22.251 Systems Analysis of the Nuclear Fuel Cycle Fall 2005 PROBLEM SET #3

Consider three reactor types, a current large PWR, a CANDU fueled with slightly enriched U (SEU), and a small modular pebble-bed HTGR, having the following characteristics:

	<u>PWR</u>	PBMR	CANDU-SEU
MW(e)	1150	114	881
MW(th)	3411	265	2798
FUEL ENRICHMENT, w/o U-235	4.5	8.0	1.20
DISCHARGE BURNUP, MWd/kg	50	80	19.75
FUEL MGT	3-BATCH	CONTINUOUS REFUELING	S ON-LINE

- (a) Compare their uranium and separate work utilization: MWd(e)/kg U_{NAT} and MWd(e)/kg SWU for an enrichment plant tails of 0.25 w/o.
- (b) Explain why the PBMR fuel cycle might be expected to be (and is or is not) superior to the PWR and/or CANDU.

PROBLEM SET #3 SOLUTION

PROBLEM 1

(a) This is a rather straightforward application of the methods previously applied in Problem Set #1.

For example, for the PWR, $B_d = 50 \text{ MWd(th)/kg}$, thus $B_d = 50 \times \frac{1150}{3411} = 16.86 \text{ MWd(e)/kgP}$ and $\frac{F}{P} = \frac{X_P - X_W}{X_F - X_W} = \frac{X_P - 0.25}{0.711 - 0.25} = 2.169 Xp - 0.542$ Thus for $X_P = 4.5 \text{ w/o} \text{ U235}$, F/P = 9.22and natural uranium utilization is $\frac{16.86}{9.22} = 1.83 MWd(e) / kgU_{NAT}$.

For SWU,
$$\frac{S}{P} = \left[V(X_P) + \frac{W}{P} V(X_W) - \frac{F}{P} V(X_F) \right]$$

The following spread sheet shows detailed calculation:

	PWR	PBMR	CANDU-SEU
MWe	1150	114	881
MWth	3411	265	2798
Хр	4.5	8	1.2
Bd (MWd/kg)	50	80	19.75
Thermal eff, n	33.71%	43.02%	31.49%
Bd (Mwde/kg)	16.86	34.42	6.22
F/P	9.22	16.81	2.06
W/P	8.22	15.81	1.06
Uu (Mwde/kgUnat)	1.83	2.05	3.02
V(Xw)	5.959	5.959	5.959
V(Xf)	4.869	4.869	4.869
V(Xp)	2.780	2.052	4.305
S/P	6.871	14.419	0.592
Us (MWde/kgSWU)	2.453	2.387	10.498

(b) Some of the potential advantages/disadvantages of the subject types will become obvious later, but even now we can infer some useful generalizations from the information provided:

(1) The PBMR is small, about $1/10^{\circ}$ the rating of the PWR & CANDU. In addition, the migration length is long in graphite compared to H₂O. Thus the PBMR probably

suffers large neutron leakage losses, which will reduce its burnup potential.

- (2) But its good neutron economy and the ability of its fuel to withstand high burnup are significant advantage.
- (3) Also, as defined here, the utilization is based on electric output (while, burnup, of course, is based on thermal output). The PBMR has much higher thermodynamic efficiency:

$$\eta_{\text{PWR}} = \frac{1150}{3411} = 33.7\%$$
$$\eta_{\text{PBMR}} = \frac{114}{265} = 43\%$$
$$\eta_{\text{CANDU}} = \frac{881}{2798} = 31.5\%$$

this alone increases utilization by a factor of about 43/33 = 1.3, or $\sim 30\%$.

(4) Compared to the PWR, both the PBMR and CANDU have the advantage of online refueling, hence can get more burnup for a given reload enrichment.

PROBLEM 2

I assumed 1000 kg of product as in the example in Bendict & Pigford and a tails enrichment of 0.3 w/o. Note that ²³⁵ U enrichment in spent LWR fuel typically is between 0.7 and 0.8 w/o [Cochran and Tsoulfanidis, pg. 225], but our spent fuel enrichment is not specified and most students used 0.711 w/o, so let's use that.

$$P = 1000 kg$$

 $x_{5,w} = 0.003$

$F = P \frac{y_{5,P} - x_{5,W}}{z_{5,F} - x_{5,W}} = 1000$	0.045 - 0.003 = 10,219
W = F - P = 9,219	

	Weight Fraction		Weight Ratio	Mass, kg
Stream	²³⁵ U	²³⁶ U	235 U: 236 U, R	
Product	0.045	Y 6,P	$R_P = \frac{0.045}{1 - 0.045 - y_{6,P}}$	1,000
Tails	0.003	X _{6,W}	$R_p = \frac{0.045}{1 - 0.045 - y_{6,P}}$	9,219
Feed	0.00711	z _{6,F} =0.004	$R_P = \frac{0.045}{1 - 0.045 - y_{6,P}}$	10,219

 $^{^{236}}$ U is conserved according to the following equation...

$$1000 y_{6,P} + 9219 x_{6,W} - 10219 z_{6,F} = 0$$
⁽¹⁾

Using Equation (12.323) in Bendict & Pigford

$$\frac{P \cdot y_{6,P}}{R_P^{\frac{1}{3}}} + \frac{W \cdot x_{6,W}}{R_W^{\frac{1}{3}}} - \frac{F \cdot z_{6,F}}{R_F^{\frac{1}{3}}} = 0$$

And inserting equations for R values...

$$\frac{1000 y_{6,P}}{\left[\frac{0.045}{1-0.045-y_{6,P}}\right]^{1/3}} + \frac{9219 x_{6,W}}{\left[\frac{0.003}{1-0.003-x_{6,W}}\right]^{1/3}} - \frac{10219 z_{6,F}}{\left[\frac{0.00711}{1-0.00711-z_{6,F}}\right]^{1/3}} = 0$$
(2)

If we take the 236 U enrichment in the feed to be 0.4 w/o as in the example...

$$z_{6,F} = 0.004 \tag{3}$$

Solving equations (1), (2), and (3) simultaneously, we get ...

$$\begin{split} y_{6,P} &= 0.01705 \\ x_{6,W} &= 0.002584 \\ z_{6,F} &= 0.004 \end{split}$$

 $\frac{y_{6,P}}{y_{8,P}} = \frac{y_{6,P}}{1 - y_{5,P} - y_{6,P}} = \frac{0.01705}{1 - 0.045 - 0.01705} = 0.0182$

Finding the reactivity penalty of 236 U relative to 235 U in the new fuel.

In the discharged fuel, we know how much mass of each nuclide we had, and we know their penalties relative to one another. So if you find a constant of proportionality f, we can relate mass ratio to the ratio of reactivity penalties.

$$\frac{\frac{^{236}U}{^{235}U}f = 0.25}{\frac{0.004}{0.00711}f = 0.25}$$

f = 0.444

In the new fuel, we use the same constant of proportionality f, but with the new mass fractions.

$$\frac{{}^{236}U}{{}^{235}U}f = \frac{0.0175}{0.045}0.444 = 0.1682$$

or the reactivity penalty due to ${}^{236}U$ in the recycled fuel would be 16.7% that of ${}^{235}U$.