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Nanostructuring has been shown to be an effective approach to reduce the lattice thermal conductivity and
improve the thermoelectric figure of merit. Because the experimentally measured thermal conductivity includes
contributions from both carriers and phonons, separating out the phonon contribution has been difficult and
is mostly based on estimating the electronic contributions using the Wiedemann-Franz law. In this paper,
an experimental method to directly measure electronic contributions to the thermal conductivity is presented
and applied to Cu0.01Bi2Te2.7Se0.3, [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and Bi0.88Sb0.12. By measuring the thermal
conductivity under magnetic field, electronic contributions to thermal conductivity can be extracted, leading to
knowledge of the Lorenz number in thermoelectric materials.

DOI: 10.1103/PhysRevB.85.205410 PACS number(s): 72.15.Jf, 72.20.Pa, 66.70.Df

I. INTRODUCTION

The determination of the Lorenz number is an important
aspect in thermoelectric research due to the fact that ZT

enhancement is being realized through the reduction of
thermal conductivity, specifically focusing on reducing the
lattice portion of the thermal conductivity. The total thermal
conductivity is given by

κtotal = κcarrier + κlattice, (1)

where κcarrierand κlattice are the contributions to the thermal
conductivity from the carriers and the lattice, respectively.
Since only the total thermal conductivity can be measured,
the contributions must be separated in some way. This is done
using the Wiedemann-Franz law and by defining a Lorenz
number L, which is the given by

L = κcarrier

σT
, (2)

where σ is the electrical conductivity and T is the absolute
temperature. In metals the Lorenz number can be determined
by measuring the electrical conductivity and total thermal
conductivity at a given temperature, from which the Lorenz
number is calculated using Eq. (2). This method is only useful
in metals where the total thermal conductivity is approximately
equal to κcarrier. For the classical free-electron model the Lorenz
number is given as 2.44 × 10−8 V2 K−2.1 It is important to
note that the Lorenz number, as described by the free-electron
model, is not an accurate value for most materials and in a
given material depends on the detailed band structure, position
of the Fermi level, and the temperature; for semiconductors
this relates to the carrier concentration. Therefore, when κlattice

and κcarrier become comparable to each other, there must be
a method for differentiating between the two components
of κtotal. To date the separation of the two components has
been accomplished through calculation by approximating the
Lorenz number, and hence the carrier contribution, through
various different formalisms.1,3,4 Determinations of the Lorenz

number have also been made experimentally;1 however, there
are few.

In order to separate κlattice and κcarrier experimentally, two
approaches have been used to determine the Lorenz number.
Both methods utilize a transverse magnetic field in order to
suppress the electronic component of the thermal conductivity.
One approach uses a classically large magnetic field, while
the other is performed in intermediate fields. A classically
large magnetic field is described as μB � 1, where μ is
the carrier mobility and B is the magnetic field.1 When this
limit is reached, the electronic component of κ is completely
suppressed so that the measurement yields only the lattice
portion of the thermal conductivity, from which κcarrierand
hence the Lorenz number can be calculated using Eqs. (1)
and (2).

Very often it is difficult to reach a classically large field,
making this type of measurement impossible, and therefore
other methods have been developed for determining L.
For example, Goldsmid et al. developed a magnetothermal
resistance (MTR) method for extracting the Lorenz number
at lower magnetic fields, specifically in the region where
μB ≈ 1.5–8 In the MTR method the sample is kept at a constant
temperature while the field is varied. In this case both the
electrical conductivity and the total thermal conductivity will
change with the field due to the Lorentz force acting on the
carriers, which is induced by the transverse magnetic field.
Equation (1) can be rewritten in the form

