Lecture Notes #7A

Fuel Cost Calculations

Dr. Edward Pilat

KINDS OF FUEL COSTS

DIRECT COSTS:

WHAT YOU PAY TO BUY IT

(INCLUDES ALL LEASE CHARGES)

INDIRECT COSTS:

CARRYING CHARGES

PRE-IRRADIATION

AFUDC = AFN

IN-CORÉ

ONLY SHOWS UP UNDER FUEL IN LEASE CASE

BATCH FUEL COST

41.67 x X (\$/kgU)

DIRECT MILLS/KWH =

EFFIC x DISCH BURNUP (MWD/MTU)

CARRYING CHG MILLS =

41.67 x X (\$/kgU) x Int_Rate 2 x EFFIC x SPEC _POW x CAP_FAC

MATERIAL REQUIREMENTS FOR A BATCH OF FUEL

Mb = Nb * Ma

Mb = mass of uranium in batch Nb = number of assemblies in batch Ma = mass of uranium per assembly

Mp = Mb * Lf

Mp = mass of enriched uranium product (EUP) delivered to fabricator

Lf = fabrication loss factor (1.009)

Mf = Mp * (Xp - Xt)/(Xf - Xt)

Mf = mass of uranium delivered to enricher Xp = U-235 w/o in batch Xf = U-235 w/o in feed (0.711) Xt = U-235 w/o in tails (0.2 to 0.3)

Mt = Mf - Mp

Mt = mass of uranium in tails stream

Mu = Mf * Lf

Mu = mass of uranium delivered to convertor Lf = conversion loss factor (1.005)

M(U3O8) = Mf * (3*238 + 8*16)/(3*238)

M(U3O8) = mass of uranium ore

ENRICHMENT PROCESSES

GASEOUS DIFFUSION

CENTRIFUGE

• LASER ISOTOPE SEPARATION (LIS)

SEPARATIVE WORK UNIT (SWU)

S = Mp*V(Xp) + Mt*V(Xt) - Mf*V(Xf)

V(Xi) = (Xi/50 - 1) * ln[Xi/(100 - Xi)]

S has units of kg SWU and is a measure of the work needed to perform a specified separation job.

HOW TO REDUCE FUEL COST

MAKE BURNUP GO UP FASTER THAN \$/KGU

COMMERCIAL:

REDUCE \$/KGU FOR SAME DISCHARGE BURNUP

TECHNICAL:

INCREASE DISCHARGE BURNUP FOR SAME \$/KGU