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ABSTRACT

Sun Seeking Architecture:
The Relationship Between Passive Solar Energy and Form

by Robert R. Brunkan

Submitted to the Department of Architecture July 1978 in Partial Fulfillment
of the Requirements for the Degree of Master of Architecture

This study considers passive solar design in several ways':

First, this piece of work looks at and evaluates how the human, thermally

interacts with the natural environment. Simultaneously, it reviews the

larger climatic forces which affect human comfort. The interaction of these

two concerns especially for the architect can lead to the formulation of

worthwhile thermal design tools.

Second, it develops a series of design tools which describe the climatic

context and the thermal response of buildings to climate. Thermal measurement,

mechanism and means, together provide the kind of solar information necessary

to instigate thermal design decisions.

Third, it documents a partial formal vocabulary of passive solar design

which provides not only the necessary thermal requirements but in addition

contributes to a supportive human environment.

Personally, this thesis is an affirmation of a design philosophy which

envisions a language of form where utility and beauty are compatible.

Thesis Supervisor: Timothy Johnson

Title: Research Associate 2
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Although the precise nature of the life cycle remains a mystery, whatever

the incremental measure of life's cyclic nature, we nevertheless exist as a

part of an intricate network of rhythms, patterns and change.

The pulse of a heart beat from an anthropocentric point of view might define

life's rhythms as the incremental measure of its cycles.

A different view of the fundamental time piece inherent to rhythmic life

forces, and perhaps held by the molecular scientist, stretches beyond the

microscopic level. The scientist focuses on the infinitesimally small increments

of time counted by the vibrations of molecules in motion.

A macro view of the rhythmic movements of energy and matter looks to the

larger motions of our planet around the sun, the accompanying seasons and

recurring cycles which follow.

A recognition of these larger rhythms; the power and importance of the

sun, its seasonal moods and impressive dialogue with the earth, has prompted

this inquiry.

It is in recognition of these rhythms that the architectural language of

passive solar design begins to take form. This thesis, then, is a study of an

emerging language whereby the primary reference is the natural landscape and

the sculpting tool is the rhythmic/cycle force(s) of nature.

Edaburi, a Japanese word, translates to mean "the formative arrangement

of the branches of a tree." This definition is perhaps illustrative of a



certain consciousness,intrinsic to the formal relationship in nature which

permeate the Japanese language. Much of the Haiku poetry is written with

seasonal imagery, denoting the cycles of nature. As evidenced by the architecture

of Japanese tradition, that which is found in the spoken language is often

expressed in the language of their buildings.

The tree may be regarded as the ultimate solar collector. Man's built

analogue to nature's tree form is the frameworks and free standing structure of

his buildings. These frameworks filter, repel and regulate the sun's impact in

a manner not dissimilar to the canopy of leaves and branches. Frameworks are

representative of tree form. As the tree is rooted in the earth, so is the

vocabulary of frameworks and screens connected to ground form materials.

A vital connection exists between passive solar design and the time-honored

principles of building with earth materials. The use of ground form, masonry,

for example, is valued for its associative nature as well as for thermal reasons.

It is not surprising that earth and water are the primary building materials

giving thermal memory to passively designed buildings. These materials link

us back to the landscape and provide a measure of stability in a world of change.

The vocabulary of frameworks and screens used in conjunction with the

stability of ground form allow for a measure of flexibility which provides a

range of built opportunities supportive of the human condition.

The element of stability offered by ground form encourages the construction
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of buildings which are durable and lasting.

The flexible nature of framework materials provides for the hand of human

intervention which allows both growth and change.

The dichotomy between permanence and change allows an architectural

regionalism to take hold. The dominance of one factor over the other is

indicative of the overriding conditions which climatically and topographically

differentiate one region from another.

Passive solar design rethinks certain traditional ways of building and in

light of current energy needs has provided the rationale and incentive for its

existence. Much of passive solar design simply reinterprets traditional ways

of building and incorporates the new into the old.

Finally, there is adequate justification for the additional cost incurred by

a rich and enlivened weatheredge. Brightly colored shuttered windows, adorned

wrought iron terraces and balconies, ivy strewn trellices and undulating canopies

--the reevaluation of priorities brought on by the energy shortage has created a

scenario whereby utility and beauty are compatible. The result is an increased

potential for embellishment which has established a more personal architecture.

The building's exterior comes to life and assumes an almost face-like

quality. Its features are the additive elements that move out into the

landscape and reach toward the sun. Seasonal moods corresponding to the larger

earth-sun cycles are emphasized in the building's countenance. Not unlike the

10



sunflower the building looks to the sun for light and warmth. Sunlit orientations

change character in response to the daily and seasonal movements of sun across

the sky vault.

The weatheredge becomes a loosely defined boundary which extends both out

into the landscape and penetrates into the building volume. The trellis framework,

for example, provides for plant form and solar protection on the outside and

use levels in the inside. The expansion of the weatheredge becomes a sequential

movement of additive pieces which generate overlapping physical and thermal zones.

Passive solar design provides the impetus to generate a formal vocabulary--

a language which has the characteristics of a collage. This mosaic of building

materials confronts the natural elements in an embracing manner. This design

philosophy vigorously reacts to some of the more glaring insensitivities of

modern architecture, i.e., that attitude which has chosen to isolate buildings

from the natural environment. What emerges as the final precipitate from passive

design is that a building's character is realized when the dialogue between

shelter and site not only recognizes natural forces but is conscious of the

visual and spiritual connection between its inhabitants and the surrounding

landscape.

Perhaps an interesting connection can be drawn from Louis Sullivan's comment

on the disparity between mindless stylistic imitation and truly modern architecture,

a disparity similar to our own dilemma.



"The old idea, . . . is dying because it no longer
satisfies the expansion of thought and feeling of
which the impressive revelation of modern science
are a primary factor, and especially because it is
no longer at one with those instincts we call human;
it does not recognize the heart as a motive power."
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This thesis presents a view of passive solar architecture which lends itself

to a specific design methodology. The first part of this process looks at and

evaluates how the human body interacts with the natural environment. Simul-

taniously, it reviews the larger climatic forces which affect human comfort.

The interaction of these two concerns especially for the architect can lead to

the formulation of worthwhile thermal design tools.

On the one hand these tools serve as a simplified analytical basis for

understanding solar phenomena from a design standpoint, and concurrently provide

a means for prioritizing design issues.

The issues inherent in a passive solar approach constitute one set of

constraints in the architectural design process.

"Thermal Aspects of the Solar Wall" is a potpourri of references and

innovative examples which demonstrate a variety of solutions in the built

environment cognizant of human comfort and climatic impact.

With regard to the scope of this exploration several ideas need to be

clarified, in order to understand the use and application of this thesis.

Whereas the main body of information pertinent to solar energy to date is

concerned with reducing solar impact, the focus of this thesis is to take

advantage of solar potential in a given region. This study, therefore, deals

with northern climates where the demand for heating outweighs cooling loads.

An interest in passive solar design has prompted a closer look at the works



of certain major figures in contemporary architecture who I have respected.

Though the primary interest of architects like Wright, Le Corbusier, and Maybeck

to mention a few, was not one of solar energy, nevertheless their work

demonstrates an individual, conscious treatment of the building sympathetic to

sun, natural lighting and indoor-outdoor connection.

In fact one begins to see that these tenets are basic to the understanding

and implementation of passive solar design. More specifically, a passive approach

presupposes an integration of building materials and the natural processes of

thermal flow.

Clearly my attention has been devoted to the "thermal aspects of the solar

wall." This work is divided into sections dealing with solar collection,

protection and collection-storage. Hopefully, subsequent analyses will

continue this exploration and evaluate "thermal aspects of the solar roof" and

'assemblages of form."

Furthermore, it is assumed those reading this thesis will have a

familiarity with fundamental principles of solar energy.

14
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Thermal comfort is defined by the specialists in the field as "a

condition of the mind that expresses satisfaction with the thermal

environment." "Condition of the mind" is a vague and loosely defined statement

of environmental indice. At the same time, it is an accurate statement of the

range of subjective interpretations of the human condition. The thermal comfort

statement suggests the difficulty of setting definitive standards. Thermal

comfort criteria do not prescribe the optimum interior climate for all seasons

and circumstances; rather they qualify a reasonable range of overlapping condi-

tions that approximate a thermally comfortable environment.

It might prove helpful in assessing the standards of thermal comfort to

consider briefly the larger context of human biometeorology which spans the

range between atmospheric science and the biological basis of comfort.

The following graphic representation illustrates the fundamental relation-

ship between:

EXTERNAL ENVIRONMENTAL FORCES

SHELTER ENVELOPE

INTERIOR CLIMATE

and

INTERIOR CLIMATE

BODY SHELTER

INTERNAL PROCESSES



BIOMETEOROLOGY

Biometeorology is a branch of ecology which studies the interrela-
tionships between chemical and physical factors of the atmospheric
environment and living organisms. This environment ranges from
the bottom of the root zone in the soil to the highest atmospheric
levels involved in the dissemination of pollen and spores. Not
only does biometeorology investigate in the natural atmosphere but
also in man-made atmospheres such as those found in buildings,
shelters, and in the close ecological systems of submarines and
satellites.

0

The subject of human biometeorology is touched upon in the most general

way, primarily to inform the reader of this specialized field and to suggest

its relevance to the larger context of thermal comfort.

The Nature of Human Biometeorology

Human biometeorology is an interdisciplinary science joining together the

biological sciences, particularly human ecology and atmospheric sciences, i.e.,

meteorology, in the study of the systems in which people and environment inter-

act.

More specifically, human biometeorology investigates the effects of atmo-

sphere on people and the reactions and adjustments made by people to changes in

the atmosphere. The atmosphere is but one component of the total environment

within which people function (sustain life processes). It is this component of

the environment that bears most directly on human thermal comfort conditions.

The study of human biometeorology sandwiches the indoor atmospheric elements of

thermal comfort between the extremes of measuring weather -- unravelling the

World Meteorological Organiza-
tion, No. 65: A Survey of Human
Biometeorology
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causes of atmospheric processes and human biology.

Because human biology is not merely an extension of the principles of ani-

mal biology to man, human biometeorology has a different orientation and content

from general biometeorology. From a strictly biological viewpoint man possesses

few characteristics which can be identified as unique. His conformation, size,

upright stance, anatomical differences are distinguishing features. Function-

ally, however, human beings differ from other animals very little. How then is

man unique? And what is the interrelationship between his uniqueness and the

thermal regulation of built environments? "Man is unique among animals because

of the tremendous weight that tradition has come to have in providing for the

continuity, from generation to generation, of the properties to which he owes

his biological fitness."0 Biological fitness in this regard is some measure of

human adaptability.

In turn, human adaptability is not only gauged by the current cultural and

biological milieu but moreover is dependent upon it. Both cultural changes,

notably technological advances and human biology have exhibited evolution.

Within the last one hundred years the forces of technology have outstripped

biological change in human evolution. This is of fundamental importance in

understanding the weight imposed by technology upon the range.and quality of

controlled indoor environments.

Health in general is sustained by preserving human capacity for adaptation.

Furthermore, adaptive capacity is maintained by the repeated impact of 18

*1I

WMO, p. 2.
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environmental variation. Man exhibits a wide degree of plasticity and through

adaptive capacity utilizes acclimatization. This chain of reactions, however,

is suspended when environmental variations stabilize. Such is the case with

mechanically tempered buildings. Cultural innovation has increasingly placed

man outside the natural order of things.

By changing the physical world to fit his requirements -- or wishes
-- (man) has almost done away with the need for biological adapta-
tion on his part. He has thus established biological precedent and
is tempting fate... WMO, p. 7.
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THE BIOLOGICAL BASIS OF COMFORT

The Built Body

Because the human being is an open system fulfilling many of its needs for

heat and nutrient energy from the raw materials of the immediate environment,

the model for homeostatic mechanisms must include internal and external regula-

tion.

The human body can be considered a piece of thermal software, capable of

responding symbiotically to its surroundings. In looking at the human body

one begins to understand human physiology in purely thermal terms. The human

body can be described via a formalized definition, much in the same way that

we consider buildings:

Size
Shape
Orientation
Radiation properties
Surface temperatures

The sensing body can be further defined according to:

Age
Sex
Body Type

and behavioral factors:

Diet
Clothing
Activity -- exercise
Behavioral responses (attitudinal)

20



The Sensing Body

The outstanding feature of the human organism is its operational integra-

tion. Cells, tissues, and organs each perform specialized functions. Nonethe-

less, these parts are made to function holistically by integrating systems.

These systems provide the guidance for the homeostatic mechanisms, and are

responsible for a "steady state" being maintained in the internal environment

(anatomical) amid the fluctuations of the externalized environment (indoor/

outdoor climate).

People/man can make both immediate and extended adjustments to stressful

conditions. With repeated exposure to stress or with continuous exposure to a

variety of environmental circumstances, the zone of thermal comfort shifts.

The sensing body possesses exquisitely refined detectors which are special-

ized to respond to stimuli of certain kinds. These detectors-receptors react

to light, sound, chemical change, pressure, thermal gradient, etc. How we inte-

grate, respond to, and utilize the sense messages determines to a great extent

the operational and behavioral characteristics of our sensing body.

In more concrete terms the human body is mobile architecture in thermal

exchange with localized physical definition. Man alters this exchange, often

in subtle ways, such as changing orientation and exposure, varying proximity

relationships as well as through movement.

For example, the relative surface area of a person sitting down is 71%

of a person standing; when this individual begins to move the whole range of



thermal conditions shifts correspondingly. Not only are new thermal regimes en-

countered but certain factors such as convective currents begin to dominate,

stripping away body heat. The thermal exchange is further complicated by the

extent of architectural conditions offered. These range from purely open con-

vective volumes, partial containment, to complex radiant surface relationships

and configurations. The following diagram illustrates the fundamental pxchanges

between the sensing body and boundary conditions.

1 22



ITHERMAL EQUILIBRIUM AND COMFORT

Heat Generated

metabolic rate

Heat Loss

conductive and convective heat exchange

radiant heat exchange

evaporative heat loss

Metabolic Rate

In cold climates metabolic rate dominates thermal regulation. Man is

fortunate enough to be equipped with his own heating plant. In contrast to

cold blooded animals he exerts considerable control over his built-in thermo-

stat. It is well known that people are capable of maintaining a heat balance

even when the ambient temperature varies within wide limits. Within a rela-

tively narrow zone, including the comfort zone, the heat balance is maintained

by metabolic activity, under greater thermal loads, by sweating, shivering, or

23

Thermal equilibrium and the resulting sense of comfort are achieved by

physiological and behavioral responses that monitor the amount of metabolic

heat generated by the body.

The ideal 'steady state' condition which strives to balance heat generation

with heat loss can be understood by looking at four mechanisms of thermoregula-

tion.



other means. Aspirants who have mastered certain forms of meditation, yogis in

particular, are noted for their ability to alter their heart beat, respiration

and metabolic functions by significant amounts.

Certain sects of the martial arts in Japan spend their pre-warmup medita-

tion sitting in lotus position outside in snow-bound conditions, wearing only

loosely fitted gi's. This demands a considerable rise in metabolic rate due to

inactivity and the impact of ambient conditions. For those of us who are less

serious in this regard and have not attained such levels of mind-body control,

other means of stoking the furnace prevail. The primary means of regulation is

control of the level of physical activity, specifically exercise. Metabolic

rate (probably the most important parameter in coping with extremes) can range

widely: 220 Btu/hr while sleeping, 325 Btu/hr while reading, 550 Btu/hr for

light physical activity, and in the order of 1,500 or greater Btu/hr running

the last stretch of the Boston Marathon.

If one moves from a certain set of environmental extremes to another or

changes the level of activity drastically, the body will undergo pronounced

physiological changes. (Blood flow rate and viscosity alter, heart rate varies,

and blood circulation undergoes appropriate changes.) Frequent exposure to

varied environmental conditions strengthens the body's ability to acclimatize

quickly and effectively.

As well as changes of short term duration affecting body metabolism, more

subtle seasonal changes override and alter metabolic rate a few degrees. The
24



metabolic processes of the body are highly inefficient; 80 percent of the meta-

bolic energy generated is rejected as heat. The inefficient nature of physio-

logical processes is exactly what keeps us alive in adverse conditions. These

processes, however, tend to work against us in overheated conditions. The body

employs ingenious ways of dealing with high temperatures which will be discussed

under the heading of Evaporative Heat Loss.

Conductive and Convective Heat Exchange

According to the first law of thermal dynamics, energy wants to flow from

a hot to a cold body. Heat energy is lost by conduction through direct physical

contact with surfaces or bodies of lower temperature. Heat is gained through

reverse energy flow by directly contacting surfaces and bodies of higher temper-

ature. The human body detects heat flow, that is to sayit does not exhibit

temperature sensors. For example, a concrete bench feels much colder than a wood

seat because the body senses the greater heat flow into concrete. Essentially

the body is trying to warm up the concrete.

Convective heat exchange is based on the same fundamental principles as

conduction, except that an additional mechanism of energy transfer is present.

The most common heat transfer medium is air. Air molecules exchange energy

with adjacent surfaces, by what is initially a conductive heat transfer process.

The movement of air molecules speed the dynamic exchange through mass transfer

and carry off larger amounts of energy. In this way the normal conduction

25



process is enhanced. This effect can be dramatically felt firsthand when

entering through a drafty doorway from the frigid outdoors. Forced convection

is providing the chilling factor in this situation.

There are basically two types of convection: natural and forced. In

forced convection, the air has some significant perceptible velocity in rela-

tionship to the surfaces encountered. Forced convection is brought about

through either mechanical or natural means. Natural convection arises due to

the heating or cooling of air when it contacts a surface. As the air changes

temperature it changes density and rises or falls. This self-generated free

convection operates in all indoor environments.

The heat loss by convection from the outer surface of the clothed body

can be expressed by the following simplified equation:

Btu/hr/ft2 =ft/sec f (
Q =-(1 +- ) (T*f - T* )
c 5 skin air

where V is wind speed in ft/sec.

Radiant Heat Exchange

Radiant heat transfer centers around wavelengths of electromagnetic energy

in the infrared portion of the spectrum. Light is a form of electromagnetic

energy in wave lengths which is visually recognized. Those wavelengths in the

infrared portion of the spectrum escape our vision but not our other senses.

The body will lose or gain energy depending on the temperature, texture and

geometric arrangement of the surrounding surfaces. To exchange energy by



radiant means, the objects need not be in contact. Rather, they must be in

direct line of "sight" of each other.

A tightly sealed potbelly stove provides an excellent source of in-

visible radiant heat, while an open fire or the direct rays of the sun offer

radiant heat transfer by the electromagnetic waves in both infrared and

visible wave lengths. These waves operate under the same physical laws as do

light phenomena, i.e., their ability to 'leap across interplanetary voids'

or travel the short distance between source and receptor. These invisible

waves permit the body to interact thermally with walls, windows, and other

surfaces, comprising the total environment. Due to the complex arrangement

and magnitudes of the radiating sources these surfaces provide subtle and often

complex thermal regimes.

Heat loss due to radiant exchange is given by the following equation which

is a helpful yet simplified version of a fourth order equation:

Btu/hr/ft2 _

Q r = 1 (Tskin - TMRT) where MRT is determined

via a globe thermometer.

Comparing convection and radiant heat loss equations illustrates a fifty-

fifty split contributing to thermal exchange when the air speed reduces to

zero velocity and the MRT is the same as the air temperature.

Q =(+-) (T -T . )
5 skin air

= 1 (Tskin - Tair)



IEvaporative Heat Loss
In moderate to high temperatures, sweating of the skin is a major source

of evaporative heat loss. Respiratory passages and lungs are sites of con-

tinuous evaporative heat loss. Heat is lost in evaporation because it takes

energy to turn liquid (water) into water vapor. For example, our canine

friends utilize respiratory heat exchange exclusively.