κ(B)total = LT σ (B) + κlattice, (3)

where now both κ and σ are dependent on the magnetic field.
It is noted that κ , σ , and L are all tensors, whose off-diagonal
components can have non-negligible contributions in magnetic
field.5,9 Both κ(B) and σ (B) are measured along the same
direction, which we define as κxx(B) and σxx(B). For an
anisotropic sample, even to first order, the magnetic field
affects the diagonal terms of the tensors as well as the
nondiagonal terms. We show that by measuring only the
diagonal terms we are able to extract the Lorenz number Lxx ,
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which relates κxx to σxx . The reason behind the validity of this
method is that both κ(B)xx and σ (B)xx have a similar magnetic
field dependence and their ratio has only a weak dependence
on the off-diagonal terms. Since the samples are isotropic10

and extrinsic, it is assumed that off-diagonal terms can be
neglected because thermogalvanomagnetic effects are only
dominant in intrinsic materials with a proportional number
of positive and negative charge carriers.4,11 As long as both
have the same functional form with respect to the magnetic
field, then κ(B) vs σ (B) will have a linear relationship, and
the Lorenz number Lxx at a given temperature can be directly
taken from the slope as given in Eq. (3). It is important to
note that the analysis throughout this paper is based on the
assumption that the Lorenz number is independent of magnetic
field, which is true for some materials but, in general, is not
a valid assumption.12–14 Analogous approximations have been
used to study similar compounds in the past.6,12

Neither method has been extensively used due to the fact
that there are restrictions on the materials that can be measured
because there must be a significant carrier contribution to the
total thermal conductivity; also the experimental setup is rather
difficult to realize.1,5–9 The advent of the Physical Properties
Measurement System (PPMS) from Quantum Design makes
the experimental setup and measurement readily possible for
either method. The purpose of this paper is to present experi-
mental techniques for the determination of the Lorenz number
from which both the electronic and lattice contributions to the
thermal conductivity can be directly extracted. Measurements
are compared to literature values as well as simple model
calculations. There are several different ways to analyze the
raw experimental data; two different models will be used here
and are shown to yield similar results. The measurements
are performed below 150 K so that bipolar terms will be
negligible, and therefore Eqs. (1) and (3) accurately describe
the contributions to the total thermal conductivity.

II. EXPERIMENT

Samples were prepared by combining the proper stoichio-
metric ratios of Cu (99.999%, Alfa Aesar), Bi (99.999%,
Alfa Aesar), Te (99.999%, Alfa Aesar), and Se (99.999%,
Alfa Aesar) for Cu0.01Bi2Te2.7Se0.3, while Bi0.88Sb0.12 was
prepared with Bi (99.999%, Alfa Aesar) and Sb (99.999%,
Alfa Aesar). Samples were then ball milled and pressed using
dc hot-pressing techniques.10 Metallic contacts were sputtered
onto the surfaces so that electrical contacts could be soldered
to the sample.

MTR measurements were performed using the thermal
transport option (TTO) of the PPMS in which the sample
was placed in an orientation where the magnetic field was
perpendicular to the heat flow. A standard two-point method
was used for thermal conductivity and Seebeck coefficient
S measurements with typical sample dimensions of 2 × 2 ×
3 mm3. In this case the temperature was held constant at 100 K,
and measurements were made while the field was swept over a
range of 0.1–5 T. Since resistivity ρ values in a magnetic field
are required, a four-point technique must be used, which was
accomplished with the ac transport option on a different sample
of dimensions 1 × 2 × 12 mm3 for the same temperature and
field range. Since a four-point technique is used, there is no

concern of electrical contact resistance. For thermal contact
resistance, our previous measurements show no difference in
the thermal conductivity when a two- or four-point method is
used. Even so, any thermal contact resistance is assumed to be
negligible in field, and since we are looking at the change in
thermal conductivity with field, there should be no influence
on the slope L of the measurement. Geometrical effects on
the magnetoresistance are considered to be negligible because
the sample used for resistivity measurements in field has
the appropriate aspect ratio. The sample dimensions for the
thermal magnetoresistance measurements are restricted due
to requirements to fit into the PPMS; however, it is assumed
there is a negligible contribution because there was no evidence
previously of geometrical effects on a similar material which
had an aspect ratio of 1.12 Errors for the MTR measurements
of L and κlattice were calculated from the standard deviation
and propagation of error and were determined to be 3% and
7%, respectively. Hall measurements to determine the mobility
μH from which the scattering factor r is obtained were made
using the PPMS on the same sample as the four-point ρ

