expression is also associated with tumour grade
and invasion.19e21

Elevated IL-11 expression occurs in most murine models of
gastric pathology,17 24 and unlike IL-625 is indispensable for
tumour development in the gp130757FF mouse.17 26 This mouse
has a single base pair substitution at position 757 of gp130,
which simultaneously blocks downstream ERK/MAPK signal-
ling, while STAT1/3 is constitutively activated, resulting in
antral stomach tumour development with complete pene-
trance.27 28 IL-11 is relevant in other models of gastric tumor-
igenesis and damage including gastrin-driven fundic
hypertrophy29 and ulceration;24 however, how its temporal
expression relates to H pylori infection is unclear. Gastric
mucosal structure and function are uncompromised in the
absence of IL-11Ra,13 so while IL-11 is implicated in gastric
damage, it is not absolutely required for normal stomach
function.

Atrophic gastritis is marked by altered gastric differentiation
programmes, such that parietal and chief cells in particular are
lost and partly replaced in a reduced glandular structure by
a diffuse mucous metaplasia.30e33 The mechanisms of induction
of atrophy have not been defined, but their delineation might
provide early therapeutic targets to prevent irreversible tumori-
genesis. Here we demonstrate that IL-11 is expressed at high
levels specifically in the parietal cells of the fundic mucosa, and
that chronically elevated IL-11 in normal mice causes significant
fundic damage that closely models human chronic atrophic
gastritis including increased proliferation, loss of parietal and
chief cells, mucous metaplasia and inflammation. Furthermore,
we demonstrate that IL-11 can block gastric acid secretion via
gastric IL-1b and key ion transport genes. We have discovered
that IL-33, important in regulating mucosal T-helper (Th) type
1/2 immune response, is a novel IL-11 target. These data support
the view that IL-11 is a key regulator of gastric damage acting to
initiate chronic atrophic gastritis.

MATERIALS AND METHODS
Mice
Wild-type (WT) mice were 129X1(Sv-J)/C57BL/6 background,
10e12 weeks old. HKb�/� mice,34 10e12 weeks old and on
either a BALB/cCrSlc or C57BL/6 background, respectively. Mice
were genotyped by multiplex PCR, free of H pylori. Approval
was obtained from Murdoch Children’s Research Institute
(A583) and Bio21 Institute (0809107).

Human gastric biopsies
Selection and processing of gastric biopsies from disease-free
individuals was undertaken as previously described.18 35 Written

informed consent was obtained and studies were approved by
Melbourne Health (#2004.176).

Helicobacter infection of mice
WT (C57BL6) mice were infected with H pylori Sydney strain 1
(SS1) as described.11

Cytokine treatment
WT mice (n$5) were injected intraperitoneally with 5 mg
recombinant human IL-11 (des-Pro hIL-11, 19.05 kDa, from Dr
Lorraine Robb, Walter and Eliza Hall Institute (WEHI),
Australia) or saline every 6 h and killed 3 h post-injection at 3, 6
and 24 h or 5 and 7 days. A recovery group was treated for
7 days and rested for 4 weeks. The saline-dosed controls were
included in all subsequent analysis to determine any changes
that occurred as a result of IL-11 administration.

Tissue preparation
Mouse stomachs were prepared and analysed as previously
described.17 Briefly, stomachs were excised and cut along the
lesser curvature, pinned out and bisected from forestomach to
duodenum. Antrum and fundus from one half was dissected and
snap frozen in liquid nitrogen for protein and RNA extraction.
For histological examination, bisected tissue was fixed in 4%
paraformaldehyde in phosphate-buffered saline for a minimum
of 16 h at 48C. Stomachs were cut into approximately 4 mm
wide strips (two or more per mouse), processed to paraffin wax
and embedded.

Immunohistochemistry
Paraffin sections (4 mm) on 3-aminopropyltriethoxysilane slides
were subject to immunohistochemistry according to supple-
mentary table 1 (available online only). Antigen retrieval was in
10 mM citric acid at 1008C for 30 min, followed by 30 min
cooling. Staining was completed with biotinylated secondary
antibodies, avidin and biotinylated horseradish peroxidase
complex (Vector Laboratories, CA, USA), 3,39-diaminobenzidine
and haematoxylin counterstained, or Alexa-fluor 488/594
conjugated secondary antibodies. Ki-67 immunohistochemistry
was counterstained with periodic acid Schiff reagent (PAS). For
all staining reactions a control was performed with secondary
antibody alone. For all immunofluorsecence, images were
captured from all groups with the same microscope setting to
allow for direct comparison between images. Representative
images from each treatment group are shown.