As the activity level increases the metabolic rate in turn drives up

the evaporative heat loss, depending upon the ambient conditions., Assuming

a constant relative humidity (RH) of 45 percent, the chart (Fig. 1 ) shows

the interplay of evaporation, convection, and conduction at various room

temperatures. The metabolic rate is nearly constant over the range from 600

to 100* F., but the evaporative heat loss rises rapidly to dominate at higher

temperatures. On the other hand, at lower temperatures, convection and radia-

tion play the dominant roles. Pure conduction usually has little effect on

body heat loss.

Jim Leckie, et al. Other Homes
and Garbage.

1

Evaporative
Heat Loss

Convective
Radiant Heat
Loss
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INDICES OF THE INDOOR ENVIRONMENT

Four environmental indices (air temperature, relative humidity, mean

radiant temperature, and air movement) provide a fairly complete thermal

picture of the indoor environment when considered along with the behavioral

indices of activity level and clothing.

Air temperature affects two methods of heat exchange which are essential

to the energy balance of the body -- convection and evaporation. The control

of air temperature is the principal means of affecting the state of comfort

when the body is close to its optimal comfort zone. Conventional heating

systems are designed with this in mind and in fact concentrate solely on air

temperature control. Architecturally, the indoor air temperature is most

directly influenced by the construction and selection of materials comprising

the weather edge. Two distinct systems are utilized for heating purposes,

radiant heating and forced air. Studies have shown that one system is not

thermally favored over the other. However, radiant means of heating has certain

advantages over forced air in buildings of large open volume. Radiant sources

contribute less than forced air systems to the already pronounced movement of

convective currents and increased infiltration rates.

Relative humidity is closely tied to air temperature, since warmer air can

retain more moisture and consequently reduce the evaporative exchange between

body and ambient environment. Relative humidity is an often overshadowed index

of environmental comfort. Simply stated, it is a measure of the quantity of



water vapor suspended in the air. It is measured in percent, with the per-

centage referenced to a "saturated" state in which the air retains all the

moisture it can without some condensation occurring. Thus, if air with a

fixed quantity of water vapor is heated, the relative humidity drops. Con-

versely, the lower the relative humidity, the higher the evaporation rate,

and the greater the temperature depression. High relative humidity results

in a muggy atmosphere and stifles the evaporative cooling mechanisms. On the

other hand, low humidity conditions can be abrasive, causing chapping, making

hair brittle and generally toughening the extremities.

While high humidity conditions are often more difficult and costly to

rectify, low humidity situations are more manageable and at least partially

relieved by the introduction of such things as greenhouse plants. The poten-

tial for plants to impact the interior environment and weather edge favorably

is undisputed. The ways in which plants contribute to visual and atmospheric

qualities will be discussed in a following section ,

Of the four environmental indices, mean radiant temperature (MRT) and

air movement (natural ventilation) contribute the most to the regulation of

thermal comfort conditions through the complex arrangements of architectural

elements and manipulation of form.

The mean radiant temperature (MRT) is a measure of radiative effects

arising in a room. Simply stated, MRT is defined as that uniform temperature

of black surroundings which will give the same radiant heat loss as that from



the actual surroundings.

Depending on the temperature differential (AT) between indoor and outdoor

climates and the makeup of the weather edge mitigating the two regimes, inside

surface temperatures often settle below the room air temperature. These cold

surfaces can cause significant discomfort by actually drawing away body heat

through radiation exchange. A classic example is that of a room with a large

window area. On a cold day, occupants can feel distinctly uncomfortable de-

pending on the proximity to the window surface, even though the air tempera-

ture in the room is upwards of 70*F. An understanding of the relative rela-

tionship between window area and interior volume to minimize the heat sink ef-

fect is crucial not only for energy reasons but for maintaining thermal comfort

conditions.

Similarly, one can experience the opposite effect when bombarded indoors

either by direct radiation of the sun or by exceedingly hot radiant sources,

even if the air temperature is below 65*F. The architectural means of limiting

these adverse effects is a concern elaborated in the body of this thesis.

Natural ventilation is important not only for comfort but also because

air movement provides a means for air exchange. However, some restrictions on

natural ventilation may be imposed by urban condition -- contaminants, etc.

Reasonable air velocities in the range of 20 to 40 feet per minute increase

convective and evaporative heat loss and eliminate stagnant conditions. Air

speed is often translated into air flow or air exchange. A standard of 25 cubic 31



feet per minute per person, or one complete exchange of room air every hour is

not uncommon. In the exchange of air two main forces are at work: first, wind

forces which produce pressure differences across the building; and second,

buoyancy or stack forces which exist because of temperature differences between

inside and outside air.

Buoyancy forces dominate at low wind velocities in squat buildings and in

tall buildings at somewhat higher wind velocities. The actual rate of air

change achieved will depend on infiltration rates, the type of windows and

vents, their placement and size, and the way the occupants use them. These

considerations will in turn affect the proper orientation and dictate minimum

depths of buildings.,
0

WHO, p. 82.
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MEASUREMENT FOR THERMAL COMFORT

Establishing thermal comfort criteria provides a procedure for organizing

and adapting the design process of a building to encompass human requirements

and climatic conditions. Recent work in the energy field has expanded this

procedure and consequently the "Bio Climatic Chart" developed by the Olygay

brothers (Design with Climate) and the standards of thermal comfort put forth

by Ashrae (American Society of Heating Refrigeration and Air Conditioning En-

gineers). The "bioclimatic chart" is a graphic means of showing the zone of

human comfort in relation to ambient air temperature, humidity, mean radiant

temperature, and air speed. Ashrae standards summarize the range of conditions

applicable to indoor thermal comfort.

Introduced here in its reprinted form is the work currently being under-

taken by Vivian Loftness and the A.I.A. Research Corporation in conjunction

with the National Oceanic and Atmospheric Administration's national climate

center. This research provides not only an overview of thermal comfort criteria

but more importantly assesses and identifies the impact of climatic factors on

human thermal comfort and the design of energy conserving buildings.

33



INTRODUCTION

It is the human requirement for comfort, associated with a
building's functional use, that forms the basis for energy de-
mand. As a result, an effective way of reducing energy con-
sumption in residential buildings is to recognize the advantages
of 'natural' comfort conditioning. In most cases, climate is
not actually perceived as a pure temperature and humidity state.
The effects of radiation, wind, moisture addition and diurnal
temperature ranges can both improve or jeopardize individual and
room comfort. To improve energy efficiency, and more importantly
to reinstate man's communication with all forces in the environ-
ment, buildings should be designed to reflect a judicious
balance between isolating the interior of a building from an
'alien' climate and opening the interior of a building to a
'friendly' climate. The design of shelter to provide this natur-
al human comfort and to maximize energy efficiency demands the
careful consideration of building form, placement, enclosure and
opening, balanced to answer the challenge of a particular site
and climate. This in turn demands a clear understanding of the
climate forces which may improve, or jeopardize, comfort in that
particular region, on that particular site. The purpose of this
climate research, then, is to begin to characterize the broad
climatic differences in this country which influence design de-
cisions, and to establish a preliminary set of residential design
regions for energy conservation.
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DEFINING A TEMPERATURE/HUMIDITY COMFORT ZONE

In all building design research for energy conservation, it is necessary
to define the range of temperatures and humidities in which a
majority of people engaged in normal activity would be thermally
comfortable. This 'comfort zone' will in turn determine either the
desirable or ther potentially acceptable temperature and humidity
conditions that the modern residential building must achieve for
human occupancy.

*A great deal of effort has been spent to determine a more accurate the effective temperature scale,
description of the comfort zone. Since the early 1920's, with the
existence of the Effective Temperature Scale (ET) for thermal
comfort, the lower limits of acceptable living temperatures have risen
from 62 F to a present day design standard of 75 F.

In the 1950's, ASHRAE reexamined the Effective Temperature Scale
and replaced it with a new comfort design scale which would better
reflect modern living patterns, lighter clothing habits, and diet
changes. A much smaller comfort zone resulted, which allowed a
design temperature range of 72 F to 78 F, and established the stable
indoor comfort standards of today.

Simultaneous to this comfort standard, the United Nations began
research in comfort design standards for developing countries. This
standard recognized an acclimatization factor (where it is assumed
that individuals develop different tolerances due to length of time
spent in cooler or hotter climates) and set up a comfort zone based
on acceptable, not desirable, temperature and humidity conditions the ASHRAE comfort standard 55-66
for human occupancy. Handbookof Fundamentals

U.N. study, Climate and House Design,
Volume 1, New York 1971.
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To address the conditions created by an energy shortage, it was
decided for the purpose of this research to work with a comfort zone
that was developed in the 1950's by Victor Olgyay, which makes
certain demands on the individual in terms of, clothing and
tolerances. The assumptions made in setting the boundaries of the
adapted temperature/humidity comfort zone were designed to: 1)
reflect government policy by adopting a lower limit design
temperature of 65 F; 2) expand the 6 degree maximum daily
temperature range allowable by present design standards, to a 15
degree range; 3) set a 30% and 80% relative humidity health
limitation on the design comfort zone; 4) acknowledge the effects of
high relative humidities from 70% to 80% in diminishing human
comfort potential in higher temperature conditions. J%

Olgyay comfort scale, Design With Climate,
Princeton University Press 1963

REDEFINING THE COMFORT ZONE TO REFLECT OTHER
CLIMATIC FORCES

The shortcomings of all of the preceding definitions for the comfort
zone can be readily seen in the Minimum Energy Dwelling research
that was conducted by Burt-Hill and Associates. By mapping daily
temperature/humidity readings for El Toro, California onto a
psychrometricchart, it was shown that the ASHRAE 90-75 energy
standard's comfort zone misrepresented the actual comfort
conditions of the town. What, then, is the definition of thermal
comfort? Since the major properties of the environment that
influence thermal comfort are air temperature, humidity, air
velocity, and radiant temperature, the range in which an individual is
comfortable cannot be described by ambient temperature and
humidity alone. Wind speed and radiation, in combination with
flexible tolerance levels in terms of activity and clothing, must also
define the design comfort zone for building standards.

yearly percent fre.uiency of occurre:nce
El Toro, California. Minimim Energy
Dwelling, Burt-Hill & Associates 1976
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The task, therefore, lies in defining the influences of radiation, wind
and moisture changes on the accepted temperature/humidity IZ45r,
envelope. Based on graphs developed by ASHRAE, Kansas State 201a I ", F* 606 71

University, Pierce Institute, and Olgyay, the impact of air movement
for convective cooling, of moisture addition for evaporative cooling,
and of mean radiant temperatures and solar radiation for radiant efM

heating could be estimated. Although the estimates used will be

further defined in the following section, the adjacent graph outlines

the expanded envelope which represents the estimated impact of - L

these climatic factors on the base comfort zone.

4F

comfort scale reflecting climatic impact
research and computer input form.
references: Olgyay, ASHRAF, Kansas Stare
University, comfort research.

footnote: It was originally thought to assess the potential human

contribution to expanding the comfort zone for energy conservation

by creating a series of comfort charts to reflect three seasonal

clothing changes (clo values for overheated, underheated and mild

seasons) and two activity changes (sleeping and active). The weather

data from the 130 test cities could then be analyzed by hour of the

day and time of the year to describe the energy conservation

available through human tolerance adaptations. However, the limited

time and funds available for this first phase in assessing the climatic

impact on building design precluded this detailed evaluation.
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CALCULATIONS OF THE IMPACT OF CLIMATIC FORCES ON
THERLMAL COMFORT

Once this base (temperature/humidity) comfort zone and a second
all climate comfort zone (reflecting the impact of climatic forces)
had been defined, a program could be written to assess basic
predominant thermal design conditions and identifv regionally
available climatic forces for increasing base comfort.

For each of the 130 primary National Weather Stations, the input for
this climate analysis includes hourly mean temperature and humidity n
readings, hourly wind conditions associated with each temperature
and humidity condition, and Air Force charts recording 3-hourly
mean temperature and humidity conditions for each month to
interpret the potential impact of daytime solar and diurnal
conditions.

The superimposed graph of the base comfort zone and the all climate
comfort zone has been combined with calculated 'stress' temperature
and humidity conditions to establish the following 21 location
breakdown for the climate analysis. The basic comfort zone itself has
been defined by the temperature and humidity conditions discussed N OgkIRI-I ff7
earlier. The areas of potential climatic impact for increasing base
comfort surround this zone. Five temperature ranges have been
recorded to separate 'stress' temperature conditions in which
mechanical systems are necessary, from regions near the comfort
zone in which there are clear passive heating and cooling potentials.
To complete this breakdown for climatic representation , humidity
has also been defined as wet (greater than 70%, above which man has
difficulty evaporatively cooling), norm, and dry (less than 30%,
below which dehydration becomes a health issue).
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The output of all of these calculations conforms to a 15 point
matrix, which was developed to incorporate the ordinates of both
the temperature and humidity axes. A first count of temperature
and humidity conditions falling in and around the base comfort zone
reveals basic thermal design conditions in this country, which vary
from overheated to comfortable to underheated. A recount of
temperature and humidity conditions falling within the expanded all
climate comfort zonc reveals the potential for increasing natural
comfor t due to sun and wind availability, diurnal tempeatuLire range,
and moisture availability.

footnote: The heat stress conditions in which man cannot actively
survive without mechanical cooling assists (defined in research by the
Department of Defense) divides the overheated conditions above the
comfort zone into warm (tolerable) and hot (intolerable) design
climat!es. Below the comfort envelope in the underheated
temperature conditions, a 50 to 6S degree band was distinguished to
show ,a feasible tolerance level as well as a conservative first estimate
for passive solar heating potential in residential building design.

CM Pry xvm cZX- W EF]f

6V~f''Y LOlWWO1 A 6 CJ2VQE -I

j39



VISUAL COMFORT

as the basis for music is the presence of silence, the world
of light is dependent upon darkness to give it definition and form,
and a quiet matrix within which to come alive."

Henry Plummer, Built Light.

The title of this section of criteria is perhaps misleading. Nevertheless,

the notion of visual comfort introduced here is meant to qualify the range of

daylighting conditions that serve the activities of people in practical-useful

ways. Equally important is an understanding not only of natural light and the

implications of form, i.e. depth, splaying details, geometry of openings, but

also the soft line quantitative, often poetic boundaries of light that enliven

the spirit and span as Plummer suggests from dark to light; the somberness of

gloom to the spiked nature of glare.

Daylight comes to us in the same energy packets as solar heat. This raw

material is as much a source of energy as it is a building material. "Light is

as much a building material as stones, bricks." Derek Philips. Sculpted by the

physical definition the thickness of light defines the edges and fills the

architectural void. Sun seeking architecture characteristically incorporates

the range of natural lighting conditions from dark to light and the gradations

in between. Ideally each exposure has a differentiated light filtering built

response.

The striking quantities and similarities of light associations
among various people: the uplifting effects of a sparkling sunny
day, the dreary overcast day..., the passion of color saturated
sunsets (filling built spaces), or the delight of dancing water
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reflections, suggests the possibility of a language by which qualities
of light evoke particular intellectual, emotional and physical ex-
periences. If this language could be translated into an architectural
vocabulary, we could begin to again rebuild into our environment the
'luminous food' which man has in past ages found essential to his
daily nourishment and sustenance.- Plummer, H., Built Light.
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IGENERAL - THE DAYLIGHTING OF BUILDINGS 1
The amount and quality of daylight available in a building depends on the

levels of illumination out-of-doors, the proportion of sunlight (direct insola-

tion) to skylight (diffuse) and the spatial configuration of the room and light

transmitting surfaces. On a clear, sunny day the 'warmth' of sunlight plus the

'coolness' of skylight give balanced color rendering. By consciously orienting

a window or clearstory, allowance for the penetration of both elements of day-

light are possible.' Though natural light has dynamic qualities, due to the

changing weather patterns, shifting clouds, the slowly setting sun, indoor

illumination levels at the rear of typical rooms vary in the order of .5 percent

to 3 percent of those values obtained outside, while adjacent to the weather

edge the levels may range from 10 to 20 percent depending on the boundary con-

ditions. The illumination climate also varies considerably from season to

season. In higher latitudes it is customary to base design on typical overcast

sky conditions for the winter half of the year. This could potentially create

some glare and overheating problems the remainder of the year. In more temper-

ate climates design is exclusively based on clear sky conditions depending on

the region and some account is taken of reflected sunshine.,
0

WMO, P. 83.
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Glare

One aspect of natural lighting, glare in particular, is responsible for

visual comfort. One of the intrinsic problems often associated with passive

solar design is high contrast glare. A basic understanding of this phenomenon

may aid the designer in eliminating extreme and or unnecessary glare conditions.

Glare can be created principally by two factors, too much light or excess-

ive contrast in the field of view. Disability glare is caused by a simple over-

load of the eye with too much light. Discomfort glare is determined by the con-

trast sensitivity-curve of the eye which varies from person to person. One

often experiences discomfort glare when driving into the sun or opposing the

bright reflections of sunlight bounced off highly reflective surfaces.

The size of window-wall openings and a person's proximity to this light

source has an effect upon glare. Small windows often produce contrast glare,

and larger windows can bring about an overload due to optical saturation of the

eye's interior.

In passive solar design the materials chosen to reduce overheating and high

back losses can also control excessive glare conditions. Through the use, ar-

rangement and placement of glazing surfaces, a reasonable balance can be struck

between excessive glare conditions, natural lighting and solar gain.

It is important to remember in certain circumstances, glare may be tolerable,

in fact inspirational. The sparking reflections off water or the intense light

of partially blocked sunrays under a canopy of evergreen trees may enliven the

scenery and awaken the senses. 43



Thermal Analysis

Thermal analysis comprises three areas which describe the climatic

context and thermophysical response of buildings to climate. Thermal measure-

ment, mechanism and means, together provide the kind of solar information

necessary to instigate thermal design decisions.

Thermal measurement is made up of four major elements of the climatic

environment which affect human comfort and determine the thermal performance

of buildings. They include:

-- Air temperature

-- Air movement

-- Humidity

-- Solar Radiation

Thermal mechanisms identify the fundamental thermo-physical process that

underly energy flow in buildings. These architectural thermal mechanisms

have developed into a sophisticated science in their own right, based on the

fundamental exchanges between matter (earth materials), energy (sunlight) and

the forces of gravity. A partial list of these architectural thermal mechan-

isms include:

o The greenhouse effect

-- convective heat trap

o Thermal mass storage

-- specific heat of material
44



-- density of material

o Natural air flow

-- thermal chimney effect

-- cross ventilation

-- gravity convection

o Shading

-- solar control

Thermal means describe the investigation and application of certain solar

related principles that identify important relationships, for instance, earth-

sun geometry, the nature of solar radiation (direct-diffuse) to collection and

thermal flows and properties of materials.

The hope is that these solar related principles might begin to define

thermal design tools that enrich our understanding of the relationship of the

forces of nature to building form. These tools are meant to provide a starting

point to bridge the gap between energy issues and adaptive form. Furthermore,

these solar design tools are a way of identifying and prioritizing design issues

that influence built form. They represent only one facet of design input that

make up the whole range of parameters, constraints and ultimate trade-offs in

building design. The tools presently make up a partial list which can be added

to and expanded. A more extensive list of tools than those presented in this

paper include:



-- Altitude-Azimuth (solar position)

-- Cloudiness or clearness factor

-- Aspect-orientation

-- Exposure-topography

-- Sol-air temperature

-- Angle of incident

-- AT/openings

-- S/V ratio (surface to volume ratio)

-- MRT (mean radiant temperature)

-- Thermal storage sizing

-- Aperture effect

-- Wind modeling

-- Vegetation

-- Climatic region (Vivian Loftness)

-- Climatic envelope (Ralph Knowles)

-- Shading (Olgyay Brothers)

This is the makings of a framework for the development of a responsive

design process that aligns itself with natural law and strives to provide a

range of amenities for human habitation.
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For millennia the sun's radiant energy has driven our solar system

and provided heat and light inducing the life process on planet earth.

The earth's orbiting path and relative distance to the sun is a favorable

one for maintaining these conditions. Furthermore, the earth's atmosphere,

composed of layers of dust, moisture, ozone and other gases held close to

the earth's surface by the forces of gravity, shield spaceship earth from

the full intensity of direct solar radiation.

