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ABSTRACT
We show in this paper how several proposed Physical Un-
clonable Functions (PUFs) can be broken by numerical mod-
eling attacks. Given a set of challenge-response pairs (CRPs)
of a PUF, our attacks construct a computer algorithm which
behaves indistinguishably from the original PUF on almost
all CRPs. This algorithm can subsequently impersonate the
PUF, and can be cloned and distributed arbitrarily. This
breaks the security of essentially all applications and proto-
cols that are based on the respective PUF.

The PUFs we attacked successfully include standard Arbiter
PUFs and Ring Oscillator PUFs of arbitrary sizes, and XOR
Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward
Arbiter PUFs of up to a given size and complexity. Our
attacks are based upon various machine learning techniques,
including Logistic Regression and Evolution Strategies. Our
work leads to new design requirements for secure electrical
PUFs, and will be useful to PUF designers and attackers
alike.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]:
Smartcards; B.7.m [Integrated Circuits]: Miscellaneous;
E.3 [Data Encryption]: Code breaking

General Terms
Security, Theory, Design

Keywords
Physical Unclonable Functions, Machine Learning, Crypt-
analysis, Physical Cryptography
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1. INTRODUCTION
1.1 Motivation and Background
Electronic devices are now pervasive in our everyday life.
They are an accessible target for adversaries, which raises a
host of security and privacy issues. Classical cryptography
offers several measures against these problems, but they all
rest on the concept of a secret binary key: It is assumed that
the devices can contain a piece of information that is, and
remains, unknown to the adversary. Unfortunately, it can be
difficult to uphold this requirement in practice. Physical at-
tacks such as invasive, semi-invasive, or side-channel attacks,
as well as software attacks like API-attacks and viruses, can
lead to key exposure and full security breaks. The fact that
the devices should be inexpensive, mobile, and cross-linked
obviously aggravates the problem.

The described situation was one motivation that led to the
development of Physical Unclonable Functions (PUFs). A
PUF is a (partly) disordered physical system S that can be
challenged with so-called external stimuli or challenges Ci,
upon which it reacts with corresponding responses termed
RCi

. Contrary to standard digital systems, a PUF’s re-
sponses shall depend on the nanoscale structural disorder
present in the PUF. This disorder cannot be cloned or re-
produced exactly, not even by its original manufacturer, and
is unique to each PUF. Assuming the stability of the PUF’s
responses, any PUF S hence implements an individual func-
tion FS that maps challenges Ci to responses RCi

of the
PUF.

Due to its complex and disordered structure, a PUF can
avoid some of the shortcomings associated with digital keys.
For example, it is usually harder to read out, predict, or
derive its responses than to obtain the values of digital keys
stored in non-volatile memory. This fact has been exploited
for various PUF-based security protocols. Prominent exam-
ples including schemes for identification and authentication
[1, 2], key exchange or digital rights management purposes
[3].

1.2 Strong PUFs, Controlled PUFs, and Weak
PUFs

There are several subtypes of PUFs, each with its own ap-
plications and security features. Three major types, which



must explicitly be distinguished in this paper, are Strong
PUFs [1, 2, 4] 1, Controlled PUFs [3], and Weak PUFs [4],
initially termed Physically Obfuscated Keys (POKs) [5].

1.2.1 Strong PUFs
Strong PUFs are disordered physical systems with a complex
challenge-response behavior and very many possible chal-
lenges. Their security features are: (i) It must be impossible
to physically clone a Strong PUF, i.e., to fabricate a sec-
ond system which behaves indistinguishably from the origi-
nal PUF in its challenge-response behavior. This restriction
shall hold even for the original manufacturer of the PUF.
(ii) A complete determination/measurement of all challenge-
response pairs (CRPs) within a limited time frame (such as
several days or even weeks) must be impossible, even if one
can challenge the PUF freely and has unrestricted access to
its responses. This property is usually met by the large num-
ber of possible challenges and the finite read-out speed of a
Strong PUF. (iii) It must be difficult to numerically predict
the response RC of a Strong PUF to a randomly selected
challenge C, even if many other CRPs are known.

Possible applications of Strong PUFs cover key establish-
ment [1, 7], identification [1], and authentication [2]. They
also include oblivious transfer [8] and any protocols derived
from it, including zero-knowledge proofs, bit commitment,
and secure multi-party computation [8]. In said applications,
Strong PUFs can achieve secure protocols without the usual,
standard computational assumptions concerning the factor-
ing or discrete logarithm problem (albeit their security rests
on other, independent computational and physical assump-
tions). Currently known electrical, circuit-based candidates
for Strong PUFs are described in [9, 10, 11, 12, 13].

1.2.2 Controlled PUFs
A Controlled PUF as described in [3] uses a Strong PUF as
a building block, but adds control logic that surrounds the
PUF. The logic prevents challenges from being applied freely
to the PUF, and hinders direct read-out of its responses.
This logic can be used to thwart modeling attacks. However,
if the outputs of the embedded Strong PUF can be directly
probed, then it may be possible to model the Strong PUF
and break the Controlled PUF protocol.

1.2.3 Weak PUFs
Weak PUFs, finally, may have very few challenges — in the
extreme case just one, fixed challenge. Their response(s)
RCi

are used to derive a standard secret key, which is sub-
sequently processed by the embedding system in the usual
fashion, e.g., as a secret input for some cryptoscheme. Con-
trary to Strong PUFs, the responses of a Weak PUF are
never meant to be given directly to the outside world.

Weak PUFs essentially are a special form of non-volatile
key storage. Their advantage is that they may be harder to
read out invasively than non-volatile memory like EEPROM.
Typical examples include the SRAM PUF [14, 4], Butterfly
PUF [15] and Coating PUF [16]. Integrated Strong PUFs
have been suggested to build Weak PUFs or Physically Ob-

1Strong PUFs have also been referred to as Physical Ran-
dom Functions [5], or Physical One-Way Functions [6].

fuscated Keys (POKs), in which case only a small subset of
all possible challenges is used [5, 9].

One important aspect of Weak PUFs is error correction and
stability. Since their responses are processed internally as a
secret key, error correction must be carried out on-chip and
with perfect precision. This often requires the storage of
error-correcting helper data in non-volatile memory on the
chip. Strong PUFs usually allow error correction schemes
that are carried out by the external recipients of their re-
sponses.

1.3 Modeling Attacks on PUFs
Modeling attacks on PUFs presume that an adversary Eve
has, in one way or the other, collected a subset of all CRPs
of the PUF, and tries to derive a numerical model from this
data, i.e., a computer algorithm which correctly predicts the
PUF’s responses to arbitrary challenges with high probabil-
ity. If successful, this breaks the security of the PUF and of
any protocols built on it. It is known from earlier work that
machine learning (ML) techniques are a natural and power-
ful tool for such modeling attacks [5, 17, 18, 19, 20]. How
the required CRPs can be collected depends on the type of
PUF under attack.