IL-11 antibody adsorption
IL-11 antibody (2.5 mg per slide) was adsorbed overnight at 48C
with 0, 1, 2 or 5 mg of rhIL-11 in a final volume of 5 ml. Staining
was completed as above with the addition of a 5 mg rhIL-11-only
control.

Quantitative morphometry
All quantitative morphometry was performed by a blinded
observer. At least six representative photographs per animal
(n$5) of histochemically or immunohistochemically stained
sections were captured using a Coolpix 4500 digital camera
(Nikon Instruments, Melville, New York, USA) attached to
a light microscope. Lengths or relevant cells were manually
traced on these images using ImageJ software for Windows
v1.38 (http://rsb.info.nih.gov/ij/index.html) to generate
measurements. Measurements were converted to millimetres
after comparison with a calibrated graticule.
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Electron microscopy
For electron microscopy, 1 mm cubes of fundic tissue (two or
more per mouse) were fixed overnight at 48C in 4% para-
formaldehyde, 4% sucrose and 2% gluteraldehyde in 0.1 M
phosphate buffer, pH 7.4, then processed for electron microscopy.

Immunoblotting
Proteins (n$5 animals/group) were prepared with TRIzol (Life
Technologies, NY, USA) and 20 mg of extract subjected to
sodium dodecylsulphate polyacrylamide gel electrophoresis.
Membranes were incubated with antibodies specific for; IL-11
(WEHI Antibody facility), STAT3, phosphorylatedTyr757-
STAT3 (pSTAT3), ERK1/2, p-ERK1/2, AKT, p-AKT (Cell
Signalling, MA, USA), IL-33, Tenascin-C or GAPDH (Abcam,
Cambridge, UK), peroxide-conjugated secondary antibody and
visualised by enhanced chemiluminescence (Amersham, NJ,
USA). Quantification was using Quantity 1 software (Bio-Rad
Laboratories, NSW, Australia) and phosphorylated:total protein
ratios determined from duplicate membranes.

Quantitiative RTePCR
Total RNA was harvested using TRIzol reagent (Life Technolo-
gies). RNA (3 mg) (n$5 animals/group) was reverse transcribed
into complementary DNA using Moloney murine leukaemia virus
reverse transcriptase (Promega) primed with oligo(dT). Quantita-
tive reverse transcription (RT)ePCR primers were designed using
PRIMER EXPRESS (Applied Biosystems) (see supplementary table
2, available online only). SYBR green chemistry was used with
rL32 as the internal reference gene. quantitative RTePCR condi-
tions were 958C for 10 min, 40 cycles of 958C for 15 s and 608C for
15 s (Applied Biosystems AB7500, VIC, Australia). Results were
analysed using sequence detector software, relative fold differences
were determined using the ΔΔCt method.

Microarray
Illumina MouseWG-6 V2 arrays were used to hybridise the 12
messenger RNA samples. Three biological replicates of fundic
gastric mucosa from saline and IL-11 treatments were performed
at 24-h and 7-day time points (n¼3 animals/group). Data were
analysed in R using Bioconductor packages Lumi36 (for VST,
quantile normalisation and quality control) and Limma37 (for
differential expression analysis, multiple testing correction by
the Benjamini and Hochberg method). GOstat38 was utilised to
identify significant gene ontologies.

In-vivo acid secretion analysis
Analysis was performed on mice 8e12 weeks of age as previ-
ously described39 (details in supplementary methods, available
online only) (n¼5 animals/group). Once basal acid secretion was
established mice were given intraperitoneal treatments including
histamine (10 mg/kg) and IL-11 (5 mg).

Statistical analysis
All data were expressed as mean6SEM and statistical analysis
was performed using one-way analysis of variance and the
appropriate parametric or nonparametric statistical test using
Sigmastat (Jandel Scientific, San Rafael, California, USA).
p Values of 0.05 or less were considered statistically significant.

RESULTS
IL-11 is increased in H pylori infection and expressed by parietal
cells in normal fundic mucosa
Recent studies have indicated an important role for IL-11 and
IL-1b in gastric damage, including a potential role in tumori-

genesis. To investigate this we analysed the expression of IL-1b
and IL-11 in the fundic mucosa of mice infected with mouse-
adapted H pylori SS1 strain. At 3 months post-infection we saw
no change in the expression of either IL-11 or IL-1b (figure 1A);
however, at 12 months post-infection, when IL-1b expression
was increased, IL-11 was also increased 4.5-fold (figure 1A). The
overlapping temporal expression of IL-11 and IL-1b suggests that
IL-11 might also have a role to play in gastric atrophy.
A major outstanding issue with regard to IL-11 is its role in

