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Abstract

This paper considers the problem of online informative motion planning for a network of heterogeneous
sensing agents, each subject to dynamic constraints, environmental constraints, and sensor limitations.
Prior work has not yielded algorithms that are amenable to such general constraint characterizations.
In this paper, we propose the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm as a
solution to the constrained informative motion planning problem that embeds metrics on uncertainty
reduction at both the tree growth and path selection levels. IRRT possesses a number of beneficial
properties, chief among them being the ability to find dynamically feasible, informative paths on short
timescales, even subject to the aforementioned constraints. The utility of IRRT in efficiently localizing
stationary targets is demonstrated in a progression of simulation results with both single-agent and
multiagent networks. These results show that IRRT can be used in real-time to generate and execute
information-rich paths in tightly constrained environments.

1 Introduction

Mobile sensing agents often serve a crucial role in seeking out and gathering information for intelligence,
surveillance, and reconnaissance (ISR) missions, both in military and civilian applications. Tasks performed
by such agents might include target classification, target localization, mapping, and search and track, among
others. Central to many of these tasks is the notion of collecting information to reduce uncertainty. By
deploying a team of cooperative sensing agents, complex information collection tasks can be completed
effectively and efficiently.

Provided that mobile sensing incurs resource costs to the operator, when evaluating agent plans, one
typically seeks to both maximize the information content and minimize the cost. This motivation is cen-
tral to the informative motion planning problem [12, 15, 24, 32, 35], in which plans consist of trajectories
for dynamically constrained sensing agents. To accommodate a variety of sensor platforms, the selected
informative motion planning algorithm should be amenable to nonholonomic and/or differential dynamic
constraints. Obstacles present a further challenge in that they can both constrain the vehicle motion and
occlude observations. Finally, the limitations inherent in available sensing mechanism (e.g., narrow field of
view) should be accounted for when anticipating informativeness.

Prior research has addressed this problem by using receding horizon, optimization-based techniques for
short-term control sequences [11,25,28] or heuristically shaped, simple paths that are known to give optimal
results in unconstrained settings [2,30]. However, the inclusion of general dynamic, environmental, or sensor
constraints may hinder or even prohibit real-time solution generation for such approaches. Target tracking
solutions using the partially observable Markov decision process (POMDP) framework [33], while having
very general constraint characterizations, are currently intractable for vehicle models with complex and/or
nonholonomic dynamics.
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In this paper, the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm is presented as
an online solution method that affords very general constraint characterizations for the informative motion
planning problem. IRRT extends the RRT algorithm [10, 18, 19] by embedding information collection, as
predicted using Fisher information matrices [8], at the tree expansion, path selection, and path execution
levels. As IRRT is a sample-based motion planner, feasible solutions can easily be generated online and
in real-time, and the number of discovered feasible solutions scales well with the available computational
resources. That it extends the RRT algorithm is central to the breadth of constraints under which IRRT
can operate. Furthermore, IRRT may be used in decentralized settings for multiple sensing agents to coop-
eratively generate efficient, informative motion plans. Simulated results have demonstrated that IRRT can
generate and execute informative, dynamically-feasible motion plans in what would otherwise be considered
prohibitively constrained settings. Furthermore, IRRT produces complex target localization behaviors from
a simple model of the trade-off between information collection and resource consumption.

The flexibility to generate informative motion plans in real-time and under general feasibility constraints
and cost functions distinguishes the IRRT from the related prior research, which is surveyed in Section 2.
The remainder of the paper is structured as follows. Section 3 states the informative motion planning
problem, and Section 4 motivates the use of sample-based planners. The IRRT algorithm is then presented
in Section 5. A progression of simulation results in Section 6 demonstrate the utility of IRRT for constrained
sensor networks, culminating with multiple Dubins car agents cooperatively and efficiently maneuvering to
localize targets in a cluttered environment.

2 Related Work

Several solution strategies to effect information-rich path planning have been considered in the past decade.
Analytical solutions often use the Fisher information matrix (FIM) to quantify trajectory information col-
lection in an optimal control framework [22,26]. Solutions seek to maximize, for example, a lower bound on
the determinant of the FIM [22] or the log det of the FIM at the conclusion of the trajectory [26]. While
analytical solutions often have a simple form and perform optimally for low-dimensional, unconstrained sim-
ple problems, they typically are not immediately scalable to complicated scenarios (e.g., sensor platform
dynamics of order higher than two).

An opposite extremum of the analytical solution strategy is one that neglects transient localization
behavior and adopts a heuristic path shape shown to perform well in steady state. Examples of such shapes
are circles, ellipses, and spirals. For aerial platforms with side-mounted cameras, circular trajectories with
optimal radii at fixed altitude [30] and varying altitude [2] have been proposed. While these heuristically
constrained trajectories capture the physical and geometric intuition of bearings-only target tracking, that
of reducing range and maximizing orthogonality of measurements, they artificially limit the performance of
the informative motion planner when operating under realistic constraints.