Strong PUFs. Strong PUFs usually have no protection me-
chanisms that restricts Eve in challenging them or in read-
ing out their responses. Their responses are freely accessible
from the outside, and are usually not post-processed on chip
[1, 9, 10, 11, 12, 13]. Most electrical Strong PUFs further
operate at frequencies of a few MHz [12]. Therefore even
short physical access periods enable the read-out of many
CRPs. Another potential CRP source is simple protocol
eavesdropping, for example on standard Strong PUF-based
identification protocols, where the CRPs are sent in the clear
[1]. Eavesdropping on responses, as well as physical access to
the PUF that allows the adversary to apply arbitrary chal-
lenges and read out their responses, is part of the established
attack model for Strong PUFs.

Controlled PUFs. For any adversary that is restricted to
non-invasive CRP measurement, modeling attacks can be
successfully disabled if one uses a secure one-way hash over
the outputs of the PUF to create a Controlled PUF. We note
that this requires error correction of the PUF outputs which
are inherently noisy [3]. Successful application of our tech-
niques to a Controlled PUF only becomes possible if Eve can
probe the internal, digital response signals of the underlying
Strong PUF on their way to the control logic. Even though
this is a significant assumption, probing digital signals is still
easier than measuring continuous analog parameters within
the underlying Strong PUF, for example determining its de-
lay values. Physical access to the PUF is part of the natural
attack model on PUFs, as mentioned above.

Weak PUFs. Weak PUFs are only susceptible to model
building attacks if a Strong PUF, embedded in some hard-
ware system, is used to derive the physically obfuscated key.
This method has been suggested in [5, 9]. In this case, the



internal digital response signals of the Strong PUF to in-
jected challenges have to be probed.

We stress that purely numerical modeling attacks, as pre-
sented in this paper, are not relevant for Weak PUFs with
just one challenge (such as the Coating PUF, SRAM PUF,
or Butterfly PUF). This does not necessarily imply that
these PUFs are more secure than Strong PUFs or Controlled
PUFs, however. Other attack strategies can be applied, in-
cluding invasive, side-channel and virus attacks, but they are
not the topic of this paper. For example, probing the output
of the SRAM cell prior to storing the value in a register can
break the security of the cryptographic protocol that uses
these outputs as a key. We also note that attacking a Con-
trolled PUF via modeling attacks that target the underlying
Strong PUF requires substantially more signal probing than
breaking a Weak PUF that possesses just one challenge.

1.4 Our Contributions and Related Work
We describe successful modeling attacks on several known
electrical candidates for Strong PUFs, including Arbiter
PUFs, XOR Arbiter PUFs, Feed-Forward Arbiter PUFs,
Lightweight Secure PUFs, and Ring Oscillator PUFs. Our
attacks work for PUFs of up to a given number of inputs (or
stages) or complexity. The prediction rates of our machine
learned models significantly exceed the known or derived
stability of the respective PUFs in silicon in these ranges.

Our attacks are very feasible on the CRP side. They require
an amount of CRPs that grows only linearly or log-linearly
in the relevant structural parameters of the attacked PUFs,
such as their numbers of stages, XORs, feed-forward loops,
or ring oscillators. The computation times needed to de-
rive the models (i.e., to train the employed ML algorithms)
are low-degree polynomial, with one exception: The com-
putation times for attacking XOR Arbiter and Lightweight
Secure PUFs grow, in approximation for medium number of
XORs and large number of stages, super-polynomial in the
number of XORs. But the instability of these PUFs also in-
creases exponentially in their number of XORs, whence this
parameter cannot be raised at will in practical applications.
Still, it turns out that the number of stages in these two
types of PUFs can be increased without significant effect
on their instability, providing a potential lever for making
these PUFs more secure without destroying their practical-
ity. Our work thus also points to design requirements by
which the security of XOR Arbiter PUFs and Lightweight
Secure PUFs against modeling attacks could be upheld in
the near future.

Our results break the security of any Strong PUF-type pro-
tocol that is based on one of the broken PUFs. This includes
any identification, authentication, key exchange or digital
rights management protocols, such as the ones described in
[1, 2, 6, 7, 11]. Under the assumptions and attack scenarios
described in Section 1.3, our findings also restrict the use
of the broken Strong PUF architectures within Controlled
PUFs and as Weak PUFs, if we assume that digital values
can be probed.

Related Work on Modeling Attacks. Earlier work on PUF
modeling attacks, such as [11, 17, 18, 19], described success-

ful attacks on standard Arbiter PUFs and on Feed-Forward
Arbiter PUFs with one loop. But these approaches did not
generalize to Feed-Forward Arbiter PUFs with more than
two loops. The XOR Arbiter PUF, Lightweight PUF, Feed-
Forward Arbiter PUF with more than two Feed-Forward
Loops, and Ring Oscillator PUF have not been cryptan-
alyzed thus far. No scalability analyses of the required
CRPs and computation times had been performed in pre-
vious works.

Entropy Analysis vs. Modeling Attacks. Another useful
approach to evaluate PUF security is entropy analysis. Two
variants exist: First, to analyze the internal entropy of the
PUF. This is similar to the established physical entropy
analysis in solid-state systems. A second option is to an-
alyze the statistical entropy of all challenge-response pairs
of a PUF; how many of them are independent?

Entropy analysis is a valuable tool for PUF analysis, but it
differs from our approach in two aspects. First, it is non-
constructive in the sense that it does not tell you how to
break a PUF, even if the entropy score is low. Modeling
attacks, to the contrary, actually break PUFs. Second, it
is not clear if the internal entropy of a circuit-based Strong
PUF is a good estimate for its security. Equivalently, is
the entropy of an AES secret key a good estimate of the
AES security? The security of a Strong PUF comes from
an interplay between its random internal parameters (which
can be viewed as its entropy), and its internal model or
internal functionality. It is not the internal entropy alone
that determines the security. As an example, compare an 8-
XOR, 256-bit XOR PUF to a standard PUF with bitlength
of 8 · 256 = 2048. Both have the same internal entropy, but
very different security properties, as we show in the sequel.

1.5 Organization of the Paper
The paper is organized as follows. We describe the method-
ology of our ML experiments in Section 2. In Sections 3
to 7, we present our results for various Strong PUF candi-
dates. They deal with Arbiter PUFs, XOR Arbiter PUFs,
Lightweight Arbiter PUFs, Feed-Forward Arbiter PUFs and
Ring Oscillator PUFs, in sequence. We conclude with a sum-
mary and discussion of our results in Section 8.