This filtered radiation, our planet's whirling motion, and the effect of

land and water bodies produce the variations and changes in the atmosphere

that determine the overall-weather patterns. The solar energy received by

the earth is held for a time in the atmosphere, in land and water bodies

(ocean masses) and over time is released to outer space as re-radiated heat.

The atmosphere serves as the earth's weather edge, both tempering the effect

of the sun's radiation and providing a transparent thermal blanket to hold in

the warmth. The insulating atmospheric weather edge surrounding the sun-

warmed earth's mass, together maintain a thermal balance.

The earth's journey around the sun contributes in a paradoxical way to

the seasonal cycles of weather. This is due to our elliptical orbit altering

the relative distance to the sun. Earth is closest to the sun during the

winter and most distant during the summer in the northern hemisphere. Never-

theless, the tilt of the earth's axis dominates the seasonal weather cycle.

Total radiation arriving (solar constant) -100%

Ground

A = reflected from the ground 5
B = reflected from the clouds 20
C = diffuse, on the ground 23
D = absorbed in the atmosphere 25
E = direct, on the ground 27

Solar Radiation received at
the Earth's surface.

Watson, Donald, Designing and

Building a Solar Home.
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This axial tilt in fact produces the seasons of the year. The northern hemi-

sphere tilts toward the sun in summer and away from the sun in winter. Corre-

spondingly, we observe the sun higher in the sky in summer and closer to the

horizon in winter. The sun's rays travel a great distance through the atmos-

phere in winter due to their low angle of incidence. Another summer-winter

paradox is operating here. Although the sunbeams are transversing a larger

atmospheric dimension in winter, the lower humidity in snow bound regions re-

sulting in less atmospheric absorption, compensates for the longer path; con-

sequently the winter solar intensity is not reduced.

The path of the earth around the sun.

March 21

June 21 4 ..--- +----- ~.

S -
S September 21

0

Olgyay Brothers, Solar Control and
Shading Devices.
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The amount of heat received from solar energy input is directly related

to atmospheric clarity. The relative importance of diffuse and direct radia-

tion varies with the percentage of clear days over the year or the range of

cloudiness in a given region. The overall heat received on a cloudy day

(primarily, diffuse radiation) is much less than the overall radiation received

on a clear day (direct plus diffuse radiation). Nevertheless, the diffuse

component can contribute a significant amount of solar heat to a building de-

pending on the climatic region and the associated ambient temperatures. The

St. George's School located in England is an excellent example of a building

heated primarily by diffuse energy. Overcast, cloudy conditions prevail over

a large portion of the heating season in this region of England.

The ratio of diffuse to direct (or spectral) radiation provides useful

information to the designer. The ratio of diffuse to direct on clear days may

be .85 (85 percent direct radiation) whereas on cloudy, overcast days it may be

only .15 (15 percent direct). The largest portion of total solar radiation

arrives during times when the ratio of diffuse to total radiation is smallest,

which is on the clearest days. This relationship with regard to climatic

setting and a given built condition begins to suggest design specifications.

For example, a prevalent ground fog during winter conditions on a south

facing site in Mendocino, California, may suggest a design modification to the

east exposure in response to the profuse amount of shattered light energy

See drawing of St. George's
School, "Solar Collection"
section for reference.



(diffuse light) during the early morning hours. The design response to this

particular condition would include a range of built responses. For example,

increased glass surface area with the application of heat mirror0 on the east

exposure; adjusted slope angle and geometry to optimize diffuse collection;

type of glazing surfaces employed.

The consideration of increased glass surface area or shift in orientation

depend entirely on the design temperatures and the particular micro-climatic

features on a given site. Without the application of heat mirror to standard

glazing surfaces the amount of diffuse energy during morning hours must be

weighted against heat loss (AT) over 24 hours. Also attention should be paid

to glare or overheating conditions during the cooling season (summer).

If flat plate collector efficiencies are considered, orientations west

or south, under morning haze conditions, can contribute a significant amount

more energy due to increased insolation and higher afternoon -air temperatures.

In this case early morning collector heat up may suffer due to the westerly

orientation, although passive direct gain on the east may be utilized to offset

this.

Refer to section on heat mirror,
Solar Collection.
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ZENITH-AZIMUTH

A preceding section, The Source, serves as a brief introduction to

general principles that apply on smaller scale to diurnal (daily) changes in

micro-climate and are of primary interest to the architect. Of particular

interest here is the daily fluctuations of thermal intensity relative to the

zenith-azimuth of the sun and site features. The same solar-earth geometry -

that determines seasonal changes influences daily excursions.

Diagram 2 illustrates the general path of sun light through the atmosphere The path of sunbeams through the atmosphere.

over the course of the day. In the early morning or late evening hours a 2

longer path through the atmosphere is transversed. Near the noon hour the sun

is closest to the vertical and the atmospheric distance is shortest; the amount

of energy received will be the greatest.

Fig. 3 uses values representative of a clear summer day at sea-level and Btu
300 -- - -

plots the intensities of the sun's energy received at normal incidence with
200-

respect to solar altitudes. 7 --

For design purposes it is helpful to distinguish the relative importance
0 10 20 30 40 50 60 70 80

of zenith and azimuth. The zenith position of the sun or solar altitude is

Solar energy in relation to the sun's altitude.
directly associated with the intensity of radiation, a quantitative measure- s

3
ment (in B.T.U.'s), while azimuth is the projected angular deviation from true Olgyay Brothers, Solar Contro

and Shading Devices.
south and combines with the altitude to describe the directional component of

the source of energy (angle of incidence).

Solar altitude and azimuth can be calculated, using readily available

1

52
52



charts,, for a particular time, day and latitude. Through the combined efforts -

of this solar tool and a general knowledge of site reconnaissance,, a more com-

plete picture of the interaction of sun and shelter can be documented. A knowl-

edge of the sun's position and sweep across the sky vault relative to particular

site features, e.g. topography, off site obstructions, adjacent buildings, as

well as the times of rising and setting sun influence a range of design decisions

responsive to seasonal collection and protection.

Such considerations include:

Configurative Factors

Building orientation

Layout

Window placement

Use areas

Surface to volume ratio

Roof types

Thermo-physical Factors

Sol-air temperature0

Thermal capacity and resistance of building materials relative to
orientation

Libby-Owens Ford Glass Co. or

0Kool-Shade Corp.
Vivian Loftness, Natural Forces
and the Craft of Building.
M.I.T. Thesis 1975. Highly
recommended.

Refer to subsequent section.

Shading

Solar position and building orientation can be viewed as a scaled relation-

ship. The site orientation and long dimension of the building cluster can be

1 1 53



described according to its site azimuth (see Diagram 4 ). At this level of

planning the major orientation may be determined more by major definitions,

streets, slopes, lot lines, topography, than adhering to true south, optimiza-

tion of the sun. Clustering reduces the surface area of the weather edge re-

ducing climatic impact and allowing greater flexibility of orientation. The

larger surface to volume ratio gained by clustering is less susceptible to

climatic variation and thus affords some measure of flexibility over the free

standing building.

Solar position and building azimuth (see Diagram 5 ) may modify the major

orientation for free standing structures or portions of the larger assemblage

of buildings. The following diagram ( 6 ) for the Solar Home book illustrates

that efficiency considerations of solar collection has a flexible design range.

Although the percent deviations of the vertical collection surface from south

are large this diagram takes into account incident radiation only. This inform-

ation does not contradict the work of the Olygay brothers (next diagram 7 );

rather the "sol-air orientation"0 balances a range of climatic impacts and re-

sponds accordingly by relatively precise deviations in building azimuth angles

off due south.

Micro-climatic forces (wind, air temperature, moisture, solar position),

in effect, fine-tune the major orientation(s), which are site specific and

further suggest built responses indicative of an architectural regional ap-

proach.

Olygay Brothers in Design with
Climate use "sol-air orienta-
tion" for orienting building
east or west or south.
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The change in area of a vertical Wall collector with orientations away from true south. The collectors (shaded
areas) have been sized to provide 50 percent of the winter heating needs of well-insulated homes in Boston

and Charleston.
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The overall climatic impact on a building is largely determined by the

predominant orientation and shape. However, the building can respond to

favorable climatic elements on smaller levels of built definition. This is

a scaled relationship; the microclimatic forces impact differently small

scale building elements (such as the window) than the overall structure. The

thermal characteristics of specific use areas can be modified by orienting

the associated collection surfaces to optimize incident radiation, for a given

time of day.

The determination of the sun's position relative to a given location is

important to our understanding of the quantitative measure of the varying

amounts of solar energy with which we are showered. Furthermore, familiarity

with the sun's movement throughout the year encourages a realm of less quanti-

tative concerns, which might direct design options.

Solar position recognizes the potentials and possibilities of the built

dimensions of light, associated with sun geometry and building design responses.

In this regard the built dimension of sun light responds as an architectural

material which can be framed, shaped, sculpted by the building elements. The

architectural medium of sunlight provides not only a heat component and natural

light but serves as a design metaphor. The way in which sunlight enters a

building through openings or casts its shadow from a designed overhang can mark

the seasons. The structure becomes a kind of solar clock, a seasonal sundial.
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Major directions of the building can respond to the rising and setting

of the sun. The ritual celebrated through built form, the warmth, light,

changing hues of color that penetrate into the building, igniting planes and

surfaces with glowing energy. Equally important the design metaphor of sun

geometry takes advantage of sunlight's gently rendered moods while it protects

against its harsh character. The kind of reverence that is felt on special

occasions when shafts of light become visible in a cathedral or in the mist

laden forest is inspired recognition of the dimension of light. The building

design can emphasize this dimensional character aligning itself at fixed

moments, filtering the light at others, consciously washing surfaces with the

changing yet predictable directionality of sunlight.

" . . the problem of the sun-as we know-is
that it passes from one extreme to the other
according to the change of the seasons. In this
play many conditions are created which await
adequate solutions. It is at this point that an
authentic regionalism has its rightful place. The
techniques are universal. . . . The sun differs
along the curvature of the meridian, its intensi-
ty varies on the crust of the earth according to
its incidence.

In this detail the Creator has given us beau-
tiful and prodigious diversity. It is for us, in
succession, to seek a solution which is worthy of
the work of nature."

After Le Corbusier.
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AmGLE OF INCIDENCE

The geometrical relationship of sunbeam energy to collection surface is a

scaled relationship operating on a global level down to the window pane. The

glancing angles of solar energy striking the earth's atmosphere (terrestrial

window) due to the changing tilt of the earth determines the seasons and the

varied weather conditions over the globe. This same incident effect operates

on a considerably smaller, more human scale, influencing the amount of solar

energy captured by the built window and other collection surfaces.
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Solar Position and Window Angle of Incidence

Part A and B of Figure 8 illustrate diagramatically the relationship of

solar position at the building surface (window wall collector) and direct

radiation angle of incidence.

Part A Figure 6 At this level of inquiry the building orientation is

assumed fixed by the previous scale of solar positioning (solar position and

building azimuth). The next step is to take a closer look at the interaction

of sun and surface. The relationship is one of solar geometry described by

the angle of incidence. This method describes geometrically the relationship

between collector surface orientation, tilt and solar position.

At this scale specific detailing of collection surfaces are considered.

The respective thermo-physical properties of glazing and wall surfaces respond

characteristically to the angle of incidence. Collection of direct radiation

by standard clear and translucent glazing materials is determined largely by

the transmission properties (dependent upon glazing thickness, chemical

makeup) and index of refraction. Whereas, opaque wall materials employ surface

reflectance and absorption, texture and color to regulate heat gain.

Part B of Figure 8 shows the relationship between the rough opening col-

lection surface dimension (window-wall), angle of incidence and available sun-

beam energy. The available solar radiation is given by the perpendicular

dimension of the sunbeam energy striking the collection surface at a given

angle of incidence. This relative dimension is easily determined by applying
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the Cosine Law. The amount of direct radiation falling on the collection surface

is further defined by the Cosine Law pertaining to vertical surfaces and is cal-

culated by the formula given in part B of the diagram.

The formula for incident radiation falling on a horizontal surface is given

where IDN is the amount of direct radiation normal to the collection surface.

DH DN * Sin Z

Although the calculations for active collectors are not addressed in this paper,

other glazing surfaces may find their way to a horizontal alignment, i.e. sky-

lights, greenhouse roofs..

Figure 9 takes a comparative look at summer and winter incident angles

through the course of a day for a south facing window at 40* latitude (Boston

area).

Sun angles diagrams for latitudes in the northern hemisphere corresponding

to the 21st day of the month are given In the appendix. These dia-

grams in combination with the sun angle calculator or sun path diagrams also

included (in Appendix), provide the information necessary to construct an hourly

composite of incident solar angles on a given exposure (Figure 10).

The more favorable incident angles can easily be seen in the winter dia-

grams for south facing glass. The angles of reflection are closer to the

optimum ray, normal to the collection surface (section), and the duration of

solar energy is longer for the winter condition due to the more favorable

declination (plan). At 40*N latitude, two hundred BTU strikes a square foot

,~40

I
.3,

Climate and Architecture.

References for calculations on
collection include:

Solar Energy by Bruce An-
derson

Better Homes and Garbage,
Leckie, Masters, Whitehouse,
Young

10

40-N LATITUOD
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of window surface during an averaged hour on a sunny winter day, whereas 100

BTUs, typical for an averaged summer hour.

Summer Condition

By the time the sun has climbed past the east-west compass line and has

moved into a position to beam down solar heat to a south facing surface it is

very near 8:00 a.m. in the morning. This vertical surface continues to receive

solar energy until roughly 4:00 p.m., when the sun sneaks behind the east-west

compass line again.

Winter Condition

Throughout this season the sun rises south of east and south of west.

Therefore the sun's energy is available to a south facing facade from sunrise

to sunset, approximately, 7:30 a.m. to 4:30 p.m., offering slightly more

exposure time than the summer condition.

The value of incident angle as a solar design tool lies initially with its

thermal quantitative aspects. A fundamental understanding of solar geometry

and approximate percentages of heat gain is crucial to architectural consider-

ations. Given other design constraints, placement, orientation and tilt of

collection surfaces should optimize solar input at the times of day and seasons

it is most needed. It should be assumed solar collection is used for space

heating purposes. Vertical collection surfaces provide favorable solar



geometry, though not optimal for all summer and winter incident angles,

associated with the range of latitudes. Ideally the collection surface

should adjust both orientation and tilt according to the relative impact of

summer and winter conditions balancing the extremes impinging in various re-

gions. The equinox seasons might then compromise between these extremes.

Spring,solar gain desirable early in season; fall, solar gain needed later

in season.

The amount of transmitted energy due to the angle of incidence is given

by the Graph 11 . Note the dramatic plunge in slope around 60* angle of

incidence. This effect will further reduce the summer hours impacting a

south facing exposure due to reflection losses. Graph12 shows the signifi-

cant fluctuations of clear day insolation on horizontal, south-facing vertical

and a 50* tilted surface over the course of the year. In northern latitudes

east and west exposures receive 2 1/2 times more energy in the summer than

winter. Due to the sol-air effect and local climatic conditions, the actual

climatic impact is rarely symmetrical on east and west exposures. In general,

west exposures display overheating while east exposures collect insolation

during hours of low ambient temperatures, when the solar heat is desirable in

winter and tolerable in summer.

The winter exposure diagram Figure13 illustrates graphically the hours

of solar radiation available to a given exposure and the corresponding angles
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of incidence. This diagram illustrates only the extreme winter condition.

As the seasons change and the angle of declination moves toward the spring

equinox the incident angles will move accordingly, providing increased heat

gain to east and west exposures.

This diagram illustrates an important relationship between exposure, solar

gain and heat up times. The winter exposure diagram combined with solar heat

gain factors (Ashrae Handbook of Fundamentals) begin to model the interior

fluctuations throughout the day: amplitude of temperatures and the resulting

thermal zones associated with a given exposure and orientation.

The solar heat gain factors for various compass orientations at the 400

latitude of the Boston area is figure 14

Solar heat gain factors presented here deal with transmission of solar

intensity as a function of angle of incidence, orientation and the contribution

of (.20) ground reflectance. Angle of incidence influences not only solar

transmission but also the thermal response of exterior building surfaces, af-

fecting primarily the sol-air temperature and therefore heat gain transfer to

the interior. Using figure13 as a reference for suntime versus orientation

and the Ashrae figures for solar heat gain, the relationship between solar

input (temperature excursions), hour and orientation can be examined. Between

the hours of 8 and 10, an eastern exposure receives slightly more insolation

than a south face (265 B.T.U.H./sq. ft. compared to 235 B.T.U.H./sq. ft.,

approximately 10% additional heat for that period). Between the hours of 8 and

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Clear day insolation on horizontal stirfaces, and on
south-facing vertical and tilted surfaces. Reflected

radiation-not included.
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118 127 508 1174 1630 1174 508 127

A chrae Handbook of fundamentals)
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Solar Solar heat gain factors B.T.U.H./cq. ft.
position

A Z N NE E SE S SW W NW HOR
ALT AZ"7[

8 8.1 55.3 141 5 17 111 133 75 5 5 5 13

9 16.8 44.0 238 11 12 154 224 160 13 11 11 54

10 23. 30.9 274 16 16 123 241 213 51 16 16 96

11 28.4 16.0 289 18 18 61 222 244 118 18 18 123

12 30.0 0.0 293 19 19 20 179 254 179 20 19 133

1 28.4 16.0 289 18 18 18 118 244 222 61 18 123

2 23.8 30.9 274 16 16 16 51 213 241 123 16 96

3 16.8 44.0 238 11 11 11 13 160 224 154 12 54

4 8.1 55.3 141 5 5 5 5 75 133 111 17 13
2 8 *4______ ____________ _____________ ___________ _____________ ____________ _____________ ____________ ____________ _____________ ____________ ___________ ____________
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12, however, a southeastern exposure receives substantially more solar gain

than a south face (820 vs. 692 B.T.U.H./sq. ft.). These incremental solar

gains determining relative heat-up periods provide valuable design insight

into the thermal rhythms of different exposures.

To a considerable extent target areas of built definition can absorb,

store, re-radiate, reflect sunbeam energy into interior spaces, depending upon

incident angles of light, thermo physical and surface properties of barriers.

The same values of absorption emmitance applicable to the exterior

building surfaces also apply to interior finishes and construction. Heat

storage is determined by the specific density, specific heat, conductance of

the material while the effect of incident radiation is a factor of color and

surface texture.

Partial containment near the source can provide a range of thermal zones

significantly varied from indoor air temperature. The type of containment

surfaces span a wide range: bearing walls, screens, partitions, window seats,

furniture, to mention a few. (Refer to thermal zones, following section 3.)

Other factors related to solar energy at or near the weather edge will be

discussed in Section 3.
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SOL-AIR TEMPERATURE

The "sol-air temperature" is a theoretical external air temperature,

dependent upon the thermo-physical properties of the materials, local site

conditions and building geometry. The "sol-air temperature" is a valuable

thermal design tool for heat transfer calculations and general sol-air building

orientation.0 Equally important, this solar tool encourages the selection of

materials that exchange the natural energy flows of the site, and optimizes

solar collection relative to building exposure and heat load.

The "sol-air temperature" gives the combined thermal effect on the build-

ing exterior surface due to solar intensity and the ambient air conditions.

Three component temperatures comprise the overall sol-air temperature:

Ambient outdoor air (degrees f)

2
Incidence of solar radiation (BT/ft /hr).

Net long wave radiant heat exchange between the exterior

surface and the environment (BTU/ft2/hr)

Note: wind not taken into consideration.

These three parameters of sol-air temperature define the climate at the

weather edge and serve as a basis of discussion concerning the thermo-physical

properties of building materials and architectural considerations.

Refer to Olygay Brothers Design
With Climate.
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Ambient Air Temperature

Ambient air temperature is a thermal phenomenon with special spacial and

temporal characteristics. The air is transparent to almost all solar radia-

tion. Therefore, insolation has only an indirect effect on air temperature.