Recent research has also considered trajectories constructed by performing receding-horizon control on-
line. This class of solution strategies can be partitioned into discrete-space and continuous-space planners.
The advent of the former involved a core robotics problem, simultaneous localization and mapping (SLAM),
in which a vehicle must localize itself using measurements of features registered in a feature map of the
environment, which is both constructed and refined online. Several prominent papers have addressed the
SLAM-oriented problem of planning a vehicle path through the environment to maximize the information
gain in a temporally local sense [4,7,36]; these strategies can be summarized as greedy, next-best-view meth-
ods that perform steepest ascent on the information. Realizing the need for information-theoretic multistep
planners [13], Sim and Roy present a global planner for the SLAM framework which performs multistep
planning as a pruned graph search [34]. However, as discrete-space methods require enumerating a subset of
reachable states, vehicles with nontrivial, fundamentally continuous dynamic models would require a level
of enumeration that may prove prohibitive.

Several continuous-space, receding-horizon planning strategies for generating information-rich trajecto-
ries have also been considered. Frew uses the determinant of the target estimation error covariance as
the objective function in a trajectory-generating optimization for 2D ground robots with limited field of
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view [11]. Ousingsawat and Campbell formulate a receding horizon optimal control problem that attempts
to maximize information, quantified using the FIM, while avoiding risk zones and satisfying terminal loca-
tion and time constraints [25]. However, the results presented therein are limited to simple constraint sets:
an omnidirectional sensor performs 2D target estimation, vehicles are modeled as point masses, and risk
zones are elliptical. Ponda uses the A-optimality criterion (of the FIM) as the objective function to optimize
the trajectory of a fixed-wing aircraft with a perfectly gimbaled camera [28]. The assumption of a gimbaled
camera, together with the absence of obstacles, assumes the target to be visible from the entire flight volume.
In reality, the existence of sensor occlusions limits the effectiveness of such a method. While many works
embed a small set of apt constraints – e.g., Frew considers limited field of view sensing limitations [11], and
Ponda explicitly handles dynamic constraints of the vehicle [28] – the available solution methods for such
receding-horizon optimization problems are not extensible to the combination of sensor limitations, environ-
mental constraints, and dynamic constraints often encountered in real-world scenarios. This is primarily due
to the absence of receding-horizon methodologies that maintain tractability as the constraint set increases
in size and/or complexity.

When generality is desired, the partially observable Markov decision process (POMDP) framework is
widely acknowledged to be the most principled way of solving problems of planning under uncertainty with
observations. Recent research has considered belief-space planning for both the target tracking problem and
its inverse problem, that of localizing a vehicle through sensor measurements of perfectly known targets in
a previously mapped environment. For example, He et al. use the Belief Roadmap (BRM) to plan vehicle
trajectories that maximize the self-localization capability of a hovering vehicle operating in GPS-denied
environments [12]. Using a prior map of the environment and the associated measurement samples for a
laser range finder, a graph of the covariance propagation between samples can be formed, from which the
BRM efficiently selects trajectories that mitigate egomotion drift and aid knowledge of goal arrival. Roy
and He also explore forward-search in a POMDP framework to facilitate target tracking [33]. While the
POMDP framework has shown promising results for simple vehicle models, POMDP solutions are currently
intractable for vehicle models with complex dynamics. Furthermore, solving for the optimal policy over the
set of reachable beliefs – using, for example, point-based value iteration (PBVI) [27] – is intractable for the
observation models of interest and is not typically amenable to dynamically changing the dimension of the
belief space, which would occur as targets are introduced into or dismissed from the mission.

3 Problem Statement

Consider a bounded, open set X ⊂ Rdx partitioned into an obstacle region Xobs ⊂ X and an obstacle-free
region Xfree = X \Xobs. The obstacle map comprising Xobs is assumed to be available for use from either
existing maps or a separate, offline mapping algorithm [6, 37], as it is not the focus of this work. Points in
Xobs are said to be in collision, while those in Xfree are said to be collision-free. Given an initial collision-
free state xinit ∈ Xfree and a goal region Xgoal ⊂ Xfree, the feasible motion planning problem is to find a
path σ : [0, T ] → Xfree, i.e., that is collision-free at all points and that satisfies the specified initial state
σ(0) = xinit and terminal state σ(T ) ∈ Xgoal constraints, for some T ∈ R>0. When many feasible paths
exist, one is often concerned with finding the minimum-cost feasible path, where the cost function is assumed
to be known; examples include Euclidean distance, control effort, elapsed time, and combinations thereof.