2. METHODOLOGY SECTION
2.1 Employed Machine Learning Methods
2.1.1 Logistic Regression
Logistic Regression (LR) is a well-investigated supervised
machine learning framework, which has been described, for
example, in [21]. In its application to PUFs with single-bit
outputs, each challenge C = b1 · · · bk is assigned a proba-
bility p (C, t | ~w) that it generates a output t ∈ {−1, 1} (for
technical reasons, one makes the convention that t ∈ {−1, 1}
instead of {0, 1}). The vector ~w thereby encodes the relevant
internal parameters, for example the particular runtime de-
lays, of the individual PUF. The probability is given by the
logistic sigmoid acting on a function f(~w) parametrized by
the vector ~w as p (C, t | ~w) = σ(tf) = (1+ e−tf )−1. Thereby
f determines through f = 0 a decision boundary of equal
output probabilities. For a given training set M of CRPs
the boundary is positioned by choosing the parameter vector



~w in such a way that the likelihood of observing this set is
maximal, respectively the negative log-likelihood is minimal:

~̂w = argmin~wl(M, ~w) = argmin~w

∑

(C, t)∈M

−ln (σ (tf(~w, C)))

(1)
As there is no analytical solution to determine the optimal

parameter vector ~̂w, it has to be optimized iteratively, e.g.,
using the gradient information

∇l(M, ~w) =
∑

(C, t)∈M

t(σ(tf(~w, C)) − 1)∇f(~w, C) (2)

From the different optimization methods which we tested
in our ML experiments (standard gradient descent, iterative
reweighted least squares, RProp [21] [22]), RProp gradient
descent performed best. Logistic regression has the asset
that the examined problems need not be (approximately)
linearly separable in feature space, as is required for suc-
cessful application of SVMs, but merely differentiable.

In our ML experiments, we used an implementation of LR
with RProp programmed in our group, which has been put
online, see [23]. The iteration is continued until we reach
a point of convergence, i.e., until the averaged prediction
rate of two consecutive blocks of five consecutive iterations
does not increase anymore for the first time. If the reached
performance after convergence on the training set is not suf-
ficient, the process is started anew. After convergence to
a good solution on the training set, the prediction error is
evaluated on the test set.

The whole process is similar to training an Artificial Neural
Network (ANN) [21]. The model of the PUF resembles the
network with the runtime delays resembling the weights of
an ANN. Similar to ANNs, we found that RProp makes a
very big difference in convergence speed and stability of the
LR (several XOR-PUFs were only learnable with RProp).
But even with RProp the delay set can end up in a region
of the search space where no helpful gradient information is
available (local minimum). In such a case we encounter the
above described situation of converging on a not sufficiently
accurate solution and have to restart the process.

2.1.2 Evolution Strategies
Evolution Strategies (ES) [24, 25] belong to an ML subfield
known as population-based heuristics. They are inspired by
the evolutionary adaptation of a population of individuals
to certain environmental conditions. In our case, one indi-
vidual in the population is given by a concrete instantiation
of the runtime delays in a PUF, i.e., by a concrete instanti-
ation of the vector ~w appearing in Eqns. 1 and 2. The en-
vironmental fitness of the individual is determined by how
well it (re-)produces the correct CRPs of the target PUF
on a fixed training set of CRPs. ES runs through several
evolutionary cycles or so-called generations. With a grow-
ing number of generations, the challenge-response behavior
of the best individuals in the population better and better
approximates the target PUF. ES is a randomized method
that neither requires an (approximately) linearly separable
problem (like Support Vector Machines), nor a differentiable
model (such as LR with gradient descent); a merely param-
eterizable model suffices. Since all known electrical PUFs

are easily parameterizable, ES is a very well-suited attack
method.

We employed an in-house implementation of ES that is avail-
able from our machine learning library PyBrain [26]. The
meta-parameters in all applications of ES throughout this
paper are (6,36)-selection and a global mutation operator
with τ = 1√

n
. We furthermore used a technique called Lazy

Evaluation (LE). LE means that not all CRPs of the train-
ing set are used to evaluate an individual’s environmental
fitness; instead, only a randomly chosen subset is used for
evaluation, that changes in every generation. In this paper,
we always used subsets of size 2,000 CRPs, and indicated
this also in the caption of the respective tables.

2.2 Employed Computational Resources
We used two hardware systems to carry out our experi-
ments: A stand-alone, consumer INTEL Quadcore Q9300
worth less than 1,000 Euros. Experiments run on this sys-
tem are marked with the term “HW ⋆”. Secondly, a 30-
node cluster of AMD Opteron Quadcores, which represents
a worth of around 30,000 Euros. Results that were obtained
by this hardware are indicated by the term “HW �”. All
computation times are calculated for one core of one proces-
sor of the corresponding hardware.

2.3 PUF Descriptions and Models

Arbiter PUFs. Arbiter PUFs (Arb-PUFs) were first intro-
duced in [11] [12] [9]. They consist of a sequence of k stages,
for example multiplexers. Two electrical signals race simul-
taneously and in parallel through these stages. Their ex-
act paths are determined by a sequence of k external bits
b1 · · · bk applied to the stages, whereby the i-th bit is applied
at the i-th stage. After the last stage, an “arbiter element”
consisting of a latch determines whether the upper or lower
signal arrived first and correspondingly outputs a zero or a
one. The external bits are usually regarded as the challenge
C of this PUF, i.e., C = b1 · · · bk, and the output of the
arbiter element is interpreted as their response R. See [11]
[12] [9] for details.

It has become standard to describe the functionality of Arb-
PUFs via an additive linear delay model [17] [10] [19]. The
overall delays of the signals are modeled as the sum of the
delays in the stages. In this model, one can express the final
delay difference ∆ between the upper and the lower path
in a k-bit Arb-PUF as ∆ = ~wT ~Φ, where ~w and ~Φ are of
dimension k+1. The parameter vector ~w encodes the delays
for the subcomponents in the Arb-PUF stages, whereas the
feature vector ~Φ is solely a function of the applied k−bit
challenge C [17] [10] [19].

In greater detail, the following holds. We denote by δ
0/1
i

the runtime delay in stage i for the crossed (1) respectively
uncrossed (0) signal path. Then

~w = (w1, w2, . . . , wk, wk+1)T , (3)

where w1 = δ0
1 − δ1

1
2 , wi =

δ0
i−1 + δ1

i−1 + δ0
i − δ1

i

2 for all i =



2, . . . , k, and wk+1 = δ0
k + δ1

k
2 . Furthermore,

~Φ( ~C) = (Φ1(~C), . . . , Φk(~C), 1)T , (4)

where Φl(~C) =
∏k

i=l(1 − 2bi) for l = 1, . . . , k.