The air layers in direct contact with warm surfaces are heated by conduction

and stirred around by convective currents.

Incidence of Solar Radiation

The intensity of solar radiation incident on a surface is dependent upon:

solar position

latitude

altitude

atmospheric clarity or clearness factor

The ratio of IDirect (spectral) to

IDiffuse (scattered)

angle of incidence

A function of compass orientation, relative

geometry of surfaces, Horizontal-Vertical, etc.

The total solar radiation falling on a surface is comprised of three

components:

- The Direct Solar Radiation (ID)

- The Diffuse Solar Radiation (Id)



- The Reflected Radiation from the

Surroundings (Ir)

Sources such as the climatic atlas provide easy-to-read charts and diagrams

from which local data on solar radiation intensity can be determined.

Direct Solar Radiation

The value of the direct solar component is generally calculated0 from the

solar constant (amount of solar energy striking the earth's atmosphere). For

a given region, season and time of day the direct solar component varies as a

function of the solar altitude and extinction coefficient (clearness factor).

Diffuse Radiation

Diffuse radiation is not spread uniformly over the sky vault. Around the

sun, diffused rays are more concentrated, decreasing with angular distance

from the sun, and increasing near the horizon.

Diffuse radiation is divided into two components, one from the vicinity

of the sun ('circumsolar' radiation) and the second uniformly distributed over

the sky vault ('background' radiation). The first is added to the direct

solar component and one-half of the second component is assumed to fall on a

vertical wall, regardless of orientation._

Ashrae does it this way.

Givoni, Man, Climate and
Architecture, p. 179.



Reflected Radiation

The amount of transmitted radiation varies with the reflectivity (albedo)

of the ground and surrounding surfaces.

The spectral distribution of reflected light differs from the diffused and

direct spectra. A larger fraction of the longer, infra-red wavelengths are

absorbed by the irradiated (heated) surfaces, increasing the proportion of

visible light reflected.

Long and Short Wave Radiation

Color/Reflectivity %

Black surfaces 10%

Dark Brown 10-15%

Gray, cement color 15-25%

Light brown, blues 25-30%

Pale colors, straw,
granite 45-50%

White 50-90%

Albedos/Reflectivity %

Fresh snow 75-95%

Coarse gravel 80-90%

Light gray limestone 80-90%

Old snow 40-70%



Light sand 30-60%

Clean ice 30-50%

Sand soil 15-40%

Fields, meadows 15-30%

Woods 5-20%

Dark, cultivated soils 7-10%

Water surfaces 3-10%

Surface Temperature/Conductivity

Air Temperature 770

Rich soils 79

Vegetation canopies 80

Grass 85

Bare soil 93

Concrete walk 95

Slate roofs 110 *Vivian Loftness, Natural Forces
0 and the Craft of Building

Thermo-Physical Properties of the Weather Edge

The thermal effect of solar radiation is largely determined by the surface

properties of materials, thermal capacity and building geometry. Depending

on these factors, relative amounts of incident radiation are reflected and the

remainder absorbed by the material, elevating the external surface temperature.

A portion of this absorbed component is stored in the material, later to be 75



dissipated to the surroundings. The remainder flows through the material to

the interior. Furthermore, the rise in the localized ambient temperature

through conductive heat exchange with the building surfaces decreases the

Delta T (indoor/outdoor temperature differential) which indirectly reduces

heat loss.

Outlined here are the over-riding physical characteristics of the building

surface which interchange with the local site conditions altering the sol-air

temperature. The contribution of the sol-air temperature is given by the fol-

lowing formula:

Tsa = ta + + (tr - t hr
aL ho r a) h

For example, disregarding the contribution of surrounding surfaces

T Ta + AI
sa a o

= 300 + .8 x 200

4

= 300 + 400

= 70* sol-air temperature

Through the direct simplified measurement of onsite conditions and a general

knowledge of the surface properties of materials and their application, con-

scientious, responsive design decisions can be made.

tsa = sol-air temperature

A = absorptivity of the external surface
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I = intensity of total incident solar radiation on the surface

h = overall external surface coefficient0

tr = mean radiant temperature of the surroundings

hr = external radiative surface coefficient.

I is the sum of the direct, diffused and reflected radiation falling on the

surface in its particular orientation. A depends on the external colour and

typical values are given in Fig. 15 - The magnitude of h0 depends on the air

2
velocity near the surface and a value of (4.0 Btu/ft /h) is adopted for design

purposes by the ASHRAE. The nature of the environment determines tr which can

be estimated by computing the expected average ground and "sky" temperatures.

The value of h increases with the average temperature of the external surface

and the surroundings.0

Three factors, color, texture and geometry of building surfaces, comprise

the architectural design palette predominantly affecting the sol-air tempera-

ture.

Givoni, B. Man,Climate and
Architecture, p. 189.

Color

The color of the external surface determines the amount of solar radiation

absorbed during sunlit hours. A darkly colored building surface can elevate

the exterior surface temperature as much as 57 degrees fahrenheit above the am-

bient air temperature, while the corresponding increase for white washed sur-

faces can be as little as 2 degrees fahrenheit.0 Givoni, B. p. 139.
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EMITTANCES AND ABSORPTANCES OF MATERIALS

CLASS I SUBSTANCES: Absorptance to Emittance Ratios (a/c)

Less than 1.0
Substance a e a/e

White plaster 0.07 0.91 0.08

Snow, fine particles, fresh 0.13 0.82 0.16

White paint on aluminum 0.20 0.91 0.22

Whitewash on galvanized iron 0.22 0.90 0.24

White paper 0.25-0.28 0.95 0.26-0.29

\Vhite enamel on iron 0.25-0.45 0.90 0.28-0.50

Ice. with sparse snow cover 0.31 0.96-0.97 0.32

Snow, ice granules 0.33 0.89 0.37
Aluminum oil base paint 0.45 0.90 0.50

Asbestos felt 0.25 0.50 0.50
White powdered sand 0.45 0.84 0.54

Green oil base paint 0.50 0.90 0.56

Bricks, red 0.55 0.92 0.60

Asbestos cement board, white 0.59 0.96 0.61

Marble, polished 0.5-0.6 0.90 0.61

Rough concrete 0.60 0.97 0.62

Concrete 0.60 0.88 0.68

Grass, wct 0.67 0.98 0.68

Grass, dry 0.67-0.69 0.90 0.76

Vegetable fields and shrubs, wilted 0.70 0.90 0.78
Oak leaves 0.71-0.78 0.91-0.95 0.78-0.82

Grey paint 0.75 0.95 0.79

Desert surface 0.75 0.90 0.83
Common vegetable fields and shrubs 0.72-0.76 0.90 0.82

Red oil base paint 0.74 0.90 0.82

Asbestos, slate 0.81 0.96 0.84

Ground, dry plowed 0.7 5-0.80 0.70-0.96 0.83-0.89
Linoleum, red-brown 0.84 0.92 0.91

Dry sand 0.82 0.90 0.91

Green roll roofing . 0.88 0.91-0.97 0.93

Slate, dark grey 0.89
Bare moist ground 0.90 0.95 0.95

Wet sand 0.91 0.95 0.96

Water 0.94 0.95-0.96 0.98

Black tar paper 0.93 0.93 1.0

Black gloss paint 0.90 0.90 1.0

CLASS I SUBSTANCES: Absorptance to Emittance Ratios (a/E)
(Continued) Less than 1.0

Substance e a/C

Small hole in large box, furnace or
enclosure 0.99 0.99 1.0

"lohlraum," theoretically perfect

black body 1.00 1.0 1.0

CLASS 11 SUBSTANCES: Absorprance to Emittance Ratios (a/e)

Greater than 1 .0

Substance a e a/E

Black silk velvet 0.99 0.97 1.02

Alfalfa, dark green 0.97 0.95 1.02

Lamp black 0.98 0.95 1.03

Black paint on aluminum 0.94-0.98 0.88 1.07-1.11

Granite 0.55 0.44 1.25

Dull brass, copper, lead 0.2-0.4 0.4-0.05 1 . 3-2.(

Graphite 0.78 0.41 1.90

Stainless steel wire mesh 0.63-0.86 0.23-0.28 2.70-3(0

Galvaniz'ed sheet iron, oxidized 0.80 0.28 2.86

Galvanized iron, clean, new 0.65 0.13 5.00
Aluminum foil 0.15 0.05 - 3.00

Cobalt oxide on polished nickel* 0.93-0.94 0.24-0.40 3.9
Magnesium 0.30 0.07 4.3

Chromium 0.49 0.08 6. 13

Nickel black on galvanized iron* 0.89 0.12 7.42

Cupric oxide on sheet aluminum* 0.85 0.11 7.73

Nickel black on polished nickcl* 0.91-0-94 0.11 8.27-8.55

Polished zinc 0.46 0.02 23.0

*Slective surfJces
Anderson, Solar Home Book.

soUJ(:IS. AS1 RWA, //aidhoo/ of Fundanenitals. 1972
Bo edn. .. It riaire Sources o EnIrg r. I ul % 1073.

15 uttic id ekBkman, solar nirr Thermal' ope t -sses. 1974.
M J.A rm, //cat Transmvgissiont. 1954

Ncer ins and I-ellows. . fit . udit nine aid ReroIgerationi. 1966.

Sroindcrs. Th. Inieeclr's Gunpan o.in. 1966. 78



It should be noted that the charts (Fig.15 ) give absorbitance emittance

values which discriminate between the wavelengths of light energy considered.

The values for absorbitance apply only to the visible range of the spectrum

while emittances deal with long wave radiation.

Solar radiation is absorbed selectively, according to the wavelengths

incident on the surface. Thus a fresh whitewash has an absorptivity of about

.12 for short wave radiation (peak intensity at 0.4 microns) but the absorp-

tivity for long wave radiation from other surfaces at ordinary temperatures

(peak at 10 microns) is about .95. Consequently this surface also has an

emissivity of .95 for long wavelengths, and is a good radiator readily losing

heat to colder surfaces, but at the same time it is a good reflector for solar

radiation. On the other hand, a polished metal has a very low absorptivity

and emissivity for both shortwave and long wave radiations. Therefore, while

being a good reflector of radiation, it is a poor radiator and can hardly lose

its own heat by radiative cooling..

It might be interesting to investigate the metal cladded Federal Reserve

building in downtown Boston and inquire about the added output of the HVAC

system to handle the increased cooling load compared to limestone buildings of

the same size, due to this phenomenon in the summertime.

Every surface absorbs and emits radiation simultaneously. As I have said,

the color of a surface gives a good indication of its absorptivity for solar

radiation. The absorptivity decreases and the reflectivity increases with

0

Givoni, B. p. 100.
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lightness of color. But color does not indicate the behavior of a surface with

respect to longer wave radiation. Thus dark and light surface finishes have

very different absorptivities for solar radiation. Although the long wave

emissivities of the two colors are equal and are cooled equally by night radia-

tion to the sky, the dark surface becomes much more heated on exposure to the

sun. And for this reason the darker building surfaces and richly colored

ground soils emit long wave radiation for an extended duration due to their

higher temperatures.

Texture

The surface texture or roughness of a building material determines the

convective and radiant exchange with the environment. The surface coefficient

identifies the rate of heat exchange with other surfaces, or the sky. The

radiative coefficient is mainly dependent on the surface emissivity and also

to some degree on the mean temperature of the surfaces exchanging radiation.

The convective coefficient depends primarily on the velocity of the air near

the surface and the roughness of the material. A highly textured building

material increases the surface area between the air and material. For very

smooth surfaces, such as glass, the surface coefficient is lowered by 30% and

for very rough surfaces an approximate increase of 30% can be expected..

From the vantage point of design it might be reasonable to place smoother

surfaces other than glass on windswept exposures and the rougher materials on

0

Givoni, B. p. 103.
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more protected and sunlit exposures where the added surface area can soak up

the warmth trapped by thermal pooling. The turbulence factor would tend to

cancel out the effect of increased surface area on a sunny high wind exposure.

Geometry

The principle influence of building surface geometry on "sol-air" temper-

ature is due to the reinforcing radiant exchange. Materials in close proximity

and in line of sight of each other, add to the thermal pooling effect, if wind

does not strip away heat.

Sol-air temperature is considered here as an equally important thermal

tool as, for instance, capacity insulation (the selection and placement of

insulation). The obvious benefit of a "sol-air" response is the architectural

expression offered by the outward display of materials responding to variations

in climate near the weather edge. Given other design constraints it is not

unreasonable for the sol-air temperature to direct the use of darker richer

hued building materials on the southerly and eastern faces while lighter sur-

face finishes are relegated to the remaining exposures, roof and western

especially.

The "sol-air" temperature suggests further deployment, selection and

arrangement of materials and is discussed further in "thermal aspects of the

solar wall."
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Absorptance, Reflectance, and Enittancc

Sunlight striking a surface is either absorbed or
reflected. The absorptance a of the surface is the
ratio of the solar energy absorbed to the solar energy
striking that surface:

a = la __absorbed solar energy
I incident solar energy

A hypothetical "black body" has an absorptance of
1-it absorbs all the radiation hitting it, and would

be totally black to our eyes.

But all real substances reflect some portion of the
sunlight hitting them- even if only a few percent.
The reflectance p of a surface is the ratio of solar
energy reflected to that striking it:

I
S_ r _reflected solar energy

I incident solar energy

A hypothetical black body has a reflectance of 0.
The sum of a and p is always I.
All warm bodies emit thermal radiation-some better
than others. The emittance e of a material is the
ratio of thermal energy being radiated by that
material to the thermal energy radiated by a black-
body at that same temperature:

e = =radiation from material
Rb radiation from blackbody

Therefore, a blackbody has an emittance of 1.

The possible values of a, p, and e lie in a range from
0 to I. Values for a few common surface materials

are listed in the accompanying table.

a p e at

White Plaster 0.07 0.93 0.91 0.08
Fresh Snow 0.13 0.87 0.82 0.16
White Paint 0.20 0.80 0.91 0.22
White Enamel 0.35 0.65 0.90 0.39
Green Paint 0.50 0.50 0.90 0.56
Red Brick 0.55 0.45 0.92 0.60
Concrete 0.60 0.40 0.28 0.68
Grey Paint 0.75 0.25 0.95 0.79
Red Paint 0.74 0.26 0.90 0.82
Dry Sand 0.82 0.18 0.90 0.91
Green Roll Roofing 0.88 0.12 0.94 0.94
Water 0.94 0.06 0.96 0.98
Black Tar Paper 0.93 0.07 0.93 1.00
Flat Black Paint 0.96 0.04 0.88 1.09
Granite 0.55 0.45 0.44 1.25
Graphite 0.78 0.22 0.41 1.90
Aluminum Foil 0.15 0.85 0.05 3.00
Galvanized Steel 0.65 0.35 0.13 5.00

The values listed in-this table
vill help you compare the response of

various materials and surfaces to solar and thermal
radiation. For example, flat black paint (vitha =
0.96) will absorb 96% of the incoming sunlight. But
green paint (with a = 0.50) will absorb only 50%.
Both paints (with emittances of 0.88 and 0.90) emit
thermal radiation at about the same rate if they are
at the same temperature. Thus black paint (with a
higher value of aCe) is a better absorber of sunlight
and will become hotter when exposed to the sun.

Anderson, Solar Home Book
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SOLAR HEAT GAIN UTILIZATION AND AT
(Indoor-Outdoor Temperature)

Solar heat gain utilization recognizes the potential for (glazed) collec-

tion surfaces to contribute to the overall heating needs of a building in a

given climatic region. Fundamental to the understanding of this thermal design

tool are three concepts:

Design Temperature

Solar Gain

Transmission Heat Loss

Design Temperature

The design temperature is representative of the severity of the climate

for a given locale. The standard adopted in the U.S. is based on the lowest

(within 3 percentiles) minimum temperature (winter) expected over a range of

years.

Ashrae points out that sizing the heat plant (analogous to solar energy

input and backup system) with the most severe winter temperature condition is

economically unpractical. Weather records show that most severe weather con-

ditions do not repeat themselves. Ashrae goes on to say, heating systems

designed for extreme weather conditions on record, hold in reserve considerable

excess capacity during most of the operating life of the system. Occasional

failure of the heating plant to maintain a preselected indoor design tempera-

ture during brief periods of severe weather is not critical. 83



The strength of passive solar design in conjunction with a backup system

lies in its potential to handle such adverse conditions through the added

measures of increased thermal mass and insulation. Typically, the solar

tempered structure does not rely solely on a heat plant to maintain thermal

stability. Adjustment of the additive layers (storm shutters, blinds, insul-

ating shutters) of the weather edge work with the heat plant (sun or secondary

source) to control heat loss and gain.

Architectural variety and richness of the facade results through the

additive collage of built layers in responding to the range of weather condi-

tions, extreme to mild.

Ashrae recommends the following considerations before selecting a design

temperature, given in Table 1, Chapter 23 of Ashrae Handbook of Fundamentals.

-- Is the type of structure heavy, medium or light?

-- Is the structure insulated?

-- Is the structure exposed to high wind?

-- Is the load due to infiltration or ventilation high?

-- Is there more glass area than normal in the structure?
(What is the orientation?)

-- What is the nature of the occupancy?

-- Will there be long periods of operation at reduced indoor temperature?

-- What is the amplitude between maximum and minimum daily temperature
in the locality?
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-- Are there local conditions which cause significant variation from
temperature reported by the weather bureau?

-- What auxiliary heating devices will be used in the building?

Although these considerations make up a partial list they suggest the

importance of micro-climatic conditions, thermo-physical and structural

characteristics and use of a particular building as factors which re-interpret

general climatic data.

Ashrae has touched upon questions which should be asked about any site

and are the beginnings of directing an architectural regional response.

Solar Gain

The amount of solar flux transmitted through the glazing material is

described by a brief discussion of light physics at the collection surface.

Solar gain, dependent upon the unique nature of these transparent and trans-

lucent materials can be calculated by the solar admission equation, which is

given on the following page.

Solar-optical Properties of Glass

The total amount of solar insolation, It (specular and diffuse) falling

on a window wall must equal the sum of radiation, which is transmitted

through, reflected downward, and absorbed into the glazing material. The

values of these three solar-optical properties and resulting penetration of

solar energy depend upon:
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I. Thickness and chemical composition (physical properties) of

glazing

II. Surface texture, atmospheric particles (dirt), film or coatings

applied to surface

III. Incident angle (0)

Standard clear or double strength sheet glass transmits from 85 to 90 percent

of the incident radiation between 0.3 and 3.0 (microns), while bronze, grey,

and green heat-absorbing glasses, .25 in thickness, transmits about 47% of the

total solar spectrum.

Variation with incident angle of the solar-optical properties of typical

uncoated glazing materials is illustrated by figure 16 .

As the sun progresses across the sky vault, the incident angle diminishes

from 90 - 0 degrees. The transmission increases, reflectance decreases, and

absorption decreases due to the shortened optical path._
0

Ashrae, 26.13

Solar Admission Equation

Q = (c)It - A -

Where:

c = clearness factor (Climatic Atlas)

I = total solar irradiation (Ashrae)

A = area of glazing

U JO o 0 0 30 40 90 a 30 40 90
INCIDENT ANGLE WicSeN ANGLE. 0 INC'0(tur ANGLE

Fig. 16 Variation with Incident Angle of Solar-Opical
Properties for Double-Strength Sheet, Clear,

and Heat-Absorbing Glass
r



= transmission coefficient (single glazing .88, double .75)

t dn (direct normal) COS + Id (diffuse)

The three inter-related graphs (Figure16 ) are important in clarifying

the basis of the overall value of light (transmission) and serve to clear up

some confusion regarding the relationship between angle of incidence and light

transmission. Graph 11 shown earlier illustrates the overall transmission

values only, whereas these last graphs show the separate contributions of

reflectance and absorptance. toward transmission. Without this breakdown it is

difficult to know what factors are contributing to the overall value of trans-

mission. The angle of incidence has in reality a double jeopardy effect on the

amount of energy transmitted by the glazing material. Angle of incidence

describes first the geometric dimension of the amount of light energy avail-

able, a function of the $ angle (refer to Angle of Incidence section for

diagram).