measurement.
When determining the Lorenz number in a classically large

field, the TTO of the PPMS in which the magnetic field was
perpendicular to the heat flow was again used. A standard
two-point method was used for all transport measurements on
the same sample. The sample was run in magnetic fields of
0, 6, and 9 T. Only the thermal conductivity measurements
in field are used, while electrical resistivity values are taken
from the zero-field data. Typical sample dimensions were
2 × 4 × 2 mm3. Thermal contact resistance is assumed
to be negligible for the reasons stated above, and electrical
contact resistance is negligible from the comparison of two-
and four-point resistivity measurements. There is no concern
of geometrical effects on thermal conductivity measurements
because saturation would not be obtained at higher magnetic
fields. The measurements were performed over a temperature
range of 5–150 K, with the error for L and κlattice being 2%
and 6%, respectively, determined from the standard deviation
and propagation of error.

III. RESULTS

The MTR approach can be used only if the thermal and
electrical conductivities have the same functional form with
respect to the magnetic field. Since the MTR method is used in
intermediate fields, or when μB ≈ 1, only values in magnetic
fields from 0.8 to 5 T were used; anything below 0.8 T was
too low of a field. The top left inset in Fig. 1 plots κ as a
function of field, while the bottom right inset plots σ as a
function of field for Cu0.01Bi2Te2.7Se0.3. Both the electrical
and thermal conductivities vary with field as aB2

1+cB2 , where a

and c are constants, which is valid for strong degeneracy.2,16,17

The fits are shown in the insets of Fig. 1 along with the
measured values. Figure 1 can be fit linearly, and taking the
slope yields LT in Eq. (3), from which we get L = 2.16 ×
10−8 V2 K−2 by dividing by T = 100 K. The lattice portion
of the thermal conductivity is given by the y intercept and
gives κlattice = 1.49 W mK−1. Care should be taken with
the determination of κlattice this way because a larger error
is induced when extrapolating over six orders of magnitude to
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FIG. 1. (Color online) Thermal conductivity is plotted against
electrical conductivity of Cu0.01Bi2Te2.7Se0.3 at 100 K with the
magnetic field being varied from 0.8 to 5 T. The slope of the linear
fit provides the Lorenz number L = 2.16 × 10−8 V2 K−2, and the
y intercept gives κlattice = 1.49 W mK−1. The top left inset plots the
dependence of the total thermal conductivity on magnetic field. The
bottom right inset plots the dependence of electrical conductivity
on magnetic field. Both the thermal conductivity and electrical
conductivity varying with field can be fit using aB2

1+cB2 , as shown in the
insets.

get κlattice when σ (B) is zero. If κcarrier is calculated from the
Lorenz number and the electrical conductivity in zero field,
κlatticecan be calculated from κtotal–κcarrier, which gives a value
of 1.35 W mK−1. For a comparison with the measured values,
a simple model for the calculation of the Lorenz number is
given by3

L =
(

kB

e

)2 [
(r + 7/2)Fr+5/2(ξ )

(r + 3/2)Fr+1/2(ξ )

−
(

(r + 5/2)Fr+3/2(ξ )

(r + 3/2)Fr+1/2(ξ )

)2
]

, (4)

where r is the scattering parameter, kB is Boltzmann’s constant,
e is the electron charge, and Fn(ξ ) is the Fermi integral given
by

Fn(ξ ) =
∫ ∞

0

χn

1 + eχ−ξ
dχ, (5)

where ξ is the reduced Fermi energy that can be calculated
from the Seebeck coefficient S as well as the scattering
parameter r , which is given by

S = ±kB

e

(r + 5/2)Fr+3/2(ξ )

(r + 3/2)Fr+1/2(ξ )
− ξ. (6)