The output t of an Arb-PUF is determined by the sign of the
final delay difference ∆. We make the technical convention
of saying that t = −1 when the Arb-PUF output is actually
0, and t = 1 when the Arb-PUF output is 1:

t = sgn(∆) = sgn(~wT ~Φ). (5)

Eqn. 5 shows that the vector ~w via ~wT ~Φ = 0 determines a
separating hyperplane in the space of all feature vectors ~Φ.
Any challenges C that have their feature vector located on
the one side of that plane give response t = −1, those with
feature vectors on the other side t = 1. Determination of
this hyperplane allows prediction of the PUF.

XOR Arbiter PUFs. One possibility to strengthen the re-
silience of arbiter architectures against machine learning,
which has been suggested in [9], is to employ l individual
Arb-PUFs in parallel, each with k stages. The same chal-
lenge C is applied to all of them, and their individual outputs
ti are XORed in order to produce a global response tXOR.
We denote such an architecture as l-XOR Arb-PUF.

A formal model for the XOR Arb-PUF can be derived as
follows. Making the convention ti ∈ {−1, 1} as done earlier,

it holds that tXOR =
∏l

i=1 ti. This leads with equation (5)
to a parametric model of an l-XOR Arb-PUF, where ~wi and
~Φi denote the parameter and feature vector, respectively, for
the i-th Arb PUF:

tXOR =
l∏

i=1

sgn(~wT
i

~Φi) = sgn(
l∏

i=1

~wT
i

~Φi) (6)

= sgn
(

l⊗

i=1

~wT
i

︸ ︷︷ ︸

~wXOR

l⊗

i=1

~Φi

︸ ︷︷ ︸

~ΦXOR

)
= sgn(~wT

XOR
~ΦXOR)(7)

Whereas (6) gives a non-linear decision boundary with l(k+
1) parameters, (7) defines a linear decision boundary by a
separating hyperplane ~wXOR which is of dimension (k +1)l.

Lightweight Secure PUFs. Another type of PUF, which
we term Lightweight Secure PUF or Lightweight PUF for
short, has been introduced in [10]. It is similar to the XOR
Arb-PUF of the last paragraph. At its heart are l individ-
ual standard Arb-PUFs arranged in parallel, each with k
stages, which produce l individual outputs r1, . . . , rl. These
individual outputs are XORed to produce a multi-bit re-
sponse o1, ..., om of the Lightweight PUF, according to the
formula

oj =
⊕

i=1,...,x

r(j+s+i) mod l for j = 1, . . . , m. (8)

Thereby the values for m (the number of output bits of the
Lightweight PUF), x (the number of values rj that influence
each single output bit) and s (the circular shift in choosing
the x values rj) are variable design parameters.

Another difference to the XOR Arb-PUFs lies in the l in-
puts C1 = b1

1 · · · b
1
k, C2 = b2

1 · · · b
2
k, . . . , Cl = bl

1 · · · b
l
k which

are applied to the l individual Arb-PUFs. Contrary to XOR
Arb-PUFs, it does not hold that C1 = C2 = . . . = Cl = C,
but a more complicated input mapping that derives the in-
dividual inputs Ci from the global input C is applied. This
input mapping constitutes the most significant difference be-
tween the Lightweight PUF and the XOR Arb PUF. We
refer the reader to [10] for further details.

In order to predict the whole output of the Lightweight PUF,
one can apply similar models and ML techniques as in the
last section to predict its single output bits oj . While the
probability to predict the full output of course decreases
exponentially in the misclassification rate of a single bit,
the stability of the full output of the Lightweight PUF also
decreases exponentially in the same parameters. It therefore
seems fair to attack it in the described manner; in any case,
our results challenge the bit security of the Lightweight PUF.

Feed Forward Arbiter PUFs. Feed Forward Arbiter PUFs
(FF Arb-PUFs) were introduced in [11] [12] [17] and further
discussed in [19]. Some of their multiplexers are not switched
in dependence of an external challenge bit, but as a function
of the delay differences accumulated in earlier parts of the
circuit. Additional arbiter components evaluate these delay
differences, and their output bit is fed into said multiplex-
ers in a “feed-forward loop” (FF-loop). We note that an FF
Arb-PUF with k-bit challenges C = b1 · · · bk and l loops has
s = k + l multiplexers or stages.

The described dependency makes natural architecture mod-
els of FF Arb-PUFs no longer differentiable. Consequently,
FF Arb-PUFs cannot be attacked generically with ML meth-
ods that require linearly separable or differentiable mod-
els (like SVMs or LR), even though such models can be
found in special cases, for example for small numbers of
non-overlapping loops.

The number of loops as well as the starting and end point of
the FF-loops are variable design parameters, and a host of
different architectures for an FF Arb-PUF with a moderate
or even large number of loops are possible. The architec-
ture we investigated in this paper consists of loops that are
distributed at equal distances over the structure, and which
just overlap each other: If the starting point of loop m lies in
between stages n and n+1, then the previous loop m−1 has
its end point in the immediately following stage n + 1. This
seemed the natural and straightforward architectural choice;
future experiments will determine whether this is indeed the
optimal (i.e., most secure) architecture.

Ring Oscillator PUFs. Ring Oscillator PUFs (RO-PUFs)
were discussed in [9]. They are based on the influence of
fabrication variations on the frequency of several, identi-
cally designed ring oscillators. While [9] describes the use of
Ring Oscillator PUFs in the context of Controlled PUFs and
limited-count authentication, it is worth analyzing them as
candidate Strong PUFs. A RO-PUF consists of k oscilla-
tors, each of which has its own, unique frequency caused by
manufacturing variations. The input of a RO-PUF consists



of a tuple (i, j), which selects two of the k oscillators. Their
frequencies are compared, and the output of the RO-PUF
is “0” if the former oscillates faster than the latter, and “1”
else. A ring oscillator can be modeled in a straightforward
fashion by a tuple of frequencies (f1, . . . , fk). Its output on
input (i, j) is “0” if fi > fj , and “1” else.

2.4 CRP Generation, Prediction Error, and
Number of CRPs

Given a PUF-architecture that should be examined, the
challenge-response pairs (CRPs) that we used in our ML ex-
periments were generated in the following fashion: (i) The
delay values for this PUF architecture were chosen pseudo-
randomly according to a standard normal distribution. We
sometimes refer to this as choosing a certain PUF instance
in the paper. In the language of Equ. 3, it amounts to choos-
ing the entries wi pseudo-randomly. (ii) If a response of this
PUF instance to a given challenge is needed, it is calculated
by use of the delays selected in step (i), and by application
of a linear additive delay model [13]: The delays of the two
electrical signal paths are simply added up and compared.

