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ABSTRACT

New methods to quantify rare biomarkers from patient samples are critical for developing point-
of-care diagnostic platforms. To be compatible with resource limited settings, these assays have to
provide fast and accurate results without sacrificing ease of use. Biosensing in homogeneous fashion is
the preferred format which satisfies these criteria, but the lack of amplification method is a bottleneck that
limits their use for sensitive applications. To address this issue, this thesis explores physical signal
amplification means to increase the sensitivities of homogeneous assays. We identified several key
applications where the use of these technologies could make a positive impact in improving medical
diagnostics systems and advancing biological research.

We first outline the use of electrokinetic concentration to realize a continuous signal
amplification scheme that increases the sensitivity of homogeneous mobility shift assays. By
simultaneously concentrating and separating reacted and unreacted species (with different mobilities) in
this device, we can perform sensitive, quantitative and ratiometric measurement of target biomarkers.
Using this platform, we improved the sensitivity of aptamer affinity probe capillary electrophoresis to
achieve pM detection limit of IgE and HIV-RT in simple buffer and serum sample. This work is timely
and impactful as it directly addresses the sensitivity shortcomings of using aptamers as low cost and
robust substitutes for antibodies in point-of-care applications.

Next, we presented a herringbone nanofilter array device which can perform continuous size-
selective concentration of biomolecules based on their direct interaction with nanostructures with
comparable critical dimensions. We demonstrated the use of this platform to perform a novel
homogeneous immunoassay for detecting a cardiac biomarker, C-reactive protein, at clinically relevant
concentrations.

Finally, we demonstrated that the concentration-enhanced mobility shift assay platform is a
powerful tool for probing biological activities such as cellular kinase activities. We have developed
technology to isolate, grow and lyse single cells, and used our platform to measure kinase activities from
single cells. Through rational design of peptide substrates and spacers, this platform has the ability to
simultaneously concentrate and separate multiple analytes. This enables users to obtain simultaneous
measurements of multiple cellular kinase activities that could reveal important information about their
functional relationships.

Thesis Supervisor: Jongyoon Han
Title: Associate Professor of Electrical Engineering and Computer Science and Associate Professor of
Biological Engineering
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Chapter 1

Introduction

1.1 Opportunities in micro/nano-fluidics for biomolecule analysis

One of the most pressing issues in analytical chemistry is detecting low abundance analytes from complex

samples such as blood, saliva and urine. Tests for low abundance biomarkers are routinely used for

disease diagnostics, to monitor patient response during therapy, and to help detect recurrence following

treatment. Therefore, there is significant clinical relevance to increase the sensitivity of these tests to

facilitate early detection of the onset of diseases, since these biomarkers get diluted significantly in

biofluids, especially in the early stages of disease progression.

The traditional workflow of biomarker analysis involves taking a sample from a patient, sending

the sample to a laboratory where the analysis is performed with sophisticated equipments, and getting the

results several days later. Several problems associated with this model are the need of good infrastructure

for sample transport, possibility of sample deterioration during storage, and long turnaround time leading

to patient anxiety. In order to address these problems, there has been tremendous interest in developing

point-of-care diagnostic systems, which aims to bring medical testing to near patient care in the form of

portable test kits. Commercial examples of point-of-care diagnostic systems include the over-the-counter

pregnancy test strip, which uses lateral-flow-immunoassays to provide test results in minutes. However,

these tests are usually qualitative and have limited sensitivities. At the same time, certain clinical

applications, such as cancer diagnostics, requires assay sensitivities that are beyond the capabilities

of existing point-of-care diagnostic devices. This calls for a new breed of technology that could perform

more sophisticated operations to achieve better assay sensitivity and specificity.

An answer to this challenge is micro total analysis systems (pTAS), which aims at integrating

multiple biological and chemical analyses in a single chip. Leveraging on the microfabrication techniques

developed for semiconductor manufacturing, microfluidics technology have matured considerably in the



last few decades to deliver performances that are on-par or often better than conventional benchtop

techniques. Various microchip-based processes including sample filtration' 2, dilution3 4, mixing5,

polymerase chain reaction 6 7 , sample preconcentration- 0 and separation techniques6, 7 have been

demonstrated. The seamless integration of these functionalities into a single microchip platform have

enabled complex multi-step chip-based bioanalysis' such as immunoassays12' 13, DNA analysis 6'7' 14 and

chemical detection15' 16 to be performed from raw sample with minimal user intervention. These lab-on -

chip systems could change the current healthcare paradigm as sensitive tests could now be performed at a

doctor's office or from a portable device in resource-poor regions. Instant access to this important test

information would help healthcare providers in making a better diagnosis and prescribing the appropriate

treatment at much lower overall cost.

Aside from the versatile integration in lab-on-chip systems, microfluidic devices could make use

of the novel physics associated with the micro/nano structures to realize new capabilities. As we can now

fabricate structures with critical dimension comparable to biomolecules, we can directly manipulate

biomolecules based on their size-dependent interactions with the solid-state nanostructures. This had led

to applications such as biomolecular separation in nanochannel arrays 17-19 as well as ultrasensitive

biosensing using nanowires20' 21 and nanopores2225.Besides, interesting phenomena such as concentration

polarization at the micro-nano interface has been used successfully for sample preconcentration9 and

increasing the sensitivity of various biomarker assays26-28

1.2 New developments in biosensing

The sensitivity and application of biosensing depends critically on the methods used for detection. Thanks

to recent advances in material science, fabrication technology and discovery of new physics, several

notable ultrasensitive biosensors have been developed and reported in the literature. Enzyme-linked

immunosorbent assays29-31 (ELISA), which use enzymes-conjugated antibodies to continuously convert a

substrate to a detectable product, are still the gold standard in many assays such as detection of HIV due

to their high sensitivities. Other variants of ELISA, such as use of quantum dot-conjugated antibodies3,

polymerase chain reaction (PCR) amplification"3  and reduction of silver to enhance the output signal35'
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36, have been demonstrated to detect target analytes with exquisite sensitivities. Ultrasensitive assays

using electrochemical stripping 7 also share some similarities with ELISA in using a built-in signal

amplification mechanism. There have also been several notable label-free detection methods including

platforms using silicon nanowires20, n, whispering-gallery mode optical sensors38, 39, suspended

microchannel resonator40' 4' and surface enhanced raman scaterring (SERS) 42. The common features

among these ultrasensitive assays are the various signal amplification mechanisms including

enzymatic/chemical amplification 9-37, field-effect enhancement20, n, as well as optical38, 39, 42 and

mechanical resonance 0' 41. These assays are also examples of heterogeneous assays, where the target

molecules are detected by selectively capturing them onto capture agents immobilized on a solid-phased

support. For portable lab-on-chip applications, heterogeneous assays present many challenges such as the

requirement for multiple washing steps and slow binding kinetics. Moreover, immobilizing specific

antibodies to the solid-phase support while maintaining the activity and specificity of the antibodies is a

non-trivial task and often a source of error in heterogeneous biosensors.

On the other hand, in homogeneous assays, no immobilization step is required as reaction

between the target molecule and capture agent is carried out in solution phase. Reacted molecules are

detected by a change in physical property such as fluorescence signal43 44, fluorescence polarization 44 ,

size-dependent light scattering4 , magnetic relaxation*6 and electrophoretic mobility47. Homogenous

assays are attractive from a point-of-care diagnostic viewpoint due to the fast reaction kinetics and simple

mix-and-use operation which does not require labor intensive washing steps. However, they are usually

less sensitive than their heterogeneous assay counterpart because of the lack of signal amplification. A

signal amplification method that could be generally applied to homogeneous assays would combine the

best of both worlds - ease of use of a homogeneous assay coupled with the sensitivity of a heterogeneous

enzyme-linked assay.

1.3 The issues of affinity capture agents

Due to their high affinity and specificity, antibodies have been used extensively as capture agents in

diagnostic tools48 . The use of antibodies in detecting analytes became widespread in the 1970s with
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polyclonal antisera derived from immunized animals. In 1975, the development of monoclonal antibodies

from hybridoma cells was a major milestone that allowed the production of a unique antibody in large

quantity49. Today, the antibody discovery process starts with immunizing an animal with the antigen of

interest over a course of several weeks, followed by isolating antibody-producing cells from the spleen of

the animal, fusing these cells with immortalized myeloma cells to form hybridoma cells, and finally

screening for cell lines that produce high affinity and specificity antibodies. These cells are continuously

cultured to harvest monoclonal antibodies. Due to the laborious process, identification and production of

antibodies could be very time consuming and expensive especially when searching for rare antibodies that

require screening of a large number of colonies. As such, this could lead to a prohibitively high cost when

using antibodies as affinity reagents. Furthermore, antibodies have limited shelf life and the performance

of the same antibody tends to vary from batch to batch. These are major roadblocks in developing robust,

affordable and standardized point-of-care diagnostic platforms.

Several alternative affinity capture agents, including oligonucleotide aptamers50 53 , phage-display

peptides54 and multiligand protein capture ligand55 , have been proposed to be replacements for antibodies

for diagnostic applications. Unlike antibodies, these capture agents are selected through in-vitro processes

such as phage display54, systematic evolution of ligands by exponential enrichment (SELEX) 56, and one

bead one compound (OBOC) method55 . Therefore, identification of a suitable capture agent is fast (days)

and miniaturization could further reduce the reagent cost. Due to the well defined chemical synthesis,

they could be produced with extreme accuracy and reproducibility, and various functional groups can be

attached to these molecules during synthesis. Finally, these synthetic capture agents are also more

resistant to denaturation and hence compatible with the use in point-of-care diagnostic devices. Compared

to antibodies, however, these capture agents often have lower binding strengths. This could limit their use

in heterogeneous assays, where stringent washing steps could detach the target molecules. Their lower

binding affinities also necessitate higher sensitivity methods to detect the comparatively lesser target

molecules that are bound at equilibrium.



1.4 Signal amplification in homogeneous assays

Signal amplification techniques are essential in order to boost the sensitivities of biosensors to detect low

abundant analytes. This aspect is especially important in portable lab-on-chip systems where the optical

path length is short and when the integrated detection system has limited sensitivity. ELISA or other

chemical amplification techniques can be routinely implemented in heterogeneous assays, but it is much

more challenging to achieve this in homogeneous assays.

There have been a few reports of enzyme amplification in homogeneous assays, such as the

enzyme-multiplied immunoassay technique (EMIT)57, enzyme channeling5 8  and enzyme

complementation immunoassay59. These techniques are based on the principle that when the target

molecule binds to the enzyme-linked antibody, the enzyme activity is altered due to steric effects. Such

altered activities can be read out via observing the accumulation of reaction products, as in ELISA.

However, since these assays are based on changes in the three-dimensional conformation of the enzymes

upon target binding, considerable amount of selection and optimization is required to identify the

effective capture agent conjugate for each target. Therefore, they are seldom used in real applications.

Physical (instead of enzymatic or chemical) signal amplification methods have also been

demonstrated in the context of homogeneous assays. These are usually achieved by concentrating

molecular probes/substrates which undergo fluorescence change upon reaction with the target. Examples

include electrokinetic concentration of special substrates for proteases27 and kinases 60 which become

fluorescent upon reaction with their target molecule, as well as isotachophoresis concentration of

molecular beacons which undergo strong fluorescence enhancement upon binding to a target RNA61.

Physical signal amplification in these cases greatly improved the sensitivities of each assay. Nevertheless,

it should be noted that the molecular probes/substrates for these assays are specially customized and

designed for detection of these target molecules. It is an exception rather than a norm that such probes are

available for a given target molecule.

Another strategy for amplifying signal in homogeneous assay is to preconcentrate all the

biomolecules in the reaction mixture before separating them for detection. Unlike the above two classes
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of methods, these techniques can be applied to a very large class of assays as most biological reaction or

binding result in changes in size or charge that can be detected in a mobility shift assay. Various

preconcentration techniques such as membrane preconcentrations'6 , 6,3 field-amplified sample stacking

(FASS) 64, isotachophoresis (ITP)65 and electrokinetic trapping9 66 have been used in conjunction with

downstream electrophoretic separation to improve detection sensitivity. As the preconcentration and

separation steps were carried out sequentially in these methods, band dispersion and complex dissociation

during separation would ultimately reduce the sensitivity enhancement. Field gradient focusing methods

such as electric field gradient focusing (EFGF)67-69, bipolar electrode focusing70' 7' and temperature

gradient focusing (TGF)7 2-75 are able to simultaneously concentrate and separate analytes of different

mobilities. However, these techniques involve the use of special buffers, electrodes in microchannels that

cause bubble generation, complicated temperature control setups and nonstandard fabrication.

Furthermore, most of these techniques were only demonstrated for concentration and separation of model

fluorescent protein and not for real biological assays. Therefore, despite many efforts, there is still no

general platform that can be used to provide signal amplification in homogeneous assays.

1.5 Thesis outline and scope

The lack of amplification method in homogeneous assays is a bottleneck that limits their use for sensitive

measurements. In recognizing the comparative advantages of homogeneous assays over heterogeneous

assays for lab-on-chip systems, we aimed to increase the sensitivities of homogeneous assays by

implementing physical signal amplification methods. In this thesis, we have developed two different

techniques to simultaneously concentrate and separate reacted from unreacted target molecules by

electrophoretic mobility and size differences. The general applicability of these platforms for point-of-

care diagnostics is demonstrated in the context of improving the sensitivity of aptamer-based affinity

probe electrophoresis assay and homogeneous iminunoassay for clinically relevant biomarkers. Finally,

we show that this homogeneous amplification platform is a powerful tool that enables measurements of

biological activities in single cells that were previously very difficult to obtain.



Electrophoretic mobility shift assays are the workhorse of molecular biology and have been

widely used to measure various biomolecular interactions and enzymatic reactions. In Chapter 2, we

developed a microfluidic electrokinetic concentration device to realize a continuous signal amplification

scheme for homogeneous mobility shift assays. This is demonstrated in the context of an electrokinetic

concentration-enhanced aptamer affinity probe electrophoresis assay to achieve highly sensitive and

quantitative detection of protein biomarkers. We reported the lowest detection limit for two biomarkers,

human immunoglobulin E (IgE) and human immunodeficiency virus 1 reverse transcriptase (HIV-1 RT),

in a multiplexed mocrofluidic platform using low voltages and gravitational induced flow without the

need of periphery equipments (syringe pumps, temperature blocks) or multiple buffers. This work is

timely and impactful because it directly addresses the sensitivity shortcomings of using aptamers as low

cost and robust substitutes for antibodies in point-of-care applications.

There are some cases where biomolecular interactions do not lead to an appreciable mobility

change. In those instances, a size difference between reacted and unreacted biomolecules can often be

used as a measure for the degree of interaction. In Chapter 3, we developed a herringbone nanofilter array

which allows continuous flow size-selective concentration of biomolecules. This is enabled by precise

microfabrication of solid-state nanostructures that facilitates size-dependent interactions with

biomolecules with comparable critical dimensions. As a proof of concept, we demonstrated the utility of

this platform to perform a sensitive homogeneous immunoassay for C-reactive protein, a biomarker for

cardiac disease, at clinically relevant concentrations. The continuous flow format also makes this device

an attractive sample preparation tool to continuously purify and concentrate target molecules based on

size from a sample before performing downstream analysis.

In Chapter 4, we explored how we could adapt the concentration-enhanced mobility shift assay

platform developed in Chapter 2 as a tool for basic biological studies. Kinases are important enzymes in

the cellular signaling pathways that affect cell fate, yet little is known about how individual cells in

different states of intracellular processing respond differently to external stimuli, since most conventional

techniques provide only a population-averaged measurement of the signals within the regulatory pathway.
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A platform technology that can reliably assay for kinase activity from single cells is a valuable tool for

biologists to study how individual cells develop into different cell fates and correlate with their

phenotype. In Chapter 4, we first outlined the use of concentration-enhanced mobility shift assay platform

to measure cellular kinase activity with high sensitivity. We also developed a new capability to separate

multiple species in the concentration-enhanced mobility shift assay platform by using ampholytes or

rational design of peptide substrate and spacers. This capability enables users to perform multi-kinase

profiling using different substrates. To enable single cell kinase assay, we have developed technology to

first grow, isolate and observe single adherent cells, followed by parallel cell lysis and enzyme reaction in

confined nanoliter chambers, and lastly methods to recover reaction products and transfer to a separate

chip for analysis. By combining these methods, we demonstrated kinase activity assay with single cell

sensitivity and resolution. We also demonstrated multiple-kinase activity assay from single cells that

could provide vital clues about the functional relationships between different pathways in the signal

transduction network.