Secondly, angle of incidence operates on another scale. Due to the index

of refraction of the glazing material which differs from that of air, the

interface (the glazing surface) becomes a medium for reflection.

The reflection, then, a function of the angle of incidence depends upon

the surface properties of the material (e.g. smoothness of standard glass vs.

frosted glass).

~ This implies glazing surfaces of different roughness (opacity) will
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control or influence to varying degrees the amount of spectral light trans-

mitted.

The equation is provided for reference, should the occasion arise, to

facilitate the incremental computation of solar irradiation at a particular

location, time and collection surface. I refer you to Energy Primer for a

thorough discussion of solar irradiation (p. 21)

Fortunately, Ashrae has preserved our integrity and done us the honor

of calculating the solar insolation through 1/8" clear glass for given lati-

tudes and orientations and arrives at daily totals for the twenty-first of

each month. Tables are included in the appendix.

Calculation of Transmission Heat Loss

The basic formula for the heat loss by conduction and convection heat

transfer through any surface is:

q = AU(t. - t )

where:

q = heat transfer through the wall, roof, ceiling, floor, or
glass Btu per hour.

A = area of wall, glass, roof, ceiling, floor, or other exposed
surface, square feet.

U = air-to-air heat transfer coefficient, Btu per (hour)/ (square
foot) (degree Farenheit)

ti = indoor air temperature near surface involved, degree Farenheit

to = outdoor air temperature, or tempearature of adjacent unheated
space, dejr.PP Farnht 88



Example: Calculate the transmission loss through an 8-in. brick wall

2
having an area of 150 ft. , if the indoor temperature t, is 70*F, and the out-

door temperature to is -10*f.

Solution: The overall heat transfer coefficient U of a plain 8-in. brick

2 2
wall is 0.41 Btuh/(ft )(F). The area A is 150 ft2. Substituting into Eq 3:

0

q = 150 x 0.41 x 70 - (-10) - 4920 Btuh., Ashrae
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The window wall is the principle means of solar collection in passively

heated buildings. Placement and arrangement of the window surfaces and consid-

eration of size and shape offer a good deal of design flexibility in the ther-

mal conduct of the building.

Solar Benefit

Reference to "solar benefit values", given by Bruce Anderson in his Solar

Home book initiates this sub-section of solar design tools. The table of

"solar benefit values" demonstrates the potential of the south facing double

glazed window wall to contribute net energy gain.

The figures are based on the average temperature during the heating sea-

son for the glazing surface only. Furthermore, the back losses (transmission

losses through glass) on cold winter nights for a given structure and locale

in reality determine the feasibility and extent of possible solar heating. The

storage and thermal resistance capacity ("U" values) of the structure, to a

great extent determine the fate of the "solar benefit".

Window Wall - Wall Ratio - Sunlit Orientations

This section investigates the relationship between solar gain, window to

wall ratios and orientation. It is a valuable solar design tool for the de-

signer to easily approximate the solar input for a given window wall area in

regard to a specific wall dimension and orientation. Reference is made here

to additional work pioneered by T.E.A.



Heat Gain Through Vertical Windows

Window heat gain charts,, are included to help determine how much
window area, at which orientation, is needed to provide various
amounts of heat for use in buildings. There are many sources of
data on solar heat gain through windows, but two important stumb-
ling blocks make the determination of actual solar heat gain
difficult. First, the sources list heat gain factors (SHGF) for
various orientations of glass at different latitudes. Secondly,
the information is given on an hourly and daily basis. The
difficulty is in going from these values (which are for sunny
conditions and include factors for diffuse radiation), to monthly
and then seasonal values for windows at all orientations, figure17.

These charts are based on ASHRAE and Koolshade Solar Heat Gain
Factors for latitudes closest to the area being examined. Data
on Horizongal Windows (skylights) are included for comparison.
Btu values are given per square foot of window area. Percent of

possible sunshine data is from page 65 of the Climatic Atlas of
the U.S. The number of days per month times the percent possible
sunshine gives the number of effective sunny days per month. The
effective sunny days per month times the solar heat gain factor
per day gives the solar heat gain through one square foot of win-
dow per month (Btu/sf/mo). This computation is carried out for
window orientations of S, SE, SW, E, W, NE, NW, and N for each
month of the year. Totals are given for the whole year, only for
the heating season, and the cooling season, at the bottom of the
page. (Values for horizontal windows are given at the far right
hand column.) These computations must be made for each region
separately because the percentage of possible sunshine varies
widely from region to region. The chart cannot be used based
solely on the latitude of the site.

(Anderson, Solar Home Book, p. 41)

Solar heat gain through the window wall as well as the wall and roof can

be used in a positive way to affect heat loss.

0

Graphs are not the most appealing way to communicate design related in- Figures 18 AND 19

formation. The following graphs, however, present clearly the heat gain and

loss for a complete sweep of compass orientations.
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TEA's "Heat Gain and Loss" graphs help determine the window orienta-
tion and area necessary to supply various amounts of heat. These
graphs also indicate the net heat gain or loss from windows facing in
any of eight major compass directions. The heat gain varies with
orientation considerably. As a result, some window orientations
yield greater heat gain than others. Graphs were prepared for the
month of January (the month with the most heating degree days) and for
the heating season, defined as those months averaging more than 100
degree days. The graphs are based upon one or two glass layers,
depending on the climatic region under consideration.

The graphs are based only on conduction losses through the window
and the wall. Radiation and infiltration losses are not included due
to their complexity and relationship to specific design conditions.
These additional losses would move the heat loss curve further to the
right making the use of south facing windows even more important to
achieve net heat gain. Heat loss is indicated for conventional window
and wall combinations, and for shuttered window (8 out of 24 hours)
and wall combination. The importance of using shutters in all regions
can be readily appreciated from the graphs.

The Boston graphs generally indicate that in order to receive a net
gain in heat, a window-area to floor-area ratio of at least 10% must
be achieved. Before heat gain approaches heat loss during the
coldest month (January), a 30% window-area to floor area ratio is
required. The actual glass area required is dependent on the specific
orientation of the windows. This might indicate that the FHA minimum
standard of a 10% window-area to floor-area ratio might be increased
to increase the natural solar heat gain during the heating season.

A second set of graphs, "Energy Collected by Solar Collectors and
Windows", compare the energy collection capabilities of a typical
collector with windows at different orientations. Graphs were pre-
pared for each site. Figure 20 is the graph for the Boston site.
Solar collector capabilities are based on the results of solar col-
lector output and sizing studies prepared for each site. Window capa-
bilities are transcribed from the appripriate "Heat Gain Through
Vertical Windows".

The load factors (shown by vertical dashed lines) are based on TEA
dwelling insulation standards. TEA research and experience shows
that a reasonably linear relationship exists between collector size
and percentage of heating load supplied for systems providing up to 94



50% of the heating load. Therefore, the graph can be used to estimate
the collector area needed to supply a 50% load. for a 1000 sf house as
well as a 25% load for a 2000 sf house (assuming the same degree of
insulation).

Window size cannot be extrapolated in a straight line manner with any
predictable accuracy beyond a 25% load factor for any building. Windows
are considered to be 100% efficient in order to provide the energy
indicated. This implies that enough thermal storage mass is provided
near the windows to absorb the incoming heat so that the space remains
in the comfort zone. The thermal storage must be allowed to fluctuate
in temperature if the absorbed heat is to be used to warm the adjacent
spaces. This temperature fluctuation is provided for by allowing a
dwelling to heat up during the day and cool down at night rather than
trying to maintain a constant internal temperature. The thermal mass,
which is heated during the day, transfers heat to the cool space during
the night.0

In addition, the following points are considered important when using

these graphs.

Solar heat gain through walls and roofs is relatively small in comparison

to the gain through window walls. However, the contribution of the "sol-air"

temperature toward the heat gain of sunlit surfaces is significant.

The sun exposure contribution is dependent upon how well-insulated the

structure is and a host of other design factors which modulate the impact of

"sol-air" temperature (i.e. orientation, thermo-physical properties). The

important point reiterated here is the relationship between sun soaked building

surfaces, Delta T (Tindoor - T outdoor), and heat loss.

The solar heat gain bounced back out by the insulation can be held in the

outer surface material of the weather edge, thus reducing the overall heat

loss. This dynamic implies structural-contextural relationship between sun,

T.E.A., Solar Homes in Four
Climates, p. 42.
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mass and insulation. This thermal dialogue will be further explored in the

following section.

It is also important to note that the effect of infiltration (excluded

in graphs) is of major significance in the total heat loss of buildings.

Infiltration can strip away as much as 30% of buildings' inner warmth, which

alter the graph lines considerably, perhaps pushing the line representing

(heat loss through window and wall), right off the chart. Infiltration must

be ascertained for a specific building(s) and locale -- remember not to under-

estimate its importance.



THERMAL DESIGN INFORMATION

REGION:
CLIMATE:
LATITUDE:
DEGREE DAYS:

Boston Area
Temperate
4202 North
5 to 27

FHA
HEAT LOSS: BTU/FT*/ DD 19

HEAT GAIN: BTU

"U" VALUE: BTU/FT*/HR/*F

Ceiling
Wall
Roof - exposed structure
Window, door
Floor
Floor on grade

INFILTRATION

Floor area: FT2

Roof area: FT2

Wall area: FT2
Window and door area: FT2

Floor to ceiling height: FT
Building Volume: FT
Mass of Building: FT
Stories alt.levels including

basement if any

Indoor Design Temperature

25% heat load

.05

.09

.09

.65
.51
.10

.035

.045

.035

.35

.20

.055

.751.0

1000
1000 plus

900
300

8 ft. plus
9000

180,000

1-2

720

TEA
9.5
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THERMAL ASPECTS OF THE SOLAR WALL

The following 3 sections present a range of architectural examples that il-

lustrate a solar approach to design. These examples, often inspired by histori-

cal precedent, include both innovative solar design concepts and contemporary

built applications.

Furthermore, they show how the selection, arrangements, and placement of

materials employed at the weather edge can be beneficial to both solar condi-

tioning and to the indoor-outdoor connection. This list of solar architectural

examples is by no means exhaustive.

The intent of this work is to begin to show how the formal language can

address certain drawbacks of passive solar design. Therefore, the examples

introduced here, by and large, are attempts to ameliorate the unfavorable condi-

tions associated with passive solar design.

o High contrast glare

o Over heating

o Hot spots

o Sun bleaching

o High back losses and heat sink effect

A primary concern is how the weather edge by thermal damping, control and

distribution of solar energy balances external loads impacting various exposures.

A subsequent concern is the quality and animation of life within the building.
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The solar aesthetic begins to take on a fuller meaning when it is founded

upon the practical and enhances the perceptual. Thus the aesthetic to be

explored encourages a range of possibilities which lie in the visual play of

light and shadow.

The design of the architectural vocabulary is correlated to the movements

of the sun, natural flows of wind, dynamic action of rain and snow and man's

biological needs.

It is my belief that through the interlocking of an architectural vocabu-

lary with nature's variations and recurring patterns, a rich and substantial

architecture follows.
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Window Wall Materials

There are four fundamental types of glazing materials:

o Transparent (standard clear)

o Diffusing

o Directionally transmitting

o Selectively transmitting, including directionally
selective and spectrally selective..

The variety of glazing types described by the above categories are exten-

sive. The following section narrows the range to a few examples of con-

ventional glazing materials which have solar merit, and a number of more inno-

vative applications selected for their solar benefit and aesthetic interest.

Solar benefit implies a net solar gain during the heating season. Because

winter sun angles are limited to the south, east and west exposures, north

aspects make little contribution to solar gain. For this reason a discussion

of north facing windows are all but eliminated. The component of diffuse

energy received on the north faces are generally 10% of direct radiation; not

enough to offset the heat loss through an equivalent square foot of glass.

Windows in general lose 6 times the amount of heat as a conventional wall.

In harsh climates, therefore, north facing window-wall area should be kept to

a minimum and if possible triple glazed.

Roger Goldstein, Natural
Light in Architectural Design,
Element and Determinant.
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Annex of St.George's School, Wallasey. Chesire. England, 1957

* (-t*

Diffusing Materials

-- Diffusing materials produce non-

selective diffusion of transmitted

light. The various types of screens,

kalwall, tedlar, steel glass as well

as patterned, hammered and textured

(frosted) glass are considered

diffusers.

-- The St. George's School in Wallasey,

England,. uses textured glass for

nearly its entire south face. Be-

cause this glazing material is a good

diffuser, the flood of natural light

is spread evenly throughout the room.

Because all light ultimately reduces

to heat, this diffuse light energy is

absorbed by the massive materials via

multiple reflections within the

spaces.

0

Refer to "Solar Energy" Volume 18
Number 4, 1976 (for a thorough dis-
cussion). F~
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-- Shown here are two architectural

treatments using Kalwall. Warren

School, Newton, a traditional brick

building uses gridded Kalwall primarily

to reduce sky glare and maintain good

thermal resistance (for glazing mate-

rials) (Figure 21 ) Kalwall is made

up of two sheets of fiberglass rein-

forced polymer material separated by

a structural lattice made of extruded

aluminum cores.

Wellesley Service Center illustrates

the use of Kalwall in a floor to

ceiling application (Figure 22). The

use of large expanses of Kalwall on the

southern and eastern faces provides

solar input, in the form of diffuse

light and the wall substantially re-

duces overheating and high contrast

glare conditions. Small windows are
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SUNWALL 1, Standard U -. 41 WINTER

177 177-
13 8

247 190 247 -25

177 177

13- 8

8 -25
timt at 0 a75* i. Grid25 n, i7

Estimated at.00 incident angle. Grid not included.

set into the translucent wall at

various intervals. The overall effect

is one of a glowing wall, having an

almost oriental feel, that of the

Shoji screen.

This soft glow animates the wall

surface on sunny days giving a pleasant

visual effect. This light quality is

partly due to a spun glass material

used as infill between the layers of

fiberglass. It serves both to diffuse

the light and decrease backlosses. In

addition, high backlosses are partially

compensated for by the heat given off

by lab equipment, students and lights.

There are good diffusers and bad

diffusers. Kalwall without the infill

material is a poor diffuser of direct

sunlight. It creates the sun disk ef-

fect which enlarges the apparent size

of the sun and creates a concentrated

glare source. 104
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Directionally Transmitting

The following section is excerpted from

Natural Light and Architectural Design,

Roger Goldstein, 1976.

Prismatic and maxium glass are the

two most common varieties of direction-

ally transmitting glass. Both produce a

change in the direction of transmitted

light by refraction.

Prismatic glass has one smooth face

(the outside one) and one surface made up

of parallel prisms which refract the lighi

in a specific direction according to the

angle of incidence of the light, and of

the prism.

Prismatic glass is available in three

angles, each of which is precisely de-

signed for a particular angle of inci-

dence.

One of the most suitable applications

of prismatic glass is to counteract
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the effects of high obstruction such as

a tall building which blocks out the di-

rect view of the sky. It must be in-

stalled with prisms running horizontally

on the inside surface of the window. Note

also that this glass is translucent and

that transmittance is less than that of

clear glass.

Maxium glass is simply a type of

prismatic glass, most applicable to angles

of obstruction less than 30* and greater

than 40*. It is also a rolled glass, the

inside surface of which has paralleled

prisms that refract the light horizontally.

Its outer surface is fluted at right

angles to the prisms, in order to give

better lateral diffusion.

The performance of this glass sug-

gests a number of applications. One

possible application in an obstructed sky

situation might be to use prismatic glass
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for the upper half or third of the window, and clear glass for the lower part.

This condition takes advantage of the sky seen by the upper part and directs

that light to the back of the room, while the lower part still allows outward

view. An example for direct application which has little or no solar heating

potential is a room with windows facing an open light well or courtyard.

Another application is to use this glazing material in an unobstructed-

sky view situation. The refracting geometry will reduce the high glare value

of the upper window when the sun is in a lower position on the horizon.

The low transmission factor of this glass makes it very suitable for the

window wall collector.

Briefly described, the window wall collector utilizes heated air trapped

in the double glass construction for space heating. The high percentage of

light that does not penetrate the prismatic glass is transformed into useable

heat which is ducted passively into the adjacent space by the window wall col-

lector. Refer to section on window wall collector for a more complete dis-

cussion.

In a conventional window wall design, the low transmission value of pris-

matic glass (37%), in conjunction with clear glazing (10%), reduces the overall

transmission and therefore the solar benefit considerably. Due to the low

transmission of prismatic glass the solar benefit is realized either through

utilization of single glazing (in a mild climate condition) or in the window

wall collector. In both cases, prismatic glass reduces glare and increases rear



lighting levels.

18



Solar heat gain through
clear glass, single glazing.

SUMMER WINTERI

75
52

+17
44

Solar-heat gain through
heat-absring glass, single,

SUMMER 
WINtER

Solar heat gain through
reflecting glass, single glazing.

SUMMER

1

WINith
Selective Transmitting

-- Three subgroups cover a range of high

and low heat glazing materials under

this heading:

-- Spectrally selective material such

as tinted glass, heat-absorbing

and heat reflecting glass, core

glass. Note the tinted glazing

materials, most effective in

reducing interior solar gain,

correspondingly reduce the bright-

ness of the exterior view.

-- Directionally selective glazing

materials such as prismatic glass

block.

-- Radiation selective material such

as heat mirror.



Solar heat gain through
heat-absorbing glass. utale

glazing

ieat gain through reflecting
glass, double glazing.

CLEAR

S Tuonssitte

+35
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Heat-Absorbing and Reflective Glass

Given here are solar heat gain

values through spectrally selective

materials, compared to values for

single and double clear glass.

Heat absorbing and reflective

glazings are responsible in part for

the extensive use of glass with

little or no regard for orientation

and the solar impact upon adjacent

buildings, i.e. the "glass boxes" of

modern architecture.

High internal heat gains of office

buildings, for example, have legiti-

mized the extensive use, i.e. large

amounts of glass, of these glazing

materials from an energy standpoint.

Office and commercial buildings

in general have a year-round cooling

problem which can be attributed to

high internal gains, i.e. lights

(10 watt/sq. ft., average), people
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(100 watts/person) and office machinery. The outside energy needs, if any, for

these structures are predicated on ventilation requirements. In terms of this

(energy-load usage demand) it is important to distinguish between commercial and

residential buildings. Partly for this reason office buildings have been ne-

glected in this thesis. Although a different set of energy conservation princi-

ples are in effect, commercial buildings tend to heat themselves, relying very

little on any outside energy source to provide heat.

If one refers to the diagram on heat absorbing glass, it becomes obvious

that the material does little to ameliorate the overheating problems for both

residential and commercial buildings. The application of heat absorbing or

tinted glass controls solar gain and glare by soaking up the sunlight. The ther-

mal absorption and conduction shown in the summer and winter diagrams illustrate

how the material performs in a counterproductive way under its respective season-

al load. In the summer, conductive solar gain to the interior is relatively

large when compared to overall transmission. This heat flow is reversed in

winter. Heat always flows downhill. The delta T will flow from a warm to a

cold body.

In the summertime the heat absorbed in the glass flows to the interior at

a time when it is least needed, especially with regard to commercial buildings.

During winter the heat flows to the exterior at the time when it is most needed.

This statement is qualified by indicating that with most commercial buildings the

associated heat loss is appropriate when the high interval gains are considered.



However, for residential dwellings the positive solar heat factor is being

discarded.

It seems that a more responsive architecture, sensitive to both climatic

elements and behavioral considerations are met by regional design which con-

siders: orientation, external sun controls, framing of views and modulation

of light as important design inputs.

Furthermore, better use can be made of these materials when applied as

solar sun glasses (i.e. selectively placed glazing, upper or lower bands,

which allow placement of clear glass for viewing). This helps considerably

in reducing the "gloom" effect associated with these tinted glazing materials

also.