normal gastric mucosa. To this end we examined IL-11 peptide
expression in the normal mouse and human stomach. IL-11
peptide strongly and specifically localised to parietal cells in the
mouse fundic mucosa (figure 1Bi). Staining specificity was
demonstrated by adsorption of the antibody with peptide (figure
1Bii) or staining with peptide alone (figure 1Biii). All staining
was performed with secondary antibody alone to confirm the
specificity of staining (data not shown). Parietal cell-specific
staining was also present in human gastric biopsies (figure 1Biv).
Staining for IL-11 was also performed on fundus from H/Kb�/�

mice. These mice lack the H/K-ATPase b subunit expressed in
parietal cells and develop gastric atrophy with near complete
loss of parietal and zymogenic cells and mucous cell hyper-
plasia.34 H/Kb�/� mice have increased expression of IL-11
mRNA in the fundus.29 In H/Kb�/� mice, the intensity of IL-11
staining in the few remaining but abnormal parietal cells was
reduced and there was increased staining in other epithelial cells
(figure 1Bv). Staining mouse and human tissues with an anti-
body for IL-11 and DBA, the lectin specific for parietal cells,
confirmed the parietal cell localisation of IL-11 (figure 1Bvi and
vii). These data demonstrate the specificity of IL-11 parietal cell
staining and, importantly, that other epithelial cells have the
capacity to produce IL-11 during damage.

Immunoblotting confirmed the IL-11 staining. A 23 kDa band
that co-migrates with rhIL11 was apparent in mouse fundic
mucosa (figure 1C). In the fundus of H/Kb�/� mice there was
more IL-11 than in WT mice (figure 1Ci and ii).
To determine if fundic IL-11 was acting in an autocrine and/or

paracrine manner we treated mice with rhIL-11 then stained
stomach sections for IL-11 and pSTAT3. STAT3 signalling is one
pathway activated by IL-11 signalling through the IL-11Ra/gp130
complex. In saline-treated mice there was intense IL-11 staining
but only limited nuclear staining for pSTAT3 (figure 1Di and ii).
In the presence of exogenous IL-11, nuclear pSTAT3 was present
at markedly greater levels both in the cells that expressed IL-11
and in those that did not (figure 1Diii and iv), demonstrating that
IL-11 can act in both an autocrine and paracrine manner.

Chronic IL-11 treatment results in continuous STAT3 activation
and numerous changes in the transcriptome
To determine the effect of IL-11 on the normal mouse fundus,
mice were injected intraperitoneally with either rhIL-11 or saline
every 6 h. The 6-hourly interval was chosen as this was the
maximal time following IL-11 administration that STAT3 acti-
vation was sustained (data not shown). Fundic mucosa from
treated mice at all time points examined had significantly greater
pSTAT3 than saline controls (figure 2A), an observation reiter-
ated by immunohistochemical staining (figure 2B). Three hours
following a single IL-11 dose most of the parietal cells (stained
for H/K-ATPase), showed strong nuclear pSTAT3 staining (figure
2Bii), while other cell types were unstained, demonstrating that
the dominant mechanism of acute IL-11 action is on parietal
cells. After 24 h of IL-11 treatment, staining for pSTAT3 was
still present in all parietal cells but was less intense (figure 2Biii).
The parietal cell staining pattern after 5 days (figure 2Biv) or
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7 days (figure 2Bv) was very similar to 24 h, but increased in
other epithelial cells, particularly after 7 days (figure 2Biv and v).
At this time, pSTAT3 was also associated with blood vessels
(figure 2Bv). At all time points almost all parietal cells were
immunoreactive for pSTAT3 (figure 2C).

The IL-11 regulated transcriptome was assessed by microarray
analysis of RNA isolated from the fundic stomach of mice
treated for 24 h or 7 days. Altered expression in a subset of genes
was observed 24 h following IL-11 treatment, with the majority
of genes increased in expression compared with saline controls.
These changes were maintained after 7 days with varied inten-
sity, but an additional set of genes was also altered. An arbitrary
gene list was constructed of transcripts with significantly altered
expression and a known or inferred role in gastric biology. These
were clustered into six functional groups: immune response,
signal transduction, proliferation/apoptosis/differentiation,
protein degradation and endocrine (table 1).

The 244 differentially expressed probes in the day 7 IL-11
treatment group were also analysed for gene ontologies using
GOstat.38 IL-11 treatment induced statistically significant changes
in the acute inflammatory response, protease inhibitor, wounding
and extracellular space pathways. From this analysis, it is clear
that IL-11, either directly or indirectly, alters the transcriptional
activity of genes mainly involved in the immune response, ion
transport and differentiation that can also impact damage.