The obstacle-free region is traversable by a connected network Q of heterogeneous mobile sensing agents,
where each agent q ∈ Q is assumed to have a fully observable state x[q], carry a set of sensors S[q], and have
a known model of resource consumption rates (i.e., cost function) for actions it can execute. The sensing
platforms are subject to various dynamic and environmental constraints, and the individual sensors s ∈ S[q]

are characterized by a set of limitations (e.g., narrow field of view). In addition to constraining vehicle
motion, the obstacles comprising Xobs may occlude observability of measurements.

Suppose also the existence of a known number of independent features, each of which has a partially
observable, continuous state yi ∈ Y , where Y ⊆ Rdy . We take a Bayesian perspective and model yi as the
realization of a random vector yi ∈ Y , for which we instantiate a prior belief pyi(·). It is assumed that the
set of features {yi|i ∈ I} is independent from the parameterization of Xobs. Given a prior belief pyi(·) and
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likelihood function pz|yi(Z|·) for a set of observations Z, the posterior belief pyi|z(·|Z) may be computed
using Bayes’ rule.

It is assumed that during the online estimation of yi, all beliefs byi(·) can be approximated by Ki-
component Gaussian mixture models [3], i.e.,

byi(·) ≈
Ki∑
k=1

wi,k N (·;µi,k,Λi,k),

Ki∑
k=1

wi,k = 1, wi,k > 0, (1)

where µi,k and Λi,k are the mean vector and covariance matrix, respectively, of the kth mixture compo-
nent when estimating yi. For such Gaussian mixture models, the mixture mean µi and covariance Λi are,
respectively,

µi =

Ki∑
k=1

wi,k µi,k, (2)

Λi =

Ki∑
k=1

wi,k
[
Λi,k + (µi − µi,k)(µi − µi,k)T

]
. (3)

For concreteness, we will refer in the remainder of this section and throughout this paper to the example
problem of target localization, in which a partially observable state yi ∈ Y represents the location of target i
in physical space. However, the solution strategy proposed by this paper is extensible to other, more general
uncertainty reduction problems. We will proceed by first specializing to the stationary target case and then
later discussing the implications of localizing nonstationary targets.

The objective for agent q is to safely arrive at its goal region X
[q]
goal, via σ[q], with minimum time and with

minimum residual uncertainty on the target location beliefs byi , where the uncertainty metric is a convex
combination

∑
i γif(Λi) of scalar functions f(·) on target covariances Λi, with

∑
i γi = 1 and the γi > 0

known. These competing objectives necessitate a trade-off between information collection and timely goal
arrival.

For the constrained sensor problems of interest, the optimal solution is unlikely to be found, and the
objective becomes identifying the least suboptimal feasible solution. Furthermore, for such problems, fea-
sibility of sensor platform configurations is paramount. Our solution strategy is predicated on rapidly and
continually identifying a collection of feasible paths, while executing the minimum-cost feasible path from
that collection.

4 Motion Planning with RRTs

Before presenting the solution to the informative motion planning problem, this section highlights several
properties of path planning algorithms used within this work. For the general motion planning problem, it
has been shown that sample-based methods, which seek to approximate connectivity in Xfree by randomly
sampling configurations and checking feasibility with respect to Xobs, have several particularly desirable
properties for complex, real-time planning problems [17, 38]. By construction, sample-based methods avoid
issues of discretization granularity and are amenable to planning in high-dimensional state spaces. Fur-
thermore, the performance of sample-based methods scale well with the available computational resources.
Finally, the trajectory-wise constraint satisfaction afforded by sample-based methods leads to a significant
reduction in computational complexity over that of standard optimization routines [17,38].

Within the class of sample-based methods, the Probabilistic Roadmap (PRM) [14] and Rapidly-exploring
Random Tree (RRT) [18, 19] algorithms have been used extensively in the motion planning literature. The
latter is especially effective for planning on nonholonomic and/or differentially constrained vehicles. Because
the dynamics of sensor platforms are typically nontrivial, we build on the RRT as a baseline algorithm that
is amenable to general vehicle constraints in the informative motion planning problem.
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The RRT retains a tree-structured graph T of nodes emanating from a root node nroot and attempting
to connect the collision-free space Xfree. Each node n ∈ T is a tuple n = 〈Tn, σn, vn〉, where Tn ∈ R>0 is the
node duration, σ : [0, Tn] → X is the node state trajectory mapping instants in time to points in the state
space X, and vn = σn(Tn) ∈ X is the terminal state, or waypoint.