In this model the Lorenz number can be calculated with
knowledge of the Seebeck coefficient and the scattering
parameter, both of which were measured at 100 K. The insets
of Fig. 2 show μH plotted as a function of temperature
over the entire temperature range (top left) as well as only
the data around 100 K (bottom right), which were used to
calculate the scattering parameter r . The data in Fig. 2 are for
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FIG. 2. (Color online) Thermal conductivity is plotted against
electrical conductivity of [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 at 100 K with
the magnetic field being varied from 0.8 to 5 T. The slope of the linear
fit provides the Lorenz number L = 2.33 × 10−8 V2 K−2, and the y

intercept gives κlattice = 1.27 W mK−1. The top left inset plots ln(μH )
vs ln(T ) over the whole temperature range. The bottom right inset
plots only the points in the vicinity of 100 K from which the slope is
taken to derive the scattering parameter.

[Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02; the same method was used to
calculate r for Cu0.01Bi2Te2.7Se0.3. The scattering parameter r

was determined by taking the slope of ln(μH ) vs ln(T ) around
100 K, using the relationship μ ∝ T r−1.15 The values for the
mobility were nearly identical between the two samples, with
values for r being 0.26 and 0.27 for Cu0.01Bi2Te2.7Se0.3 and
[Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, respectively. Though there is
some error induced in the determination of r because the
scattering parameter in general changes with temperature,
these values should be more accurate than the commonly
assumed r = −1/2 for acoustic phonon scattering. This fact
is seen in the calculated values for L where using r = −1/2
yields values of L that are 3% higher than when r is calculated
from the mobility. The calculated value using Eqs. (4)–(6)
and r = 0.26 gives L = 2.34 × 10−8 V2 K−2 and κlattice =
1.30 W mK−1, both of which are close to the experimentally
determined values.

The same procedure was followed for
[Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and Fig. 2 shows again
that κ(B) vs σ (B) is linear. The measured value for the
slope gives L = 2.33 × 10−8 V2 K−2, and from the y

intercept κlattice = 1.27 W mK−1. The calculated values using
Eqs. (4)–(6) give L = 2.36 × 10−8 V2 K−2 and κlattice = 1.13
W mK−1, again showing the validity of the measurement.
Besides the MTR method the data can also be fit using
the following expressions for the electrical and thermal
conductivities as a function of field for isotropic samples in
the relaxation-time approximation:18

σ (B) = σ0

1 + (μdB)2
, (7)

κ(B) = κlattice + κcarrier

1 + (μdB)2
, (8)
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FIG. 3. (Color online) Electrical conductivity is plotted against
magnetic field from 0.1 to 5 T and fit using Eq. (7). The electrical
conductivity in zero field is used in order to determine the drift
mobilityμd .

where σ0 is the electrical conductivity in zero field and μd is
the drift mobility. The drift mobility determined by Eq. (7) and
shown in Fig. 3 is used in Eq. (8) in order to determine the
carrier and lattice contributions to the thermal conductivity, as
shown in Fig. 4. As opposed to the MTR method, the data must
be fit using both weak and intermediate magnetic fields, and so
Figs. 3 and 4 show the thermal and electrical conductivities in
fields of 0.1–5 T. Fitting Eq. (8) to the thermal conductivity vs
magnetic field data in Fig. 4 yields κlattice = 1.29 W mK−1. It
can be seen that using the completely different model presented
in Eqs. (7) and (8) produces a nearly identical value of κlattice =
1.27 W mK−1 as determined by the MTR method.

Unlike Cu0.01Bi2Te2.7Se0.3, it was possible to reach the
classical high-field limit at lower temperatures for bismuth
antimony compounds. Figure 5 plots the thermal conductivity

0 15000 30000 45000

1.80

1.84

1.88

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

m
-1
K

-1
)

Magnetic Field (Oe)