We use the following definitions throughout the paper: The
prediction error ǫ is the ratio of incorrect responses of the
trained ML algorithm when evaluated on the test set. For all
applications of LR, the test set each time consisted of 10,000
randomly chosen CRPs. For all applications of ES (i.e.,
for the Feed-Forward Arbiter PUF), the test set each time
consisted of 8, 000 randomly chosen CRPs. The prediction
rate is 1 − ǫ.

NCRP (or simply “CRPs”) denotes the number of CRPs em-
ployed by the attacker in his respective attack, for example
in order to achieve a certain prediction rate. This nomencla-
ture holds throughout the whole paper. Nevertheless, one
subtle difference should be made explicit: In all applications
of LR (i.e., in Sections 3 to 5), NCRP is equal to the size
of the training set of the ML algorithm, as one would usu-
ally expect. In the applications of ES (i.e., in Section 6),
however, the situation is more involved. The attacker needs
a test set himself in order to determine which of his many
random runs was the best. The value NCRP given in the
tables and formulas of Section 6 hence reflects the sum of
the sizes of the training set and the test set employed by the
attacker.

3. ARBITER PUFS
3.1 Machine Learning Results
To determine the separating hyperplane ~wT ~Φ = 0, we ap-
plied SVMs, LR and ES. LR achieved the best results, which
are shown in Table 1. We chose three different prediction
rates as targets: 95% is roughly the environmental stabil-
ity of a 64-bit Arbiter PUF when exposed to a temperature
variation of 45C and voltage variation of ±2% 2. The val-
ues 99% and 99.9%, respectively, represent benchmarks for
optimized ML results. All figures in Table 1 were obtained
by averaging over 5 different training sets. Accuracies were
estimated using test sets of 10,000 CRPs.

2The exact figures reported in [17] are: 4.57% CRP variation
for a temperature variation of 45C, and 2.16% for a voltage
variation of ±2%.

ML No. of Prediction CRPs Training
Method Stages Rate Time

LR 64
95% 640 0.01 sec
99% 2,555 0.13 sec

99.9% 18,050 0.60 sec

LR 128
95% 1,350 0.06 sec
99% 5,570 0.51 sec

99.9% 39,200 2.10 sec

Table 1: LR on Arb PUFs with 64 and 128 stages.
We used HW ⋆.

3.2 Scalability
We also executed scalability experiments with LR, which
are displayed in Fig. 1 and Fig. 2. They show that the
relevant parameters – the required number of CRPs in the
training set and the computational complexity, i.e., the num-
ber of basic operations – grow both linearly or low-degree
polynomially in the misclassification rate ǫ and the length k
of the Arb PUF. Theoretical considerations (dimension of
the feature space, Vapnik-Chervonenkis dimension) suggest
that the minimal number of CRPs NCRP that is necessary
to model a k-stage arbiter with a misclassification rate of ǫ
should obey the relation

NCRP = O (k/ǫ). (9)

This was confirmed by our experimental results.

In practical PUF applications, it is essential to know the
concrete number of CRPs that may become known before
the PUF-security breaks down. Assuming an approximate
linear functional dependency y = ax + c in the double loga-
rithmic plot of Fig. 1 with a slope of a = −1, we obtained
the following empirical formula (10). It gives the approx-
imate number of CRPs NCRP that is required to learn a
k-stage arbiter PUF with error rate ǫ:

NCRP ≈ 0.5 ·
k + 1

ǫ
(10)

Our experiments also showed that the training time of the
ML algorithms, measured in the number of basic operations

Figure 1: Double logarithmic plot of misclassifica-
tion rate ǫ on the ratio of training CRPs NCRP and
dim(Φ) = k + 1.



Figure 2: No. of iterations of the LR algorithm un-
til “convergence” occurs (see section 2), plotted in
dependence of the training set size NCRP .

NBOP , grows slowly. It is determined by the following two
factors: (i) The evaluation of the current model’s likelihood
(Eqn. 1) and its gradient (Eqn. 2), and (ii) the number of
iterations of the optimization procedure before convergence
occurs (see section 2.1.1). The former is both a sum over a

function of the feature vectors ~Φ for all NCRP , and there-
fore has complexity O (k · NCRP ). On the basis of the data
shown in Figure 2, we may further estimate that the num-
bers of iterations increases proportional to the logarithm of
the number of CRPs NCRP . Together, this yields an overall
complexity of

NBOP = O

(
k2

ǫ
· log

k

ǫ

)

. (11)

4. XOR ARBITER PUFS
4.1 Machine Learning Results
In the application of SVMs and ES to XOR Arb-PUFs, we
were able to break small instances, for example XOR Arb-
PUFs with 2 or 3 XORs and 64 stages. LR significantly
outperformed the other two methods. The key observation
is that instead of determining the linear decision boundary
(Eqn. 7), one can also specify the non-linear boundary (Eqn.
6). This is done by setting the LR decision boundary f =
∏l

i=1 ~wT
i

~Φi. The results are displayed in Table 2.

4.2 Performance on Error-Inflicted CRPs

ML No. of Pred. No. of CRPs Training
Method Stages Rate XORs Time

LR 64 99%
4 12,000 3:42 min
5 80,000 2:08 hrs
6 200,000 31:01 hrs

LR 128 99%
4 24,000 2:52 hrs
5 500,000 16:36 hrs
6 — —

Table 2: LR on XOR Arbiter PUFs. Training times
are averaged over different PUF-instances. HW ⋆.

CRPs Percentage of error-inflicted CRPs
(×103) 0% 2% 5% 10%

24

Best Pred. 98.76% 92.83% 88.05% -
Aver. Pred. 98.62% 91.37% 88.05% -
Succ.Trials 0.6% 0.8% 0.2% 0.0%
Instances 40.0% 25.0% 5.0% 0.0%

50

Best Pred. 99.49% 95.17% 92.67% 89.89%
Aver. Pred. 99.37% 94.39% 91.62% 88.20%
Succ.Trials 12.4% 13.9% 10.0% 4.6%
Instances 100.0% 62.5% 50.0% 20.0%

200

Best Pred. 99.88% 97.74% 96.01% 94.61%
Aver. Pred. 99.78% 97.34% 95.69% 93.75%
Succ.Trials 100.0% 87.0% 87.0% 71.4%
Instances 100.0% 100.0% 100.0% 100.0%

Table 3: LR on 128-bit, 4-XOR Arb PUFs with dif-
ferent levels of error in the training set. We show
the best and average prediction rates of 40 randomly
chosen instances, the percentage of successful tri-
als over all instances, and the percentage of and in-
stances that converged to a sufficient optimum in at
least one trial. We used HW �.

CRPs Percentage of error-inflicted CRPs
(x103) 0% 2% 5% 10%

500

Best Pred. 99.90% 97.55% 96.48% 93.12%
Aver. Pred. 99.84% 97.33% 95.84% 93.12%
Succ.Trials 7.0% 2.9% 0.9% 0.7%
Instances 20.0% 20.0% 10.0% 5.0%

Table 4: LR on 128-bit, 5-XOR Arb PUFs with dif-
ferent amounts of error in the training set. Rest as
in the caption of Table 3. We used HW �.