Finally, Chapter 5 summarizes the thesis contribution and presents future directions.
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Chapter 2

Concentration-Enhanced Mobility Shift Assay Platform for

Aptamer-Based Biomarker Detection

In this chapter, we describe a continuous signal amplification scheme for homogeneous mobility shift

assays. This is achieved by simultaneously concentrating and separating bound and unbound molecules

(with different electrophoretic mobilities) in a microfluidic device. The utility of this platform is

demonstrated in the context of an electrokinetic concentration-enhanced aptamer affinity probe

electrophoresis assay to achieve highly sensitive and quantitative detection of protein biomarkers. The

key weaknesses of aptamer as a binding agent (weak binding strength/fast target dissociation) were

counteracted by continuous injection of fresh sample while band-broadening phenomena were minimized

due to self-focusing effects. Within 30 minutes of continuous signal enhancement, we can detect 4.4 pM

human Immunoglobulin E (IgE) and 9 pM Human Immunodeficiency Virus 1 Reverse Transcriptase

(HIV-1 RT), which are among the lowest limits of detection (LOD) reported. IgE was detected in serum

sample with a LOD of 39 pM due to nonspecific interactions between aptamers and serum proteins.

2.1 Aptamers as affinity agents in diagnostics platforms

The issue of affinity agent is a bottleneck in developing robust, affordable and standardized diagnostic

platforms. For decades, antibody-based immunoassays have been used for disease diagnosis that requires

highly specific and sensitive recognition elements. However, production of antibodies is an expensive and

laborious process that involves immunizing host animals and developing hybridoma cell lines. Antibodies

are also prone to denaturing at ambient conditions and often subjected to batch-to-batch variations, thus

complicating their use in point-of-care diagnostic platform.
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Thrombin binding aptamer: 5'-GGTTGGTGTGGTTGG-3'

Figure 2.1: a) Schematic model, and b) 3-dimensional structure of the thrombin binding aptamer. The

highlighted bases form the G-quadruplex secondary structure. (Adapted from works of Schultze et al.1)

Recently, aptamers are emerging as an increasingly popular alternative to antibodies as affinity

probe in analytical applications. Aptamers are single-stranded oligonucleotides that have undergone

multiple round of in vitro selection to bind specifically to various molecular targets2' ". Figure 2.1 shows

an example of a 15 base pair DNA aptamer with secondary G-quadruplex structures that binds to human

thrombin protein'. As binding agents, aptamers can rival antibodies in terms of sensitivity and selectivity.

A major advantage of aptamers compared to antibodies is the low cost, since aptamers are synthesized

chemically whereas antibodies are produced from animals or hybridoma cell lines4. Unlike protein-based

binding agents, aptamers can also be stored in harsh environment without permanently denaturing4.

Finally, various functional groups can be easily attached to aptamers during synthesis with excellent

batch-to-batch uniformity. With these features, aptamers are very attractive candidates for developing

point-of care biosensors. Recently, more than 800 aptamers have been generated against proteins that are

potential biomarkers5. These are promising signs that aptamer biosensors will find widespread

applications.



Various kinds of aptamer-based biosensors, both homogeneous and heterogeneous assays, have

been reported in the literature. In heterogeneous assays, aptamers are immobilized on a solid surface to

selectively capture target molecules from the sample. These include electrochemical assays6, 7 and

sandwich assays8 where the captured target protein is detected by a secondary fluorescent or enzyme

labeled aptamer. Label-free detection is also possible with surface-plasmon resonance9'10 or quartz crystal

microbalance" techniques. On the other hand, aptamers and target molecules react in solution phase in

homogeneous assays. These include assays using structure-switching aptamers that change fluorescence

when they bind to the target12' 13, electrophoresis based methods which can separate bound and unbound

aptamers14 15 , and techniques which rely on polymerase chain reaction (PCR) such as proximity ligation

16assays

Comparing between heterogeneous and homogeneous aptamer biosensors, the heterogeneous

aptamer assays are usually very sensitive because the signal can be amplified by enzymes. However,

these sensors require multiple washing steps and binding kinetics of target molecules to surface bound

aptamers is slow. There is also potential loss of aptamer binding activity after surface immobilization and

the inherent difficulty of generating two aptamers against distinct epitopes on a target biomarker to be

used in a sandwich assay format. On the other hand, the homogeneous assays are very easy to use and

have fast binding kinetics, but usually have lower sensitivity and many of the structure-switching type

assays require customization for each aptamer-target binding pair. The homogeneous aptamer assays are

attractive candidates as point-of-care biosensor platforms because they are fast and simple to use.

However, the bottleneck that prevents their widespread application is the limited sensitivity. A general

signal amplification scheme that can increase the sensitivity of homogeneous aptamer assays would

greatly expand their utility.



2.2 Electrokinetic concentration as a signal amplification module for aptamer affinity

probe electrophoresis assay

Among the homogeneous aptamer biosensors, capillary electrophoresis (CE) based methods which can

separate bound and unbound aptamers have been widely used to detect specific target proteins such as

IgE 4 - 17, 18, thrombin 4' "Q, ricin5 , and HIV-1 reverse transcriptase (HIV-1 RT)17 , 20, 21. Unlike

heterogeneous immunoassay methods such as ELISA that require several hours and multiple washing

steps, the homogeneous CE assay is performed in one step with only a short incubation time ( 30

minutes). However, CE assays are generally less sensitive than ELISA due to the ability of enzymes in

ELISA to continuously convert a substrate to visible product over time. Furthermore, band dispersion and

complex dissociation when using lower affinity (high Kd) aptamers limits their applicability to detect low

abundance biomarkers.

As described in Chapter 1, the readout sensitivity of homogeneous assays can be improved by

physically preconcentration. In the context of aptamer-based CE analysis, sample preconcentration has

been reported in the forms of sample sweeping'9, preconcentration using a size-exclusion membrane8 ,

transient isotachophoresis (t-ITP)22, and temperature gradient focusing (TGF)23 . Preconcentration and

separation were carried out sequentially in the first two cases, thus the detection sensitivity was limited by

band-broadening during the separation step. The t-ITP method required multiple buffer arrangements and

concentration factor was limited by injected plug volume. In the TGF example, special temperature

sensitive buffer was needed and higher limit of detection (LOD) was expected since detection was based

on monitoring a small decrease in the large free aptamer peak. In all these examples, high voltages of >

1kV are required.

The Han group has previously reported on nanofluidic electrokinetic concentration devices that

can continuously collect negatively charged molecules in a given sample into a much smaller volume,

thereby increasing local concentration significantly24. Electrokinetic concentration is particularly

amenable to lab-on-chip applications as it has been demonstrated to accomplish very high concentration



factors and does not require complicated setup such as high voltage, multiple buffer arrangements and

temperature control schemes. This principle has been used successfully in several approaches to realize

ultra-high sensitivity immunoassays. In the first instance, by using an electrokinetic concentrator to

increase the local concentration of target molecules around antibody-conjugated beads, the primary

immunobinding kinetics and assay sensitivity are greatly improved. In another method, an electrokinetic

concentrator is used to enhance the readout sensitivity of ELISA by accumulating the fluorescent turnover

products from target-bound enzymes26 . Both these platforms, however, are examples of heterogeneous

immunoassays. Continuous physical amplification for homogeneous binding assays has not been

demonstrated to date as it would require the additional capability of separating bound from unbound

analytes in solution phase at the same time.

In this chapter, we describe an electrokinetic concentration device that can simultaneously

concentrate and separate biomolecules based on mobility differences. This device is used to improve the

sensitivity of an aptamer affinity probe electrophoresis assay. This scheme features three simultaneous

processes: 1) continuous injection, 2) focusing, and 3) separation of the free aptamers and aptamer-protein

complexes. One of the significant disadvantages of aptamer affinity probe CE is that complex may

dissociate during long migration times, leading to weak or even absence of signal 27. Decreasing the time

spent on column, either by applying very high electric fields or utilization of hydrodynamic flow was

often necessary to achieve reliable detection of the aptamer-protein complex 27. In this new scheme, we

counteract dissociation of the aptamer-protein complex by continuous injection and accumulation of fresh

sample from the inlet reservoir. Band broadening phenomena commonly encountered in CE are also

minimized due to the self-focusing effect. When a continuous flux of sample from the equilibrium

mixture in the reservoir is subjected to simultaneous focusing and separation the signal-to-noise ratio

increases with time. A good signal enhancement scheme is the key to highly sensitive assays such as

ELISA. The scheme presented here presents an opportunity to enhance the signal in homogeneous

mobility shift assay for better sensitivity.



As a proof of concept, we demonstrate the use of electrokinetic concentration-enhanced aptamer

affinity probe electrophoresis assays for two different disease biomarkers, namely human

Immunoglobulin E (IgE) and Human Immunodificiency Virus 1 Reverse Transcriptase (HIV-1 RT). IgE

is the least abundant class of antibodies produced in human, and plays an important role in generating

allergic response as well as defending against parasites 28, 29. Some recent studies have suggested the use of

serum IgE as a predictive biomarker for diseases such as asthma and peanut allergy, 30. On the other

hand, HIV-1 RT is a key diagnostic and therapeutic target of HIV- 133. Many aptamer based sensor have

been used to detect IgE with different LOD, these include methods based on fluorescence enhancement

(57 pM) 3, carbon nanotube field effect transistors (250 pM)35 , surface plasmon resonance (18.5 pM) 10,

CE (46 pM)' 4' 17. 18 and aptamer microarray using labeled IgE (10 pM)3 6, 37. Meanwhile, for detection of

HIV-1 RT, the methods reported are predominantly based on CE (100 pM)17' 20, 21, temperature gradient

focusing (84 pM), transient isotachophoresis (<1pM) and CE followed by PCR (30 fM). It is worth noting

that the LOD reported is dependent on detection instruments and the affinity of the particular aptamers,

and that coupling separation with amplification step often leads to dramatic increase in sensitivity.

Using our platform, we obtained LOD of 4.4 pM and 9 pM for human IgE and HIV-RT

respectively in simple buffer after 30 minutes preconcentration, compared to LOD of 46 pM14 and 100

pM'7 obtained with conventional CE methods. These are the lowest assay LOD reported in the literature

for aptamer affinity probe capillary electrophoresis in spite of the inferior detector used for our assays (arc

lamp and CCD camera) versus Laser Induced Fluorescence and Photomultiplier Tube for CE. To

demonstrate the applicability of this assay to complex sample analysis, we performed the assay in 10-fold

diluted donkey serum. Initial experiments showed significant nonspecific interaction between DNA

aptamers and serum proteins. However, we found that addition of nonspecific and nonfluorescent

oligonucleotides largely suppresses the matrix interference, thus enabling us to detect IgE in 10% donkey

serum with a LOD of 39 pM.



2.3 Principle of the assay

Figure 2.2 shows the key operation of the poly(dimethylsiloxane) (PDMS) microfluidic electrokinetic

concentration chip. The basic device consists of two microchannels connected by a cation selective

channel that allows the flow of positively charged ions (cations) but impedes the flow of negatively

charged ions (anions). Cation selective channels in microfluidics systems have been realized in the form

of glass nanochannels where the overlap between Debye layers can exclude coions, or in the form of ion-

selective membranes such as Nafion where the presence of highly negatively charged chemical side

groups strongly impedes the flow of anions. Under the voltage configuration shown in Figure 2.2a,

cations can electromigrate from the top to bottom microchannel, but the passage of anions from the

bottom to top microchannel is blocked. As a result, a region depleted of both anions and cations is created

in the top microchannel at the vicinity of the cation selective channel in a process known as concentration

polarization. The conductivity gradient at the boundary of the ion depletion zone gives rise to a stable

electric field gradient. When a sample is injected into this microchannel with a constant bulk flow (due to

hydrodynamic pressure or electroosmotic flow), the negatively charged biomolecules will experience an

opposing electromigration velocity proportional to the electric field and their electrophoretic mobilities.

As shown schematically in Figure 2.2b, the biomolecules stop moving and focus at the location where

the electrophoretic velocity balances the bulk velocity. Free aptamers, which have very high

electrophoretic mobilities due to the highly negative-charged backbone of the oligonucleotide, are

concentrated at the low electric field region. On the other hand, the aptamer-protein complex has a lower

mobility due to its larger mass; therefore it concentrates nearer to the cation selective membrane where

the electric field is higher. In this way, bound and unbound aptamers can be simultaneously separated and

concentrated to facilitate sensitive measurement of the target protein in the sample.

Conventional aptamer affinity probe CE operate in a nonequilibrium condition, since there are no

targets in the run buffer that allow for rebinding of aptamers that have dissociated from their initial target

during separation. A unique advantage of this platform is that the free target protein molecules are able to

travel downstream beyond the concentrated aptamer-protein complex band (an even higher electric field

30



is needed to stop the low mobility free protein). Therefore, aptamers that have dissociated from their

target in the complex band can quickly rebind with free proteins in the run buffer and regenerate the

complex, akin to the Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (ECEEM) 38 where a

plug of equilibrium aptamer-target mixture is injected and separated in a capillary prefilled with target.

This is an important advantage which allows even aptamers with relatively high Kd's to be used in this

platform with good sensitivity. Using this device, we realized a multiplexed microfluidic platform where

homogeneous aptamer affinity probe electrophoresis assays can be performed with low voltages (30V)

and gravitation-induced flow without the need of periphery equipments (syringe pumps, temperature

blocks) or multiple buffers.
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2.4 Experimental section

2.4.1 Reagents and chemicals

Unless stated otherwise, all chemicals used in the experiments were purchased from Sigma (St. Louis,

MO). Human myeloma IgE was purchased from Athens Research and Technology, Inc. (Athens, GA).

Recombinant HIV-1 reverse transcriptase (HIV-1 RT) was purchased from Worthington Biochemical

Corporation (Lakewood, NJ). Oligonucleotides were synthesized and fluorescently labeled by Integrated

DNA Technologies, Inc. (Coralville, IA). IgE -binding aptamer (5'-GGG GCA CGT TTA TCC GTC

CCT CCT AGT GGC GTG CCC C-3') was labeled with 6-carboxyfluorescein (FAM) during synthesis at

the 5' end using ethylene glycol linker 4 . HIV-I RT-binding aptamer (5'-AT CCG CCT GAT TAG CGA

TAC TCA GAA GGA TAA ACT GTC CAG AAC TTG GA-3') was labeled directly at the 5' end with

FAM17. Nonfluorescent nonspecific oligonucleotides (5'-TGG TCT TGT GTG GCT GTG GCT ATG

TCT GAT CTT AAT CCA CGA AGT CAC C-3')17 were also obtained from the same source. Donkey

serum was purchased from Innovative Research (Novi, MI). All solutions were made with deionized

water (18.2Mg) by Fluid Solutions (Lowell, MA).

2.4.2 Microchip fabrication

The microchip was fabricated using poly(dimethysiloxane) PDMS (Sylgard 184, Dow Corning Inc.,

Midland, MI) irreversibly bonded on a glass slide. Microchannels were molded in PDMS by replica

molding technique16 . To obtain the positive master mold, the desired design was photolithographically

patterned onto a silicon wafer using positive photoresist. Next, the wafer was etched to a depth of 6 tm

via a reactive ion etching (RIE) process. The silicon master was further treated with trichlorosilane

(T2492, UCT Specialties, Bristol, PA) in a vacuum desiccator overnight to prevent adhesion to PDMS.

We fabricated the ion-selective nanoporous structures by using the microflow patterning

technique to obtain a thin strip of Nafion film on a standard glass slide7 ' 18. A 50 prm deep and 200 prm

wide PDMS microchannel was used to define the flow path of the Nafion solution (20 wt% solution in

lower aliphatic alcohol/H 20 mix, Sigma Aldrich, St. Louis, MO). The PDMS chip with microchannels

was irreversibly bonded on top of the glass slide by standard plasma bonding.
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Figure 2.2c showed the top view of the actual PDMS device used in the experiments. 0.1-10 gL

pipette tips (USA Scientific, Ocala, FL) were cut at the tip end with a razor blade and inserted into the

punched PDMS holes to act as fluid reservoirs. There were five separate inlets connecting to one outlet,

allowing five samples to be preconcentrated simultaneously. Two side channels flanked the inlet channels

to provide symmetrical electrical ground. The ion-selective nanojunction was fabricated at the center of

the device to concentrate sample molecules by electrokinetic trapping when voltages are applied. The

channels were filled with dyed solution for visualization purpose.