Chronic treatment of WT mice with IL-11 induces gastric fundic
atrophy
Exogenous IL-11 caused severe fundic atrophy, with a progres-
sive reduction in parietal cell numbers to a maximum of 40% by
7 days, as quantified by H/K-ATPase immunostaining (figure
3A). Parietal cell atrophy was fully reversible 4 weeks after IL-11
cessation (figure 3Av, vi). Likewise, using an intrinsic factor as
a marker, IL-11 administration caused a 60% reduction in chief

Figure 1 mRNA for IL-11 (Ai) and
IL-1b (Aii) in stomachs of H pylori SS1-
infected or control mice, killed at 3 or
12 months post-infection, standardised
against rL32 and expressed as fold
change compared to controls (DDCt
method). Immunolocalisation of IL-11 in
fundic mucosa from wild-type (WT)
mice (Bi-iii), human (iv) and H/K-ATPase
b subunit deficient (H/Kb�/�) mice (v).
To confirm antibody specificity,
antibody was adsorbed with rhIL-11
(Bii) or peptide was substituted (Biii).
Immunolocalisation of IL-11 (green) and
the parietal cell lectin, DBA (red) in WT
mouse (Bvi) and human (Bvii) tissue.
Immunoblotting for IL-11 and GAPDH
was performed on gastric fundic tissue
from WT and H/Kb�/� mice and
compared with rhIL-11 (19.05 kDa) (C),
quantitative densitometry was
performed of IL-11/GAPDH.
Immunolocalisation of IL-11 (green) and
pSTAT3 (red) (phosphorylated STAT3)
in the fundus of WT (Di and ii) and IL-11
treated mice (Diii and iv). Bars refer to
mean6SEM; *p#0.05.
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cell numbers by 5 days and 7 days (figure 3Biev). These data
suggest that IL-11 may suppress both parietal and chief cell
differentiation to promote fundic atrophy.

Chronic IL-11 treatment causes increased cell proliferation and
induces immature mucous cell metaplasia
IL-11 treatment of WT mice resulted in a progressive increase in
fundic cell proliferation, with cells staining for the cell division-
associated antigen Ki-67 in gland isthmi increased by twofold
after 7 days (figure 3Cievi). Cessation of IL-11 treatment

followed by 4 weeks of recovery normalised proliferation to WT
levels (figure 3vi). In contrast, treatment with IL-11 did not
affect the number of apoptotic cells in the fundic mucosa as
assessed by staining for activated caspase 3 (figure 3Cvii; all
comparisons with saline were not significant p>0.1). In saline-
treated mice Ki-67 and mucous (PAS-stained) cells were distinct
(figure 3Di), demonstrating that only the most immature of
cells, which do not express mucous, proliferate. In IL-11-treated
mice, a significant proportion of Ki-67-stained cells also express
PAS (figure 3Dii) suggesting that proliferation of pre-pit cells
is increased. This was confirmed by electron microscopy
showing a paucity of immature gastric epithelial cells (figure
3Ei) and numerous cells with a large nuclear:cytoplasmic ratio,
reminiscent of immature gastric epithelial cells but with scat-
tered electron-dense mucous granules (figure 3Eii see arrows).
These cells most likely correspond to the PAS/Ki-67-stained
proliferating pre-pit cells.
Mucous metaplasia were further analysed histochemically.

Alcianophilia indicative of SPEM metaplasia was absent after
IL-11 treatment, but glandular PAS-staining cells were progres-
sively increased over 7 days (see supplementary figure 1A,B,
available online only). Four weeks after the cessation of IL-11
treatment PAS-stained cells had returned to normal (see supple-
mentary figure 1v, available online only). PAS-expressing cells
were further characterised using MUC5AC or GSII. Both markers
were strongly reduced after IL-11 treatment (see supplementary
figure 1Cieii, Dieii, available online only), as were mRNA for pit
and mucous neck cells peptides, TFF1 and TFF2, respectively (see
supplementary figure 1E, F, available online only).

IL-11 inhibits endocrine regulators of parietal cell activation
As gastrin production is implicated in gastric damage, particu-
larly involving parietal cell atrophy, gastrin mRNA was quanti-
fied after IL-11 treatment. Gastrin mRNA was reduced 3 h after
IL-11 exposure and this effect was sustained at 7 days (figure
4Ai). Despite this decrease, the number of gastrin-expressing
G cells was unchanged (figure 4Aii). IL-11 also caused an
immediate and sustained reduction in the gastrin receptor
CCKBR (figure 4Aiii) and the histamine H2 receptor (figure
4Aiv). Reduction of gastrin and CCKB receptor mRNA levels
preceded any changes in gastric pH and fundic atrophy,
suggesting that while IL-11 may be responsible for changes in
gastrin and CCKB receptor, epithelial proliferation resulting
from IL-11 treatment is gastrin independent.