From a design standpoint the arrangement and respective amounts of

glazing material will determine its success or failure. Too much tinted glass

can cause some gloom effect and the color rendering of greyed glass contrasted

with clear glazing can cause color disorientation.

The specialized application of tinted glazings for solar utilization is

recognized in conjunction with the solar window wall (following section). Other

circumstances though, may warrant its specialized use. In reflective solar gain

situations, designed placement and orientation of these surfaces can provide

solar heat and natural light to building surfaces and window walls otherwise de-

void of direct sunlight.
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Carpenter Center, Cambridge, Mass. Le Corbusier.

GLASSBLOCK , U"---.53 WINTER

Glass Block

Glass block is the genuine building

material of the window wall. It is

available in almost as many varieties

as is sheet glass: clear, textured,

prismatic.

Glass block is a glazing building

material that offers the transparency

of glass and the structural strength

close to that of masonry. It is fabri-

cated at high temperatures for rigidity

and strength and is evacuated and

sealed. The conductance value is quite

good, about 1/2 that of single pane

flat glass. Solar gain is about 1/3

that of single glazing. Accoustically

it also performs well as its sound re-

duction characteristics are equivalent

to a 4" concrete wall--an average re-

duction of 40 decibels.
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This material in combination with clear glass has been used extensively in

American schools, universities and factory buildings, throughout the late 40's

and early 50's. The Architecture Department at M.I.T., whether it be university

or factory, boasts this window wall design, the Emerson Room. Here the placement

of the glass block is much like Kalwall design; light diffusing material above

to reduce sky glare, clear glass below for view and outlook.

Glass block is the masonry version of the individual window pane. While mul-

lions and window boarders act as framing elements and break up the visual field,

glass block structures a not so dissimilar framing of the light field. Mortar

is the stop which secures the chunks of glass and gives dimension and color,

outlining the liquid nature of glass block light. Its beauty lies not only with

light and thermal aspects but with the additive nature of the material. The

pieces add up to potentially build the interlock between glass light and its

opaque boundary.
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- - Solar Window Wall

--This innovative design incorporates

hollow metal mullions and window

frame with a double layer of glazing

separated by a non-evaluated space.

-- A cross section through the mullion

and dual layers of glass show how the

window is utilized as a passive solar

collector. The exterior layer of

glass in this prototype is standard

clear glazing and the interior sheet

is selected for its diffusing and

or thermal-retention properties.

-- This window wall is designed to be

self-ventilating with seasonal con-

trols. Adequate shading is assumed,

especially, for east and west ex-

posures, during the cooling season.

The type of glazing material chosen

for the interior layer is based on

the given lighting condition desired
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and the amount of solar protection needed. Frosted or.textured surfaces

eliminate the spectral component (direct sunlight) from entering the window

wall. A portion of the light energy scattered at the surface of the second

layer is retained as heat and by natural convection flows between the layers

of glass into the hollow window mullions and to the perimeter structure of

the window frame.

-- Heat absorbing (retentive) glass intensifies the interstitial heat regime,

allowing more heat and less direct light entry into the space.

-- Ideally, the mullions would take on a dark surface treatment on the exterior,

absorbing a large fraction of light energy which is carried away as heat.

The interior surfaces of the window frame are lightly colored helping to

reduce high contrast glare and give an even gradation of light.

-- The window wall structure supports the glazing material and ducts heated

air. Both the mullions and window glazing serve as collector surface.

-- It can be anticipated that the mullions and window frame, by breaking up

the large sheets of glass will help reduce the heat sink effect. This

condition is simply the flow of radiant heat away from the body to a cold

surface (window wall) causing chilling.

This heat flow is dependent on a number of factors: delta T (indoor-

outdoor temperature); glazing type (construction, single or double); surface

area or glazing to volume ratio; and the relative distance to heat sink
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(glazing). The importance of small framing elements in this regard is

crucial. These supports accomplish two things: First, and most obvious,

the framing elements decrease the overall surface area of glass and second,

the mullions reflect room and body radiant heat energy which aid in the re-

duction of M.R.T. (M.R.T. 420 f, for double glazed windows, with (Ti = 70*F

and To = 300F) -- wind not accounted for.

The overall thermal exchange is dependent upon all of the interacting

factors. Thermally, glass is seen as a black body. Heat is absorbed well

by black surfaces. This thermal aspect and its thin dimension and good con-

ductance explain why glass is so good at sucking away heat. The relative

glazing surface area to mullion area, for a given outside temperature and

indoor comfort temperature, will effect this flow. The mullion material and

surface properties will also alter the heat exchange. A mullion surface of

low absorptivity and emissivity such as foilreflects a large percentage of

heat, striking its surface. An interesting architectural treatment would

therefore suggest the incorporation of polished metal with wood supports.

Another important thermal aspect is the thermal bridging of metal mullion

construction. Thermal bridging of metal mullions is severe enough to reduce

the effectiveness of double glazing to that of single glass. For this reason

wood or plastics are more suitable and reduce heat transfer (though hollow

wood construction could be prohibitively bulky).
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Also back draft dumpers in the form of lightweight flaps should be incor-

porated to hault reverse thermosiphoning during non-collection hours.

-- The solar window operates in 3 modes. The window wall in the shut position

heats inside air whenever sunlight strikes its surface and vents are open to

pass ducted air back into the space.

- The window wall operates in the cooling mode whenever sunlight falls on its

surface and the vents are open to the outside.

-- The third mode is neutral. The window is opened to allow for natural ventila-

tion.

-- Other modifications and variations of the solar window are numerous. The

introduction of stained glass for the interior is one possibility. This op-

tion, combining the functional with the picturesque is tantalizing.

-- Architecturally, the small scale framing elements provide the observer with

a framed view which offers a visual transition between the interior of the

room and the outside world.0

0

This is the author's original
design. Since its conception,
numerous variations of the
solar window wall idea have
been published. Some are docu-
mented by Donald Watson, De-
signing and Building a Solar
House, p. 30 and 31.
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Core Glass

Core glass is a double skinned hollow

core panel fabricated from thermoplas-

tics, acrylite and poly carbonates and

not a glass material as the name implies.

The panel is a sandwich design to which

integral ribs give rigidity in the double

skin construction.

The interesting aspect of this glazing

material is its innovative application

as a window wall collector. In standard

practice this semi-transparent material

is used in place of double glazed glass.

As a window wall collector the hollow

core is filled with a liquid.. Water can

be used but presents fungus problems and

has an index of reflection different

from that of the core glass. The dif-

ference in refractive index causes the

core glass to appear translucent. A

liquid of higher specific density is
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used to match refractive indexes and provide transparency.

The most important thing about this liquid in regard to its collection

potential, interestingly enough, is its color. Core glass is really a colored

transparent water wall. Without color very little heat absorption takes place.

This design provides a glowing colored heat source with a clear though

tinted exterior view. The proper liquid solution can be chosen to avoid

freezing problems, if the structure is left vacant for an extended period of

time. In an occupied building interior heat loss through the water wall will

offset harsh outdoor temperatures.

Capturing thermal energy at the window wall has the effect of reducing

solar heat gain. The selection of color balances the efficiency of the col-

lection medium with the intensity of natural light allowed to enter the space.

The darker the tone, the more efficient is the collection medium and the

smaller the percentage of natural light transmitted. The collection color

can be related to orientation and reduction of heating loads and glare. Such

is the case with western facing exposures. Here subtle differences in color

can modulate the overall solar impact. The same considerations of the "gloom"

effect, however, as that of tinted glazings should be kept in mind..

As an added note, Frank Miller, a fellow architecture student at M.I.T.

has suggested filling core glass with eutechnic salts. This high heat of fusion

material filling (phase change) used with a modified core panel (core dimension

less than 1/4") prevents phase separation and stores nearly 9 times more heat

Manufactured by Cyro Industries
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per volume than water. The core panel provides a non-corrosive, high thermal

storage container and translucent window wall.
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Recycled Materials

In his book, All Their Own, Jan

Wampler comments, "The tops are left on

the bottles to provide better insula-

tion." Re-use of either empty or water

filled bottles is an ideal window wall

material, well suited to solar applica-

tion. Glass .bottles, whether they held

embalming fluid or carried the label of

a fine imported wine can take on a re-

newed use as both a building material

and heat and light source.

In this very specific case economics

become a looming factor. Generally,

the undertaker disposes of his con-

tainers of uncivilized fluid and the

drunkard never remembers where the

vessel goes. With some imagination,

however, the otherwise useless con-

tainers take on a new life, in a dif-

ferent way.
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The application of recycled materials to simple shelter and housing is an

important reminder that we are not solely dependent on new materials to add to

or enlarge the building stock. Furthermore, we can successfully apply new

technology to old buildings and old technology to the new. Recycled materials

comprise the stockpile of indigenous materials readily available to those people

resourceful enough to deploy them.

The bottle wall provides for a colorful composition of stained glass light,

supplying better thermal storage than a concrete trombe wall twice its thickness.

Some precautions should be taken against freezing and algae, however. This is

accomplished simply by not filling the bottles completely and using an additive

such as Ethylene glycol. Economics are sufficient reason to take advantage of

an empty bottle of Bordeaux, '72, or for that matter Mogen David, '78.
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Heat Mirror - Transparent Insulation

Heat mirror represents a major breakthrough in the area of passive solar

design. The uniqueness of this radiation selective material lies with its

seemingly contradictory nature. It is highly transparent yet provides four

times the insulation value of a double glazed window if used in conjunction

with two glass lites.

Heat mirror consists of a coating approximately one thousand atoms thick,

vacuum deposited upon thin film-like materials, either mylar or teflon. The

composite material, plastic film and special coating transmits a large per-

centage of the sun's energy but prevents heat loss by re-reflecting the thermal

energy back into the space. This is accomplished by the material's ability to

differentiate between the short wavelengths of incoming solar radiation (0.3 to

2.0 microns) and the long wavelengths (4.0 to 50 microns) of thermal radiant

energy, radiated as infrared from interior building surfaces. In this respect

the material is radiation selective and can be thought of as a tuned mirror.

Heat mirror is utilized in passive solar design in primarily two ways:

One application uses single sided heat mirror, mounted on the inside surfaces

of double glazing (refer to diagram 23 ). This application is more appropriate

to retrofits because it is easily attached to window wall surfaces. In this

case a "U" value of 0.23 is attained and allows for an overall transmission

of 52%.
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An alternative application utilizes double sided heat mirror. It is sus-

pended between the two layers of glass providing an added dead air space and a

"U" value of 0.16, with a transmission value of .60% (refer to Diagram 24 ).

Architecturally, the ramifications of heat mirror are extensive. Its appli-

cation tremendously enlarges a whole range of design issues and opportunities.

The crystal palaces of bygone eras may again shimmer in the sun providing

more than enough heat to be self sustaining. Greenhouses and membrand struc-

tures, "climatic envelopes" will benefit greatly from the use of transparent

insulation.

Along with the application of heat mirror to 'glass box architecture,' a

means of controlling solar penetration is inevitable. This also implies a

segregation bf transparent insulation to given exposures or an enlivened archi-

tectural treatment providing solar protection. Optimistically, the architecture

can open more to the outside environment, allowing a greater flexibility of the

indoor-outdoor edge.

In addition, thermal comfort is potentially enhanced. Because heat mirror

reflects back body radiant heat, the heat sink effect of large areas of glass

is substantially reduced.

One rather impressive example of a passive solar design contrasts a "heat

mirrored glass box" with a conventional structure, glazed only on the south wall.

A quick calculation of heat loss and gain for both structures (refer to



diagrams

on cloudy

giving an

tution of

stud wall

a 24 hour

) shows a surprising result. The contribution of diffuse energy

days to sunless exposures is sufficient to offset the heat loss

overall solar benefit. While in the conventional structure, substi-

opaque materials having approximately the same "U" value (standard

construction) suffers on cloudy days and has a net solar loss over

period.
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MIT's Solar Five
combines high technology
with extreme simplicity

By RICHARD STEPLER

CAMBRIDGE, MASS.
"You're standing in a solar collec-
tor." The man who made that
remarkable statement was Timothy
Johnson, architect-engineer and
head of the research team that
designed MIT's Solar Five, latest
in a series of solar-heated struc-
tures that dates back to 1938.

We were in a one-room building
on the west end of MIT's cam-
pus. Outside, the February sun
shone brightly on the remnants of
Boston's brutal blizzard of '78.
Inside, the room was comfortable-
not too warm, not too cold. And the
light that flooded through the
south-facing windows was diffuse
and glare-free.

These desirable characteristics
are no accident. They result from a
carefully considered approach to
the typical problems of direct-gain
solar heating. In the past, these
problems have mainly been: wide
fluctuations in interior tempera-
ture-15 to 20 degrees in a 24-hour
period is not unusual; uncomfor-
tably warm daytime tempera-
tures-85* F is possible; and glare.

Solar Five uses unique materials
to avoid these problems:

* A ceiling tile that contains a
eutectic-salt core.

* An ultra-thin venetian blind
with mirror-finish louvers.

* A transparent insulation that
lets in sunshine, but, blocks the
escape of room heat.

High-technology passive solar heating

By day, solar radiation is reflected to
ceiling by mirror-finish venetian-blind
louvers. Ceiling tiles with chemical cores
store heat. At night, tiles slowly reradi-
ate heat as outside temperature drops.

Transparent Heat Mirror in window lets
in solar radiation, but prevents room
heat from escaping. Floor plan shows air-
lock entry and additional tiles used as
surface of window seats.
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DOUBLE SIDED HEAT MIRROR - GLASS BOX

Heat Gain

Assume 1630 BTU/ft 2/day or 203/BTU/ft 2/hr x 8 hours of collection

Approximately

10% of total radiation - diffuse energy - 163/BTU/ft 2/day

60% - transmission - 163 x .6 = 98 BTU/ft 2/day -

Heat Loss -- "U" value for double sided heat mirror - 0.18

-- AT = (Tindoor - Toutdoor)

= UBTU ' Aft2 - AT 24'hr

= 0.16 1 ft2

96 BTU/ft2 /day

25* - 24 hr

Boston Average Temperature (winter)

40

Indoor Temperature

650

Assume one square foot per side of box - 4 sides

Heat Gain = 98 x 4 = 392 BTU/hr

Heat Loss = 96 x 4 = 384 BTU/hr

Net Gain = 8 BTU/hr
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DOUBLE SIDED HEAT MIRROR - ONE SIDE

Conventional masonry construction on remaining faces

4" brick - 1 " styrofoam - 8" block - "U" - .147

Heat Gain

98/BTU/ft2 /day x 1 ft2

98/BTU/day

Heat Loss

= U - A -AT ' 24 hr

= .147 - 1 ft2 ' 25*- 24 hr

= 88.2 BTU/ft 2/day

Heat Gain = 98 BTU/day

Heat Loss = 88.2 BTU/ft 2/day x 3 sides = 264.6 BTU/day

Net Loss = 264.6 - 98 = 166.6/BTU/day

1-29



Architectural Materials

The potential of architectural finish materials at the building edge to

serve as collection surface is well worth exploring. The strength of this idea

lies in the utilization of conventional building materials in multi-functional

ways. A given material, due to its construction, specific design characteristics,

material properties, dimensions, and geometry increases in sophistication as a

larger range of functional capabilities are met. In the following examples

architectural wall materials passively collect and duct solar heat by utilizing

the building wall fabric to its utmost. Relaxing the window wall area require-

ments, e.g. the reduction of large expanses of south facing glass, eliminates

a number of symptomatic problems inherent to passive design. The building edge

helps mitigate seasonal impact by capturing solar heat at the edge; providing

an added air space (insulation) in non-collection hours and a buffer in extreme

cold conditions. The importance of shading should be recognized though, as

ducting to the outside is essential for cooling purposes in summer.

The Thermosiphon wall along with other solar architectural collection

materials, e.g., corrogated siding, additional glazing layers, represent in

part the solar motif of passive solar design. These adaptations of the weather

wall are clearly an outgrowth of an attitude which attempts to synthesize the

organization and layering of building materials with natural energy flow. Their

invention exemplifies the emergence of a vocabulary of materials which present



a new way of thinking about the weatheredge.

"All major scientific advancements are made by a change in notation."

In the realm of passive solar design, new potentials, uses and applications

of materials comprising the building fabric are accomplished through the re-

structuring and organization of existing and emerging materials. The organiza-

tion of materials is crucial not only to its functional performance but to human

intervention as well. The solar motif becomes much more than siding treatment

or wallpaper by becoming an active enlivened element which invites human involve-

ment and control.

The re-organization of materials at the weather edge generates this self-

sustaining activity. The activity is fueled by naturally regenerative pro-

cesses and is regulated with a minimum of human effort. Furthermore, these

natural processes become economically significant when a reasonably dependable

source of energy is provided. These first generation passive solar building

materials make up a partial list. Many more could be identified, each con-

tributing in varying degrees to the thermal aspects of the building fabric and

each assemblage displaying a varied range of architectural applications.

These building materials are a part of the first wave. They have set

the ground work for a second wave of solar related building materials, second

generation passive materials. These new materials developed largely here at

M.I.T. (Timothy Johnson) and in conjunction with Sun Tek Corporation, California
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(Sean Wellesley-Miller and Day Charoudi), are meant to augment first generation

materials -- not replace them. These high tech materials, which include

transparent insulation (heat mirror), the solar modulator and thermo-crete or

solar tiles, applied to natural-passive systems make up a sophisticated science.



Corrugated Siding

An excellent example of an exterior

wall surface material which has potential

to perform as a collector is corrogated

siding. With a minimum amount of modifi-

cation, natural convection currents can

carry warm air heated by the darkly

colored siding into wall ducts for space

heating. This idea is actually a simpli-

fied version and predecessor of the

thermo-siphon wall (following section).

This material's structural stability,

a result of its tesselated (wiggly)

section, provides the built-in ducting

channels. Some measures must be taken

to stop reverse thermal siphoning. A

similar solution applied to the solar

window wall using a lightweight dia-

phram should be adequate. Some means

of ducting heated air further into

living spaces should be considered.



Hollow core concrete planks may be

ideally suited for this application

(Spancrete) (figure25 ). The synthesis

of these two designs demonstrates

clearly the synergistic possibilities

of building materials. In this case

what remains after streamlining the

structural member becomes the primary

means of thermal transport.

This is clearly not an original

principle. In nature, for example,

the hollow bone structure of the vul-

ture's wing eliminates excess weight,

consequently lightening the frame, a

necessary factor for the special gift

of soaring. The hollowed out core

further provides the passages for fluid

nutrients. In a similar way leaf veins

carry plant nutrients while simultaneous-

ly giving structural stability to the

leaf form, stem and branches. The plant
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- built-up roof
-vapor barrier

-vented raping

When solid walls are preferred,
the diagram at left Illustrates
a method of using the sun's heat
for tooling.

A. Sun's heat warms air in the vertical flutes.
B. Air rises in flutes and escapes at vented taping.
C. Coler air is drawn in at bottom

AIR-COLED WALLS

~1A~ Double roof cools structure by reducing, ra-
diation and by allowing coal air flow over
ceiling.

is the ultimate example of an integrated

system. The entire food chain and

atmospheric symbiotic relationships are

dependent upon the existence of the

plant species on earth. It is a de-

lightful reminder to catch a whiff of

the flowers' perfume and realize that

this scent floats on swirls of life

giving oxygen. There is no living thing

we know of outside the plant kingdom,

capable of synthesizing light, water

and mineral nutrient into a self sus-

taining life form. The act of photo-

synthesis is a miraculous transforma-

tion of light and nutrients into matter.

The ultimate metaphor for the solar

wall is the plant leaf. The leaf it-

self is the solar collector and its

structure is the trunk lines.

Ife Campus Plan. University of Ife,
Physical Development Plan, Ife, Nigeria,
1969 r-



Thermosiphon Air Collector

The beauty of the thermosiphon col-

lector is its straightforward design,

simple operation and high efficiency.

The natural buoyancy of heated air

powers the gravity convection cycle.

