Thorium as a Nuclear Fuel Course 22.251 Fall 2005

Massachusetts Institute of Technology

Department of Nuclear Engineering

Earth Energy Resources

Commercial Energy Resources in India

Electricity Generation Potential

Resources	Amount	Coal Equivalent in Billion T	GWe-Yr	Capacity GWe	No. of Years at CF 70%	
Coal	190 bt	190	$27,000^*$	350	110	
Oil	0.6 bt	1.2	Not to be used for Power Generation			
Natural Gas	540 bm ³	1	280	10	40	
Hydroelectricity	84 GWe at 60% CF	0.2/y	Renewable	84	Renewable (60% CF)	
Uranium PHWR FBR	60,000 t	1.2 195	340 16,000	15 350	30 65	
Thorium Thermal Breeders FBR	320,000 t	360 1,000	70,000 200,000	350 350	285 820	

*50% Coal reserved for non electricity generation use

Figure by MIT OCW.

Breeding U233 and Pu239: Comparison

η – Factor vs Neutron Energy

U233 as a Fissile Material

	²³³ U	²³⁵ U	²³⁹ Pu	²⁴¹ Pu
$\sigma_{capture}$, barns	46	101	271	368
σ _{fission} , barns	525	577	742	1007
$\alpha = \sigma_{c}/\sigma_{f}$	0.088	0.175	0.365	0.365
$\eta = \nu \sigma_{\rm c} / \sigma_{\rm f}$	2.300	2.077	2.109	2.151
Effective β factor, pcm	270	650	210	490

Th232 vs. U238

	²³² Th	²³⁸ U
σ _{capture} , barns	7.40	2.73
σ _{fission} (fast spectrum, 1-group), barns	0.01	0.05
IR (infinite dilution), barns	85	272
Fission cutoff, MeV	1.5	0.8
Neutrons per fission (vaverage)	2.3	2.75
Effective β factor, pcm (fast fission)	2030	1480

MA Production Comparison

Relative Production of Minor Actinides in Diverse Cycles

Minor Actinides	Diverse Fuel Cycles							
	U5 + U8 (Reference cycle) (grams per ton HM)	U5 + Th2 (%)	U3 + U8 (%)	U3 + Th2 (%)				
Np-237	360 ^a	92	20	1				
	900 ^b	107	13	3				
Am	160 ^a	0.04	106	6.3 10 ⁻⁵				
(241+242+243)	470 ^b	0.28	117	1.8 10 ⁻³				
Cm	36	0.01	111	1.68 10 ⁻⁵				
(243 to 246)	220	0.14	132	6.37 10 ⁻⁴				

Key ^aDischarge burn-up ^bDischarge burn-up

: 30 GW d/t : 60 GW d/t Figure by MIT OCW.

U232 decay chain

Power Density Effect

Th in LWRs: Front and Back End Fuel Cycle Effects

ASPECT	DIFFERENCE VS. URANIUM						
	FRONT END						
Mining	(a). Thorium is perhaps 3 times more abundant but much less is mined. Best resources are monazite sands in India and Brazil.(b). Because uranium is really mined for its U-235, a once						
	-through cycle needs only about $1/10^{\text{th}}$ as much Thorium.						
	(c). U-free Th preferred because of absence of Th-230.						
	(d). Tailings less of a problem because Rn-220 has a much shorter half-life than Rn-222.						
Enrichment	 (a). Must provide as U-235 or Plutonium (could be from dismantling weapons). (b) Durada du 222 containe du 222 du 224. 						
	(b). Recycled U-233 contains $U-232$, U-234.						
Fabrication	(a). Typically as ThO_2 using processes similar to UO_2 and PuO_2 (which are incorporated to provide fissile enrichment).						
	BACK END						
Storage and Transportation	 (a). Pa-233 decay (T 1/2 ~ 27 days) creates more U-233 over first several months. (b). Similar fission product decay heat and gamma emission. 						
Direct Disposal	 (a). ThO₂ is stable in oxidizing environment (unlike UO₂ which forms U₃O₈). (b). Factor ~ 10 lower concentration of radiotoxic higher actinides 						
Reprocessing	(a). Solvent extraction (THOREX) similar to PUREX but same equipment has about half the processing rate, hence ~ 30% more expensive.						
Refabrication	 (a). Need to shield against hard gammas from U-232 decay chain (Bi-212, TI-208), hence more expensive even than recycled U or Pu. (b). Preferable to delay recycle of Th for ~ 15 years to decay Th-228; one year suffices for Th-234. 						