FIG. 4. (Color online) Thermal conductivity is plotted against
magnetic field from 0.1 to 5 T and fit using Eq. (8) and μd from
Fig. 3. It is found that κlattice = 1.29 W mK−1.
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FIG. 5. (Color online) Thermal conductivity is plotted against
temperature at magnetic fields of 0, 6, and 9 T for Bi0.88Sb0.12. The
top right inset plots the Seebeck coefficient against temperature, while
the top left inset plots r vs T from 5 to 300 K in zero magnetic field.
It can be clearly seen that the bipolar contribution to the Seebeck
coefficient becomes non-negligible around 150 K.

of Bi0.88Sb0.12 vs temperature in magnetic fields of 0, 6,
and 9 T. The fact that the field is classically large in the
temperature range of 5–150 K can be seen by inspection of
Fig. 5. Since there is no change when increasing the field from
6 to 9 T below 150 K, the high-field limit has been reached,
and κcarrierhas been completely suppressed. As can be seen in
Fig. 5, the onset of the bipolar effect occurs above 150 K but
not radiation effects since these are negligible under 200 K,
which is not eliminated by the magnetic field and results in
both the increase of the thermal conductivity and the lack of
suppression of κcarrier. The zero-field values for the Seebeck
coefficient and electrical resistivity are plotted in the insets,
both of which confirm the onset of bipolar effects around
150 K. The fact that the electronic thermal conductivity is not
suppressed due to the bipolar contribution has been described
by Uher and Goldsmid, and in pure bismuth happens at around
150 K.5 Therefore, extraction of the Lorenz number using
this method is only possible for temperatures below 150 K,
where bipolar contributions are negligible. Once the lattice
and total thermal conductivities are measured, the electronic
portion was calculated using Eq. (1). Equation (2) can be
rewritten as LT = κcarrierρ, where ρ is the zero-field value
for the electrical resistivity. Since, in this case, the lattice
portion is measured over a range of temperatures, κcarrierρ

can be plotted versus temperature, and the slope of the line
will yield L for that temperature range. Figure 6 shows only
the portion of the temperature range over which the plot is
linear. At higher temperatures, above 150 K, the classical field
approximation is no longer valid due to a drastic decrease in
mobility as well as the onset of the bipolar contribution,5,7

while at lower temperatures κlattice dominates and therefore
κtotal is unaffected by magnetic field, as can be seen in
Fig. 5. Fitting linearly, as shown in Fig. 6, gives the measured
value for the Lorenz number as 2.21 × 10−8 V2 K−2 in the
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FIG. 6. (Color online) κcarrierρ is plotted against temperature from
35 to 150 K. The black points represent the measured data, while the
red line is the linear fit. The slope of the linear fit provides the Lorenz
number L = 2.21 × 10−8 V2 K−2, and the y intercept gives κlattice =
2.14 W mK−1.

temperature range 35–150 K, meaning L is constant over
this range of temperature. Sharp et al. measured a sample
of identical composition in fields up to 1 T, where they were
unable to reach the high-field limit and therefore used the
MTR method described above.6 They obtained L = 2.31 ×
10−8 V2 K−2 at 100 K, which is less than a 5% difference
from our measurement. When comparing values for the lattice
portion of the thermal conductivity, our measured value at 100
K yields 2.14 W mK−1, while the value determined using the
MTR method from extrapolation is 2.19 W mK−1.6 It should
be noted that the grain sizes in both samples are of the same
order of magnitude, with average grain sizes being roughly
1 and 5 μm for our sample and that of Sharp, respectively.6

Again, as in the low-field limit, the measured values are not
only reasonable but also within 5% of published values on the
same material.

IV. DISCUSSION

There is excellent agreement between the two models used
to fit the data in the low-field limit for Cu0.01Bi2Te2.7Se0.3

and [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 as well as decent agree-
ment with simple parabolic band model theory. There is
also excellent agreement between both low- and high-field
methods, as shown in the measurements of Bi0.88Sb0.12 and
their comparison with literature values. While measurements
for Bi0.88Sb0.12 were made near the typical temperature range
of operation, these temperatures are far from optimal for
Cu0.01Bi2Te2.7Se0.3, which operates in a much higher temper-
ature range.10 The purpose of measuring Cu0.01Bi2Te2.7Se0.3

was to see first if the measurement was possible in nanostruc-
tured materials and second to see how high the temperature
could be raised while performing the measurement. Therefore
the measurement was also tried at 250 K; however, there
was no variation in the thermal conductivity data outside of
experimental error. This is due to the fact that the mobility
decreased by a factor of 3 at 250 K.