2.4.3 Microchip operation

Before the experiment, the PDMS device channels were passivated with 1% bovine serum albumin (BSA)

for 10 minutes to reduce nonspecific binding of the sample to channel walls. After that, the channels were

flushed with DI water 3 times and filled with buffer solution (10 mM Tris-HCl, pH 7.4) until the samples

were ready to be loaded. Sample was prepared by mixing 5 nM of fluorescently labeled aptamer with

different concentrations of analyte in buffer solution (10 mM Tris-HCl, 1 mM MgCl 2, 200 gg/mL BSA,

pH 7.4 (IgE)/ pH 8(HIV-1 RT)).

After 30 minutes incubation at room temperature, 30 pL of sample was loaded into each of the

five inlet reservoirs and drawn into the microchannel by applying a brief suction at the outlet reservoir.

The liquid height difference between the inlet reservoir and the empty outlet reservoir caused a well-

controlled gravitational flow of sample solution from inlet to outlet, without any need for external pump.

Electrodes were inserted into the inlet and buffer reservoirs on the chip and connected to a power

supply (Stanford Research Systems, Sunnyvale, CA). To initiate the concentration-enhanced affinity

probe electrophoresis assay, we applied 30 V at the inlet reservoirs while grounding the side channels. An

ionic concentration gradient was induced near the ion-selective membrane by concentration polarization

effect. Meanwhile, charged sample molecules are continuously separated and stacked at the location

where its electrophoretic velocity equals the bulk flow velocity. Within the experimental duration of 30

minutes, the fluorescent intensity of the stacked molecules increases linearly with time while background

noise remained constant, resulting in a high signal-to-noise ratio. To study the reproducibility of the
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assay, we repeated the experiment in the same device after removing the contents in the inlet reservoirs

and replacing them with new samples.

2.4.4 Measurement instrument and image analysis

An inverted epifluorescence microscope IX 71 (Olympus, Center Valley, PA) equipped with a cooled

CCD camera (SensiCam, Cooke Corp., Romulus, MI) was used for fluorescence imaging. A mechanical

shutter which only opens for 100 ms every 5 s when images are taken was used to prevent photobleaching

of the fluorescent molecules. The images were analyzed using the NIH ImageJ software. Flat-field

correction was performed by dividing a reference image of the device taken before each experiment.

Concentrations of bound and unbound aptamers were assumed to be directly proportional to the focused

peak height as demonstrated in previous work. Complex peak heights are normalized by the sum of

complex peak height and free aptamer peak height. Dose response curves were fitted using a four-

parameter logistic model. Origin 7 software (OriginLab Corp., Northampton, MA) was used for curve

fitting.



2.5 Optimization of assay

We first determined the optimal conditions that promote stable aptamer-protein complex formation in free

solution. The presence of divalent cations such as Mg2 has been reported to be necessary for certain

aptamer-protein complex formation39 . Without Mg 2 , no aptamer-IgE complex was formed while the

aptamer-HIVRT complex band was only weakly fluorescent. Addition of 1 mM of MgCl 2 greatly

improved the interaction between the species. We have also found that complex stability is a sensitive

function of buffer pH. Best results were obtained in 10 mM Tris-HCl buffer at pH 7.4 and pH 8.0 for IgE

and HIV-1 RT assays respectively.

In initial experiments, aptamer and target proteins (IgE and HIV-1 RT) were simultaneously

concentrated and separated in bare PDMS-glass devices. We observed no complex bands until high

concentrations (> 10 nM) of target proteins are added. Precoating the microchannels with 1% BSA for 10

minutes enabled us to clearly visualize the complex band corresponding to 750 pM of IgE (Figure 2.3a),

suggesting that prevention of nonspecific adsorption of proteins to the microchannel surface is important

to increase sensitivity. Precoating microchannel with 5% BSA did not lead to additional improvement in

sensitivity. Interestingly, as shown in Figure 2.3, adding BSA into the sample increases sensitivity of the

assay. Adding 50 tg/mL of BSA led to a clear complex band corresponding to 75 pM of IgE, while

addition of 100 tg/mL of BSA to the sample enabled detection of 7.5 pM of IgE. No further sensitivity

improvement was obtained when more than 200 4g/mL of BSA was added to the sample. Similar trends

were observed with the HIV-1 RT assays. This observation is thought to be due to BSA stabilizing the

aptamer-protein complex. Based on previous reports, it has been suggested that the presence of BSA in

solution helps maintain the correct aptamer and target protein conformation for optimal binding40 .

Presence of BSA in the solvent could also maintain the ratio of hydrophobic and hydrophilic regions on

the target protein, thus preventing it from denaturation 1 . Both the IgE and HIV-1 RT specific aptamers

did not interact with BSA, as the negative controls containing BSA but no target proteins did not form a

visible complex band. In all our subsequent experiments, the microchannel surfaces were passivated with

1% BSA for 10 minutes and 200 gg/mL of BSA were added to the samples to obtain the best sensitivites.
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We also observed that the separation distance between the bound and free aptamers increased

with the addition of high concentrations of BSA into the sample. We believe that this is due to an

isotachophoresis-like effect where preconcentration of an intermediate mobility species (BSA) results in a

broadening electric-field plateau that separates the bound and unbound aptamer bands42 . This suggests a

method whereby the separation resolution between two species can be independently tuned by adding a

spacer molecule with intermediate mobility in the sample.
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Figure 2.3: Addition of BSA improved detection of IgE in buffer using concentration-enhanced aptamer

affinity probe electrophoresis assay. a) no BSA in sample (cannot detect 75 pM IgE), b) 50 pg/mL BSA

in sample (can detect 75 pM IgE), c) 100 ptg/mL BSA in sample (can detect 7.5 pM IgE).



2.6 Detection of IgE and HIV-1 RT from buffer

We first demonstrate electrokinetic concentration-enhanced affinity probe electrophoresis assay of IgE

using a specific aptamer for this protein. Upon binding to IgE, the mobility of a free aptamer (-2.81 X 10-4

cm2 V-1 s-) is expected to shift to -0.58x 104 cm 2 V-1 S-i 17. Figure 2.4 shows the representative results for

electrokinetic concentration-enhanced affinity probe electrophoresis assay for human IgE using anti-IgE

aptamer as affinity probe. Experiments were performed in optimized buffer conditions (10 mM Tris-HCl,

pH 7.4, 1 mM MgCl 2, 200 pg/mL BSA) with constant aptamer concentration (5 nM) and varying

concentrations of human IgE protein (5 pM to 75 nM). During the 30 minutes experiment, the fluorescent

intensity of the bands increased linearly with time and achieved concentration factors of >1000. The

aptamer and complex bands were well-resolved (resolution-3.9). The position of the aptamer-protein

band was also remarkably stable; moving less than 200 iim after it reached an equilibrium position at

around 2 minutes. Slight variations in the band locations are due to differences in gravitation-induced

flow, but the ratiometric assay results are relatively insensitive to the exact band locations. As expected,

with increasing target protein concentration, the free aptamer peak decreased and the complex peak

increased. Figure 2.5b shows the aptmer-protein complex peak due to 4.92 pM of IgE. For comparison,

no complex band was observed in the negative control experiment.

The full dynamic range of the assay is shown in Figure 2.5c. The dose response curve was fitted

using the four-parameter logistic model. The average and standard deviation of the zero dose response

was calculated by performing two separate experiments where the sample contains no IgE, and taking the

peak ratios as described in the methods section. Figure 2.5d shows a linear relationship in the log-log plot

obtained at low IgE concentrations (5 pM - 7 nM). The LOD for IgE, calculated to be the analyte

concentration needed to produce a signal three standard deviations above the zero dose response, is 4.4

pM. This is the lowest LOD reported to date for detection of IgE using aptamers. Interestingly, the

apparent Kd (1.85 nM) is found to be more than an order of magnitude lower than the reported

dissociation constant for this aptamer (64 nM)14 . One possible explanation for this binding enhancement

is that aptamer-protein rebinding events in the electrokinetic concentration zone more than offset the
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effect of dissociation during the experiment. Given that aptamers generally have higher Kd compared to

antibodies, this scheme could significantly increase the sensitivity and utility of aptamer based assay.

Similar experiments were performed using Human Immunodeficiency Virus 1 Reverse

Transcriptase (HIV-1 RT) and an aptamer against this protein to demonstrate that this method is general

and can be applied to multiple analytes. Upon binding to IgE, the mobility of a free aptamer (-2.81 x10-4

cm2 V1 s-) is expected to shift to -0.50x 1 0 -4 cm2 V-1 S-1 14 17 .The results (Figure 2.6) showed a LOD of 9

pM, which is also among the lowest LOD reported to date for this aptamer-protein pair.
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Figure 2.4: Experimental results for multiplexed concentration enhanced aptamer affinity probe

electrophoresis assay for detecting a) high concentrations, and b) low concentrations of IgE in buffer

solution after 30 minutes of concentration.
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2.7 Detection of IgE from serum sample

To demonstrate the applicability of this assay to complex sample analysis, we performed the IgE assay in

a buffer that consists of diluted donkey serum. Initial experiments showed significant interactions of

serum components with the aptamers. Figure 2.7 showed a representative IgE assay performed in 1%

donkey serum. We observed fluorescent precipitation in the sample solution. Moreover, there is formation

of an extra fluorescent band in between the free aptamer and aptamer-protein band. Interestingly, the

extra band is well defined and baseline-separated from the other two bands. This suggests that the

aptamer is interacting with a particular species in serum, such as DNA binding proteins found in

mammalian serum43 . Although this interference did not interfere with the formation and determination of

the free aptamer and the aptamer-protein complex (they are all baseline separated), the fluorescent

precipitation in the sample solution caused large spikes in the electrophoregram.

7 51nM

750[p M

7 5pM

100 PM

Figure 2.7: Concentration enhanced aptamer affinity probe electrophoresis assay for detecting IgE in

sample containing 1% donkey serum. Aptamer binding to serum components gave rise to a third

fluorescent band in between the free aptamer and aptamer-target protein band. Fluorescent precipitation is

also observed in solution.



It has been reported that serum matrix interference on aptamer affinity probe capillary

electrophoresis can be suppressed by addition of nonspecific oligonucleotides that bind competitively to

the interfering serum proteins"7 . We found that addition of 10 pM of a nonspecific and nonfluorescent 49-

mer oligonucleotide17 eliminated the extra band and fluorescent precipitation in a sample solution

containing 10% donkey serum.

Figure 2.8 shows the experimental results for IgE assay in 10% donkey serum after 1 minute

preconcentration, with addition of 10 pM of nonspecific oligonucleotide to suppress matrix interference.

Due to the high total protein concentration in the sample, preconcentration leads to a rapid broadening of

electric field plateau between the free aptamer and the aptamer-protein complex as discussed in the

previous section. We can only perform experiments for 2 minutes before the separation distance exceeds

the microscope field of view. Due to the shorter preconcentration time, there is less sensitivity

enhancement. We obtained a LOD of 39 pM for IgE assay in 10% donkey serum.

The LOD using this scheme is ultimately restricted by the specificity, rather than the affinity (Kd)

of the aptamers against the target protein. Experiments in the serum sample showed that two bands were

observed even in the case of the negative control (Figure 2.8b), which indicated that nonspecific binding

was not completely eliminated by addition of nonspecific oligonucleotides. On the other hand,

experiments in simple buffer showed that signal-to-noise ratio increased with time. We can obtain better

sensitivities at the expense of longer assay time. The key advantage of this technique is a continuous

influx of sample that counteracts the effects of dissociation and a self-focusing ability that minimizes

band dispersion, so even aptamers with relatively high dissociation constant can be used in this assay.
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2.8 Summary

In conclusion, this chapter demonstrates the use of electrokinetic concentration to realize a continuous

signal amplification scheme that increases the sensitivity of homogeneous mobility shift assay. Aptamers

are attractive alternatives to antibodies for point-of-care diagnostics purposes due to their stability, low

cost, and homogeneity. Our aptamer based affinity probe electrophoresis assay in a lab-on-chip device

could detect 4.4 pM and 9 pM of IgE and HIV-RT in simple buffers, and detect 39 pM of IgE in 10%

serum sample. These are among the lowest LOD obtained for aptamer affinity probe capillary

electrophoresis experiments. Furthermore, this method has an advantage over many other assays since it

is rapid, uses low voltage, consumes very little sample, can be multiplexed, and is very user-friendly (no

multiple processing steps required).

Miniaturized capillary electrophoresis devices are one of the first microfluidic systems that

gained popular acceptance, and remains a mainstay in lab-on-chip platforms. The method presented in

this chapter has broad applicability to improve the sensitivity of various capillary electrophoresis assays,

such as those involving protein-protein interactions and enzymatic reactions.
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Chapter 3

Differential Concentration of Biomolecules using Herringbone

Nanofilter Array

*The work presented in this chapter was done in collaboration with Hansen Bow, who designed and

fabricated the devices

In Chapter 2, we have described a method whereby simultaneous focusing and separation of bound and

unbound molecules can lead to an ultrasensitive homogeneous aptamer-based biomarker detection

method. Separation of the analytes of interest is based on electrophoretic mobility difference, which is

significant when small, highly negatively charged aptamers bind to relatively larger target proteins. To

our knowledge, the method presented is the first reported signal amplification technique applicable to a

broad class of homogeneous electrophoretic mobility shift assays.

However, not all biomolecular interactions lead to detectable and predictable changes in their

electrophoretic mobility. For example, the free solution electrophoretic mobility of DNA is essentially

size independent2 , while the interactions of near-neutral biomolecules often result in negligible mobility

shifts. To extend the concept of signal amplification to a broader range of homogeneous biological assays,

we are also interested in exploring alternative physical principles that can lead to simultaneous

fractionation and concentration of analytes.

In this chapter, we introduce a microfabricated anisotropic sieving structure consisting of a

herringbone nanofilter array (H4NA). The structural anisotropy of the HNA causes different sized

biomolecules to follow different migration trajectory. In addition, the HINA also redirect large

biomolecules to focus at particular positions in the device, leading to continuous flow biomolecule

concentration. We will show how we make use of these phenomena to interrogate biomolecular

interactions, including protein-DNA binding, protein-protein interaction and antibody-antigen binding.



The final example demonstrates a novel method to perform homogeneous immunoassay for biomarker

detection at clinically relevant concentrations.

3.1 Nanostructures for biomolecular sieving

Standard techniques for biomolecular separation such as gel filtration chromatography and gel

electrophoresis rely on random polymer gels to provide nanometer-sized pores that are suitable for

molecular sieving. While gel-based systems are proven reliable, the separation resolution is poor in gel

filtration chromatography and sample recovery is difficult in gel electrophoresis. Extensive sample

preparation steps which involve expensive infrastructures and lengthy procedures are also required.

Furthermore, the considerably sample and reagent consumption in these traditional methods is a

bottleneck towards multiplexed measurements. These are formidable obstacles that limit their use in

point-of-care diagnostic settings.

Recent advances in micro- and nanofluidic technologies have opened up exciting opportunities in

sample preparation and analysis as they promise miniaturization, automation, low sample consumption

and seamless integration into a lab-on-chip format3 5 . For example, a recent integrated microfluidic

system6 has been demonstrated to perform on-chip blood separation and measurement of a dozen

biomarkers within 10 minutes from whole blood obtained from a finger prick. For on-chip biomolecular

separation, conventional microfluidic platforms use gelatinous sieving materials contained in microfluidic

channels7-9. However, these foreign sieving matrices pose intrinsic difficulties for the integration of the

separation process with the automated multistep point-of-care (POC) diagnostic platform. Furthermore,

additional steps are needed to remove the sieving material from the sample for downstream processing.

Over the last decades, there have been many efforts to develop regular nanofluidic structures as

an alternative to disordered gel material for biomolecule separation in microfluidic systems - . As we

can now fabricate nanofluidic structures with critical dimension comparable to biomolecules, we can

directly manipulate biomolecules based on their size-dependent interactions with the solid-state

nanostructures.