4.1 Tree Expansion

Let ρ : X×X → R≥0 be a distance metric comparing two states in X, Sample(·) be a function that generates
random samples xsamp ∼ Sample(·) in the environment,1 and Nearest : X × 2T → 2T be a function
that returns a subset of nodes Nnear ⊂ T that are nearest to a specified state xsamp as measured by ρ.
Expansion of the tree T proceeds by generating xsamp ∼ Sample(·), computing Nnear := Nearest(xsamp, T ),
and attempting to “connect” nodes in Nnear to xsamp using an as yet unspecified function Steer. For ease of
discussion, this paper focuses on the attempt to steer from one node nnear ∈ Nnear towards xsamp, considering
vnnear

as the waypoint for this near node.
In open-loop RRT [18] (denoted here as OL-RRT), Steer(vnnear

, xsamp, T ) samples input profiles u :
[0, T ]→ U from an input space U over some finite duration T ∈ R>0, simulates the resulting state sequences
σu : [0, T ] → X, and selects from them the feasible sequence σ : [0, T ] → Xfree that terminates nearest to
xsamp as measured by ρ. A new node n = 〈T, σ, v〉 is then instantiated, with v := σ(T ), and added to the
tree, i.e., T := T ∪ {n}.

For dynamical systems with closed-loop control, open-loop RRT generates paths that may not be exe-
cutable. In closed-loop RRT (CL-RRT) [10,16], the state vector can be thought of as a concatenation of the
dynamic and reference states of the vehicle. Instead of sampling open-loop input profiles, the reference states
between vnnear and xsamp are connected (often by a simple guidance law), and the full closed-loop response σ
of the vehicle and controller in response to the reference is generated. The termination criterion is that the
projection of the reference state onto X is within some distance of its counterpart at the sampled location.
As before, if σ : [0, T ] → Xfree for its duration T ∈ R>0, a node is instantiated and added to the tree. In
addition to its executability properties, closed-loop RRT affords a notably accurate prediction of the state
trajectory resulting from following a reference path [23], making it well suited as a baseline algorithm for
informative motion planning, where the measurement poses along paths must be predicted accurately.

Though we extend CL-RRT rather than OL-RRT, the two differ most fundamentally in the tree expansion
phase. In the remainder of this work, we will maintain an agnostic view of RRTs and use the generic function
Steer : (x,x′′,∆t) 7→ x′ to denote the forward simulation from state x towards x′′ over ∆t seconds, resulting
in state x′; we further use Reached(x,x′′, t) ∈ {0, 1} as an indicator function denoting whether x and x′′

meet closeness criteria, or alternatively whether t ∈ R>0 exceeds some threshold.

4.2 Path Selection

In describing the path selection process used in RRTs, it is useful to define several operators on nodes in
the tree. Let the root operator root : T 7→ nroot return the root node. Due to the tree structure of the
graph T , the path connecting nroot to any other node n ∈ T is unique. Therefore, let the parent operator
pa : T → T map a node to its parent, with pa(nroot) := nroot. By telescoping, let the ancestor operator
anc : T → 2T map a node to the set of its ancestors (i.e., all parents of parents back to nroot). Likewise,
one can define a children operator chi : T → 2T , {n} 7→ {n′ ∈ T |pa(n′) = n} mapping a node to the set
of nodes for which it is a parent. Finally, let the path operator P : T → 2T , {n} 7→ anc(n) ∪ {n} return
the union of any particular node with its ancestors. The set of all paths contained in the tree is defined as
P , {P (n)|n ∈ T }.

The cost function c : P → R≥0 assigns nonnegative, real-valued cost to all paths in the tree. The best
path is denoted by P∗ = P (n∗), with n∗ = argminn∈T c (P (n)). Often, the cost of a path P (n) is composed
of individual costs for each node n′ ∈ P (n), as captured by the nodal path cost function ψ : T → R≥0, and
a cost-to-go term of reaching Xgoal from the terminal waypoint vn.

1The proviso for an admissible function Sample(·) is that X is uniformly sampled with positive probability.
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5 Information-rich RRTs

The problem as stated in Section 3 is that of adaptive sampling, a sequential decision problem in which a
set of sensing configurations must be selected, given all previous information, to best reduce the uncertainty
about an unknown quantity yi. Given that it makes informativeness explicit in the decision problem, adaptive
sampling can significantly reduce the cost of obtaining an observation set that achieves a satisfactory estimate
or classification.

Suppose that by traversing a path σ, a set of observations Zσ are stochastically generated according to
the likelihood function pz|yi(Zσ|·). One would wish to assess the informativeness of σ via metrics on the
posterior belief pyi|z(·|Zσ). However, one cannot anticipate the exact realized observation sequence that will
result from future traversal of a candidate path. The objective of informative motion planning then is to
quantify the potential uncertainty reduction of the measurement configuration set Mσ and to embed such
information metrics in the planning problem, either as constraints or cost components.

This section presents the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm [20,21], an
extension of CL-RRT that constructs dynamically feasible paths for sensing platforms and predicts uncer-
tainty reduction via the Fisher information of measurement configuration sets along such paths.

One of the strengths of this approach is its natural extension to decentralized, multiagent settings.