The requirement of high mobility is one of the limitations
of this technique. Other limitations include the requirements

for a high magnetic field, again to satisfy μB � 1, as well
as the electronic portion of the thermal conductivity being
at least 5%. Ideal thermoelectric materials will have a high
mobility along with a low lattice thermal conductivity, which
is comparable to the electronic portion, and so the use
of magnetic field to separate out κcarrier would be perfect
for the ideal nanostructured thermoelectric material.1,5–9 The
assumptions that are being made for the analysis (models used
to fit the data) using this method are that the Lorenz number
is independent of magnetic field, the lattice is unaffected by
magnetic field, there is no bipolar contribution, and electron-
phonon interactions are negligible. The assumption that the
Lorenz number and lattice are independent of magnetic field is
true for some materials, which we take to be the case for these
materials,12 but in general it is not true and can be affected
by secondary magnetic impurities. We are investigating the
generality of this assumption further. Bipolar contributions
should be negligible at 100 K. We assume electron-phonon
interactions would manifest themselves when comparing the
high- and low-field methods in Bi0.88Sb0.12. In the high-field
limit the carrier completes a full orbit and therefore should
be more likely to scatter a phonon, which would lead to a
difference in the thermal conductivity between the high- and
low-field measurements. Since there is no difference between
the two methods, we believe the electron-phonon interactions
to be negligible. It is noted that it would be interesting to devise
an experiment from which electron-phonon interactions could
be determined.

Because of the limitations on the material, only metals (W,13

Cu,19 Pb,20 Rb,21 etc.) along with a few alloyed compounds
[Cd3P2 (Ref. 22) and Cd3As2 (Ref. 23)] have been measured
using magnetic field; what we have found is referenced here
and throughout the paper. Review articles written by Butler
and Williams17 and, more recently, by Kumar1 attempt to give
several literature values, though many were missed, for the
Lorenz number of different elements and alloys determined by
all types of experimental methods, not just in magnetic field.
Another example of experimentally determining the Lorenz
number is through the introduction of impurities in alloys,
where the change in electrical conductivity and κcarrier is used
to determine κlattice. A nice description, with examples as well
as shortcomings, of the alloying method is given by Butler and
Williams.17

Further investigation is required into higher-temperature
measurements as well as other types of materials14,24 for which
this technique can be useful. It should also be mentioned
that we have only looked at the diagonal components,
specifically κxx and σxx , of the transport tensors, and it could
be possible to extract even more data from the off-diagonal
components through measurements of the Righi-Leduc and
Hall coefficients.24,25 Future work will include systematic
measurements of the transport tensors on a specific material
over a larger temperature range along with more complex
theoretical analysis.

V. CONCLUSION

Two methods for experimentally determining the Lorenz
number are presented for nanopolycrystalline Bi0.88Sb0.12,
Cu0.01Bi2Te2.7Se0.3, and [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02.
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Measured values of Cu0.01Bi2Te2.7Se0.3 and
[Cu0.01Bi2Te2.7Se0.3] 0.98Ni0.02 analyzed using Eqs. (1)–(3)
as well as Eqs. (7) and (8) yield similar results and are
close to calculated values using the single parabolic band
model presented in Eqs. (4)–(6). The measured values for
Bi0.88Sb0.12 are the same as previously published results. Now
that the two methods have been clearly demonstrated to work
on these nanopolycrystalline alloys at a given temperature, it
is possible to look at other materials as well as the temperature
range for which this technique can be used. A systematic
study can then be done of the temperature dependence of
the Lorenz number for a given material, making it possible

for more complex theoretical models to be verified within
experimental error, leading to more accurate determinations
of the lattice portion of the thermal conductivity.
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