IL-11 induces morphological changes to parietal cells and blocks
acid secretion
A consequence of IL-11-induced parietal cell atrophy was
a reversible and time-dependent decrease of 20% in basal acid
secretion in vivo compared with controls (figure 4B). IL-11-induced
morphological changes to parietal cells were further analysed in
vitro by acute IL-11 treatment and electron microscopy. The
membranes of parietal cells have two morphological conforma-
tions depending on whether they are secreting acid. In the resting
state the membranes resemble tubulovesicles and in the activated
state they resemble an open canalicular structure. Saline-treated
mice had parietal cells with membranes in both conformations
(figure 4Ci and ii). In contrast, parietal cells after IL-11 treatment
were less numerous with atypical morphology. The membranes
either resembled resting parietal cells but with circumferential
tubulovesicle-type membrane structures around the nucleus
(figure 4Ciii), or parallel tubules forming a very defined nuclear
ring structure (figure 4Civ). The lack of electron density of this cell
population suggested early senescence (figure 4Civ).

Figure 2 Wild-type (WT) mice treated with IL-11 or saline. pSTAT3
and STAT3 in fundus were measured by immunoblotting on duplicate
blots. Quantitative densitometry was performed of pSTAT3/STAT3 (A).
pSTAT3 (red) and H/K-ATPase (green) were immunolocalised in fundus
from WT mice (B) treated with saline (i), IL-11 for 3 h (ii) or IL-11 every
6 h for 24 h (iii), 5 days (iv) or 7 days (v). The proportion of H/K-ATPase
and pSTAT3-positive parietal cells was quantified (C). Bars refer to
mean6SEM; *p#0.05.
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To confirm that IL-11 was able to influence acid secretion and
that the increased pH of the IL-11-treated stomach did not result
from parietal cell atrophy, we measured gastric acid output
directly in WT mice after a single dose of IL-11 (figure 4D). The
acid secretagogue histamine induced acid secretion that was
maximal at 45 min and IL-11 given alone did not alter basal acid
secretion. Strikingly, IL-11 administration 15 min after hista-
mine impaired the response by approximately 30%, while IL-11
given 15 min before histamine reduced acid secretion by
more than 70% demonstrating that IL-11 can directly inhibit
histamine-induced acid secretion.

IL-11 alters expression of fundic ion transporters with potential
implications for acid secretion
Microarray analysis of IL-11-treated stomach showed altered
expression of numerous genes involved in ion transport (table
1). After IL-11 administration a subset of mRNA corresponding
to genes involved in potassium (figure 5A), sodium/bicarbonate
(figure 5B) or other ion transport (figure 5C) were significantly
decreased. The exceptions were the potassium channel subunit,
KCNK1, and the chloride channel, CFTR, both of which
increased in expression (figure 5A,C). Many of these ion
transporters are required for parietal cell-mediated acid

Table 1 Expression microarray analysis of the effects of
IL-11 on the mouse fundic mucosa