The CRPs used in Section 4.1 have been generated pseudo-
randomly via an additive, linear delay model of the PUF.
This deviates from reality in two aspects: First of all, the
CRPs obtained from real PUFs are subject to noise and
random errors. Secondly, the linear model matches the phe-
nomena on a real circuit very closely [17], but not perfectly.
This leads to a deviation of any real system from the linear
model on a small percentage of all CRPs.

In order to mimic this situation, we investigated the ML
performance when a small error is injected artificially into
the training sets. A given percentage of responses in the
training set were chosen randomly, and their bit values were
flipped. Afterwards, the ML performance on the unaltered,
error-free test sets was evaluated. The results are displayed
in Tables 3 and 4. They show that LR can cope very well
with errors, provided that around 3 to 4 times more CRPs
are used. The required convergence times on error inflicted
training sets did not change substantially compared to error
free training sets of the same sizes.

4.3 Scalability
Figures 4 and 5 display the results of our scaling experi-
ments with LR. Again, the smallest number of CRPs in
the training set NCRP needed to achieve predictions with
a misclassification rate ǫ scales linearly with the number of
parameters of the problem (the product of the number of



Figure 3: Graphical illustration of the effect of error
on LR in the training set, with chosen data points
from Tables 3 and 4. We used HW �.

stages k and the number of XORed Arb-PUFs l):

NCRP ∼
(k + 1) · l

ǫ
. (12)

But, in contrast to standard Arb-PUFs, optimizing the non-
linear decision boundary (6) on the training set now is a
non-convex problem, so that the LR algorithm is not guar-
anteed to find (an attractor of) the global optimum in its
first trial. It needs to be iteratively restarted Ntrial times.
Ntrial thereby can be expected to not only depend on k and
l, but also on the size NCRP of the employed training set.

As it is argued in greater detail in [20], the success rate
(= 1/Ntrial) of finding (an attractor of) the global optimum
seems indeed determined by the ratio of dimensions gradient
information (∝ NCRP as the gradient is a linear combina-
tion of the feature vector) and the dimension dΦ in which
the problem is linear separable. The dimension dΦ is the
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Figure 4: Double logarithmic plot of misclassifica-
tion rate ǫ on the ratio of training CRPs NCRP and
problem size dim(Φ) = (k + 1) · l. We used HW �.
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Figure 5: Average rate of success of the LR algo-
rithm plotted in dependence of the ratio dΦ (see Eqn.
(13)) to NCRP . We used HW �.

number of independent dimensions of ~ΦXOR =
⊗l

i=1
~Φi =

⊗l
i=1(Φ

1
i . . . , Φk

i , 1)T .

As the tensor product of several vectors consists of all pos-
sible products between their vector components, the inde-
pendent dimensions are given by the number of different
products of the form Φi1

1 · Φi2
2 · . . . Φ

il

l for i1, i2, . . . , il ∈

{1, 2, . . . , k + 1} (where we say that Φk+1
i = 1 for all i =

1, . . . , l). For XOR Arb-PUFs, we furthermore know that
the same challenge is applied to all l internal Arbiter PUFs,
which tells us that Φi

j = Φi
j′ = Φi for all j, j′ ∈ {1, . . . , l}

and i ∈ {1, . . . , k + 1}. Since a repetition of one component
does not affect the product regardless of its value (recall that
Φr ·Φr = ±1·±1 = 1), the number of the above products can
be obtained by counting the unrepeated components. The
number of different products of the above form is therefore
given as the number of l-tuples without repetition, plus the
number of (l − 2)-tuples without repetition (corresponding
to all l-tuples with 1 repetition), plus the number of (l − 4)-
tuples without repetition (corresponding to all l-tuples with
2 repetitions), etc.

Writing this down more formally, dΦ is given by

dΦ =

(

k + 1

l

)

+

(

k + 1

l − 2

)

+

(

k + 1

l − 4

)

+ . . .

k≫l
≈

(k + 1)l

l!
. (13)

The approximation applies when k is considerably larger
than l, which holds for the considered PUFs for stability
reasons. Following [20], this seems to lead to an expected
number of restarts Ntrial to obtain a valid decision boundary
on the training set (that is, a parameter set ~w that separates
the training set), of

Ntrial = O

(
dΦ

NCRP

)

= O

(
(k + 1)l

NCRP · l!

)

. (14)

Furthermore, each trial has the complexity

Ttrial = O ( (k + 1) · l · NCRP ) . (15)



No. of Pred. No. of CRPs Training
Stages Rate XORs Time

64 99%
3 6,000 8.9 sec
4 12,000 1:28 hrs
5 300,000 13:06 hrs

128 99%
3 15,000 40 sec
4 500,000 59:42 min
5 106 267 days

Table 5: LR on Lightweight PUFs. Prediction rate
refers to single output bits. Training times were
averaged over different PUF instances. HW ⋆.

5. LIGHTWEIGHT SECURE PUFS
5.1 Machine Learning Results
In order to test the influence of the specific input mapping
of the Lightweight PUF on its machine-learnability (see Sec.
2.3), we examined architectures with the following parame-
ters: variable l, m = 1, x = l, and arbitrary s. We focused
on LR right from the start, since this method was best in
class for XOR Arb-PUFs, and obtained the results shown
in Table 5. The specific design of the Lightweight PUF
improves its ML resilience by a notable quantitative fac-
tor, especially with respect to the training times and CRPs.
The given training times and prediction rates relate to single
output bits of the Lightweight PUF.

5.2 Scalability
Some theoretical consideration [20] shows the underlying ML
problem for the Lightweight PUF and the XOR Arb PUF are
similar with respect to the required CRPs, but differ quanti-
tatively in the resulting runtimes. The asymptotic formula
on NCRP given for the XOR Arb PUF (Eqn. 12) analogously
also holds for the Lightweight PUF. But due to the influence
of the special challenge mapping of the Lightweight PUF, the
number Ntrial has a growth rate that is different from Eqn.

14. It seems to lie between O
( (k + 1)l

NCRP · l!

)
) and the related

expression O
( (k + 1)l

NCRP

)
[20]. While these two formulas dif-

fer by factor of l!, we note that in our case k ≫ l, and that l
is comparatively small for stability reasons. Again, all these
considerations on NCRP and NTrial hold for the prediction
of single output bits of the Lightweight PUF.