Figure by MIT OCW.

10

Th in LWRs: Neutronic Effects

PARAMETER	WITH TH/U-233	PRINCIPAL CAUSES	NOTABLE EFFECTS
Moderator temperature coefficient (MTC)	Progressively negative with burnup	Lattice neutronics less sensitive to spectral hardening	Less effect of lattice design changes
Doppler coefficient	More negative, less so with burnup	Th-232 effective resonance integral, while smaller than that of U-238, is more strongly increased by temper- ature; less Pu-240 buildup	Improved transient response to rapid severe reactivity, (hence power) increases
Xenon worth	Slightly less	U-233 has lower yield of I-135 + Xe-135, but higher direct yield of Xe-135	 Reduces reactor control needed Higher direct yield of Xe-135 increases stability against Xenon oscillations
Fission product poiso- ning	Slightly different	 U-233 has a different yield mix than U-234 and lower σa than Pu Somewhat offset by higher thermal σa of Th-232 vs. U-238 	Only slightly disadvantageous
Delayed neutron fraction, β	Decrease with burnup is slightly more than in all-U core	β of U-233 is considerably less than that of U-235, but comparable to that of Pu-239, Pu-241	 Roughly same detrimental effect on accidents involving sudden large reactivity insertions More rapid power decrease during scram
Reactivity loss due to burnup	Appreciably less	Higher η of U-233 produces more excess neutrons for increasing the conversion ratio	 Less poison reactivity requirement at BO0 Burnup prediction more sensitive to error in reactivity prediction
Hot to cold reactivity difference	Smaller	Smaller MTC outweighs larger fuel (Doppler) TC	No control modification needed to accom- modate use of Th
Control requirements	Reduced overall; but rod worth a bit less at low burnup	Smaller change with burnup domi- nates other effects; lower σa than Pu-239, 241; increases poison worth	 Can reduce (or eliminate) soluble or burnable poison concentrations Easier to design long-cycle/high burnup cores
Local power peaking	Somewhat less both assembly- and pin-wise	U-233 has smaller σ f than Pu-239, 241, smaller local $\Delta \rho$ due to burnup	More thermal-hydraulic margin, easier to meet design constraints
Fertile capture product	Pa-233 more important absorber than Np-239	Pa-233 has T 1/2 = 27 days vs. 2.4 d for Np-239	 Delays U-233 production Both neutrons and U-233 are lost by captures in Pa-233

Predicted Effects of Th/233U on Pressurized Water Neutronics Compared to All-U Fueling

Figure by MIT OCW.

Summary of Th Advantages and Drawbacks

Advantages

- Robust fuel and waste form
- Generates less Pu and higher actinides
- U233 has superior fissile properties
- Large resources

Drawbacks

- Requires initial investment of fissile material (U235/Pu)
- Pa considerations
- U232 issue and more complicated reprocessing
- U233 is weapons usable unless denatured

History of Using Thorium in Power Reactors

High Temperature Reactors

- PEACH BOTTOM (40 MWe) General Atomics, 1966 1972.
- DRAGON experimental reactor (20 MWt; 1966-73) OECD-EURATOM, England
- Pebble-bed AVR in Jülich (15 MWe) BBC-HRB (1967 and 1989), THTR (1984) 300MWe

Other Reactors

- ELK RIVER, is a 24 MWe BWR (1963–68)
- INDIAN POINT, a 285 MWe PWR (1962–1980)
- AHWR in India, plans to build 500MWe Fast Thorium Breeder Reactor
- SHIPPINGPORT Light Water Breeder Reactor

LWBR Shippingport

Images removed due to copyright restrictions.