Various fabrication techniques for regular nanostructures have been explored, these include

bottom-up approaches such as self-assembled colloidal particle packing 1-1, ultra-thin porous

membranes16 and top-down approaches involving the use of semiconductor microfabrication tools to

1 , 1 1
pattern nanostructures with precise control of channel dimensions", . Among these techniques, the

top-down approaches are easy to integrate with other microfluidic systems. They also offer tremendous

design flexibilities - by tailoring the shape and sizes of the nanostructures, we can exploit various

nanofluidic phenomena to achieve functionalities that would not be possible in macro- or even microscale

systems.

Microfabricated nanostructures that separate long DNA based on size have been realized in the

forms of pillar arrays that mimic gel fibers 9 .23 , channels with alternating deep and shallow regions that

act as entropic trap arrays17, 24, 25, and asymmetric obstacles that act as Brownian ratchet 26-2 9 . These

devices operate by either separating long DNA molecules based on their differences in conformational

entropy, or rectifying lateral Brownian motion to deflect biomolecules based on their diffusivity.

Separation of smaller molecules such as proteins and short oligonucleotides has also been demonstrated in

devices consisting of nanofilter arrays30 .3 1 . However, the mechanism of separation is attributed to Ogston

sieving instead of entropic trapping for the case when the biomolecules are smaller than the nanopores.

Recently, a two dimensional anisotropic nanofilter array (ANA) device has been implemented for

continuous-flow separation of different sized DNA and protein 3. The designed structural anisotropy of

the ANA causes biomolecules of different sizes and charges to follow distinct trajectories, leading to

efficient continuous-flow separation. The continuous-flow operation of the ANA allows the separation

process to be performed in-line with other continuous-flow processes, thus facilitating the integration of

the separation step with upstream and downstream sample preparation or analysis steps. This unique

operational characteristic provides a great advantage over other microfluidic batch separation techniques

for the easy integration of the device into a common point-of-care diagnostic platform. As a step towards

this direction, this device has been utilized to perform quantitative analysis of disease-marker proteins by

continuously separating the larger antibody-protein immunocomplexes from the unbound antibodies32 .
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Finally, a method that continuously separate particles based on size using slanted obstacles in a

microchannel has been reported33 (Figure 3.1). The trajectory of the suspended particles is determined by

hydrophoresis, which is the movement of particles under the microstructure-induced pressure field.

Particle wall interaction will steer large particles with sizes comparable to the gap size of the slanted

obstacles to focus near the sidewall of the device. On the other hand, small particles follow the streamline

and exhibit a zig-zag trajectory motion, separate from the large particles. Using this method, the authors

completely separated polystyrene microbeads with 9 pm and 12 ptm diameters. In a separate paper, the

same authors demonstrated continuous separation of red blood cells and white blood cells population this

concept34. In a later paper, hydrophoretic separation of micron and submicron particles (0.5 pm - 1.1 gm)

and DNA molecules (radius of gyration 0.86 sm and 1.4 gm) was demonstrated using devices with

obstacle gaps down to 1.2 pm35 . DNA with radius of gyration greater than the obstacle gap had to change

their conformation to pass through the gap. Hence, unlike smaller DNA which could immediately pass

through the gap, they followed a different trajectory along the slanted obstacles until they acquire the

right conformation that allows them to enter the gap. This mode of sieving share some similarities with

the microfabricated entropic trap for long DNA separation17 , but the structural anisotropy (slanted

obstacles) enables continuous flow operation.



Slanted obstacle

Figure 3.1: a) Example of a hydrophoresis device that can continuously separate particles based on side

using slanted obstacles in a microchannel. b) Optical micrographs showing trajectories of 9 and 12 pm

beads passing 19 pm-height slanted obstacles at 0.1 ptL min-'. While the 9 pm bead was deviated from

the focused position (the lower side of the channel), the 12 pm bead stayed in the focused position.

(Adapted from works of Choi et al.")



3.2 Size based concentration of biomolecules using herringbone nanofilter array

In Chapter 2, we saw that coupling biomolecular concentration with the separation step could greatly

improve the assay sensitivity. The need for biomolecular concentration step is even greater in

micro/nanofluidic systems, where the low optical path length reduces detection sensitivity.

Conventionally, size-based concentration of biomolecules in microfluidic devices is achieved by trapping

large molecules in front of nanoporous gels and releasing them for analysis 36-39. These methods have

proven useful for increasing the assay sensitivity. However, as mentioned earlier, integrating foreign gel

material into microfluidic devices present fabrication challenges. Furthermore, these are batch processes,

which presents throughput and sample recovery challenges for downstream modules.

With the ability to fabricate nanochannels on the size order of biomolecules, one can

explore the possibility of continuously fractionation and concentration, utilizing the biomolecule-

nanofilter sieving interactions as a way to 'steer' molecules in a channel. In this section, we will

introduce the HNA device, which could differentially concentrate small biomolecules based on size. The

device consists of a periodic nanofilter array shaped like a herringbone (Figure 3.2a). The nanofilter

array has shallow regions with gap thickness of d, and deep regions with gap thickness of dd. The design

of the HNA device is similar to the periodic array of slanted obstacles used for hydrophoresis separation

of particles and long DNAs. However, the HNA device is designed to utilize a different sieving

mechanism (Ogston sieving)31. In the hydrophoretic separation of particles, the rotational flow induced by

anisotropic obstacles redirect different sized particles into different trajectory3 3 . For the separation of long

DNA, the obstacle gap size was smaller than the radius of gyration, and sieving involves molecules

deforming to pass through the gap35 . On the other hand, Ogston sieving is the relevant mechanism when

separating biomolecules whose sizes are smaller than the pore size in the herringbone nanofilter array.

Figure 3.2b illustrates the cross-section of the herringbone nanofilter array. An electric field

drives the movement of the biomolecules (electrophoresis or electroosmosis) through the shallow and

deep regions of the nanofilter array. Biomolecules experience a steric hindrance effect when they jump



across a nanofilter. Smaller molecules will have less resistance to jump across the nanofilter, thus will be

more likely to be driven to flow across the nanofilter array in a straight line (path of least resistance)

without altering their trajectory. On the other hand, larger sized biomolecules encounter a larger

configurational entropic energy barrier while they transition from the deep to shallow region31 , hence they

have less frequency to jump across the nanofilters and become more likely to be driven towards the center

of the herringbone structure. In this way, differently sized biomolecules are differentially concentrated in

a continuous flow manner.

The concentration ability of this device is achieved by the design geometry of the herringbone

nanostructure. The centerline of a herringbone structure represents a symmetric boundary condition, as

large molecules from both sides are directed towards the center. Under such circumstances, the center

region becomes a sink where large biomolecules accumulate. The only way for the trapped molecule to

exit the local sink is by jumping over the shallow region. The concentration factor of large biomolecules

in the center would be a function of its diffusion coefficient, trapping life time and the magnitude of the

forces that drive the molecules to the center. For the most effective Ogson sieving of biomolecules, we

should design the pore size to be comparable to the molecules to be analyzed4 0 . For the biomolecular

complexes that we are interested in (most oligonucleotides and globular proteins have radii of gyration

about 1-10 nm), we designed two depth for the nanofilter shallow region (53 nm and 80 nm) and the

corresponding depth for the deep regions are 80 nm and 173 nm.

One of the immediate applications for such a platform is the ability to perform rapid

quantification of biomarkers by separating free antibodies from the larger antibody-antigen complex.

In previous work the ANA is used for continuous flow size-based immunoseparation . However,

detection sensitivity is poor as molecular dispersion reduces the signal at the detection region. With the

concentration ability of the proposed device, we hope to improve the detection sensitivity by

homogeneous signal amplification. Another application that we envisioned for this platform is for sample

preparation, where we can simultaneously enrich and purify a target molecule based on size. As the



presence of high-abundance serum proteins (mostly albumin and immunoglobulin) present significant

limitation to biomarker detection specificity and sensitivity, size-based removal of these compound prior

to detection could improve the specificity and sensitivity of the assay. The continuous flow operation of

the proposed device is ideally suitable for point-of-care formats such as lateral flow immunoassays.
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Figure 3.2: a) Schematic of the HNA device consisting of periodic nanofilter array shaped like a

herringbone. An electric field drives the movement of the biomolecules through the nanofilter array. b)

Cross-section of the HNA device showing shallow regions with gap thickness of ds and deep regions with

gap thickness of dd. Small molecules (red) can migrate across the nanofilter array in a straight line without

altering their trajectory. Large biomolecules (green) encounter a larger configurational entropic energy

barrier while they transition from the deep to shallow region, hence they have less frequency to jump

across the nanofilters and become more likely to be driven towards the center of the herringbone

structure.



3.3 Device fabrication

The detailed fabrication process flow for this device has been reported elsewhere3 1. Briefly,

structural patterning and RIE etching is done on silicon wafer using a 3-mask process. A potassium

hydroxide etch was performed to etch a hole through the entire silicon wafer to create a buffer access

hold. After thermal oxidation to provide electrical isolation between the buffer and the conductive silicon

substrate, the herringbone nanofilter array was sealed by anodic bonding to a Pyrex wafer. A schematic of

the key steps in this fabrication process flow is shown in Figure 3.3.

1. RIE to define the depth of shallow region (1st mask)

2. RIE to define the depth of deep region (2"d mask)

3. KOH etching for buffer access hole (3rd mask)

4. Thermal oxidation to provide electrical isolation

Figure 3.3: Fabrication process of the herringbone nanofilter array device.



3.4 Concentration of short DNA molecules by Ogston Sieving

We first demonstrate concentration of short double stranded DNA in the herringbone nanofilter array.

Double stranded PCR markers (50-766 bp, New England Biolabs, Beverly, MA) was labeled with

YOYO-l intercalating fluorescent dye (Molecular Probes, Eugene, OR) with a dye to DNA base pair ratio

of 1:10. The final DNA concentration in the sample solution was 10 ptg/mL in 1 x Tris Borate EDTA

(TBE) buffer. Before the experiment, the device was equilibrated with the run buffer for 1 hour by

applying 100 V across the nanofilter array.

Figure 3.4 shows the experimental results in a d,= 53 nm device when the fluorescently labeled

PCR marker was injected. Since the DNA molecules were highly negatively charged, migration of

dsDNA followed the direction of electrophoresis. When 200 V was applied across the device, the DNA

molecules focused into a tight band in the center of the herringbone structure. This phenomena is

reversible, once the electric field is turned off, the focused band in the center of the channel quickly

disperse, resulting in a uniform fluorescence distribution in the entire device. The PCR marker contains 5

different DNA fragments of sizes ranging from 50 bp to 766 bp. Since the persistence length of DNA is

about 50 nm (about the contour length of 150 bp DNA), the PCR marker fragments are relatively

straight, rigid rodlike molecules with end-to-end distance of about 16 nm to 150 nm. As the shallow

region of the nanofilter is 53 nm, DNAs can enter these regions only in certain orientation. These

differences in configurational entropy between the shallow and deep region leads to Ogston sieving

effects41, 42. It is important to note that the smallest dimensions of these rod-like molecules are less than

the gap size of the shallow region, so the DNA molecules do not need to deform and change their

17, 43conformational entropy as in the entropic trapping regime for long DNA'
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Figure 3.4: Size based concentration of YOYO-l labeled PCR markers (50 - 766 bp) in the center of the

HNA device (d, = 53nm).

A potential application for this simple operation is to concentrate and focus DNA molecules from

a sample prior to launching them for electrophoretic sizing. By doing so, we can obtain

electropherograms with much higher signal and better resolution. Without any changes in process flow,

the herringbone nanofilter array could be implemented routinely as a sample preconcentration module

before size-based separation of biomolecules in the 1 -D nanofilter array. Finally, as a sample preparation

tool, this device can be used to continuously purify and concentrate the larger target molecules (e.g. DNA

and large proteins) from a sample before performing downstream analysis such as mass spectrometry.

Depending on the application, it is also possible to increase the throughput of these devices by creating

massively-parallel, ultra-high-aspect-ratio nanochannels as demonstrated previously'8 .



3.5 Differential concentration of DNA-protein complex

One class of important biomolecular interaction involves the binding of protein to DNA. In a cell, DNA-

protein interaction such as binding of transcription factors onto specific DNA sequences controls the

transcription of genetic information from DNA to mRNA. As described in Chapter 2, DNA aptamers that

can bind to specific target proteins are also recently gaining popularity for use in detecting and

quantifying biomarkers for clinical diagnostics"4.

The HNA device can be used as a platform to selectively concentrate larger DNA-protein

complex in a continuous flow manner and achieve rapid quantification of the target protein. To

demonstrate this, we performed experiment using biotinylated fluorescent single stranded DNA (15 bp,

Integrated DNA Technologies) which can bind to streptavidin (target protein). Figure 3.5 shows the

experimental results in a d, = 53 nm device. When 4 pM of the fluorescently labeled single stranded DNA

(ssDNA) in TBE 5x was injected, migration of ssDNA followed the direction of electrophoresis, but the

fluorescent profile in the HNA device appeared uniform. This is because the ssDNA is very small

(persistence length ~ 1.5 nm) compared to the size of the nanogap and Ogston sieving is not significant.

However, as shown in Figure 3.5b, when 2 ptM of the streptavidin was added to the DNA probes, we saw

a focused band in the center of the herringbone channel. Streptavidin is a globular protein (-3.5 nm) that

can bind a maximum of 4 biotin moieties, therefore the total size of the DNA-protein complex is about 8

nm. Ogston sieving could occur and lead to continuous concentration of larger DNA-protein complex.

Figure 3.5c shows the experimental results when the polarity of the electric field is reversed. Instead of

concentrating in the center of the herringbone nanofilter array, the DNA-protein complex now

concentrated at the sides of the nanofilter array as expected.

Although focusing of the DNA-protein complex was observed, the concentration factor was not

high. This is probably due to the relatively small size of the DNA-protein complex compared to the gap

height. Also, smaller molecules tend to have higher diffusion constant, which contributes to more

dispersion of the concentrated band. To optimize the performance of this assay, a nanofilter array with

smaller gap size should be used in the future. The ability to detect DNA-protein complex formation
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makes this device a useful tool to screen for transcription factors that bind to specific DNA sequences, or

to detect target proteins that bind to a specific aptamer. By virtue of the continuous flow operation of this

device, one could also envision using this to select and purify aptamers that bind to a target protein from a

DNA library by collecting the concentrated DNA-protein complex.
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Figure 3.5: Size based concentration of DNA-protein complex in HNA device (d, = 53 nm). a) Without

any target protein, the fluorescent DNA does not concentrate in the HNA device, b) Upon adding the

target protein, larger DNA-protein complex could concentrate in the center of the HNA device, c)

Reversing the electric field polarity cause the DNA-protein complex to concentrate at the side of the HNA

device.



3.6 Differential concentration of protein-protein complex

Protein-protein interactions that form complexes are important for the normal function of the cell. These

range from simple receptor-ligand binding to complicated multi-protein assemblies such as ribosomes and

proteosomes that perform essential cellular functions. Abnormal protein-protein interactions leading to

large protein complex formation could cause diseases such as Alzheimers and encephalopathies45 .

The herringbone nanofilter array is also capable of performing size-based concentration of protein

complexes under native conditions. As a proof of concept, we performed experiments using Alexa Fluor

488-conjugated streptavidin as a probe molecule to detect biotinylated BSA. The experiment is performed

using a ds = 80nm device in TBE 1 x buffer. In the negative control, the fluorescent streptavidin migrated

in the direction of electroosmosis but no concentration effect was observed due to its small size compared

to the nanogap. However, as we add in the target protein, we observe a brighter band in the center of the

channel, due to concentration of the larger streptavidin-biotinylated BSA complex (Figure 3.6a). Figure

3.6b is a plot of the fluorescence intensity profile across the herringbone nanofilter array for experiments

with different concentrations of biotinylated BSA while the concentration of the fluorescent streptavidin

probe molecule is kept constant at 20 pg/mL. The dose response curve in Figure 3.6c shows that the

fluorescence peak height of the concentrated complexes initially increases with the addition of the target

molecules, but when the target molecules are beyond a certain concentration, the fluorescence peak height

starts to decrease. This is the well known high-dose Hook effect4 6 . When the concentration of the target

molecules overwhelms the probe molecule, all the binding sites of the probe molecules are saturated and

large complexes cannot form. The point when maximum large complex is formed is known as the

equivalence point.