Suppose each agent q in a connected network Q is described by a tuple q = 〈T [q], P
[q]
∗ , S[q]〉 with a tree of

collision-free nodes T [q], a selected path P
[q]
∗ that it executes, and a set of sensors S[q]. It is assumed that

each sensor has a specified measurement interarrival time,2 from which the observation times within each
node may be anticipated. There also exists for each sensor s ∈ S[q] an indicator function os : X×Y → {0, 1}
that captures whether s can generate an observation given a measurement pose x ∈ X and target state
y ∈ Y . Note that this observability indicator function subsumes a variety of possible sensor limitations, e.g.,
narrow field of view (FOV), limited range, and occlusions due to the presence of obstacles in Xobs.

5.1 Measurement Pose Prediction

To quantify the informativeness of paths in tree T [q], the measurement pose sequence for each node is first
predicted. Consider a single node n, which is described by a state trajectory σn : [0, Tn] → X of duration
Tn ∈ R>0. The measurement interarrival times and temporal offsets (due to measurement in pa(n)) of
sensors in S[q] are used to generate a set Mn of measurement configuration tuples. Each element m ∈Mn is
a tuple m = 〈tm,xm, sm〉 composed of the intranode measurement time tm ∈ [0, Tn], the measurement pose
xm = σn(tm) ∈ X, and the utilized sensor sm ∈ S[q]. In subsequent discussion, the process of anticipating a
measurement pose sequence will be referred to by the generic function MeasurementPoses(σ, S).

5.2 Information Quantification

We now wish to quantify the informativeness of a node given its measurement pose sequence. Many
information-theoretic measures exist for such a quantification [5]; we use the Fisher information metric [8]

Jz(yi) , Ez

{
∇yi

[
∇yi log pyi,z(yi, z)

]}
, (4)

for its connection to the Cramér-Rao lower bound (CRLB) on the error covariance of unbiased estimators [31].
Indeed, the Cramér-Rao matrix is exactly the inverse of the Fisher information matrix (FIM). In general,
the update for the approximate Fisher information Jn(ŷi) of target i across a node n is a function of the
FIM at the parent node Jpa(n), the measurement pose sequence Mn, and the current belief byi , i.e.,

Jn(ŷi) := FisherInformation
(
Jpa(n)(ŷi), Mn, byi

)
. (5)

Hereafter, this paper specializes to the case where the targets are stationary, beliefs have a Ki-mode
Gaussian mixture model distribution, and the observation model is linearizable-Gaussian for each target,

2More generally, one might consider that for each sensor, a known schedule dictates when that sensor may make observations.
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i.e.,

zm,i = h(xm, yi) + ξm,i, ξm,i ∼ N (0, Rsm), (6)

where h(·, ·) is the vector-valued observation function with local linearization H(·, ·), which we refer to as the
linearized measurement matrix. The strategy will be to maintain separate FIMs for each mode of target i
and fuse them together in computing an uncertainty-based cost. Therefore, we consider yi,k ∼ N (µi,k,Λi,k)
for the ith target’s kth mode and note that the update for the FIM across node n is [32]

Jn(ŷi,k) := Jpa(n)(ŷi,k) +
∑
m∈Mn

osm(xm, ŷi,k)HT
sm(xm, ŷi,k)R−1sm(xm, ŷi,k)Hsm(xm, ŷi,k), (7)

where, for sensor sm, Hsm(xm, ŷi,k) is the linearized measurement matrix about the measurement pose xm
and estimated kth modal mean ŷi,k = µi,k, Rsm(xm, ŷi,k) is the measurement noise covariance matrix, and
osm : X × Y → {0, 1} is the previously defined indicator function that captures whether sm can generate an
observation given xm and ŷi,k.

In the single-agent case, if one defines

J0(ŷi,k) , Λ−1i,k = E
[(
ŷi,k − yi,k

) (
ŷi,k − yi,k

)T ]−1
, (8)

the recursion (7) initiates at the root node nroot with Jnroot
(ŷi,k) := J0(ŷi,k), an exact relationship that

arises from the Gaussianity of yi,k. Finally, let us denote the set of all FIMs (i.e., over all (i, k) pairs) on
node n as Jn.

Due to the additivity of (7), the extension of IRRT to the multiagent case, which accounts for the
information content of paths selected by other agents in the network, is straightforward. For any agent
q ∈ Q, its information contribution along path P (n) is denoted by

∆J[q] (P (n)) , J[q]
n − J[q]

nroot
, (9)

where operations on the FIM sets are elementwise (i.e., for each existing (i, k) pair). Therefore, factoring in
the information contribution of other agents in the network is equivalent to initiating the FIM recursion at
the root node as

J[q]
nroot

= J0 +
∑

q′∈Q\{q}

∆J[q′]
(
P

[q′]
∗

)
. (10)

Fisher information is generally a matrix quantity, so one further requires a scalar cost function to operate
on Fisher information matrices J ; many such cost functions exist [39]. For computational and geometric
reasons [29], we choose to use the A-optimality criterion trace(J−1) to assign cost to uncertain states,
thereby rewarding uncertainty reduction. The information error with respect to yi at the terminus of node
n is defined as