Thorium Based Fuel Design Options

For once-through fuel cycle

- Homogeneously mixed $UO_2 ThO_2$
- Micro-heterogeneous
 - Small scale spatial separation
 - > Minimal changes in core design
- Macro-heterogeneous
 - Large scale spatial separation
 - > Different residence times for U and Th parts

UO₂ vs. Homogeneously Mixed U-Th

Homogeneous U-Th Fuel NU Utilization

Fissile isotope (U-235) content in mixture, %

Micro-Heterogeneous U-Th Fuel

$K_{\!\infty}$ vs. Burnup for Ax4 and Hom. Cases

The effect is due to:

Spectral ShiftResonance Shielding

Breeding U233 (cont.)

Burnup, MWD/t

Breeding U233

22.251 Thorium

Spectral Shift

²³³U, ²³⁵U and ²³⁸U Absorption Cross-Sections

22.251 Thorium

Reactivity Limited Burnup Comparison

Proliferation Resistance

	Ax4	Ax4	NU			Weapon
	Seed Zone	Seed Zone	Blanket Zone	Hom	All-U	Grade
Ratio of SFS to super grade Pu	29.29	24.2	22.2	22.5	23.0	2.9
Decay Heat (Watts/kg Pu)	59.6	48.4	13.4	38.6	33.9	2.4
Critical mass ^a (kg Pu)	21.2	20.5	22.4	21.25	21.4	16.45
Specific Activity (Curies/kg Pu)	1.87e4	1.79e4	2.04e4	2.05e4	1.76e4	4.39e2
Multiples of Critical Mass /GWe-year	3.3	3.9	1.3	5.2	10.8	

^a Calculated for un-reflected spherical geometry, Pu metal in δ -phase ($\rho = 15.9 \text{ g/cm}^3$)

Macro Heterogeneous Th Fuel

WASB Whole Assembly Seed-Blanket Concept

Pu Production in Macro Het. U-Th Fuel

Production of Isotopes per GWe-year (kg)							
Isotope	Standard	SBU	SBU	Baseline	Optimum		
	PWR	Reference	Reference	SBU FA Data	SBU FA Data		
	Core (1)	Core (2)	Core (3)	Extrapolated to	Extrapolated to		
	Calculation	Calculation	Calculation	PWR Core (4)	PWR Core (4)		
		480-Day Cycle	480-Day Cycle	540-Day Cycle	540-Day Cycle		
Th-232	0	-360	-360	-422.176	-418.198		
Pa-233	0	5	5	4.996	4.937		
U-233	0	79	79	70.796	69.590		
U-235	-900	-929	-771	-724.601	-714.803		
U-238	-800	-1402	-218	-295.277	-303.686		
Pu-238	6 (2.6 w/o)	5 (6.6 w/o)	6 (7.3 w/o)	7.0 (8.8 w/o)	7.0 (8.5 w/o)		
Pu-239	123 (54.2 w/o)	36 (47.4 w/o)	39 (47.6 w/o)	36.6 (45.7 w/o)	37.8(46.5 w/o)		
Pu-240	49 (21.6 w/o)	16 (21.1 w/o)	16 (19.5 w/o)	15.5 (19.3 w/o)	15.6 (19.1 w/o)		
Pu-241	35 (15.4 w/o)	12 (15.8 w/o)	13 (15.9 w/o)	12.5 (15.7 w/o)	12.6 (15.5 w/o)		
Pu-242	14 (6.2 w/o)	7 (9.2 w/o)	8 (9.8 w/o)	8.4 (10.5 w/o)	8.5 (10.4 w/o)		
Pu-Total	227	76	82	80.0	81.4		