Figure 3.7 shows the experiments conducted in the same device with reversed electric field

polarity. Instead of concentrating at the center of the herringbone nanofilter array, the protein-protein

complexes focused near the sides of the nanofilter array. The dose response curves are similar for both

cases. Quantitative detection of the target protein is possible in both device configurations.



A
0 ug/mL

100 V TBE 1X 0 V

0.2 ug/mL

2 ug/mL

20 ug/mL

200 ug/mL

B

-,)
Cd0)

C

)

0

C3

U_
Ca)

.-0

LLE

~3

E
x

C

a)

110
100-

90-
80 -
70
60
50
40
30-
20
10-

0-

120-

100-

80-

60-

40-

20-

0-
0.01

0 50 100

-100 V

-oug/mL
-0.2 ug/mL

2 ug/mL
- 20 ug/mL
-- 200 ug/mL

150 200

0.1 1 10

Biotin-BSA Concentration (pg/mL)

Figure 3.6: Size based concentration of protein-protein complex under native conditions in HNA device

(ds = 80nm). a) Experimental results showing behavior of protein-protein complex in HNA device at

different target protein concentrations. b) Fluorescent intensity profile of the focused molecules at

different target protein concentrations. c) Maximum peak height vs target protein concentration.

.... ,
100



A
0 ug /mIL

0 V TBE 1X 100 V

0.2 ug/miL_

B 110- 0 ug/mL
100- - 0.2 ug/mL

- 2 ug/mL
S 90- 20 ug/mL

80 200 ug/mL

70-

60
50-

c 40-
(Do 30-
CO
2 20'
0
.2 10

0-

0 50 100 150 200

C 120 100 V

100-

( 80-
0

o."

C

0

0 40-

N
: 20-

Eo 0-
Z 0.oi 0.1 1 10 100

Biotin-BSA Concentration (pg/mL)

Figure 3.7: Size based concentration of protein-protein complex under native conditions in HNA device

(d, = 80 nm) under reversed electric field polarity. a) Experimental results showing behavior of protein-

protein complex in HNA device at different target protein concentrations. b) Fluorescent intensity profile

of the focused molecules at different target protein concentrations. c) Maximum peak height vs target

protein concentration.

20 ug/mL



3.7 Differential concentration of antibody-antigen complex

Finally, we demonstrate the utility of the herringbone nanofilter array to perform a homogeneous

immunoassay. Owing to their high sensitivity and specificity, immunoassays have been widely employed

for clinical diagnostics and biochemical studies. Most of the common immunoassays feature a

heterogeneous format, where antibodies are immobilized on a solid-phase support. The surface-bound

antibodies selectively capture target molecules from the sample, which could then be detected by a second

round of immunobinding and enzyme amplification. Although detection sensitivity is high, it is

challenging to implement heterogeneous immunoassay in point-of-care diagnostic platforms due to the

multiple washing steps, slow reaction kinetics, and the loss of antibody activity upon immobilization.

Homogeneous immunoassays, on the other hand, are ideally suited for point-of-care diagnostic

platforms as they do not require any manual washing step and features very fast solution phase kinetics.

The only requirement is a way to detect the antibody-antigen complex from free antibodies. This has been

achieved by separating immunocomplexes from the unbound antibodies by gel electrophoresis and

recently by using the ANA structure 2 . In these separation methods, there is always a tradeoff between

signal and separation resolution as molecular dispersion inevitably reduces detection sensitivity. Here,

using the HNA platform, we demonstrate that differential concentration of immunocomplexes allows us

to quantitatively detect low abundance biomarkers. As this device concentrates immunocomplexes instead

of letting them disperse as in normal separation methods, high signals are obtained which facilitates

detection.

In the current study, we examined the human C-reactive protein (CRP) as a model biomarker.

CRP is a pentameric serum protein with a molecular weight of ~115 kDa47-49. During acute inflammation

such as cardiovascular diseases, CRP level in serum is upregulated, and the clinical cutoff value is 3-5

gg/mL. For our experiment, we used the d, = 80 nm HNA device. CRP and 10 gg/mL FITC-labeled

antibody were mixed in 1 x TBE containing 0.5% BSA off chip. After 30 minutes incubation for binding

reaction to occur, the mixture was injected into the HNA device via applied voltage. Migration of the free

antibodies and antibody-antigen complex followed the direction of electroosmosis. In the negative
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control, there was a uniform fluorescence intensity profile throughout the HNA device, indicating that the

free antibodies do not concentrate in the 80 nm device. With increasing concentration of CRP, a

concentrated fluorescent band starts to appear in the center of the HNA device, indicating formation of

large antigen-antibody complexes which undergo Ogston sieving (Figure 3.8a). In order to study the

effects of electric field strength on the performance of this device, we performed the experiments at 4

different applied voltages (10 V, 20 V, 50 V and 100 V). The fluorescence intensity profiles across the

HNA for different antigen concentrations and different applied voltages are plotted in Figure 3.8b.
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profile of the focused molecules at different target protein concentrations and applied voltage.
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Figure 3.9 shows the dose response curve for detection of CRP molecules using the HNA device. As

before, the fluorescence intensity of the concentrated band increases with the amount of CRP. At very

high dose of CRP, however, the Hook effect was observed due to saturation of the antibody binding sites

that prevent large complex formation.

The field strength (flow speed) affects different sized molecules differently in the HNA device.

We can investigate this effect by looking at the dose response curve for experiments run at different

applied voltages. The concentration factors in the center of the HNA depend on the amount of the

biomolecular complexes ccomplex that are accumulated within their trapping lifetime Ttrap. In Figure 3.9 we

see an interesting effect where the maximum concentration factor was around 1 ptg/mL CRP for low

voltages operation (10 V), but the maxima became 10 gg/mL CRP for high voltage operation (50 V and

100 V). We hypothesize that this crossover is due to the combined effects of trapping lifetime and

accumulation rate of the complexes. At low voltage operation, the trapping lifetime is the dominant effect,

thus the maximum concentration factor was achieved around 1 4g/mL CRP when the largest

biomolecular complexes are formed. At higher voltage operation, the Ogston sieving effect becomes less

dominant50 . As the size dependence of trapping time is reduced, the accumulation rate of biomolecule

complex becomes the dominant effect. There are more, albeit smaller, biomolecule complexes being

formed at 10 gg/mL CRP. Since the accumulation rate depends directly on the concentration of the

biomolecule complex, the maxima in concentration factor shifts to 10 pg/mL CRP at high voltage

operation. The effect of field strength on size-dependent sieving is also apparent from the slope of the

dose response curve. At low CRP concentrations, the slope of the dose response curve is highest at low

voltage operation, indicating better size selectivity at low electric field conditions. Therefore, the

optimum condition for operating the HNA device would be low electric field to best discriminate

different sized biomolecule complexes. From the dose response curves, we can detect CRP concentrations

as low as 10 ng/mL. This value is low enough to conduct clinical diagnosis of CRP (cutoff value 3-5

gg/mL).



45

-e-20V
>% 36- -A- 50V

-v- 100V.

eV

S27-

W

o 18
Is 1 1 1 11 1 1 11 11 ' illi I u U I illi I li 

1E-3 0.01 0.1 1 10 100

CRP Concentration (gg/mL)

Figure 3.9: Dose response curve for detection of CRP molecules using the HNA device under different

applied voltages.



3.8 Summary

In this chapter, we introduced the HNA device which allows continuous flow size-selective concentration

of biomolecules. This is the first time that a continuous flow size-based concentration method has been

realized, and it would be a useful technique to improve the sensitivities of various biological assays that

utilize size-based fractionation. The concentration capability of this device is particularly useful in

microfabricated lab-on-chip systems, where the low optical path length reduces detection sensitivity. The

continuous flow format also makes this device an attractive sample preparation tool to continuously

purify and concentrate target molecules based on size from a sample before performing downstream

analysis.

In this work, we show how we make use of this device to interrogate biomolecular interactions,

including protein-DNA binding, protein-protein interaction and antibody-antigen binding. The final

example demonstrates a novel method to perform homogeneous immunoassay for biomarker detection at

clinically relevant concentrations. In view of the rapid kinetics and ease of use, size based concentration

could be a new paradigm for rapid quantification of biomarkers in point-of- care diagnostic systems.
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Chapter 4

Multiplexed Single Cell Kinase Activity Assay

Kinases are an important family of proteins that regulate the majority of cell signaling pathways. They

transmit information by catalyzing the phosphorylation of a specific substrate, thus modulating its

activity. As the substrates of kinases are often kinases as well, information can be propagated through

multiple signal transduction pathways, often with signal amplification. Interactions of multiple kinases in

the signal transduction network lead to different outcomes in response to stimuli, which affects cell fate

(Figure 4.1). Because of its importance in cell decision processing, there is tremendous interest in

quantifying the dynamics of kinase activities in cells. Kinases are also receiving widespread attention in

pharmacology industries, as they are important drug targets for diseases such as cancer. To test new

targeted therapeutics, it is critical to develop sensitive analytical tools to detect abnormal activation of

kinase pathways and to monitor their inhibition in response to treatment".

Recent studies have found that many anti-cancer drugs kill most but not all the cells in a tumor,

often resulting in relapse of cancer 3 . It has been proposed that non-genetic cell-to-cell variability in

protein activity, among other things, lead to this different response to drugs4. As most conventional

techniques provide only a population-averaged measurement of the signals within the regulatory pathway,

they do not reflect an accurate picture of a heterogeneous population of cells being in different states of

intracellular processing 5-7. A platform technology that can reliably assay for kinase activity from single

cells is a valuable tool for biologists to study how individual cells develop into different cell fates and

correlate with their phenotype.
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Figure 4.1: Diagram showing part of the cellular signal transduction network. Nodes in the network are

protein kinases that transmit signal downstream by phosphorylating downstream kinases. Note the

interconnectivity between different signaling pathways. Highlighted nodes (AKT, MK2, PKA) are

important kinases that we measure in our assay. (Adapted from review of Hanahan and Weinberg).



4.1 Antibody based method vs direct activity measurement

Currently, phosphospecific antibodies to kinases are widely used to estimate their activity, since many

kinases are themselves activated by phosphorylation. However, the availability of specific and high

affinity antibodies against different kinase isoforms presents a major bottleneck for the general use of this

technique. Furthermore, antibody-based methods could not detect modulation of intracellular kinase

activities due to other post-translational modifications, protein-protein associations such as protein

scaffolds" 1, and drug interaction.

On the other hand, direct kinase activity assays measure the ability of kinases to catalyze

phosphorylation of a target protein or peptide substrate. These assays include measuring the incorporation

of radiolabeled phosphate from [y- P]ATP into a peptide or protein substrate13' 14, mobility shift assays in

which phosphorylated and unphosphorylated substrates are electrophoreticaly separated and quantified 15

16 and a variety of fluorescence based methods including homogeneous time-resolved fluorescence1',

fluorescence resonance energy transfer 8 chelation-enhanced fluorescence 9, and fluorescence

polarizationi8, 20 techniques. A common limitation of direct kinase activity assay is the specificity of the

enzyme towards the peptide substrate. Kinases often have overlapping substrate specificity leading to off-

target cross-reactivity. Therefore, steps need to be taken to first isolate the target kinase from cell lysate

by immunopurification. Otherwise, pharmacological inhibitors of off-target kinases are required to

improve the specificity of the direct kinase activity assays.

4.2 Single cell kinase activity assay

In order to address the issues related to cellular heterogeneity in signal transduction, one would need

measurement of various kinase activities at the single cell level. Currently, the most advanced methods

for single cell level kinase measurement involve imaging live cells that are genetically encoded for a

substrate molecule that can report the activity changes within the cytoplasm" 3 . These live-cell imaging

methods are very powerful as they could yield spatio-temporal information about kinase activation;

however they are limited in the number and types of enzymes that can be measured simultaneously in



single cells. In addition, expressing a reporter molecules involve laborious genetic engineering of a cell

line to encode a fluorescent protein, and could alter the normal function of the cell line. Therefore, while

useful for scientific studies of cell decision processes using cell cultures, it is generally not suitable for

measuring kinase activity in primary cells such as patient-derived tumor samples. A second strategy that

has been developed involves microinjecting fluorescent kinase substrates into single cells, lysing them

and performing capillary electrophoresis to separate and quantify the phosphorylated and

unphosphorylated substrateis, 34-36. In this second method, it is possible to perform simultaneous

measurements of several enzymes within the same cell, although it does not yield any spatial information

about enzyme activation. However, in combination with techniques such as GFP-kinase translocation,

enzyme activation and spatial location can be measured in the same cell' . In all the methods described

above, substrate specificity would be an issue since there is significant substrate cross-reactivity among

intracellular kinases. Since the living cell is a reaction vessel where the kinase catalyzed reaction takes

place, strategies to improve substrate specificity such as addition of off-target kinase inhibitors cannot be

implemented without perturbing the normal function of the cell. In addition, intracellular kinase substrate

reporters are subjected to other cellular processes such as proteolysis and dephosphorylation during

intracellular kinase reaction 5 , thus obfuscating the actual activity of the target kinase.

Ideally, to obtain single cell kinase activity measurement that can be comparable to conventional

bulk lysate kinase activity measurement, it is preferable to rapidly lyse a single cell and allow the lysate to

react with the substrate for a defined period of time, instead of loading substrate into the cell before lysing

it. Substrate loading by microinjection could result in membrane or organelle damage, which in turn

activates other undesirable stress response pathways in the cell 15 . Also, as mentioned above, injected

substrates are subjected to intracellular off-target kinase reaction, proteolysis and dephosphorylation due

to lack of kinase, protease and phosphatase inhibitors. On the other hand, lysing a cell first and then

allowing the lysate to react with substrate preserves the snapshot of cell signaling state during rapid lysis,

and various inhibitors can be added to the reaction mix to increase kinase specificity as well as prevent

proteolysis and dephosphorylation. However, as the intracellular content of a single cell is released during
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lysis, they immediately undergo a dilution factor proportional to the size of the reaction vessel. This

necessitates an ultrasensitive assay in order to detect kinase activity at such low enzyme concentration.

4.3 Electrokinetic concentration enhanced kinase activity assay

Since the electrophoretic mobility of a kinase peptide substrate is modified upon phosphorylation, we

could use the same concentration-enhanced mobility shift assay platform, described previously in Chapter

2, to increase the sensitivity of kinase activity assay. Furthermore, due to the separation capability of the

concentration-enhanced mobility shift assay platform, it would be possible to simultaneously separate and

concentrate two or more kinase substrates from their phosphorylated product at the same time. This would

allow us to simultaneously monitor several kinase activities from the same sample, and enable users to

measure the interactions between different nodes in the complex signal transduction network.

Figure 4.2 reiterates the key operation of the poly(dimethylsiloxane) (PDMS) microfluidic

electrokinetic concentration chip. Under the voltage configuration shown in Figure 4.2a, ion depletion

zones are created in the sample channels at the vicinity of the ion selective membrane due to

concentration polarization phenomena. The conductivity gradient at the boundary of the ion depletion

zone gives rise to a stable electric field gradient that can effectively focus negatively charged

biomolecules at separate locations where electrophoretic velocity balances bulk flow velocity. In this

work, fluorescently labeled peptides which contained the recognition sequences for specific kinases are

used as substrates. Target kinases in the sample catalyze the phosphorylation of these peptides, leading to

an increase in electrophoretic mobility (Figure 4.2b). Phosphorylated peptides, which have higher

electrophoretic mobilities due to the negative-charged phosphoryl group, are concentrated at the low

electric field region. On the other hand, unphosphorylated peptides have a lower mobility; therefore they

concentrate nearer to the cation selective membrane where the electric field is higher (Figure 4.2c). In

this manner, we can obtain good separation between phosphorylated and unphosphorylated substrates,

while at the same time achieve continuous signal enhancement for greater sensitivity.
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4.4 Experimental section

4.4.1 Reagents and chemicals

Unless stated otherwise, all chemicals used in the experiments were purchased from Sigma (St. Louis,

MO). 5-FAM labeled peptide substrates for AKT (GRPRTSSFAEG, Crosstide 37 ) and PKA (LRRASLG,

Kemptide38) were obtained from Anaspec (Fremont, CA). 5-FAM labeled peptide substrate for MK2

(AHLQRQLSIA, MK2tide39) was custom synthesized by Selleck Chemicals (Houston, TX). All other

custom peptides were synthesized by Selleck Chemicals. Recombinant AKT, MK2 (MAPKAPK2) and

PKA kinases were obtained from Invitrogen (Carlsbad, CA). The kinase inhibitors PKI-tide, GF109203X,

PKC inhibitor peptide and Calmidazolium were obtained from Calbiochem (San Diego, CA). Protease

inhibitors (protease inhibitor cocktail III) and phosphatase inhibitors (phosphatase inhibitor cocktail 1)

were also obtained from Calbiochem. Ampholytes (Fluka) were purchased from Sigma (St. Louis, MO).