Ii(n) = trace

(
Ki∑
k=1

wi,kJ
−1
n (ŷi,k)

)
,

Ki∑
k=1

wi,k = 1, wi,k > 0, (11)

where the relative modal weights wi,k are exactly those maintained by the estimator running online. Note
that the term within the trace operator is an approximation of the mixture covariance that does not consider
the second set of terms in (3). The overall information error for node n is a convex combination of the errors
for each target

I(n) =
∑
i

γiIi(n),
∑
i

γi = 1, γi > 0, (12)

where the coefficients γi may denote the relative importance of each target i in the mission.
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Algorithm 1 IRRT-Expand(T [q])

1: xsamp ∼ Sample(·)
2: nnear ← Nearest(xsamp, T [q])
3: x← vnnear

4: t← 0
5: while x ∈ Xfree ∧ ¬Reached(x, xsamp, t) do
6: σ̄(t)← x
7: x← Steer(x, xsamp,∆t)
8: t← t+ ∆t
9: end while

10: if x ∈ Xfree then
11: σ̄(t)← x
12: T ← t; σ ← σ̄; v ← σ(T )
13: M ← MeasurementPoses(σ, S[q])
14: J← FisherInformation(Jnnear ,M, by)
15: n← 〈T, σ, v,M,J〉
16: T [q] ← T [q] ∪ {n}
17: end if

Algorithm 2 IRRT-Execute(q)

1: ninit ←
〈

0, {x[q]
0 },x

[q]
0 , ∅,J

[q]
0

〉
2: T [q] ← {ninit}
3: x[q] ← x

[q]
0

4: while x[q] /∈ X [q]
goal do

5: Update x[q] and target beliefs by
6: while time remaining in selection cycle do
7: IRRT-Expand(T [q])
8: end while
9: UpdateInformation(by, root(T [q]))

10: n∗ ← argminn∈T [q] c(P (n))
11: Announce P [q](n∗) to network, and execute it
12: end while

5.3 Revised Algorithms

Now that the construction of the measurement sequenceMn and FIM set Jn along node n has been elucidated,
one may expand the notion of the node tuple to n = 〈Tn, σn, vn,Mn,Jn〉. Furthermore, we now revise the
standard RRT algorithm descriptions to account for informativeness of paths in the tree.

The method IRRT-Expand(T [q]) for expanding the tree is given in Algorithm 1. The function Nearest

here subsumes several of the nearest node heuristics previously motivated in [21]. Given a tree T [q] of
candidate paths, the method IRRT-Execute given in Algorithm 2 will continually expand the tree, select

the best path P
[q]
∗ , and execute a portion of it until the next selection cycle. The cost function c : P [q] → R≥0

it uses is of the form

c(P [q](n)) = ρ̃(vn, X
[q]
goal) + α

∑
n′∈P [q](n)

ψ(n′) + βI(n), (13)

where ρ̃(·, A) , mina∈A ρ(·, a) is the distance metric representing a cost-to-go, ψ(·) is some node trajectory
cost, I(·) is the information-based cost (12), and α ∈ [0, 1] and β ∈ R≥0 are weights capturing the relative
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Algorithm 3 UpdateInformation(by, n)

1: Jn ← FisherInformation(Jpa(n),Mn, by)
2: for all n′ ∈ chi(n) do
3: UpdateInformation(by, n

′)
4: end for

importance of timely goal arrival and uncertainty reduction. In our case, ψ(n′) = Tn′ , i.e., the node path
cost is simply the node trajectory duration.

As the beliefs about the target locations are updated online, the measurement pose sequences along
nodes will not change. However, target belief updates can lead to a change in informativeness, due to factors
such as changes in occlusion/observability and range to the target. The most current belief is cached over
a planning cycle and is used to recompute the Fisher information at all nodes in the tree according to the
recursive function UpdateInformation described in Algorithm 3.

5.4 IRRT Properties

IRRT has several useful properties that make it a particularly appealing solution to the constrained in-
formative motion planning problem. As a sample-based algorithm, IRRT avoids issues of discretization
granularity, and is amenable to planning in high-dimensional state spaces. Feasible solutions are empirically
found on short timescales, and the number of discovered feasible solutions scales well with the available
computational resources. Furthermore, as an algorithm that extends RRT, IRRT is suitable for planning on
nonholonomic and/or differentially-constrained sensor platforms. When implemented to extend Closed-Loop
RRT (CL-RRT) [10, 16], as is done in Section 6, IRRT is imbued with notably accurate prediction of the
sensing platform’s state trajectory [23], and thus accurate prediction of measurement pose sequences along
candidate paths.