Symbol 24 h IL-11 vs control 7 day IL-11 vs control

Immune response

Serpina3n 10.9 16.7

Hp * 12.9

Dmbt1 6.4 8.1y
Lcn2 * 7.1

Ly6d * 5.8

Serpina3g 3.1 6.6

Spp1 4.3 5.3

C4a * 5.0

Ifitm1 2.9 5.0

Pigr 2.5 4.3

Serpina3m * 3.7

Cxcl17 * 3.4

Ifitm3 2.6 3.4

Il33 2.4y 3.4y
Cxcl13 * 3.2

Osmr 1.8 2.8

Ly6a * 2.4

Cf1 * 2.3

Cxcl14 * 2.2

Serpinb1a 2.2 2.2

Serpinf2 * 2.1

Irf1 2.1 *

Icam1 * 1.8

Tnfrsf12a * 1.7

Myd88 1.9 1.7

Proliferation/apoptosis/differentiation

Reg3b 64.3 146.7

Reg1 24.7 63.2

Reg3g 13.4 39.9

Wfdc2 * 6.0y
Reg3a 1.5 5.5

Igfbp4 2.1 3.7y
Bmp1 * 3.3

Gadd45g 2.6 2.5

Gsdmc1 1.9 2.1

Grem1 2.0 2.0

Bcl3 1.6 1.9

Muc1 1.9 *

Sfrp1 * 1.8

Reg3d * 1.8

Klf5 * 1.7

Mki67 * 1.6

Shh * 1.5

Gdf9 * �6.1

Blm �4.0 �5.6

Mist1 * �2.3

Bmpr1b * �2.1

Tob1 * �2.0

Egf * �2.0

Transport

Aqp5 2.1 5.2y
Kcnk1 * y 1.7y
Kcng4 1.7 *

Slc38a5 * �3.9

Slc26a9 * y �2.7y
Kcnj16 * y �2.6y
Kcnk5 * �2.5

Kcnf1 * y �2.3y
Kcnj15 * y �2.0y
Aqp4 �2.0 *

Atp2c1 * �1.7

Continued

Table 1 Continued

Symbol 24 h IL-11 vs control 7 day IL-11 vs control

Slc5a8 * y �1.7y
Slc16a5 * �1.6

Slc25a12 * �1.6

Slc26a6 * y �1.5y
Slc24a3 �1.5y * y

Protein degradation

Timp1 5.4y 6.9y
Mmp3 1.8 2.1y
Adam28 1.9 2.0

Adamdec1 * 1.8

Efemp2 1.6 1.7

Mmp23 * 1.7

Mmp13 * 1.6

Try10 * �33.1

Try4 * �21.1

Amy2 * �22.3

Cpm �1.9 �2.3

Endocrine

Chgb * 1.9

Car11 * 1.5

Gper �2.8 �5.2

Sstr2 * �2.2

Cckbr �1.8y �2.0y
Ddc �1.6 �1.8

Signal transduction

Socs3 5.2 6.6

Stat3 * 2.0

Socs2 * 1.8

Jak3 1.8 1.7

Junb 1.7 1.6

Il-11ra1 * �1.6

Listed are transcripts of interest that had a fold changed 1.5 or greater
and an adjusted p value of 0.05 or less for either 24 h or 7 days treatment
with IL-11. Transcripts are clustered into six distinct functional groups;
immune response, signal transduction, proliferation/apoptosis/
differentiation, transport, protein degradation and endocrine.
*Indicates expression at this time point not significantly altered by IL-11
expression.
yIndicates transcriptional regulation confirmed by quantitative PCR
analysis.
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Figure 3 Parietal (A), zymogenic (B), proliferating (Ci-vi) and apoptotic (Cvii) cells were immunolocalised in saline control mice (i) and each of the
IL-11 treatment groups (iiev) using antibodies for H/KATPase, intrinsic factor, Ki-67 and activated caspase 3, respectively. Stained cells were
expressed relative to control. Saline (Di) or IL-11-treated (Dii) sections were stained with Ki-67 and periodic acid Schiff reagent. Proliferating zone cells
from fundus of saline (Ei) or IL-11-treated (Eii) mice were examined by electron microscopy. Arrows in 3Eii indicate the presence of electron dense
granules. Bars refer to mean6SEM; *p#0.05.
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secretion; SLC26A7, SLC26A9 and SLC9A2 or have activities
that implicate roles in this process; SLC26A7, SLC24A3, CFTR,
KCNJ16, KCNJ15, KCNF1, KCNK6 and KCNK1 (figure 5D)
suggesting a mechanism by which IL-11 can block acid
secretion.

IL-11 induces an inflammatory response in the fundic mucosa
IL-11 treatment elicited a twofold increase in poly-
morphonuclear cell infiltrate (figure 6A,B), but did not alter
lymphoplasmocytic infiltrate. Coincident increases were
observed in the expression of the pro-inflammatory cytokines

Figure 4 mRNA levels of antral gastrin (Ai) and fundic cholecystokinin B (CCKB) receptor (Aiii) and histamine H2 receptor (Aiv) were measured
following IL-11 or saline treatment by quantitative PCR, standardised against rL32 and expressed as fold change compared with controls (DDCt
method). G cells (Aii) were localised in control mice and treatment groups. Stained cells/mm were quantified. Gastric content pH was measured from
wild-type (WT) mice treated with IL-11 or saline (B). Electron microscopic analysis of parietal cells from saline (Cieii) or IL-11-treated mice (Ciiieiv).
Gastric acid secretion (D) was measured at 15 min intervals in mice treated with (i) IL-11, (ii) histamine, (ii) histamine plus IL-11, 15 min later (iii) IL-11
plus histamine 15 min later. Acid secretion was expressed as percentage change from baseline. Bars refer to mean6SEM; *p#0.05.
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IL-1bmRNA and IL-33 mRNA and protein (figure 6C). IL-33 can
regulate Th1/Th2 cytokine balance in epithelia,40 and coincident
with IL-11-induced IL-33 expression, IL-4 mRNA, but not IL-13
or g-IFN was increased (figure 6Dieiii).