Table 1 lists the buffer recipes used in the experiments.

Table 4.1: Buffer recipes

Buffer Recipe

25 mM Tris-HC (pH 7.5), 10 mM MgC12, 1 mM ATP, 1 mM DTT,
Buffer A

0.01% Triton X-100, 200 pg/mL BSA

Buffer B 5 mM Tris-HCl (pH 7), 100 pg/mL BSA

50 mM Tris-HC (pH 7.5), 150 mM NaCl, 15 mM MgC12, 5 mM p-glycerolphosphate,
Buffer C

1 mM EGTA, 0.2 mM Na3VO 4,, 0.2 mM DTT, 200 pg/mL BSA

1% Triton X-100, 50 mM p-glycerolphosphate, 10 mM sodium pyrophosphate,

Buffer D 30 mM NaF, 1 mM benzamidine, 2 mM EGTA, 100 pM Na3VO4,, 1 mM DTT,

10 pL/mL protease inhibitors, 10 ptL/mL phosphatase inhibitors



4.4.2 Microchip operation

The microchips were fabricated as described in Chapter 2. Before the experiment, the PDMS device

channels were passivated with 1% BSA for 1 hour to reduce nonspecific binding of the sample to channel

walls. After that, the channels were flushed with DI water 3 times and filled with buffer solution (5 mM

Tris-HCI, pH 7) until the samples were ready to be loaded.

Samples were loaded into each of the five inlet reservoirs and drawn into the microchannel by

applying a brief suction at the outlet reservoir. The liquid height difference between the inlet reservoir and

the empty outlet reservoir caused a well-controlled gravitational flow of sample solution from inlet to

outlet, without any need for external pump.

Electrodes were inserted into the inlet and buffer reservoirs on the chip and connected to a power

supply (Stanford Research Systems, Sunnyvale, CA). To initiate the concentration-enhanced mobility

shift assay, we applied 50 V at the inlet reservoirs while grounding the side channels. An ionic

concentration gradient was induced near the ion-selective membrane by concentration polarization effect.

Meanwhile, charged sample molecules are continuously separated and stacked at the location where its

electrophoretic velocity equals the bulk flow velocity. The fluorescent intensity of the stacked molecules

increases linearly with time while background noise remained constant, resulting in a high signal-to-noise

ratio.

4.4.3 Measurement instrument and image analysis

An inverted epifluorescence microscope IX 71 (Olympus, Center Valley, PA) equipped with a cooled

CCD camera (SensiCam, Cooke Corp., Romulus, MI) was used for fluorescence imaging. A mechanical

shutter which only opens for 100 ms every 5 s when images are taken was used to prevent photobleaching

of the fluorescent molecules. The images were analyzed using the NIH ImageJ software. Flat-field

correction was performed by dividing a reference image of the device taken before each experiment.

Concentrations of phosphorylated and unphosphorylated peptide substrates were assumed to be directly

proportional to the focused peak height as demonstrated in previous work40 4 1 . Phosphorylation ratio was

calculated by dividing the peak height of the phosphorylated substrate by the sum of the peak heights of
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the phosphorylated and unphosphorylated substrates. Dose response curves and statistical analysis was

obtained using Origin 7 software (OriginLab Corp., Northampton, MA).

4.4.4 Recombinant kinase experiment

We first performed an experiment with recombinant AKT and its fluorescent peptide substrate Crosstide

(5-FAM-GRPRTSSFAEG). We first diluted 0.5 sL of the recombinant kinase with 4.5 gL of the

premixed assay buffer (Buffer A supplemented with 1 pM substrate) and incubated at room temperature

for 60 minutes. After that, 1 pL of this mixture is diluted in 99 ptL of run buffer (Buffer B) and 30 pL of

this final sample is used for the concentration-enhanced mobility shift assay. Figure 4.3a shows the

representative results for this experiment. During 15 minutes of electrokinetic concentration, two dictinct

bands corresponding to the phosphorylated substrate (left) and and unphosphorylated substrate (right)

were formed in each sample channel. The fluorescence intensities of these bands increased linearly with

time and both bands were baseline resolved. Since this is a ratiometric assay, we can extract the fraction

of phosphorylated substrate for each sample by dividing the fluorescence intensity of the phosphorylated

substrate band by the total fluorescence intensity of both bands. Kinase reaction velocities can be directly

calculated from these measurements without any need for calibrations. Besides, a ratiometric assay is

relatively insensitive to external influences such as variable flow rate, light intensity etc., and thus is

highly reproducible. Figure 4.3b showed a dose response curve for the recombinant AKT assay. The

limit of detection for recombinant AKT was calculated to be 1 ng/mL.

To demonstrate the general applicability of this assay for activity measurement of other kinases,

we performed a separate experiment with recombinant MK2 and PKA with their respective fluorescent

peptide substrates MK2tide and Kemptide (MK2: 5-FAM-AHLQRQLSIA, PKA: 5-FAM-LRRASLG).

Except for replacing the substrates, the recombinant MK2 and PKA assay was done with the same

conditions as the recombinant AKT experiment. From the dose response curve in Figures 4.4a and 4.4b,

the LOD for recombinant MK2 and PKA were 1.2 ng/mL and 0.7 ng/mL respectively within 15 minutes

of electrokinetic concentration.
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Figure 4.3: Multiplexed electrokinetic concentration-enhanced mobility shift assay for detection of

recombinant AKT activity (a) With increasing recombinant AKT concentration, the phosphorylated

substrate peak increases and the unphosphorylated substrate peak decreases, (b) Dose response curve for

recombinant AKT activity assay. Plotted values indicate the mean ± s.e.m. for duplicate measurements.

The limit of detection was calculated to be 1 ng/mL.
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Figure 4.4: Dose response curves for a) Recombinant MK2 and b) Recombinant PKA activity assay.

Error bars represent standard error from two replicates. Plotted values indicate the mean ± s.e.m. for

duplicate measurements. The limit of detections for recombinant MK2 and recombinant PKA were

calculated to be 1.2 ng/mL and 0.7 ng/mL respectively.



4.4.5 Substrate cross-reactivity

In the experiments with recombinant kinases, the kinase activities can be unambiguously inferred by

measuring the substrate phosphorylation fraction after a fixed amount of time. The concentration-

enhanced mobility shift assay in this current format can be a useful platform in drug development

applications, such as measuring the changes in recombinant kinase activities in the presence of novel

small molecule drugs.

In order to assess the substrate specificity of our kinase of interest, we measured the pair-wise

cross-reactivity between each substrate and kinase. Briefly, 1 pM of each substrate was separately reacted

with a fixed amount (100 ng/mL) of each recombinant kinase in the assay buffer (Buffer A) for 1 hour at

room temperature, and the phosphorylation fraction was measured on the concentration-enhanced

mobility shift assay platform as described previously.

Figure 4.5 shows the results of this experiment. As expected, the degree of substrate

phosphorylation is greatest when a kinase react with its target substrate (Kemptide for PKA, Crosstide for

AKT, MK2tide for MK2). However, this assay also detected a small amount (<10%) of off-target

phosphorylation. This is not surprising as kinases often have overlapping substrate specificity that could

lead to off-target cross-reactivity.

Off-target kinase reactivity could present an accuracy problem when measuring specific kinase

activities in complex samples such as crude cell lysates. Furthermore, the presence of other intracellular

enzymes such as proteases and phosphatase could affect the stability and phosphorylation state of the

substrates. This is one major limitation of many existing single cell kinase activity assays, where

substrates that are microinjected into or expressed within the cell are subjected to the activity of other

intracellular enzymes such as off-target kinases, proteases and phosphatases.

In order to improve the specificity of the kinase activity assays, inhibitors of off-target kinases,

proteases and phosphatases can be added in the reaction buffer. It has been shown that these inhibitors can

effectively suppress the activity of their target enzymes without affecting the activity of the kinase of

interest'. In our subsequent experiments using bulk cell lysate and single cells, we adopted this strategy
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of adding a cocktail of protease, phosphatase and off-target kinase inhibitors to improve our assay

specificity.
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4.4.6 Cell lysate experiment

To show the application of this assay with real samples, we repeated the kinase activity experiments with

diluted HepG2 cell lysate. Cell culture, treatment, and lysis were conducted basically as in Shults et a119.

HepG2 cells (a human hepatoblastoma cell line) were obtained from ATCC (Manassas, VA). HepG2 cells

were seeded on 10-cm tissue culture-treated polystyrene plates at Ix105 cells/cm2 in Eagle's minimum

essential medium (EMEM; ATCC) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan,

UT), 100 U/ml penicillin (Sigma, St. Louis, MO), and 100 pg/ml streptomycin (Sigma) and were

incubated at 370 C in 5% C02. One day after seeding, medium was changed to fresh EMEM without FBS.

One day after medium change, HepG2 cells reached confluence and were stimulated with 500 ng/mL

insulin (Sigma) in EMEM (to activate AKT) or 25 pM forskolin (Sigma) in EMEM without FBS (to

activate PKA), or left untreated (EMEM without FBS). For both conditions (activated and unactivated),

cells were placed on ice 30 minutes following stimulation and culture medium was removed. Cells were

lysed with lysis buffer (Buffer D, containing protease and phosphatase inhibitors) for 20 minutes at 4'C

followed by scrapping. Lysates were clarified by centrifugation at 16,000g for 15 minutes at 4'C.

Clarified lysates were analyzed using a bicinchonicic assay (Pierce, Rockford, IL) to determine the total

cellular protein concentration. Stock lysates were divided into single-use aliquot and stored at -80'C.

We first demonstrate the results with AKT kinase activity assay. Insulin stimulation is known to

increase the activity of AKT in vivo. Therefore, we compared the activity of serum starved HepG2 cell

lysate and insulin stimulated HepG2 cell lysate. To perform the cell lysate kinase activity experiment,

assay buffer (Buffer C with 4 jiM PKC inhibitor, 4 pM calmidazolium, 1 pM fluorescent Crosstide, 1

mM DTT, 1 mM ATP, 0.4 pM PKI-tide, 5 RM GF109203X) was prepared in bulk and 18 pL volumes

were aliquoted into separate microcentrifuge tubes. To begin each reaction, 10% (vol/vol) lysis buffer

(Buffer D) or lysate (diluted in lysis buffer to stated concentrations) was added and the contents were

mixed gently. Reaction was carried out at 37 'C for 60 minutes. After that, reaction was stopped by

diluting 1 pL of this mixture in 99 piL of run buffer (Buffer B). 30 jiL of this final sample was used for



the concentration-enhanced mobility shift assay. Figure 4.6a shows the results for this experiment. We

observed no phosphorylated substrate band for the negative control samples (containing lysis buffer but

not HepG2 cell lysate). For the same final cell lysate concentration (down to the lowest tested

concentration of 2.16 pg/mL), the insulin stimulated sample consistently showed a higher fraction of

phosphorylated substrate compared to the serum starved sample, confirming the utility of our assay to

measure changes in cellular kinase activities in response to stimuli. The cells used in this experiment have

about 1 ng of protein per cell. Detection from a final volume of 30 pL run buffer, after a total of 100-fold

dilution of a 2.16 pg/mL of cell lysate, represents kinase assay from ~0.6 cell. This demonstrates the

sensitivity of our assay for single cell level studies of cell signaling pathways.

We also performed similar experiments measuring PKA activity from HepG2 cell lysate.

Forskolin stimulation is known to increase the intracellular level of cAMP and upregulate PKA activity.

The experimental procedure was similar to the cell lysate AKT activity measurement, except that the

substrate was replaced by 1 pM fluorescent Kemptide and PKI-tide (which is a kinase inhibitor for PKA)

was left out. Figure 4.6b shows that consistent with expectation, the forskolin stimulated sample

consistently showed a higher fraction of phosphorylated PKA substrate compared to the serum starved

sample. This shows that our platform can be generally applied to measure activities of different kinases

with high sensitivity from physiological samples.
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Figure 4.6: a) Representative experimental results showing multiplexed electrokinetic concentration-

enhanced mobility shift assay for detection of AKT activity in serum-starved (SS) and 5 minutes 500

ng/mL insulin-stimulated (IS) HepG2 cell lysate, b) Dose response curve of AKT activity in different

concentrations of serum starved and insulin treated HepG2 cell lysate showing upregulation of AKT

activity by insulin, (c) Dose response curve of PKA activity in different concentrations of serum starved

and forskolin (25 pM, 30 mins) treated HepG2 cell lysate showing upregulation of PKA activity by

forskolin. Plotted values indicate the mean ± s.e.m. for duplicate measurements.



4.5 Multi-substrate separation

So far, in both the concentration-enhanced aptarner and kinase activity assays, we have demonstrated

simulataneous concentration and separation of two species (free aptamer vs aptamer-protein complex,

phosphorylated vs unphosphorylated peptide substrate). This phenomenon can be understood by

considering the diagram in Figure 4.7a, which show electrofocusing of two species with different

electrophoretic mobility at the electric field gradient formed around the ion depletion zone boundary. An

examination of Figure 4.7a, which shows electrofocusing of free aptamer and aptamer-IgE complex in 5

mM Tris-HCl buffer without any additives, suggests that the spatial extent where the electric-field

gradient is significant (distance between the two bands) spans only a short distance of the order of 100

42ptm. This is consistent with previous in-situ electric field measurements , which shows a 30-fold

amplified electric field in the ion depletion zone (width ~ 200 pm) compared to outside the depletion

region. This sharp electric field gradient is key to the very high preconcentration factors43 reported for this

device as biomolecules experience a very high trapping force in this steep potential well. Given this

situation, it would be difficult to observe clear separation of more than two analytes, since the region in

which separation could occur is very short and molecular diffusion would cause closely-separated bands

to merge and appear indistinguishable.

In studies related to the signal transduction network, investigators are often interested in

understanding the functional relationship between activities of different kinases in the network. By

measuring and comparing kinase activities between different signaling pathways, we could deduce how

the different input stimuli are integrated and processed to produce different cellular response.

Unfortunately, most current single cell kinase activity assays lack the capability of looking at more than

one single kinase activity at a time.
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Figure 4.7: a) Experimental results and schematic showing simple electrofocusing of free aptamers and

aptamer-IgE complex in 5 mM Tris-HCl buffer without any additives, b) Experimental results and

schematic showing depletion zone isotachophoresis of free aptamers and aptamer-IgE complex in 5 mM

Tris-HCl buffer with 100 pg/mL BSA. Preconcentration of the intermediate mobility species creates an

electric-field plateau which increases the separation distance between the two analytes of interest.



We discovered that addition of an appropriate high-abundant species in the buffer during the

concentration-enhanced mobility shift assay result in a larger separation distance between the two

fluorescent bands. The separation distance increases proportionally to the amount of the high-abundant

species added. Interestingly, the peak width of the focused band remained narrow, suggesting that the

electric field gradient is still very steep despite the larger separation distance. This phenomenon is shown

in Figure 4.7b, where we observed a significant increase in separation distance between the free aptamer

band and the aptamer-IgE complex band in buffer containing 100 pg/mL BSA, all other conditions being

the same.

This phenomenon is thought to be due to preconcentration of an intermediate mobility species

(BSA in this case) to such high concentrations that it is capable of changing the electric field profile

according to the Kohlraush Regulating Function (KRF), as is commonly observed in isotachophoresis

(ITP) experiments. Other experiments and theoretical analysis strongly supports this hypothesis44.