IRRT accommodates a networkQ of heterogeneous sensing agents, where the heterogeneity can be in both
mobility and sensing capabilities. Agent q ∈ Q is equipped with sensor bundle S[q], where each sensor s ∈ S[q]

is characterized by its linearized measurement matrix function Hs : X×Y → Rds×dy , linearized sensing noise
matrix function Rs : X×Y → Rds×ds , and binary observability indicator function os : X×Y → {0, 1}, where
ds is the dimension of the measurement vector for each observation taken by sensor s. The functions Hs,
Rs, and os subsume all sensor parameters (e.g., mounting orientation on the sensing platform of interest).
In particular, all observability loss is captured by os.

When IRRT is extended to incorporate CL-RRT for the multiagent setting, the communication bandwidth
requirement depends only on the length of announced plans and the dimension dx of X. If each agent q ∈ Q
is assumed to possess a model (including dynamics and sensors) of the other agents in Q\{q}, then that agent

need only transmit the waypoint set {vn|n ∈ P [q]
∗ }, which is of order O(dx · |P [q]

∗ |), for each announcement.
The full state trajectory that would result from this announced path, and consequently the measurement pose
sequence and associated information contribution, may be reconstructed by other agents and incorporated
into their planning. Additionally, by allowing the informativeness of teammate plans to be recomputed
locally, IRRT is self-consistent with respect to differing beliefs between agents that could arise online during
decentralized belief consensus [9].

Finally, we note that in the stationary target case, the total storage requirement for FIMs in tree T [q]

is O
(
dy(dy+1)

2 · |T [q]| ·
∑I
i=1Ki

)
. The complexity of computing these FIMs is similarly linear in the total

number of measurement poses
∑
n∈T [q] |Mn|. We note that the complexity of storage and computation for

the FIMs along the selected paths P
[q′]
∗ for all other agents q′ ∈ Q is dominated whenever |T [q]| � |Q|,

which is typically the regime of interest.
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5.5 Nonstationary Targets

As an aside, we now briefly consider the implications of extending the algorithm as hitherto presented to
the case of nonstationary targets. Specifically, we contrast the tree information quantification exercise in the
single-agent and multiagent regimes.

In the single-agent case, the extension to nonstationary targets requires revisiting (5). At some node
n ∈ T , the set of FIMs for each target i may be updated according to the FIMs of its parent node pa(n), the
node measurement configuration sequence Mn, and the cached belief byi on the target location. Some model
must be incorporated to account for the evolution of the belief at future times, due to factors such as the
target dynamics, process noise, and estimated higher-order motion. In general, such models do not result
in the FIM additivity seen in (7) for the case of stationary targets with linearizable-Gaussian observations.
Instead, one must alternately propagate the belief and incorporate measurements from Mn, whose elements
are ordered by timestamp. The covariance of the belief byi will evolve approximately according to the FIMs
and process models along node n; however, the predicted measurement configuration sequence Mn will not
modify the prediction of the belief mean ŷi at future times, which depends on the actual realized observation
sequence Zn. Note that one nonstationary model with an analytical expression for the approximate FIM
update is a linearizable-Gaussian plant with a linearizable-Gaussian observation model [1].

In the case of multiple sensing agents localizing nonstationary targets, the informativeness of other agents’
plans is not generally condensable to the form in (9) and (10). Instead, one must consider the joint cumulative
measurement sequence due to all agents along their announced paths. Suppose each agent q ∈ Q announces

its selected path as P
[q]
∗ . The cumulative measurement sequence M̃

[q]
∗ is defined along such a path P

[q]
∗ as

M̃
[q]
∗ ,

⋃
n′∈P [q]

∗

Mn′ (14)

and leading up to an arbitrary node n ∈ T [q] as

M̃ [q]
n ,

⋃
n′∈P [q](n)

Mn′ . (15)

Then, for any node n ∈ T [q], the joint cumulative measurement sequence M̃Qn , which accounts for the
measurement configurations in other agents’ announced plans, is defined as

M̃Qn , M̃ [q]
n

⋃ ⋃
q′∈Q\{q}

M̃
[q′]
∗

 . (16)

The joint cumulative measurement sequence must be used to compute Fisher information matrices set at
every node, resulting in a marked increase in required computation for evaluating the information-based cost
function at every node in the tree. Note, however, that one may still reuse computations from parent nodes
in quantifying the information of child nodes. Let T̃n :=

∑
n′∈P (n) Tn′ be the cumulative path duration to

reach the end of node n ∈ T [q]. Similarly, let t̃m be the predicted elapsed time after which measurement
m ∈ M̃Qn will occur, for some n ∈ T . Then the truncated set of measurement configurations M̄Qn , {m ∈
M̃Qn : t̃m ≤ T̃n} need only be processed once for all children n′ ∈ chi(n). Therefore, by storing two sets of
FIMs at every node n ∈ T , one set corresponding to M̃Qn and one set corresponding to M̄Qn , a significant
savings in computation can be achieved in the case of multiple sensing agents localizing a nonstationary
target.