In turn this pulls cool air in, near

the bottom of the thermosiphon loop and

pushes the air up past the collector

surface and out the top into the space.

(Refer to diagram 26 .) The convection

process circulates warm air into the

space as long as there is enough sun-

light to elevate the temperature of the

blackened absorber plate above the room

air temperature.

A few important points about this

thermosiptioning collector:

-- This wall collector design lowered

partially below the floor level

halts reverse thermal siphoning
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by pooling cool air below the floor level. The denser cool air fills the

bottom portion of the collector and stabilizes gravity convection.

-- The placement of the absorber plate divides the wall collector into

separate volumes, providing a double dead air space. This set-up gives

added insulation value over the window wall area, the collector replaces.

This type of collector design has high efficiencies for two basic reasons:

low operating temperatures and heated air is dumped directly into the space

doing away with ducting and heat exchangers. This indirect gain system, how-

ever, makes no provision for storage of the solar heat other than the thermal

mass of the building. To improve the performance of the wall collector a number

of measures can be applied to the basic scheme. These additions include insula-

tion, improved absorber surfaces (i.e. selective surfaces, increased surface

area) thermal mass, dampers and fans to further regulate the flow of air.

The section on thermosiphoning collectors is recommended in Bruce Anderson's

Solar Home Book which goes into wall and window collectors in detail and also

includes a discussion on louver type (venetian blind) collectors.

A final note points out an important secondary benefit of the wall col-

lector. That is the collector depth gives a projected dimension to the wall

and provides for a use dimension and work surface.
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Solar Collection -- The Wall and
Built Ground

Sol-air temperature, introduced in

the section on thermal design tools,

is an important factor affecting

solar collection at the building

edge. The selection and placement

of ground form materials can benefi-

cially influence the micro-thermal

climate at the weather edge via the

sol-air temperature. Diagrammed

here is an important sun-building

geometry relationship which can

specify in a generalized way the

placement and color choice of ground

11 form materials.

Apart from the intensity of inci-

dent radiation which is controlled

b by latitude, elevation of the sun,

clearness factor, and slope of the

land, surface temperature depends on

the water content (of soils), the
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thermal conductivity of the underlying soil (and paving material), its albedo

as well as on the movement of air over the surface.

The point to be considered is the influence (the type of soil planting

and built ground material) exerted on the heat balance of the ground, and

hence on that of the adjacent air layer. Equally important the albedos of

various ground form materials differ considerably depending upon texture and

color. For example, a granite path or gravel path differs from black top or

a dark mulchy soil. There is less reflected heat and hotter air over dark

surfaces (lower albedo or reflectivity) than light surfaces. However, the

lower reflectivity implies higher absorption and retention of heat for delayed

reradiation.

The temperature near the building weather edge surface is the result of

a complex set of interactions in which albedo (surface color) and ground sur-

face-heat-balance dominate. Geiger, in Climate Near the Ground, is an excellent

resource for further reading (chapters 2 and 3).
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Pliny and Solinus, had admitted into their geographical
accounts legends of strange tribes of monstrous men,
strangely different from normal humanity. Among these
may be mentioned the Sciopodes, or men whose feet
were so large that when it was hot they could rest on
their backs and lie in the shade.
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Shading Devices

Shading devices or "sun breakers", as

the Olgyay brothers referred to them,

make up the palette of built configura-

tions which selectively assure solar

protection at the weatheredge. The

selective nature of the shading mechan-

ism implies protection from the intense

rays of the summer sun and passage of

beneficial rays of the winter sun.

Corbusier began in the 1920's to

develop a rational and architectural

vocabulary (Brise-Soleil) which responded

to the impacts of the sun and is ex-

pressed most accurately in his own

words.

"...Today as we possess steel and
reinforced concrete.. .nothing
these days prevents us from open-
ing toward the solar rays. not a
mere fraction, but a 100 percent

, of a facade... 141



This freedom gave enormous possibilities for fantasy--
but it is evident that it posed new time problems at
the same time."

"The play of the seasons brings its adverse and bene-
ficial effects--at the winter solstice the sun lies
low at the horizon and its rays are welcome in the interiors
of our habitation where they kindle our moral and physical
self. The spring and fall mid-seasons greatly gratify
themselves by offering sunlight, which is sweet to all
creatures. During the dog-days of the summer solstice,
with its intolerable temperatures, the sun, our customary
friend; the need in those hours for shade is imperative.

"It becomes necessary to stop up the windows, to 'diaphragm'
the glass pane. What aids are available to achieve this
purpose? There may be superimposed curtain filters of loose
and tight texture, shutters of various nature applied in-
side or outside, and screens of new design which can be
developed to work in mutual conjunction with the glass
pane.".

The shading mechanism is on one hand an element of the facade, an archi-

tectural element which provides a screen between humankind and nature. It is an

opportunity to elaborate the building surface and give it a dimension which

potentially defines a territory for human use. The individual elements are

proportioned to the human scale; in aggregate form the elements add to spatial

composition and give visual ties of rhythm, light, color and texture.

On the other hand, the shading mechanism can extract itself from the

building surface and expand the weather edge. The detached frameworks can pro-

vide for seasonal use and offer a structure (posts and the like) for the addition

of benches, planters, railings, partial vertical screens to protect against sun

and wind. It is this extended edge that begins to build the interlock between

Olgyay Brothers, Solar Con-
and Shading Devices.



the landscape and the building. A negative aspect of shading devices on cloudy

days is- an effect which causes a reduction of natural lighting into the

interior.



Built Tree Grove

This built grove of trees signifi-

cantly alters the ground level micro-

climate. The stand of trees provides

for very effective solar protection at

the ground level floor and considerable

shading of the entry court. The trees

alter the air flow around the buildings,

filter the air of particulates by ab-

sorption, oxgeneration and dilution, and

contribute significant moisture to the

air (in summer roughly 20 gallons a day

per tree).

The tree canopy alters the local

micro-climate in a number of ways:

- shading

- insulation

- heat sink

"besides providing the shading to cool

the ground below, tree canopies act

as an insulation buffer between the

Ff 1_7



ground and sky; inside the building and outside. Ground temperature can be

up to 250 cooler than the temperature at the top of the tree canopy. However,

temperatures are nearly uniform from tree canopy to tree base, as in good in-

sulation design. In addition, the moisture content in vegetation increases

the enthalphy considerably. Water retains heat much longer than air on dry

land, keeping the surrounding environment cooler on hot days, later releasing

its heat to the colder night air. Overall, vegetation slows temperature ex-

change, acting as a natural insulator.

By absorbing and emitting radiation by evaporating moisture -- leaves, twigs

and branches play a significant part in the exchange of heat with the surrounding

air. The percentage of reflected radiation falling upon the canopy is ex-

pressed by the albedo "R". The portion of sunlight which passes through the leaf

cover is expressed as "D" the penetrability coefficient. The remainder "A' is

the percentage absorbed. "R" lies between 5 and 30% and exceptionally may rise

to 60% on the lighter surfaces of variegated leaves. The amount of radiation

which penetrates, varies from 10 - 15%, giving the absorption value a higher per-

centage 50 to 60% most of the time.,

According to Prof. A.F. Bush, professor of engineering at the department of

engineering at U.C.L.A., an inhabitant of town centers could require 30-40 sq. ft.

greenery surface (trees, shrubs, to cover oxygen requirements on an hourly basis). Vivian Loftness, Natural

Forces and the Craft of

Buildin. 114 5



Due to the mild climate of Carmel the trees hold their leaves nearly all

year round. In the urban landscape a grove of densely packed trees of this

size is unusual. The trees are natural frameworks which serve as an extension

of the building. Hidden from view are trees similarly placed on the upper

levels. The stand extends from the upper reference level all the way to the

street curb, providing a canopy for pedestrian traffic as well. The density of

trees is such that it becomes a definable territory, which not only tempers the

environment near the building's weather edge but the micro climate of the entry

court as well.



McCoy, Esther, Five California Architects.

Trellis

The trellis defines a unique transi-

tional zone. As an extension of the

building, it makes up a special edge

condition which incorporates a structural

framework and vegetation. The unique

quality of the trellis is the overlap of

built and plant form. Together they

expand the boundaries of the weather

edge, creating a tempered thermal zone.

All year round the lattice of wood

and natural framework, of bare vines

and branches, act as a filtering mechan-

ism controlling the play of light and

shadow. In all seasons the trellis

screens the penetration of direct sun-

light yet allows natural light (indirect)

to filter through.

As the planted trellis moves through

its yearly growth cycles it follows the

climatic seasons, affording a range of

shading conditions. One negative 11.7



characteristic of most shading devices is that it follows the seasons

of the sun rather than the climatic seasons. The planted trellis,

however, responds to the climatic seasons. For example, at Spring equinox

(March 21) the vines of wisteria are still bare, allowing for the penetration

of direct sunlight to the building surfaces. At the Fall equinox (September

21), however, the vines are leafy and full from the summer and offer adequate

shading. To clarify this point, "the middle of the summer for the sun is June

21, but the hottest times occur from the end of July to the middle of August.

A fixed overhang designed for optimal shading on August 10 causes the same

shading on May 1. The overhang designed for optimal shading on September 21,

when the weather is still somewhat warm and solar heat gain is unwelcome,

causes the same shading situation on March 21, when the weather is cooler and

solar heat gain is most welcome.".

Exterior shading devices, the trellis being one example, are more ef-

ficient at controlling overheating than interior shading devices, and can be

designed to serve as both a canopy and vertical screen. The seasonal char-

acter of the planted trellis provides a buffer zone which allows the building

fabric and landscape to interlock/intertwine and together are expressive of

the microclimatic region.

Furthermore, the trellis and planting, because of their relatively

lightweight nature, can be incorporated with the balcony, on multi-family

0

Bruce Anderson, Solar Home
Book, p. 88.
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housing. In addition, the planted trellis provides the visual and operational

link between the groundscape and the roof garden.



Plant Boxes

The short shrub jasmine plants provide

a multi-faceted canopy of leaves; ele-

vated one story up from ground level.

The glossy leaves break up the harsh

sunlight and reflect a diffuse glowing

light into the interior spaces. It is

not unreasonable to extract a small

piece of the landscape and place it

where it can provide a special function

like this.

These enlarged window boxes and

flowering plants provide not only the

reflected light above, but shaded light

below as well. In this case, the

primary purpose of the planter boxes

was not to provide shade. However, the

plant containers have sufficient depth

to completely screen the windows below

from the summer sun.

The window box plants provide a
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pleasing view transition against the backdrop of the cityscape. And what's

more,this variety of hearty outdoor jasmine provides the most provocative

air freshener on the block.

The Olkowski's directors of research and education within the Farallones

Institute oversee both a rural center and what they call the integral urban

house, in Berkeley,California. They avidly support the plant box notion and

would like to see the concept enlarged to include roof top gardens. They re-

commend, however, that vegetables replace ornamental plants. In China nearly

every house with a small plot of land grows their own food. The vegetable plot

replaces the lawn.



I Louver Shading Device - Olgyay Brothers 1
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Shading characteristics are uniform, namely, complete
shading up to a 60* altitude angle.

Shading devices are well documented

and covered extensively in a number of

good resources. One highly recommended

reference is Solar Control and Shading

Devices by Aladar and Victory Olgyay,

from which the following example is

taken.

This design example is unlike most

shading devices in that it makes special

allowance for view, takes on a range of

dimensions and allows for some design

flexibility and diversity of shading seen

in elevation.

Different arrangements of the basic

shading device are used on the south

elevation of a proposed design for a

factory for Universal Corporation. The

vertical distribution of shading devices

are varied to achieve a composition of

discontinuous yet pleasing lines.
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Structure

Architectural siding materials: the thermal siphon panel and added glazing

layers act primarily as infill and are especially designed for solar collection.

On the other hand, the structural framework of a building can be used for not

only supporting secondary structure and infill but to provide solar protection

as well. The primary structure is carried out beyond the closure (weather skin)

of the building to provide shading of the window wall. The verticality of the

primary structural system exposed on the exterior is most appropriate for east

and west exposures. In practice vertical shading isused for these exposures to

block the lower angle of the sun in the early morning and late evening.

The usefulness of the structural supports is further exacerbated if they

also serve as air pleniums for heat transport during solar collection and venti-

lation channels for cooling throughout overheating hours. Taking this one step

further; the shading devices which serve primarily as solar protection (though

they could also be use areas, balconies, etc.) might also perform an added func-

tion acting in solar collection.

In this regard the shading device can be easily designed as a hybrid col-

lector. With little alteration it performs as a thermosiphon air collector.

For example, the sunlit surfaces are simply darkened and glazed; heated air

is ducted into the structure and dumped into the space or ventilated to the

outside. High temperatures of the collection surfaces during overheating

periods (summer), necessitates the use of the ventilation mode. The collector 153



is utilized for cooling purposes,in this case by priming the thermal chimney

effect. The air drawn from the space through the structure is accelerated by

the escape of heated air from the collector.

The synergetic nature of the structure comes alive as a wider range of

functional capabilities are met. The primary structure provides vertical

shading predominantly on the east and west exposures while secondary structure,

(shading devices, balcony, roofs) serve for both solar protection and collec-

tion. The structure, at the same time resolves the gravitational forces and

facilitates thermal transport. Architecturally the structure is expressed as

an extension of the building and gives added dimension to the texture of the

exterior building fabric. As mentioned before the verticality of the primary

structure works well on the east and west exposures. Somewhere in between

the vertical and horizontal lines, expressive of the given orientations, merge

and define a built boundary condition.

The following examples represent only a few of the many works by Frank

Lloyd Wright which have utilized the structure for solar protection., Resource: The Work of Frank
Lloyd Wright The Wendingen

Edition.
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Set Back - Arcade

"In 1928 a house was planned.-
Carthage. Here the structure
of the house is completely
independent of the form of the
habitation proper, which re-
treats for shade protection,
giving the structure the added
role of a sun breaker."

8 A sketch done in Corbu style diagrams

Corbusier. how the closure (the secondary structure,

infill) further enlarges the weatheredge

zone.

The examples of solar protection thus

far have shown how solar protection can

be achieved by hanging or detaching the

secondary structure from the building

surface or primary structure. The zone

of the weatheredge is further expanded

by moving the closure (infill) inside

the primary structure allowing the

building through its form to become

self-shading.

Hans Jurgen Hansen, Architecture in Wood
Olgyay Brothers, Solar Control and
Shading Devices.
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There are numerous examples of this architectural means of solar protection

throughout the world. The colonial country house built after European tradition

offers its galleries and arcades to provide shade in summer, yet admit sunlight

in winter.

160



Wing Wall

The vertical definition provided by

the wing wall allows for selective

shading of the building surfaces of

different orientations. The depth of

the wing wall can vary in this respect

depending upon amount of shading desired

for a given orientation. The wing can

be an extension of the structure, e.g.

bearing wall, or it could be designed

as a separate element from the facade.

Either way the extended wall can provide

protection from both the sun and wind,

in some special cases facilitating the

collection of solar energy. In the

latter case this is accomplished by re-

flection of direct sunlight on to

window wall surfaces.

Depending on the prevailing wind

directions the wing wall can potentially

shelter against wind. The wing wall



can be utilized to screen the sun's rays selectively, by blocking, for example,

the western rays of the sun.

Heat Transfer - Wind

Air boundary conditions of the building surface effecting heat transfer are

principally determined by turbulent and liminar flow.

Laminar flow maintains stability in wind speeds under 20 m.p.h. Within

these limits the wind speed alters the air film coefficient yet retains laminar

flow characteristics.

At wind speeds exceeding 20 m.p.h. turbulent flow takes over. At these

speeds, surface roughness of material becomes insignificant. However, recesses

in building surface (weather-edge); windows set back 6" or more, act as cavities.

Depending on the velocity and direction of wind, air currents tend to slip

over set back window surfaces, and reduce heat transfer.

A similar effect can be achieved by the use of projections (e.g. structure,

enlarged window frame projections), which allow for separation from the flow

surface.
0

There is some debate over the question of architectural projections, air

turbulence and heat transfer. The answer seems to lie in the scale relation-

ship between the depth of window relief and wind speed. Small projections from

window surface such as mullions and window frames may cause turbulent mixing and

hence increase heat loss.

0

Conversation with Frank Durgin,
Wright Brothers Wind Tunnel

0

Additional reading in Energy
and Buildings, Volume 1, No. 1,
May 1977, The Effect of Wind
on Energy Consumption in
Buildings.
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Wall - Depth and Glazing

The glazing material is the principle

means of solar collection in any passive-

ly heated structure. Controlling the

amount of sunlight striking the surface

determines solar gain through the window

wall. Glazing position within the wall

dimension (large wall thickness--approp-

riate to masonry construction) is a means

of architecturally controlling the amount

of solar insolation penetrating into the

space. Once again the overriding purpose

is to selectively control the sun's rays

by blocking the high summer angles and

accepting low winter ones. Recessed

glazing on the south faces takes advan-

tage of the seasonal solar geometry. The

opaque boundary edge of the window wall

can effectively shade the glazing surface

depending upon the window wall propor-

tions and solar position (altitude and

163
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position). Windows elongated horizon-

tally are more appropriate on the south

faces while tall narrow windows are more

suited to the east and west orientations.

Applying the winter exposure diagram

(refer to thermal design tools section)

for the Boston area (figure 13 ) the re-

cessed glass on the east and west ex-

posures can respectively screen out the

early morning and late evening hours of

sunlight. This sun geometry relation-

ship may be favorable for west exposures,

but east orientations receive less early

morning sun. To compensate for the loss

of insolation on the east window wall

during winter, the glazing can be moved

out some and horizontal shading can be

further extended or introduced as the

case may be.



Window Wall Step Back

Frank Lloyd Wright, author of this

building, responded skillfully to the

forces of sun and sea. Whether or not

the sun served as the prime generator is

uncertain., From a solar standpoint,

however, it is clear that this inventive

window geometry is sensitive to the

seasonal movements of the sun. The

window wall accepts the sun's winter

rays, yet steps back in section to pro-

tect itself against the intense, some-

times sweltering, summer sunlight. This

self-shading design allows for an open,

expansive view of the Carmel sea.

In a romantic sense, Wright sights

this building in graceful repose on a

rocky point. This poetic structure

answers to the sea like a ship's prow.

Perhaps the most impressive or en-

chanting aspect of this small house
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comes from its two-fold response to the

environment. On one level it embraces

the seascape with enormous hunger but

on the second level it screens out those

forces detrimental to the inhabitants.

Most notably in the fenestration, 50

years before it became fashionable,

Wright's sensitivity as a designer cog-

nizant of the natural forces were evi-

denced in this humble undertaking.

Both with regard to use and geometry,

Wright's setback section was remarkably

innovative for its day. Perhaps as a

response to the functional limitations

of the conventional window, Wright

designed this three dimensional zone of

glass and steel. The vertical glazed

surfaces allow for the penetration of

sunlight and the horizontal planar ele-

ments provide for use surfaces. In this

design, the personal artifacts arranged



on the window wall ledges: plants, artwork, become added shading elements

and compose the sunlight-window wall silhouette.



Ancient builders sensitive to solar potential, rarely disregarded thermal

storage and carefully exploited its capacity in the building. In passive solar

design the building's fabric, its construction (selection and arrangement of

materials), and the amount of thermal mass (weight) determine its solar storage

characteristics. A passively solar designed building relies exclusively on

its own materials to store thermal energy and maintain a range of thermal stab-

ility within the space.

Heavy materials are borrowed from the natural landscape and comprise a

vocabulary of ground form materials directly associated with earth and water.

These ground form materials -- stone, rock, granite, soil, masonry and

water -- provide the primary link to the landscape and have associative as well

as thermal qualities. These materials have traditionally been valued for color,

composition and textural qualities, and from a thermal standpoint, for high

storage capacity. These materials because of both heaviness and density visual-

ly, metaphorically and physically respond to the forces of gravity and offer

some degree of stability in a world of change. In addition when used in an

additive fashion, the builder has the opportunity to generate the major defini-

tions in his landscape.