These points were at least qualitatively confirmed by our
scalability experiments. We observed in agreement with the
above discussion that with the same ratio CRPs/dΦ the
LR algorithm will have a longer runtime for the Lightweight
PUF than for the XOR Arb-PUF. For example, while with
a training set size of 12, 000 for the 64-bit 4-XOR Arb-PUF
on average about 5 trials were sufficient, for the correspond-
ing Lightweight PUF 100 trials were necessary. The specific
challenge architecture of the Lightweight PUF hence notice-
ably complicates the life of an attacker in practice.

6. FEED FORWARD ARBITER PUFS
6.1 Machine Learning Results
We experimented with SVMs and LR on FF Arb-PUFs, us-
ing different models and input representations, but could

No. of FF- Pred. Rate CRPs Training
Stages loops Best Run Time

64

6 97.72% 50,000 07:51 min
7 99.38% 50,000 47:07 min
8 99.50% 50,000 47:07 min
9 98.86% 50,000 47:07 min
10 97.86% 50,000 47:07 min

128

6 99.11% 50,000 3:15 hrs
7 97.43% 50,000 3:15 hrs
8 98.97% 50,000 3:15 hrs
9 98.78% 50,000 3:15 hrs
10 97.31% 50,000 3:15 hrs

Table 6: ES on Feed-Forward Arbiter PUFs. Pre-
diction rates are for the best of a total of 40 trials
on a single, randomly chosen PUF instance. Train-
ing times are for a single trial. We applied Lazy
Evaluation with 2,000 CRPs. We used HW �.

only break special cases with small numbers of non-overlapp-
ing FF loops, such as l = 1, 2. This is in agreement with
earlier results reported in [19].

The application of ES finally allowed us to tackle much more
complex FF-architectures with up to 8 FF-loops. All loops
have equal length, and are distributed regularly over the
PUF, with overlapping start- and endpoints of successive
loops, as described in Section 2.3. Table 6 shows the results
we obtained. The given prediction rates are the best of 40
trials on one randomly chosen PUF-instance of the respec-
tive length. The given CRP numbers are the sum of the
training set and the test set employed by the attacker; a
fraction of 5/6 was used as the training set, 1/6 as the test
set (see Section 2.4). We note for comparison that in-silicon
implementations of 64-bit FF Arb-PUFs with 7 FF-loops are
known to have an environmental stability of 90.16% [17].

6.2 Results on Error-Inflicted CRPs
For the same reasons as in Section 4.2, we evaluated the
performance on error-inflicted CRPs with respect to ES and
FF Arb PUFs. The results are shown in Table 7 and Fig.
6. ES possesses an extremely high tolerance against the
inflicted errors; its performance is hardly changed at all.

6.3 Scalability
We started by empirically investigating the CRP growth as
a function of the number of challenge bits, examining archi-

CRPs Percentage of error-inflicted CRPs
(×103) 0% 2% 5% 10%

50
Best Pred. 98.29% 97.78% 98.33% 97.68%
Aver. Pred. 89.94% 88.75% 89.09% 87.91%
Succ.Trials 42.5% 37.5% 35.0% 32.5%

Table 7: ES on 64-bit, 6 FF Arb PUFs with differ-
ent levels of error in the training set. We show the
best and average prediction rates from over 40 in-
dependent trials on a single, randomly chosen PUF
instance, and the percentage of successful trials that
converged to 90% or better. We used HW �.



Figure 6: Graphical illustration of the tolerance of
ES to errors. We show the best result of 40 indepen-
dent trials on one randomly chosen PUF instance for
varying error levels in the training set. The results
hardly differ. We used HW �.

tectures of varying bitlength that all have 6 FF-loops. The
loops are distributed as described in Section 2.3. The cor-
responding results are shown in Figure 7. Every data point
corresponds to the averaged prediction error of 10 trials on
the same, random PUF-instance.

Secondly, we investigated the CRP requirements as a func-
tion of a growing number of FF-loops, examining architec-
tures with 64 bits. The corresponding results are depicted
in Figure 8. Again, each data point shows the averaged pre-
diction error of 10 trials on the same, random PUF instance.

In contrast to the Sections 4.3 and 5.2, it is now much more
difficult to derive reliable scalability formulas from this data.
The reasons are threefold. First, the structure of ES provides
less theoretical footing for formal derivations. Second, the
random nature of ES produces a very large variance in the

Figure 7: Results of 10 trials per data point with
ES for different lengths of FF Arbiter PUFs and the
hyperbola fit. HW �.

Figure 8: Results of 10 trials per data point with ES
for different numbers of FF-loops and the hyperbola
fit. HW �.

data points, making also clean empirical derivations more
difficult. Third, we observed an interesting effect when com-
paring the performance of ES vs. SVM/LR on the Arb PUF:
While the supervised ML methods SVM and LR showed a
linear relationship between the prediction error ǫ and the
required CRPs even for very small ǫ, ES proved more CRP
hungry in these extreme regions for ǫ, clearly showing a su-
perlinear growth. The same effect can be expected for FF
architectures, meaning that one consistent formula for ex-
treme values of ǫ may be difficult to obtain.

It still seems somewhat suggestive from the data points in
Figures. 7 and 8 to conclude that the growth in CRPs is
about linear, and that the computation time grows polyno-
mially. For the reasons given above, however, we would like
to remain conservative, and present the upcoming empirical
formulas only in the status of a conjecture.

The data gathered in our experiments is best explained by
assuming a qualitative relation of the form

NCRP = O(s/ǫc) (16)

for some constant 0 < c < 1, where s is the number of stages
in the PUF. Concrete estimation from our data points leads
to an approximate formula of the form

NCRP ≈ 9 ·
s + 1

ǫ3/4
. (17)

The computation time required by ES is determined by the
following factors: (i) The computation of the vector product

~wT ~Φ, which grows linearly with s. (ii) The evolution applied
to this product, which is negligible compared to the other
steps. (iii) The number of iterations or “generations” in ES
until a small misclassification rate is achieved. We conjec-
ture that this grows linearly with the number of multiplexers
s. (iv) The number of CRPs that are used to evaluate the
individuals per iteration. If Eqn. 17 is valid, then NCRP is
on the order of O(s/ǫc).

Assuming the correctness of the conjectures made in this
derivation, this would lead to a polynomial growth of the



Method No. of Pred. Rate CRPs
Oscill. average

QS
256 99% 99.9% 14,060 28,891
512 99% 99.9% 36,062 103,986
1024 99% 99.9% 83,941 345,834

Table 8: Quick Sort applied to the Ring Oscillator
PUF. The given CRPs are averaged over 40 trials.
We used HW �.

computation time in terms of the relevant parameters k, l
and s. It could then be conjectured that the number of basic
computational operations NBOP obeys

NBOP = O(s3/ǫc) (18)

for some constant 0 < c < 1.