Thorium Blanket Power Share

Economic Performance of Heterogeneous Once-Through Th Cycle

	PWR12	PWR18	RTF12 Metal Seed	RTF18 Metal Seed	RTF18 Oxide Seed
"equilibrium" enrichment, (%U235)	3.2	4.533	20	20	20
Average Cycle Length, FPD	300	454.5	300	473	482
NU Requirements, t NU/Gwe-Y	213.8	202.6	198.3	196.5	199.0
NU Utilization, GWd(th)/t NU	5.0475	5.3273	5.4418	5.4912	5.4234
SWU Requirements, t SWU/Gwe-Y	137.5	147.1	190.8	189.0	189.0
Direct Electricity Production, kWh(e)*10 ⁶	74,520	75,265	74,520	78,328	79,819
PV Electricity Production	53,753	54,274	53,753	56,483	57,558
Levelized FCC, mills/kWh(e)	3.8926	3.7955	3.8887	3.9768	4.0117

Pu Disposition in Th

- Possible in virtually any reactor type
- Pu destruction efficiency and destruction rate depend on neutron spectra
- Denaturing of Th with uranium is required in order to eliminate proliferation concerns about bred U233 – presence of U degrades Pu destruction efficiency and rates
- Compared to UO2, Pu-Th fuel has more negative Doppler and MTC but much smaller βeff and control materials worth

Pu Destruction Rates

Residual Pu Fraction

BU1 vs H/HM: Th-Pu Hom. mix

Fissile Uranium Ratio

Homogeneous TRU-Th fuel: TRU Destruction Rate

Homogeneous TRU-Th fuel: MA Destruction Rate

Homogeneous TRU-Th fuel: Residual TRU Fraction

Pu-MA-Th Fuel: Reactivity Coefficients

DOPLER COEFFICIENT, pcm/K								
Comp.	Description	Reference H/HM			Reference + 40% H/HM			
No.	Description	BOL	MOL	EOL	BOL	MOL	EOL	
6	Pu-Th den.	-4.32	-4.65	-5.04	-3.43	-3.78	-4.22	
9	Pu-MA-Th den.	-2.98	-3.02	-3.15	-2.63	-2.80	-3.02	
12	MOX	-2.92	-3.09	-3.20	-2.36	-2.57	-2.70	
13	All-U	-2.20	-2.93	-3.33	-1.82	-2.31	-2.75	
	1	MODERATOR 1	TEMPERATURE	COEFFICIENT	, pcm/K			
6	Pu-Th den.	-49.05	-58.68	-73.47	-38.91	-50.40	-66.73	
9	Pu-MA-Th den.	-18.53	-17.69	-23.40	-29.57	-33.17	-44.86	
12	MOX	-40.63	-54.65	-73.78	-32.37	-46.92	-66.39	
13	All-U	-22.17	-51.62	-77.79	-2.21	-26.00	-50.07	
		VOIE	COEFFICIENT	, pcm/%void				
6	Pu-Th den.	-128.0	-156.8	-198.3	-104.8	-142.9	-190.4	
9	Pu-MA-Th den.	-42.8	-41.4	-51.7	-70.8	-85.3	-115.8	
12	MOX	-104.8	-145.3	-200.7	-86.0	-130.8	-190.8	
13	All-U	-62.5	-145.7	-228.0	-10.8	-83.5	-164.8	
	SOLUBLE BORON WORTH, pcm/ppm							
6	Pu-Th den.	-1.95	-2.28	-3.02	-2.82	-3.60	-5.15	
9	Pu-MA-Th den.	-1.05	-1.03	-1.24	-1.73	-1.90	-2.24	
12	MOX	-1.96	-2.37	-2.76	-2.88	-3.70	-4.85	
13	All-U	-4.80 22	.351- 3. borium	-6.23	-6.65	-8.15	-11.90 <i>38</i>	

Homogeneous Pu-MA-Th Fuel: β_{eff} vs. Burnup