For centuries the Indians of the Pacific Southwest have utilized adobe, a

heavy, high thermal mass material, to temper the extreme fluctuations of both

daily and seasonal temperatures. These desert dwellers once called this terri-

tory, "land of the dancing sun". 168



Along the Sangre de Cristo Mountains the strong winds, the Banshee's,

sweep down from the high altitudes bringing snow to the desert floor. The

sun, though, prevails most of the year, transforming mud into ceramic-like

material. In the austere desert where the architecture is mud, contemporary

forms are built on the Indian adobe model. The passive solar buildings of

this region have altered to a small degree neither the nature of construction

nor the building materials. The adobe wall has maintained its usefulness

and integrity, absorbing the sun's energy during the day and slowly releasing

it at night. The use of adobe for solar heating is most applicable to a cool

winter climate with sun almost every day, such as New Mexico or Arizona, where

the climate only demands overnight storage.

Contemporary materials such as glass, steel, wood and insulation enhance

solar collection and thermal storage. Insulation is selectively placed on the

interior of certain walls or over windows to reduce heat loss, during sunless

periods. Moving further south, in drier, more severe climates insulation is

eliminated entirely. The heavy earth material dampens the temperature extremes

by its thermal time-lag properties, performing as "capacity'insulation". At

night when the outside temperature plummets the inward heat flow simultaneously

counteracts with the cooling of the outside surface and the outward heat flow

stabilizing the overall heat loss. Each exposure interacts with the sun dif-

ferently. Thus the heat loss-gain for each exposure correspondingly differs.
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On the eastern seaboard and in northerly climates thermal mass materials

have been traditionally used in a different way. Walls are built of heavy

materials with or without a hollow cavity acting as insulation or the masonry

materials are used in conjunction with the hearth mass or constitute flooring.

In wood and masonry construction, a hollow cavity or some form of insula-

tion is often used within the wall dimension. Like the performance of the

adobe, the masonry soaks up available thermal energy, stores it and releases

the heat as the interior air temperature begins to fall. The heavy material in

a reverse way has cooling potential; sponging up the heat during the day and

releasing its energy during the cooler evening hours. The insulation or air

gap reduces heat loss and helps the building retain the heat given off by the

masonry.

Three relationships of thermal mass to insulation can be identified in the

foregoing discussion and are crucial to understanding the performance of solar

storage in a given climate.

In general, insulation should be placed on the inside of high thermal mass

materials when the overall heat loss-gain on a given exposure in winter provides

a solar benefit over a 24-hour period. The insulation in this case assures

some control over radiant exchange between the masonry surface and interior

space. In the vernacular, this means lots of sun.

In cold climates insulation placed within the wall dimension should offer

sufficient thermal resistance to meet energy conservation standards (This is a 70



regional consideration). High thermal mass materials on sunny south facing ex-

posures can be a thermal asset by taking advantage of the sol-air temperature

at the exterior surface. Sunlit surfaces warmed by incident radiation ef-

fectively reduce the delta T (T indoor - T outdoor). This sol-air effect can

also be utilized on other exposures if the solar gain is desirable.

In harsher climates with extended winters, insulation is placed on the

exterior of wall surfaces and covered with perhaps a siding material. The

thermos bottle approach is most applicable to these climates. Heat absorbed

by heavy materials within the interior volume are retained by the insulating

envelope.

In summation: place the mass where the weather is (temperature fluctuations).

Use insulation when average diurnal temperature is not in the comfort zone.

Behind the scenes, experimentation with other kinds of thermal storage

(phase change materials in particular) has progressed over the years. These

lightweight high thermal mass materials, notably Eutectic salts, have only re-

cently become economically attractive. The phase change materials themselves,

principally Glaubers salts, are relatively cheap. New methods of containerizing

the material which have been developed by Timothy Johnson at M.I.T. have reduced

its cost considerably and extended the life of the material.
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Solar collection and storage is explored in the following

section by investigating a number of specific examples which define

a range of thermal zones.

In the Thermal Design Tools section the notion of thermal zones,

associated with a given built condition was introduced. That exploration

is continued with the use of diagrams and design sketches which illustrate

a range of built definitions (e.g. partial containment) that influence the

thermal zones at the weatheredge.

The proportioning of building surfaces, orientation, arrangement of

glazing and wall surfaces, controlled penetration of sunbeam and diffuse energy

all regulate the amount of light and heat input filling a given space.

The saturation and dissipation of input energy will depend largely on the

design and thermo-physical properties of the specific materials impacted.

The design of both the filtering mechanism (window wall-wall) and absorp-

tion medium (thermal mass), complete and partial interior barriers, (e.g. walls,

screens, partitions, furniture) determine the heat regime of the thermal zone(s).

Passive solar space heating systems or "integrative systems" fall into

three generic categories: direct gain, indirect gain and isolated gain.

In the direct gain system the solar radiation passes through the living

space before being stored in the thermal mass. (Sun-space-mass) In this case,



the working-living space is directly heated by the sun and serves as a "live-in"

collector.

In regard to indirect gain systems, solar radiation heats storage mass

directly which then transfers heat to the living space. (Sun-mass-space)

Isolated gain systems incorporate a collector-storage arrangement separate

from the living space. Solar radiation is collected and transferred to storage

or distributed to the space directly. (Sun-collector-mass-space) This system

allows the collector-storage system to operate independently from the building

and space heat on demand.
>1
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DIRECT GAIN

Bay Window

Z The Bay window makes up a thermal

4 Szone, different from that associated

with the flat curtain wall (given the

same ratio of window wall to wall surface

area). Not only is the bay explicit in

defining a use zone, but it provides a

special light and thermal zone as well.

This architectural bump in an

otherwise planar wall increases the

surface area of the weather edge. At

Sthe same time it potentially allows

-for% ~ more natural light to enter as greater

A heat loss is incurred.

PP tThe conventional bay window on a

southern face is not as efficient in

ti~" 0 solar collection in winter as the

window wall it replaces. The projected

area of the bay sees slightly more of
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the sun, which increases the amount

of radiation available to the bay. The

heat loss for the added surface area,

however, outweighs the heat gain. This

is illustrated in the diagram by the

use of the aperature effect (figure 30).

The interior zone of the bay window and

adjacent space, however, undergo a more

extensive range of thermal fluctuations

over the course of the day. The rhythms

are a scaled version of the thermal

fluctuations of the entire building.

This results from the changing insolation

which impacts the various orientations.

Assuming stable climate conditions, the

heat gain of a flat south facing curtain

wall tends to rise and fall evenly over

a day's cycle.

The temperature excursions of the bay

are in general more frequent and of less

duration and hinge on the scaling factor
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of the bay (surface area to volume ratio).

The scale factor and relative window

wall to wall area will determine in part

the thermal response of the zone. The

bay is an architecturally spatial projec-

tion which can take on a range of use

dimensions and thermal zones depending

upon its form, shape, size, and the pro-

portionality of sides. (See Diagram 27 .)

The conventional bay relates closely to

the individual human scale. One or two

persons fill the spatial zone comfortably.

The extended bay, Diagram 28 , makes

up a different spatial and thermal organi-

zation. The long narrow bay tends to heat

up more quickly in the early morning

hours. The south aspect, stabilizes the

stronger insolation impacts because of the

reduced surface area. And the space pre-

dictably heats up again as the sun moves

into the westerly position. Adjustments
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of the window wall area for different

orientations will also influence thermal

variation. Reduced window wall area on

the west aspect of the bay may signifi-

cantly reduce the common overheating ef-

fects of the western orientation.

Temperature variations in the bay

through the course of the day may range

ten degrees or more. Considering the

narrow temperature range of thermal com-

fort (6 degrees, according to the bio-

climatic chart), this variation is

significant.

Furthermore, the bay is subject to

greater fluctuations over a 24-hour

period. The use of insulating panels

over glazing surfaces considerably

alters this picture by reduction of

backlosses at night. A bay construction

of heavy materials (e.g. brick, con-

crete, stone) in conjunction with con-

tainment surfaces of high thermal 7
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mass will potentially warm the bay zone

by re-radiation of heat.

The bay denotes another aspect of

thermal flexibility, a result of its

basic configuration, which allows good

cross-yentilation.

If the bay is transferred to an east

or west exposure, other design consider-

ations surface on an east facing expos-

ure. For example, thermal reasons might

suggest the reduction or elimination of

window wall openings on the north as-

pects. (Diagram 29 sketched in section

and plan)

The increased wall surface provides

an enlarged target area for solar

energy within the bay zone. The window

bay on the western exposure takes on a

characteristic form response which at-

tempts to ameliorate overheating condi-

tions by limiting the amount of west
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facing windowwall and orienting a large percentage of glazing away from due

west.

The incident angle effect is utilized beneficially to reflect a substantial

percentage of insolation. For example, the southwest facing surface witnesses

low glancing angles ( 550), just after the sun passes the east-west compass line

on its way to a setting position north of due west (its declination).

The articulation of the weather-edge is one method of creating and rein-

forcing thermal zones within a building. The bay example deals with a general

thermal zone in close proximity to the weather edge. Generating a thermal zone

does not necessarily depend on this edge condition. For example, wherever sun-

light is allowed to penetrate into the building, a thermal zone can be enhanced

by the placement, choice and geometry of materials. (Roof lights provide an

excellent means of solar penetration.) Furthermore, thermal zones are not solely

dependent on direct sun beam energy. Thermal zones and associated use areas can

be defined by the design and placement of secondary thermal mass;0 reinforced by

the use of innovative wall systems, solid cabinetry, plants and heavy furniture.

In Diagram 31 , bookcases are backed up against the heavy masonry walls,

providing partial containment. Although uncertain of the "U" value of books,

novels may be higher than short stories, the encyclopedia Brittanica has un-

doubtedly a substantial "U" value. Nevertheless, the point is that a tightly

stacked bookcase has thermal insulating properties which help control the heat

flow from the masonry surfaces into the interior space.

A thermal storage rule of
thumb states that 4 times the
amount of secondary mass is
needed to equal a given amount
of mass directly impacted by
sun.
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In considering thermal zones two important points should be emphasized.

First, perimeter built thermal zones filter sunbeam energy penetrating

interior spaces. This transition zone affords some control over convective

heat exchange, radiant heat flow and helps regulate natural air flow. Bay

windows have an excellent means of providing cross ventilation within the im-

mediate thermal zone. The same surfaces that store solar heat can also become

barriers to natural air flow, for the larger space. In this regard, some flexi-

bility over the internal thermal regimes is desirable. For this reason, it

might be reasonable to incorporate into the containment wall moveable shutters,

screens and even interior openable windows.

Secondly, and perhaps the major point, concerns taking advantage of the

mean radiant temperatures (M.R.T.) of containment surfaces. These surfaces

allow a lower indoor air temperature due to their contribution to the local heat

regime.

In general, the M.R.T. of localized surfaces and the impact of direct sun-

light upon the body can effect what might be called "thermal dynamic mismatch."

The pleasant sensation of warmth is attained by the combined effect of a cooler

air temperature and radiant heat source(s). In some cases overheating may occur

from, for example, direct sunlight. In these cases measures should be taken to

provide for partial shading at window wall.
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Water Walls

The Cook house designed by Dan Scully

of T.E.A. utilizes an innovative approach

to architectural thermal zoning.

"The Cook house loosens up the
stylistic constraints and usual
preconceptions of what walls
look like and then turns the
partitions between the rooms
into solar thermal mass."

Kalwall tubes, 12" in diameter filled

with water make up the wall partitions

dividing the overall space into separate

privacies and associated thermal zones.

The storage mass is carefully placed

within the building volume, creating

balanced thermal zones. The translucent

fiberglass tubes serving as target areas

are designed to receive direct sunlight

from south facing windows. The store

is also appropriately located to provide

heat to adjacent spaces, i.e. bedrooms,

which most need the thermal mass for



night time uses and can experience the greatest daytime temperature swings.

In addition, backlosses are reduced significantly because the majority

of the store is placed well within the spac.e. Unlike the trombe wall, the

sun warmed surfaces are in radiant exchange with the interior space as opposed

to exterior glazing.

The Cook house is an excellent example of the integration of high thermal

mass materials into the fabric of the building while maintaining a direct re-

lationship of sun to store.

Though water walls are not particularly good for mounting family portraits,

they provide localized radiant sources of heat, a soft muted light, and reduce

considerably the temperature fluctuations within the space., Paper delivered by Dan Scully
to Passive Solar Energy Con-
ference, Philadelphia. 1978.



Window Wall and Partial Containment

* ... . . . .

. . . . . . . . . .

Gravity convection causes cold down

drafts from window wall.

Zone pools air and reinforces hori-

zontal stratification.

Zone cycles between day and night

modes.

Gravity convection--prevalent during

nighttime, cloudy conditions.

-- Step back section

-- stair faces

-- concrete block

absorb, hold heat; counterbalance

cold pooling during direct gain hours

and re-radiation times.

Lowered conversation area tends to

create its own thermal zone (a con-

vective loop). Air cooled by window

surface falls due to gravity convec-

tion and moves slowly across the floor

and is pulled up by warmed surfaces



7

to the ceiling. The air moves across

the ceiling to the exterior wall and

continues its cycle.
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INDIRECT GAIN MODIFIED TROMHBE

Radiant Source

-- Provides vertical zoning dependent on

direct line of sight.

-- Heat regime--varies evenly as a func-

tion of distance.

-- Radiant heat and back losses control-

led by moveable insulated panels.

-- Sliding panels move across wall sur-

face, closing and uncovering window

wall openings.

-- Hinged panels swing off of Trombe

wall entirely frees up greater per-

centage of radiant wall surface.

-- Interior glassed enclosure also pro-

vides radiant heat source.

-- Interior hollow core wing wall--

radiant source.

Convective Cycle

-- Heating mode of trombe circulates air

--pulled in at floor level, heatedr--

JAG.



by exterior wall surface, pushed

back into space.

-- Dampers or vents monitor heat re-

trieval dumped into space.

-- Alternate mode allows ventilation to

outside, for cooling purposes.

-- Lowered cold ar return off of floor

monitor, prevents system reversal

during sunless periods (overcast,

cloudy, nighttime).

-- Temperature gradient of trombe wall

reinforces interior thermal stratifi-

cation (much higher temperatures at

top third of wall), creates reverse

gravity convection cycle pulling cool

air from floor-up along interior

32
surface of trombe to ceiling.
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Interior Wing Wall

-- Interior hollow wing wall heats up

(cools off) by means of one way loop

from trombe. Outlet dampers regulate

heat into wing wall and cooling of

wall in alternate mode.

- Hollow wing construction is of high

thermal conductance material, e.g.

painted sheet metal or high thermal

mass material, e.g. concrete block.

-- Wing walls in conjunction with trombe

wall--provide partial containment,

define heat regimes and or thermal

zones.

- The wing wall actively ducts air in

an attempt to counter thermal strati-

fication by mixing air near floor

level.

-- Two alternative designs for the wing

wall are presented here:
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Wing Wall - Radiant Source

-- Construction of wing wall channels heated air from top of trombe with the

aid of small fan and pushes air down to bottom section of wing wall, in a

closed inverted loop; circulating through the top and back out the bottom

into trombe to be cycled again. Wing wall ties into trombe using reverse

mode for cooling.

Wing Wall - Dual Mode - Hybrid

-- Wing wall performs as vertical duct, heated air is pushed into top of wall

section with fan and vented out the bottom. The wall provides heat in a

dual manner: natural forced air and radiant heat source. Reverse cycle

can also be used for cooling.

Hybrid Window Wall - Greenhouse

-- This scaled down interior greenhouse enclosure is a source of heat,

moisture, oxygen, (food).

-- Openable glass doors, adjustable grills allow heat buildup from direct

gain through window wall openings and delayed heat flow from trombe

wall to be vented into space.

-- Glassed plant enclosures act as an expanded form of thermopane. The zone

is merely enlarged to accommodate a use dimension (for plants).

-- This edge enclosure tempers direct heat gain--entering through window

walls. The multiple layers of glass (two), support framework, planter 189



boxes and plants in themselves make up a collage of partial barriers which

break up and filter direct sunlight. The quality of light which reaches the

interior space takes on a character of its own; is more closely associated

with light rendered mood of a Cezanne painting than an engineered solution.

-- The density of foliage, arrangement of planters, amount of soil, type of

glass, e.g. stained, frosted, will influence thermal output and storage. In-

clude an aquarium and one has an animated glass water wall, capable of storing

roughly 2 1/2 times as much heat per volume as masonry.

-- The application of this hybrid window box is not bound to the trombe wall.

It is not, however, recommended for east or west exposures (summer overheating

problem) unless adequate shading is provided. The enclosure functions in a

very different capacity on northern exposures (sunless). The major benefit of

its placement on south facing aspects is reduction of high contrast glare.

Back losses, heat sink effect associated with large areas of glass utilized

for passive heating.

-- Those insulated panels introduced in Diagram 32 could easily be designed to

slide between the glass enclosure and window opening to reduce backlosses at

night.

-- Another advantage of the glass box is that it contains the heat in a convec-

tive trap and allows controlled release. Perhaps vents should be incorporated

which allow venting to the outside via the trombe wall. Some cooling poten-

tial here too. 9



-- Attention should be given to the type of plants introduced. A hearty variety

that can tolerate direct gain and reasonably high temperatures. A wide

selection of garden vegetables can withstand relatively high temperatures,

e.g. tomatoes, cucumbers, beans, etc.



Proprietors House at Allendale Farm, Boston
How much collection do we really need?

Isolated Gain

Isolated gain systems fall somewhere

in between the direct gain, low tempera-

ture "live-in" collection system, and

the indirect gain, mass or water trombe

types. This solar collection zone may

vary from a minimal addition to a build-

ing connecting at one interface; or it

may envelope a number of orientations.

A collection zone might also be buried

within the building.

The usefulness of the collection zone

is considerably extended when integrated

with thermal mass. Materials of high

thermal mass store heat for non-sunshine

hours, help prevent overheating, and

reduce extreme temperature fluctuations.

Furthermore, collection zones will

perform better as buffer zones if ele-

vated air temperature of the transition

space are maintained.

I



Stair Towers

The use of conventionally placed

stair towers at the weather-edge and de-

tached stair towers are ideally suited

as passive solar collection zones. Other

use area and circulation zones, e.g.

-. corridors, entries, atriums, porches,

greenhouses, are also suitable for

passive solar collection. The isolated

or detached stair tower is investigated

here.

In practice, stair cores act as

smoke towers and are spaced (no more

than 150 feet apart) throughout public

buildings to provide for emergency

egress. Heavy materials are often in-

corporated into the construction of the

stair cores because of fire code regu-

lations. High fire rated solid doors

separate the stair tower from adjoining

spaces. Stair and wall materials are
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in general built of masonry, concrete

or steel. Because of the heavy con-

struction the stair tower has high

thermal storage capabilities.

Glazing the exterior sunlit surfaces

transforms the stair tower into a solar

collection zone. Because of its inter-

mittent use it is allowed to reach high

temperatures somewhat above the comfort

zone. In winter, the heated air is

either absorbed in the stair mass or

ducted into isolated storage. In both

cases the store is thermally isolated

from the main structure. A more ef-

ficient use of the stair case ducts

heated air into an insulated store for

increased carry-over.

Because the stair case is solely

heated by unconventional means, it is

allowed to cool down during sunless

periods. Incorporating thermal shut-

ters to cover the large areas of



glass may be economically prohibitive. Nevertheless, as part' of the weatheredge,

the stair tower does act as a thermal buffer zone.

The stair core can also be useful in summertime for ventilation purposes,

by accelerating the thermal chimney effect; pulling in warm building air and

ventilating it to the outdoors. Stair cases buried in the building can provide

a similar function by extending glazed areas above the roof line. The projected

glazed roof provides for solar collection, ventilation and natural light. The

large heat loss through the roof glass during non-sunshine hours can be reduced

by double glazing the exterior surface and placing a third layer of glazing

below the double glass. Openings in both the exterior and interior glazing

would offer a number of operating modes providing controlled ventilation for

seasonal use.
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