Qualitatively, as preconcentration increases the local concentration of the intermediate mobility species (a

co-ion), the high mobility co-ions in the same regions are displaced in order to maintain electroneutrality.

This leads to a lower conductivity and sustains higher electric field in this region. Continuous

preconcentration of the intermediate mobility species eventually expands the spatial extent of this low

conductivity region, leading to a high electric field plateau.

Figure 4.7b shows the schematic of the electric field profile modulated by preconcentration of a

high abundant intermediate mobility species. The electric field gradient remained steep where focusing of

the free-aptamer and aptamer-protein complex occurs. Meanwhile, the region where the intermediate

mobility BSA focuses forms an electric-field plateau which increases the separation distance. This

staircase-like electric field profile is unique in the aspect that it could increase the spatial separation

resolution between target analytes while still keeping the individual bands narrowly focused at local

regions where the electric field gradient is steep. This suggests a method where we can simultaneously

separate and focus multiple kinase substrates and products by "adding more steps on the staircase" -

adding more intermediate mobility species between the analytes of interest as shown in Figure 4.8. By
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adding suitable spacer molecules with appropriate mobilities at various concentrations, we can engineer

an optimal electric field profile to perform a concentration-enhanced multiple kinase substrate mobility

shift assay.

Substrate 1 E-field
Phosphosubstrate 1

Substrate 2

Phosphosubstrate 2

Intermediate
mobility spacer

Figure 4.8: Schematic showing a strategy to simultaneously separate and focus multiple kinase

substrates. Upon adding suitable spacer molecules with intermediate mobilities at various concentrations,

depletion zone isotachophoresis results in a staircase-like electric field profile that increases the

separation resolution between multiple kinase substrates.



The problem now reduces to how we would design a mixture of spacer molecules for optimal

concentration and focusing. There are two main design considerations: 1) the spacer molecules should

have electrophoretic mobilities in between the two analytes to be separated, 2) the concentration of the

spacer molecules should be sufficient to provide the desired resolution, but not too high to avoid

excessive voltage drop and therefore reduction of electric fields at the analyte focusing areas. In the

absence of any knowledge about the actual analyte and spacer mobilities, one could turn to commercially

available mixtures of compound which contains a wide range of molecules with different mobilities.

Some compounds in this mixture are likely to have the appropriate mobility to act as a spacer for this

purpose. One such mixture is commercially available ampholytes, which are a blend of zwitterionic

compounds commonly used for isoelectric focusing (IEF). Ampholytes are designed to have a continuous

range of isoelectric points and as such the compounds are expected to have a variety of different charges

and mass (and thus different mobilities) at a particular pH. These compounds have also recently gained

renewed interest for use in isotachophoresis as spacer molecules 45' 46. Figure 4.9 illustrates the utility of

ampholytes as spacer molecules in the concentration-enhanced mobility shift assay. According to the

principle of depletion-zone isotachophoresis, compounds in the ampholyte stack in the order of their

mobilities. This creates an extended separation zone where the equilibrium focusing position of individual

fluorescent analytes are well resolved.



Ampholyte stack according to mobilities, form spacer

Figure 4.9: According to the principle of depletion-zone isotachophoresis, compounds in the ampholyte

stack in the order of their mobilities. This creates an extended separation zone where the equilibrium

focusing position of individual fluorescent analytes are well resolved.

We performed experiments in an attempt to two separate fluorescent peptide substrates (5-FAM-

GRPRTSSFAEG for AKT and 5-FAM-LRRASLG for PKA kinases) and their products by adding

different ampholytes (0.001%) to the buffer (5 mM Tris-HCl, pH7). As shown in Figure 4.10, three clear

bands were observed in the channels containing ampholytes with isoelectric points (pI) values ranging

from 5-7 and 3-10. This seem to suggest that ampholyte compounds with pI 8-10 have too low mobilities

while compounds with pI 3-5 have too high mobilities to be appropriate spacers. Despite the complexities

of the ampholyte compounds, it is seen that it could only provide good separation between the

unphosphorylated substrates, since the phosphorylated substrates were still not clearly resolved. This

means that there are no compounds in the ampholytes that are suitable spacers for separating the

phosphorylated substrates.

Phosphorylated A, B, C Kinase substrates A, B, C
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Figure 4.10: Experimental results showing separation of two kinase substrates (Crosstide for AKT,

Kemptide for PKA) and their products by adding ampholytes with different pI ranges to the buffer.

Ampholyte (0.001%, p1 5-7) was effective at separating the unphosphorylated kinase substrates but was

not able to resolve the phosphorylated products from each other.

A similar situation was encountered when we attempted to separate the peptide substrates for

MK2 (5-FAM-AHLQRQLSIA) and PKA from their products by adding ampholytes with pI ranging from

5-7 to the buffer. Figure 4.11 (top two channels) shows that the unphosphorylated MK2 and PKA

substrates were well resolved from each other and from the phosphorylated peptides, but the

phosphorylated MK2 and PKA substrates were not well resolved from each other. We tried a number of

other compounds and found that 2-(N-morpholino)ethanesulfonic acid (MES), one of the Good's buffer,

was an effective spacer for phosphorylated MK2 and PKA substrate and could provide clear separation

between each of the MK2 and PKA substrates and their phosphorylated products (4 bands) when used in

conjunction with ampholytes (0.001%, pI 5-7) in 5 mM Tris-HCl buffer (pH 7) (Figure 4.11).
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Figure 4.11: Experimental results showing separation of two kinase substrates (MK2tide for MK2,

Kemptide for PKA) and their products by adding ampholytes with different pI ranges to the buffer.

Ampholyte (0.001%, pI 5-7) in conjunction with 10 pM MES was effective at separating the

phosphorylated and unphosphorylated kinase substrates.

There are some inadequacies of using ampholytes as a spacer. As we have just observed, in some

instances the ampholyte compounds could not provide spacer function for our analyte of interest, and we

have to source for other form of spacer molecules. The exact mixture of ampholyte is proprietary, so we

do not know a priori if a compound of a desired mobility is present. Finally, ampholytes are premixed

and optimized to ensure that they cover a uniform range of pI value. When used as spacers in the

concentration-enhanced mobility shift assays, we lose the freedom to arbitrarily tune the electric field

profile by varying the concentration of each individual compound.

Since we are interested in separating peptide substrates and their post-translationally modified

products, a natural candidate for spacer molecules is synthetic peptides. Custom synthetic peptides can be

obtained at low cost and high purity, but one of the most attractive features for our application is that their

mobilities can be tailored by adding different charged and different molecular weight amino acids during

peptide synthesis. Thus, spacer molecules of any mobilities can be designed and synthesized. The
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mobilities of the peptide substrates and spacers can be approximated with the Offord Model47' 48 = Q /

M2 /3. To test this approach, we synthesized 12 different peptides with different mass and charge to be

used as spacer molecules in the concentration-enhanced mobility shift assay. We adpoted a simple

approach to design these spacer peptides: to increase mass we added extra neutral glycine (G) molecules

to the carboxylic acid terminal of the peptides, to increase charge we added extra negatively charged

glutamic acid (E) molecule separated by one glycine molecule to the amine end of the peptide. The

predicted mobilities of the synthetic spacer peptides are placed alongside the predicted mobilities of the

kinase peptide substrates in Figure 4.12. Peptides with mobilities in between kinase substrates or

phosphorylated products that we wish to resolve can be chosen as spacers.

Figure 4.13 shows that be rationally choosing the appropriate peptide spacers, we can

simultaneously concentrate and baseline resolve substrates and products corresponding to three kinases

PKA (substrate: 5-FAM-EELGRTGRRNSI), AKT (substrate: 5-FAM-GRPRTSSFAEG-NH 2) and MK2

(substrate: FITC-EEKKLNRTLSVA). This general capability would allow us to simultaneously monitor

several kinase activities from the same sample and study their functional relationship to yield insights on

the inner-workings of cell regulatory pathways.
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Figure 4.12: Predicted mobilities of the fluorophore-tagged peptide substrates and synthetic peptide

spacers according to the Offord Model R = Q / M2/3. To resolve a pair of analytes of interest, a synthetic

peptide with an intermediate mobility can be chosen as a spacer.
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Figure 4.13: Simultaneous concentration and baseline separation of substrates and products

corresponding to three kinases PKA (substrate: 5-FAM-EEGRTGRRNSI), AKT (substrate: 5-FAM-

GRPRTSSFAEG-NH 2) and MK2 (substrate: FITC-EEKKLNRTLSVA) using rationally designed

synthetic peptide spacers.
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4.6 Single adherent cell culture

In this section, we describe methods that we developed to culture and isolate single cells, as well as

techniques to perform cell lysis, incubation of kinase substrate with lysate and finally transfer of reaction

products to a separate chip where we perform the concentration-enhanced kinase activity assay. Most

cells derived from solid tissues are adherent, and therefore we sought to develop techniques to assay for

kinase activity in adherent cells. While cell handling and various operations such as lysis have been

demonstrated on suspension cells49-52, they are considerably more challenging for adherent cells. Also,

since we are developing tools that would ultimately be used by biologists in their investigations, we aim

to develop our assays to be compatible with current methods of cell culture, keeping to standard materials

such as polystyrene, glass, silicone and avoiding complicated fluidic handling systems such as growing

cells in enclosed microfluidic channels.

To comply with standard tissue culture techniques, we decided to grow cells in an open system

where cell culture media and gases can diffuse freely instead of closed microfluidic channels where media

needs to be perfused constantly to supply nutrients and remove waste. Conventional single adherent cell

isolation is performed by serial dilution in multiwell plates. However the large volumes of this well plates

(-100 pL) means that once lysed, the intracellular contents of a single cell is extremely diluted and it

would be far below the detection limit of any assay available. Growing single cells in smaller wells would

reduce the dilution factors to make single cell kinase activity assay possible. One attractive option is the

commercially available CultureWell (Grace Biolabs) setup, where ptL volume cell culture chambers are

defined by non-cytotoxic silicone well gaskets on coverglass. However, as commercially available

CultureWell system consists of only 16 wells, too few for our application, we decided to fabricate our

own silicone gasket based cell culture chamber arrays that best suit our purpose.

To fabricate the silicone gasket wells, we first start with a stack of two thin PDMS sheets (250

pim, Silicone Specialty Products). PDMS is a non-cytotoxic silicone material that has been used

successfully in many cell cultures. To make the hole arrays (7x7, 2.8 mm pitch), we initially manually

punched through the PDMS sheets with a 500 pm OD biopsy punch (Harris). This array was designed to
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fit within the boundaries of a 22 mmx22 mm coverglass slip. Later, we successfully automated the hole-

punching process by mounting the biopsy punch on a CNC drilling machine (Sherline) and using open-

source software (Modrilla) to control the exact coordinates where the holes will be drilled. The automated

hole punching process took less than 3 minutes to punch 49 holes.

To prepare the microwells for cell culture, the silicone sheet with punched holes was treated with

oxygen plasma (Harrick) for one minute and bonded permanently onto a piece of acid washed coverglass

slip (22 mmx22 mm). The oxygen plasma treatment sterilized the PDMS gasket and increased its

wetability to facilitate cell seeding in the later step. The devices were immediately immersed in lx

Phosphate Buffered Saline (PBS) after bonding and placed in a vacuum dessicator for 10 minutes to

remove any trapped bubbles. Devices were kept in 1x PBS until ready to use.

To seed single cells in the microwells, the devices were first immersed in 1mL of complete cell

culture media in a 35 mm tissue culture polystyrene plate. Freshly trypsinized HepG2 single cell

suspension was diluted to 1250 cells / mL in 1 mL complete culture media and added to the tissue culture

plate. The cell suspension was mixed by gently pipetting up and down and allowed to settle overnight at

37 *C in 5% C02. Cells settled randomly into the microwells following a Poisson distribution. At the

above cell seeding density, on average 30% of the 49 wells contained single cells.

4.7 Single cell lysis and kinase reaction

There are several methods reported in the literature on performing single cell lysis53 , these include optical

lysis using a laser pulse15, 34, 35, 54-56, electrical lysis 57, 58, chemical lysis59' 60 and ultrasonic lysis61 . We

choose to implement an ultrasonic lysis method since it does not require expensive and complicated

setting, does not require integrated electrodes, and result in minimal chemical denaturation of the kinase

molecules. Ultrasonication is a proven technique for cell lysis and has been shown to be able to lyse cells

in microfluidic devices in less than 10 S61*. It also has the advantage of being a parallel process where cells

in an array of microwells can be simultaneously lysed. The mechanism of ultrasonic cell lysis is thought

to be due to extreme shear forces and pressure transients generated during microbubble cavitation. The
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ability to lyse cells in a very short period of time makes this an attractive method for use in signal

transduction studies where fast lysis is required to minimize changes in the kinase activities during the

process.

We developed a technique to ultrasonically lyse single cells confined in nL size microwells, so

that the released intracellular kinases can catalyze phosphorylation of peptide substrates that we pre-

added to the wells just before lysis. Since the enzymes and substrates are confined in nL sized chambers

which prevent further dilution, there are at effective concentrations which allows kinase reaction to occur

with reasonable kinetics. There approach is parallel to many recent works that make use of microfluidic

confinement to increase effective concentrations of target biomolecules and enable ultrasensitive

detection62 64 . One unique advantage of this approach compared to many existing single cell kinase

activity assay is that various inhibitors (for off-target kinase, protease, phosphatase) can be added in the

reaction buffer to increase specificity, reduce cross-talk, maintain stability and preserve phosphorylation

states in the kinase assay.

To perform cell lysis in reaction buffer, the cells (treated or control) in microwells were first

washed once with ice-cold PBS and followed by ice-cold Tris-Buffered Saline (TBS). The microwells

were then overflowed with kinase reaction buffer (Buffer C with 2 pM fluorescent substrate, 1 mM ATP,

0.01% Triton X-100, 10 gg/mL protease and phosphatase inhibitors, and inhibitors of off-target kinases)

containing the substrates. Next, the wells were sealed with a piece of Kapton tape and the excess substrate

was squeezed out. The sealed device was then immediately placed in a ultrasonic water bath and

sonicated at full power for 30 s to lyse the cells within the microwells. Cell lysis was confirmed by

imaging under the microscope. The kinase reaction was then allowed to proceed in the sealed microwells

for 90 minutes in a 37 'C incubator.

Next, we developed a method to transfer the reaction mixture from the nL reaction chamber into

the biomolecular concentration device. Since fluid handling in the nL scale is challenging, we adopted the

strategy of diluting the nL reaction mix into a larger volume (pL) to facilitate transfer. This dilution step

also effectively stops the kinase reaction, resulting in an endpoint assay. This strategy of confinement
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followed by dilution has the advantage that kinase reaction can occur with an appreciable rate during the

confinement incubation period, while the later dilution step stops the reaction and facilitate fluid handling.

The preconcentration capability of our device would provide the additional sensitivity needed to detect

signal from this diluted mixture. To perform the dilution step, another piece of PDMS (1 mm thick) with

2 mm diameter holes (2 mm biopsy punch) was aligned and reversibly bonded on top of the Kapton tape

side of the device to form dilution chambers. 5 sL of the dilution buffer (Buffer B) was pipetted into each

dilution chamber. This device is then placed in a dry 35 mm polystyrene dish for imaging under an

inverted microscope. While looking under the microscope, we pierced through the Kapton tape above

using a hypodermic needle (27G1/2, BD). While the reaction product could diffuse into the dilution

buffer, the process could be slow. We enhanced the mixing of the reaction product and the reaction buffer

by floating the device above an ultrasonic bath operating at low power for 30 s. The mixture in each

dilution chamber was pipetted into a 96 well PCR plate and further topped up to 12 pL with dilution

buffer before being stored at -80 'C. Figure 4.14 shows the complete process flow for the cell culture,

lysis, reaction and fluidic transfer operation.