DISCUSSION
Chronic atrophic gastritis induced by H pylori infection is
a prerequisite for the development of gastric cancer.3 4 30 33 41e44

We demonstrated that chronic exposure of mice to exogenous
IL-11 over 7 days, such that activated gastric STAT3 remains
continuously elevated, in the absence of H pylori or any other
mitigating factors, caused pathological changes that accurately

recapitulate human chronic atrophic gastritis, with progressive
parietal and chief cell loss, focal mucosal inflammation,
increased proliferation, achlorhydria and the development of
immature mucous cell metaplasia.
A striking feature of the IL-11-induced atrophy is the reduc-

tion in parietal cell numbers as well as their abnormal phenotype
and associated achlorhydria. Parietal cells are responsible for
acidification of the gastric lumen via H/K-ATPase, localised to
a complex intracellular membrane network.45 46 These
membrane structures were profoundly perturbed following
IL-11 treatment, such that tubulovesicular structures were
reduced, and ordered canalicular structures predominated. These
changes are reminiscent of Hip1r�/�,47 SLC26A7�/�48 and
SLC26A9�/�49 mice in which acid secretion is strongly
suppressed due to genetic ablation of key ion transporters or
structural proteins. IL-11 can alter the membrane potential
difference of the colon and small intestine,50 and the expression
of SLC26A6, 7, 9, KCNF1, KCNJ15, 16, SLC5A8, SLC24A3 and
SLC9A2 was decreased following IL-11 treatment. SLC9A2,51

SLC26A748 and SLC26A949 are absolutely required for acid
secretion while the other ion transporters are implicated.
Therefore, we suggest that IL-11 directly regulates the tran-
scription of ion transport genes, which leads to disordered
parietal cell intracellular membrane structures and their reduced
capacity to acidify the gastric lumen. Interestingly, despite
parietal cell loss, IL-11 does not regulate HK-ATPase expression,
demonstrating both its transcriptional specificity and that
observed gene changes are independent of parietal cell loss.
Gastric acid secretion is regulated physiologically by hormonal

(gastrin),45 52 local53 regulatory (histamine)45 and neuronal
(acetylcholine) feedback circuits.45 Gastrin regulates acid secre-
tion both directly via the gastrin (CCKB) receptor, and indirectly
by the release of histamine.52 We demonstrate for the first time
that a single dose of IL-11 can inhibit gastric acid secretion.
Moreover, IL-11 treatment immediately decreased gastrin, CCKB
and histamine H2 receptor mRNA in a time-dependent fashion,
suggesting that IL-11 inhibits acid secretion both by ion channel,
and gastrin and H2 receptor inhibition.
The IL-11-mediated changes in gene expression are not due to

acid feedback inhibition because luminal pH was unchanged for
24 h and the mRNA changes were observed after 3 h. These data
suggest that IL-11 regulation of acid secretion and cell prolifer-
ation are mediated through the inhibition of gastrin-dependent
and independent pathways.
Another striking feature of the IL-11-treated fundus was the

loss of chief cells; this was accompanied by reduced expression
of active protease products of chief cells54 55; trypsin 4/10,
amylase 2, pancreatic lipase-related protein 1 and furin, whereas
pepsinogen C expression and localisation of the intrinsic factor
were unchanged. It is unclear from the present study whether
chief cell loss was secondary to a reduction in parietal cells, or
whether IL-11 acts directly on the chief cell. However, carbonic
anhydrase IX-deficient mice, with altered gastric pH and marked
chief cell loss,56 57 have reduced expression of digestive enzymes
as well as Bhlhb8, a paralogue of Mist 1,58 and we have estab-
lished that the transcription factor Mist1, which promotes chief
cell differentiation,59 was negatively regulated by IL-11,
suggesting a direct role.
IL-11-induced atrophy also resulted in increased proliferation

of gastric epithelial cells after only 24 h of treatment. IL-11 has
cytoprotective activity in the colon53 60 and mitogenic activity
during gastric mucosal repair.24 Given that expression of the
established gastric mitogen, gastrin, was reduced following IL-11
treatment, and proliferation was induced before parietal or chief