7. RING OSCILLATOR PUFS
7.1 Possible Attacks
There are several strategies to attack a RO-PUF. The most
straightforward attempt is a simple read out of all CRPs.
This is easy, since there are just k(k − 1)/2 = O(k2) CRPs
of interest, given k ring oscillators.

If Eve is able to choose the CRPs adaptively, she can employ
a standard sorting algorithm to sort the RO-PUF’s frequen-
cies (f1, . . . , fk) in ascending order. This strategy subse-
quently allows her to predict all outputs with 100% correct-
ness, without knowing the exact frequencies fi themselves.
The time and CRP complexities of the respective sorting al-
gorithms are well known [27]; for example, there are several
algorithms with average- and even worst-case CRP complex-
ity of NCRP = O(k · log k). Their running times are also
low-degree polynomial.

The most interesting case for our investigations is when Eve
cannot adaptively choose the CRPs she obtains, but still
wants to achieve optimal prediction rates. This case occurs
in practice whenever Eve obtains her CRPs from protocol
eavesdropping, for example. We carried out experiments for
this case, in which we applied Quick Sort (QS) to randomly
drawn CRPs. The results are shown in Table 8. The esti-
mated required number of CRPs is given by

NCRP ≈
k(k − 1)(1 − 2ǫ)

2 + ǫ(k − 1)
, (19)

and the training times are low-degree polynomial. Eqn. 19
quantifies limited-count authentication capabilities of RO-
PUFs.

8. SUMMARY AND DISCUSSION

Summary. We investigated the resilience of currently pub-
lished electrical Strong PUFs against modeling attacks. To
that end, we applied various machine learning techniques to
challenge-response data generated pseudo-randomly via an
additive delay model. Some of our main results are summa-
rized in Table 9.

We found that all examined Strong PUF candidates under a
given size could be machine learned with success rates above

their in-silicon stability. The attacks require a number of
CRPs that grows only linearly or log-linearly in the inter-
nal parameters of the PUFs, such as their number of stages,
XORs, feed-forward loops or ring oscillators. Apart from
XOR Arbiter PUFs and Lightweight PUFs (whose training
times grew quasi-exponentially in their number of XORs for
large bitlengths k and small to medium number of XORs
l), the training times of the applied machine learning algo-
rithms are low-degree polynomial, too.

While we have presented results only on pseudo-random
CRP data generated in the additive delay model, exper-
iments with silicon implementations [17] [28] have shown
that the additive delay model achieves very high accuracy.
We also showed that the stability of our results against ran-
dom errors in the CRP data is high. Our approach is hence
robust against some inaccuracies in the model and against
measurement noise. In our opinion, it will transfer to the
case where CRP data is collected from silicon PUF chips.

Our results prohibit the use of the broken architectures as
Strong PUFs or in Strong-PUF based protocols. Under the
assumption that digital signals can be probed, they also af-
fect the applicability of the cryptanalyzed PUFs as building
blocks in Controlled PUFs and Weak PUFs.

Discussion. Two straightforward, but biased interpreta-
tions of our results would be the following: (i) All Strong
PUFs are insecure. (ii) The long-term security of electrical
Strong PUFs can be restored trivially, for example by in-
creasing the PUF’s size. Both views are simplistic, and the
truth is more involved.

Starting with (i), our current attacks are indeed sufficient
to break most implemented PUFs. But there are several
ways how PUF designers can fight back in future implemen-
tations. First, increasing the bitlength k in an XOR Arbiter
PUF or Lightweight Secure PUF with l XORs increases the
effort of the presented attacks methods as a polynomial func-
tion of k with exponent l (in approximation for large k and
small or medium l). At the same time, it does not worsen
the PUF’s stability [28]. For now, one could therefore dis-
able attacks through choosing a strongly increased value of k
and a value of l that corresponds to the stability limit of such
a construction. For example, an XOR Arbiter PUF with 8
XORs and bitlength of 512 is implementable by standard
fabrication processes [28], but is currently beyond the reach
of our attacks. Similar considerations hold for Lightweight
PUFs of these sizes. Secondly, new design elements may
raise the attacker’s complexity further, for example adding
nonlinearity (such as AND and OR gates that correspond
to MAX and MIN operators [17]). Combinations of Feed-

PUF XORs/ ML No.of Pred. CRPs Train.
Type Loops Met. Stag. Rate (×103) Time
Arb - LR 128 99.9% 39.2 2.10 sec
XOR 5 LR 128 99.0% 500 16:36 hrs
Light 5 LR 128 99.0% 1000 267 days
FF 8 ES 128 99.0% 50 3:15 hrs

Table 9: Some of our main results.



Forward and XOR architectures could be hard to machine
learn too, partly because they seem susceptible only to dif-
ferent and mutually-exclusive ML techniques.

Moving away from delay-based PUFs, the exploitation of the
dynamic characteristics of current and voltage seems promis-
ing, for example in analog circuits [29]. Also special PUFs
with a very high information content (so-called SHIC PUFs
[30, 31, 32]) could be an option, but only in such applica-
tions where their slow read-out speed and their compara-
tively large area consumption are no too strong drawbacks.
Their promise is that they are naturally immune against
modeling attacks, since all of their CRPs are information-
theoretically independent. Finally, optical Strong PUFs, for
example systems based on light scattering and interference
phenomena [1], show strong potential in creating high input-
output complexity.

Regarding view (ii), PUFs are different from classical cryp-
toschemes like RSA in the sense that increasing their size
often likewise decreases their input-output stability. For ex-
ample, raising the number of XORs in an XOR Arbiter PUF
has an exponentially strong effect both on the attacker’s
complexity and on the instability of the PUF. We are yet
unable to find parameters that increase the attacker’s ef-
fort exponentially while affecting the PUF’s stability merely
polynomially. Nevertheless, one practically viable possibil-
ity is to increase the bitlength of XOR Arbiter PUFs, as
discussed above. Future work will have to show whether the
described large polynomial growth can persist in the long
term, or whether its high degree can be diminished by fur-
ther analysis.

Future Work. The upcoming years will presumably witness
an intense competition between codemakers and codebreak-
ers in the area of Strong PUFs. Similar to the design of
classical cryptoprimitives, for example stream ciphers, this
process can be expected to converge at some point to solu-
tions that are resilient against the known attacks.

For PUF designers, it may be interesting to investigate some
of the concepts that we mentioned above. For PUF break-
ers, a worthwhile starting point is to improve the attacks
presented in this paper through optimized implementations
and new ML methods. Another, qualitatively new path is to
combine modeling attacks with information obtained from
direct physical PUF measurements or from side channels.
For example, applying the same challenge multiple times
gives an indication of the noise level of a response bit. It en-
ables conclusions about the absolute value of the final run-
time difference in the PUF. Such side channel information
can conceivably improve the success and convergence rates
of ML methods, though we have not exploited this in this
paper.
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