Figure 4.15 demonstrates successful cell lysis using the ultrasonic method. The left panel show

adherent HepG2 cells growing in the microwells. The cells were pre-labeled with a cytoplasmic live-cell

dye (Cell Tracker Orange, Invitrogen) before cell seeding to facilitate cell tracking. Upon sealing with

Kapton tape and 30 s ultrasonication, the cells are lysed, releasing their intracellular contents including

the cytoplasmic dye (right panel). Wells with initial larger number of cells are more fluorescent after

ultrasonication due to release of larger amounts of cell tracker orange dye.
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1. Start with 2 layer 250um thick PDMS device, reversibly
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CNC machine (500um diameter)
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4. Seed trypsinized HepG2 cells into nanowells in culture media.
Top up tissue culture dish with media. Grow cells in incubator
overnight

5. Wash twice with 1X TBS, peel off top PDMS, overflow
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9. Pierce Kapton tape with hypodermic needle to release
content of small chamber into dilution buffer. Mix. Collect
contents from big chamber to be loaded into device

Figure 4.14: Complete process flow for the cell culture, lysis, reaction and fluidic transfer operations.
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Figure 4.15: Left panel shows HepG2 adherent cells (labeled with Cell Tracker Orange dye) growing in

500 pm diameter microwells. Right panel shows images of microwells after 30s ultrasonic lysis.

Intracellular contents including the cytoplasmic live cell dye were released and confined in the microwells
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4.8 Concentration-enhanced single cell kinase activity assay

To demonstrate the concentration-enhanced single cell kinase activity assay, we performed cell seeding at

low densities to obtain microwells that contain single HepG2 cells. After allowing cells to attach and

spread in a 37 *C incubator overnight, the cells were lysed, incubated with kinase substrate and the

reaction product was collected as described in the previous section. Each time, 5 different samples each

containing 10 pL of the diluted reaction product was loaded into the biomolecular concentrator device to

perform the concentration enhanced mobility shift assay.

Figure 4.16 shows the results of single cell kinase activity assay using AKT as a substrate (4 gM

PKC inhibitor, 4 pM calmidazolium, 0.4 gM PKI-tide and 5 pM GF109203X added to inhibit off-target

kinase activity). The top panel shows the fluorescence image of the cells just before lysis while the

bottom panel shows the corresponding concentration-enhanced AKT activity assay. In the samples

corresponding to wells with no cells (negative controls), we saw only one band corresponding to the

unphosphorylated AKT substrate. On the other hand, in samples corresponding to wells containing one

cell, we saw two fluorescent bands corresponding to the phosphorylated and unphosphorylated AKT

substrate. This result shows conclusively that our assay can detect AKT kinase activities from single cells.
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B

Figure 4.16: a) Fluorescence image of single HepG2 cells growing in microwells before lysis, b) the

corresponding concentration-enhanced AKT activity assay. In the samples corresponding to wells with no

cells (negative controls), we see only one band corresponding to the unphosphorylated AKT substrate. On

the other hand, in samples corresponding to wells containing one cell, we see two fluorescent bands

corresponding to the phosphorylated and unphosphorylated AKT substrate.
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One additional capability of our device is that it is straightforward and possible to look at total

kinase activity from multiple cells that growing in the same well. This might be interesting to compare

kinase activities when two cells are growing next to or in contact with each other versus two cells that are

growing far apart in the well. Since our biomolecular concentrator can currently assay for five samples

simultaneously (this is not the upper limit - recently we have demonstrated multiplexing of up to 128

channels 65), we can obtain reasonable assay throughput to perform some statistical analysis. Figure 4.17

shows the results of single, double and triple cells kinase activity assay using MK2tide as a substrate to

measure MK2 activity. As expected, there is a clear trend indicating that total kinase activity increases

with the total number of cells in the well. The variance in the total kinase activity also increases with the

number of cells, as expected for sum of random variables from independent identical distributions. We

observed that there are some outlier points in the activity distribution. Upon reference with the cell image

taken before cell lysis, we found that these high kinase activities were due to abnormally large cells. This

highlights the ability to correlate single cell phenotype with cellular kinase activity in our method.
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Figure 4.17: Scatter plot shows the total kinase activities in microwells containing zero, one, two and

three cells. Total kinase activity increases with the number of cells. Outlier data points correspond to large

cells.
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We could observe the relationship between single cell phenotype (e.g. cell size) and single cell

kinase activity by plotting the kinase activity vs phenotype measure on a scatter plot (Figure 4.18). Using

total cellular fluorescence (due to live cell labeling) as a proxy for cell size, we found that the total kinase

activity follows a linear trend with respect to cell size. This is not surprising as kinases are intracellular

enzymes, and the concentration (instead of absolute amount) of active kinase in a cell is the regulated

parameter that determines cell fate. From this scatter plot, we can also decouple the effects of cell size and

obtain the single cell heterogeneity in kinase activity per unit cell volume, which would arguably be a

more relevant factor in single cell signal transduction studies.
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Figure 4.18: Linear relationship between kinase activity and total cell volume (using cell fluorescence as

a proxy).
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In Figure 4.19, we plotted the single cell MK2 activity vs cell number after normalizing by the average

cell volume. We saw that this transformation removed the outlier points. We performed a Student's 2-

tailed t-test and showed that the samples with different number of cells have significantly different

normalized kinase activities. Thus, we demonstrated that our assay have both single cell sensitivity and

single cell resolution.
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Figure 4.19: MK2 activity vs cell number after normalizing by the average cell volume. Different

numbers of cells have significantly different normalized kinase activities by Student's 2-tailed t-test. This

shows the concentration-enhanced kinase activity assay has both single-cell sensitivity and resolution.
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4.9 Concentration-enhanced single cell multiple kinase activity assay

Finally, we performed experiments to assay for multiple kinase activities in single cells. The experimental

protocol was the same with the exception of addition of multiple substrates in the reaction buffer. Spacer

molecules (0.001% Ampholyte pI 5-7, 10 sM MES) were added in the dilution buffer to enable

simultaneous concentration and separation of multiple substrates. In Figure 4.20, we demonstrated that

we can simultaneously measure MK2 and PKA activities in single cells. Multiple kinase activity

measurement from single cells is currently very challenging to perform using existing techniques, yet it

could provide vital clues about the functional relationships between different pathways in the signal

transduction network. We believe that our platform can bridge this technological gap.

116



A

5 cells 3 cells

2 cells 1 cell

B s5 cellsB

3 cells

2 cells

1 cel

4

C
P ide

3

0 2 MK2tide
pMK2tide pPKAtide

0 50 100 150 200
Distance (pixels)

Figure 4.20: Concentration-enhanced multiple kinase activity assay (for MK2 and PKA). a) Images of

cells in microwells before lysis, b) Experimental results showing concentration-enhanced multi- kinase

activity assay, c) Electropherogram showing baseline separation of the two fluorescent substrate and

product pairs.
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4.10 Summary

In this chapter, we outlined the use of concentration-enhanced mobility shift assay platform to measure

cellular kinase activity with high sensitivity. We also developed a new capability to separate multiple

species in the concentration-enhanced mobility shift assay platform by using ampholytes or rational

design of peptide substrate and spacers. This capability enables users to perform multi-kinase profiling

using different substrates.

To enable single cell kinase assay, we have developed technology to first grow, isolate and

observe single adherent cells, followed by parallel cell lysis and enzyme reaction in confined nL

chambers, and lastly methods to recover reaction products and transfer to a separate chip for analysis. By

combining these methods, we demonstrated kinase activity assay with single cell sensitivity and

resolution. We also demonstrated multiple-kinase activity assay with single cell sensitivity.

Although we have only demonstrated this platform with three kinases, it is straightforward to

apply this technique to assay for various other kinases on different cell types. This platform is an enabling

technology which allows for quantitative measurement of multiple cellular kinase activities at single cell

level. We believe that it could be a generic and powerful tool for diagnostics, drug development and

systems biology research.
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Chapter 5

Conclusion

5.1 Thesis contribution

With recent advances in basic science, we understand a lot more about disease pathogenesis than we did

several decades ago. Most of the diseases can now be fully treated or kept under control if diagnosed at an

early stage, leading to a drastic improvement in quality of life. However, the healthcare infrastructures for

disease diagnosis and surveillance have lagged behind medical progress. Most countries in the world have

centralized medical centers and laboratories in cities, but access to adequate healthcare is limited at

remote areas. This problem is most serious in resource poor regions, which includes many developing

countries. Millions of people are dying each year from diseases that are treatable due to lack of early

diagnosis. With increasing global connectivity, some of these endemic diseases can even be global health

threat. In recent years, there has been resurgence of many diseases such as malaria and various flu viruses.

As part of the Global Health Initiative, health workers are tasked to rapidly diagnose diseases and

administer proper treatment at point-of-care in remote and resource-poor settings. To do so, it is critical to

develop portable and sensitive diagnostic technologies.

Despite advances in laboratory based biomolecule detection systems that has enabled

unprecedented sensitivity, these technologies are not readily adapted to point-of-care diagnostics systems

due to many practical limitations. As a result, current point-of-care diagnostics products in the market are

still fundamentally based on technologies developed decades ago. Recent developments in micro total

analysis systems (pTAS) have shown promises to address these problems. Microfluidic platforms have

been developed to integrate multiple functionalities in a single chip, leading to many successful portable

lab-on-chip systems that can perform multistep bioanalysis. Nevertheless, many of these microchip-based

assays are still lacking in sensitivity due to inferior portable detection instruments and the inherent low

optical path lengths of microfluidic devices. As ease of use is an important criterion, many widely used
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platforms in laboratories such as the heterogeneous assay formats might be unsuitable for these portable

diagnostic devices due to the complicated procedures. Finally, there are reagent compatibility issues such

as the limited stability of antibodies upon storage.

To address these problems, this thesis has focused on using micro/nanofluidic technologies to

alleviate several critical bottlenecks of biosensing in lab-on-chip devices. First, we developed a

microfluidic platform to amplify signal for homogeneous mobility shift assay. Using this platform, we

could boost the sensitivity of an aptamer based mobility shift binding assay for biomarker detection. We

demonstrated that this technique can be used for sensitive detection of multiple biomarkers (IgE and HIV-

1 RT) and in real sample condition (10% serum). This work addresses the sensitivity shortcomings of

using aptamers as alternative capture agents in point-of-care applications. Furthermore, this method has

an advantage over many other assays since it is rapid, uses low voltage and can be multiplexed.

Next, we have developed a herringbone nanofilter array device for continuous flow size-selective

concentration of biomolecules. Among other things, this platform can be used to perform homogeneous

immunoassays for rapid quantification of biomarkers. A cardiac biomarker, CRP, was detected using this

device at clinically relevant concentrations. While the use of nanostructures to separate molecules has

been previously reported, the novel biomolecule concentration capability demonstrated here would

improve the sensitivity of such assays, particularly when low optical path length in typical lab-on-chip

devices reduces detection sensitivity.

Lastly, these homogeneous signal amplification platforms are useful tools for scientific studies.

As an example of application, we are able to measure cellular kinase activities with very high sensitivity

using the electrokinetic concentration-enhanced mobility shift assay. We have also developed technology

to isolate, grow and lyse single cells, and use our platform to measure kinase activities from single cells.

By rational design of peptide substrates and spacers, we developed a new capability to separate multiple

analytes in the concentration-enhanced mobility shift platform. This enables users to obtain simultaneous

measurements of multiple cellular kinase activities that could reveal important information about their
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functional relationships. To the best of our knowledge, this is one of the very few measurement

technologies that enables the direct detection of many kinase activities from a single cell.

5.2 Directions for future research

The field of micro/nanofluidics is relatively young, as many basic principles that govern their operation

are still being worked out. On the other hand, these devices tremendous design flexibility, and new

applications are discovered from time to time. The novel phenomena presented in this thesis could lead to

exciting possibilities of new applications and better scientific understanding of fluid behaviors in the

microscale.

In the course of completing this thesis, we came across several interesting ideas that we have yet

to explore fully in view of the scope of the thesis. We briefly outline some of these ideas below as topics

for future research.

5.2.1 Concentration-enhanced mobility shift assay

The concentration-enhanced mobility shift assay principle is truly a platform technology. It can be readily

adapted for various applications, as we have done so for the aptamer-based biomarker assay in Chapter 2

and multiplexed kinase activity assay in Chapter 4. From an application point of view, it can be easily

modified to improve the sensitivity of various homogeneous binding assays (e.g. immunoassays, protein-

protein interaction, and protein-DNA interaction) and enzymatic assays (e.g. protease activity assay and

other post-translational modification assays) which involve mobility shifts.

Another potential application of this platform is for high sensitivity affinity analysis of binding

assays. Recently, it has been demonstrated that Nonequilibrium Capillary Electrophoresis of Equilibrium

Mixtures (NCEEM) can be used to obtain equilibrium binding constant and complex decay rate constant

of protein-DNA interactions, by measuring the characteristic peaks and exponential decay curves of the

electropherogram'.In the concentration-enhanced mobility shift assay, we believe that additional kinetics

information about biomolecular binding reaction can be obtained by considering the electropherogram

profile and concentration rates of the analytes. Furthermore, due to the continuous injection and
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accumulation of analyte which improves the signal, low affinity binding interaction can be measured.

This could be useful in applications such as characterization of binding affinity between transcription

factors and DNA promoter sites, and screening for aptamers with distinct binding affinity parameters.

In this thesis, we have shown sensitive detection using the mobility shift assay format, where the

relative abundance of analytes with different mobilities is measured by two distinct bands in the

electropherogram. An alternative detection modality using this platform can be suggested based on the

isotachophoretic properties of the electrokinetic concentration process. We have shown that addition of

intermediate mobility spacers would increase the separation distance between the two distinct bands, and

the separation distance is proportional to the amount of spacer added. Based on this observation, we can

envision a scheme where we can detect a nonfluorescent analyte based on the amount of separation that it

induces between two fluorescent markers which have higher and lower mobilities respectively compared

to the analyte of interest. Similar schemes have been previously reported in isotachophoresis systems2 -4,

but the continuous injection scheme in our platform could potentially allow higher detection sensitivity

upon long period of electrokinetic concentration. This detection modality would enable sensitive

measurements of chemical analytes and small biomolecules such as metabolites where no effective

affinity binding agents are available.

5.2.2 Size-based concentration of biomolecules using herringbone nanofilter array

We have demonstrated the use of herringbone nanofilter array for analytical measurements such as

protein-DNA interactions, protein-protein interactions and homogeneous immunoassays. As this is a

platform technology, it can be adapted to improve the detection sensitivity of other size-based

fractionation assays. Due to its fabrication compatibility, it could serve as a useful sample

preconcentration module for microfabricated nanostructure based separation methods.

Another research direction that could be pursued is the use of this size-based concentration

concept for sample preparation. Although the throughput of the current device is too low for this purpose,

there are well established methods to increase throughput such as using high aspect ratio nanochannels'

and self-assembled colloidal particle packing techniques 6-8. The major challenge of biomarker detection in
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complex biofluids is the sheer complexity of the samples. Most of the plasma proteins are introduced by

low-level tissue leakages and are generally present at very low concentrations (<< pg/ml), while others,

such as albumin, are present in very large amounts (>> mg/ml). For biomarker detection in blood serum,

it is well documented that the high-abundance serum proteins (mostly albumin and immunoglobulin)

present significant limitation to the detection specificity and sensitivity. The specificity and sensitivity of

biosensing and detection is critically dependent on the effectiveness of sample pre-fractionation and pre-

separation processes. By continuous size-based fractionation and concentration of sample, we can remove

the high-abundance molecular background and enhance the sensitivity of downstream detection modules.

The nanofilter array based separation component will be able to function without gelatinous materials or

complex and expensive surface chemistry, thus allowing for an easy integration within the common point

of care diagnostic platform and convenient implementation in resource-limited settings.

5.2.3 Multiplexed single cell biological activity assay

Finally, on the scientific front, our platform could be used as an important tool to detect various cellular

biological activities with very high sensitivity. We have demonstrated the ability to measure intracellular

kinase activities from single cells. Other single cells activity assays, such as secretion of protease from

single cell into the media and measurements of metabolites from single cells, could also be potentially

realized in this platform.

With this sensitive tool providing single cell measurements that were previously very difficult to

obtain, we can start to explore some fundamental biological questions. This technique can be combined

with other single-cell analysis techniques such as RT-PCR to correlate between gene expression and

protein activity. We can study how individual cells in different states (cell cycle, morphology etc.)

respond to external stimuli such as cytokines. Imaging based phenotypical assays such as measurement of

the migration capability of individual cells, when coupled with the single cell kinase activity profile

assay, would enable us to better understand the complex cellular decision processing. We believe that

this platform could be a generic and powerful tool for diagnostics, drug development and systems biology

research.
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