Figure 5 mRNA expression of potassium channels (KCN) (A), sodium-
bicarbonate transporters (SLC26) (B) and miscellaneous transporters (C)
were measured in the fundus of mice treated with IL-11 by quantitative
PCR, standardised against rL32 and expressed as fold change compared
with control mice (DDCt method). Model of ion transport in the parietal
cell (D). Bars refer to mean6SEM; *p#0.05.
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cell depletion was evident, these data implicate IL-11 directly in
inducing gastric cell proliferation. The majority of proliferative
cells in IL-11-treated fundus contained mucous granules and
there was an accumulation of undifferentiated cells with
mucous type granules evident by electron microscopy. This
suggests that cell differentiation was impaired, and newly
dividing progenitor cells were accumulating in an undifferenti-
ated state in the presence of high IL-11. This was confirmed by
the reduced expression of mature mucous cell markers GSII,
Muc5AC and TFF2. Significantly, treatment of mice with IL-11
followed by a 4-week recovery period allowed the complete

reconstitution of the gastric cell population, and baseline levels
of proliferation were restored. This is consistent with other
models of acute gastric parietal cell atrophy,61 and demonstrates
that while high levels of IL-11 can alter proliferation and
differentiation programmes, stem cells are not lost following
treatment.
In spite of the clear atrophy, especially loss of parietal and

zymogenic cells, which occurs following IL-11 treatment, we did
not observe intestinalisation of the gastric mucosa, a hallmark of
human atrophic gastritis. However, it is worth noting that only
under very exceptional circumstances do mice develop true

Figure 6 Polymorphonuclear cells were quantitated on stomach sections of mice treated with saline (Ai) or IL-11 (Aii) (B). IL-1b (Ci) and IL-33 (Cii)
mRNA from gastric fundus of mice treated with IL-11 by quantitative PCR, standardised against the rL32 and expressed as fold change compared with
controls (DDCt method). IL-33 (Ciii) protein measured by immunoblotting and compared with GAPDH. mRNA levels of IL-4 (Di), IL-13 (Dii) and IFNg
(Diii) were measured as above. Bars refer to mean6SEM; *p#0.05.
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intestinalisation including goblet cell development, the best
described being mice with ectopic expression of Cdx2.62 Clearly,
the factors required to cause intestinalisation in humans do not
occur in murine models and this model of atrophic gastritis is no
exception.

Coincident with IL-11-induced gastric atrophy was a modest
influx of polymorphonuclear cells, accompanied by elevated
expression of IL-1b and IL-33. IL-33, a member of the IL-1 family,
can drive epithelial Th2 responses that maintain the balance
between host immune homeostasis and pathogen defence.63

IL-1b regulates expression of the HK-ATPasea subunit64 and
inhibits gastrin-dependent acid secretion.65 IL-1b poly-
morphisms alter gastro-oesophageal reflux disease suscepti-
bility,9 66 and gastric-specific transgenic IL-1b overexpression
induces spontaneous gastric inflammation, atrophy and
cancer.67 68 Moreover, we show that both IL-11 and IL-1b are
temporally induced by H pylori SS1 in mice, coincident with the
previously reported induction of chronic inflammation and
atrophy, but before significant dysplasia and carcinoma.69 Here
we show that in the gastric mucosa the expression of IL-33 and
IL-1 b is increased with IL-11 treatment, suggesting that path-
ological outcomes arising from chronic H pylori infection may be
due to both direct IL-11 action and indirect action via IL-1b
induction.

In general, IL-11 is considered to have anti-inflammatory
actions, for which it has been considered as a potential thera-
peutic agent in a number of immune disorders.60 70e77 Here, in
the fundic stomach we have shown that IL-11 is pro-inflam-
matory and in the antral mucosa IL-11 is required to initiate
inflammatory tumorigenesis.17 Our data argue that a link
between IL-11, IL-33 and IL-1b is crucial in mediating the gastric
mucosal response to H pylori infection, perhaps by skewing the
mucosal immunity response towards a Th2 bias, which would
be less effective at clearing infection. We hypothesise that the
stomach as the primary line of innate defence to ingested
pathogens utilises IL-11 as part of its defence mechanism.

We have demonstrated that IL-11 is a parietal cell cytokine
that acts in an autocrine manner to regulate acid secretion, and
as such can influence gastric epithelial cell homeostasis. We have
further demonstrated that IL-11 is a key cytokine mediating
epithelial cell proliferation and inflammatory responses in the
gastric fundic mucosa. Increased exposure to IL-11 both
increases the luminal pH and promotes a Th2-biased immune
response. Novel therapies that specifically block the IL-11
response may have utility in mucosal clearance of H pylori by
facilitating a Th1 response and in preventing the development of
atrophic gastritis.
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IL-11 is a parietal cell cytokine that induces
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