6 Results

The following simulation results demonstrate the effectiveness of the IRRT algorithm in managing the com-
peting objectives of information-gathering and prompt goal arrival in real-time, while satisfying a complex
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Figure 1: Dubins car diagram with a pointed monocular vision sensor.

constraint set. Increasingly complex problems (in line with Section 3) are considered, including nonholonomic
vehicles, limited-FOV sensing, cluttered obstacle environments, multiple targets, three dimensions, and fi-
nally multiple sensing agents. Even subject to these constraints, which render many existing approaches
in the literature intractable, the IRRT generates paths with emergent information-gathering characteris-
tics. Some basic analysis is also provided to illuminate the trade-off between information-gathering and goal
arrival that is taking place.

All simulations were performed using a real-time implementation of the IRRT algorithm in Java, run
on an Intel 2.53 GHz quad-core laptop with 3.48 GB of RAM. The vehicle’s current path is selected from
the tree at a rate of 4 Hz; the tree capacity is specified to be 2000 nodes. In these simulations, all sensor
measurements are assumed to be bearings-only; polar coordinate extended Kalman filters (EKFs) are used
for online estimation of target positions, with measurements processed at a rate of 15 Hz.

6.1 Dubins Car Scenario

This scenario concerns a vehicle with nonholonomic dynamics and sensing constraints. Consider a small
Dubins car agent traversing an obstacle-free environment while estimating the location of a stationary aerial
target. The agent’s monocular sensor is limited to a field of view of 40◦ in each of the horizontal and vertical
axes. The sensor is yawed 90◦ (out the driver’s left side) and pitched up by 60◦ from the horizontal plane
(Figure 1); thus, the agent must achieve a proper combination of lateral distance and heading to see the
target.

In this scenario, the car (radius 20 cm) begins at x[q](t0) = [−2.5,−3.5, 1.0]T m with an unobstructed
path to the goal at Xgoal = {[−2.5, 3.5, 1.0]T m}, but also uncertain knowledge of a target located at
y = [0, 0, 2.0]T m. For this scenario, we have selected the cost function parameters to be α = 0.5 and
β = 8000 s/m2. The car is assumed to move at a fixed velocity of 0.4 m/s; a variation of the pure pursuit
reference law (cf. [16]) is applied for steering control, assuming forward direction only. Note that this vehicle
model could also be used to represent a fixed-wing vehicle (e.g., airplane) operating at a fixed velocity and
altitude.

A typical trajectory generated by a trial of this scenario is given in Figure 2. The agent quickly identifies
a winding path that both anticipates a visible observation sequence about the estimated target position and
reaches the goal (Figure 2(a)). The uncertainty ellipsoid is markedly elongated in the line-of-sight direction,
indicating large uncertainty in range. As the estimate improves (Figures 2(b)-2(d)), the planned path tightens
around the estimated target position, in order to take an extended sequence of observations at close range.
Given the relatively high value of β – the parameter governing the trade-off between information collection
and resource expenditure – the path ultimately encircles itself (Figure 2(e)) in order to take additional
measurements before finally turning toward the goal (Figure 2(f)). Though the set of vehicle states for
which observations are unoccluded is never explicitly constructed or computed, the IRRT algorithm is able
to sample from these regions and execute a path that spends significant time gathering useful information
within those regions.

11



(a) (b) (c)

(d) (e) (f)

Figure 2: Snapshots of a simple Dubins car simulation with side mounted camera navigating toward a goal
while tracking one aerial target. The magenta pyramid denotes a truncation of the camera field of view. The
RRT tree has been suppressed for clarity. The vehicle (purple chevron, oriented with vehicle heading) starts
at bottom-left and attempts to gather information about the target (green circle, center) and reach the goal
waypoint (cyan, top-left). Relative uncertainty in the target location is represented with a 1-σ uncertainty
ellipse (gold), with the current estimate denoted by a gold star. The vehicle’s line-of-sight to the target
is denoted with either a green or red line, the former denoting positive visibility, the latter a loss thereof.
The vehicle’s currently selected path is emphasized in black, where the magenta dots correspond to IRRT
nodes/CL-RRT waypoints. A magenta “trail” traces the vehicle’s actual position as it maneuvers through
the environment.
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6.2 Complex Dubins Scenario

Consider now the full problem statement as outlined in Section 3 for the Dubins car, extending the previous
example. A Dubins car agent travels along a planar subspace of X ⊂ R3 with obstacles in Xobs ⊂ X while
estimating the location of multiple targets yi ∈ Y ⊂ R3, with the altitude of all yi significantly above relevant
features in X (hence, X ∩ Y = ∅). Its monocular sensor is mounted on the driver’s left side, pitched up by
60◦ as before, and has horizontal and vertical fields of view of 60◦ each. As in Section 6.1, the 20 cm car
begins at x[q](t0) = [2.5,−3.5, 1]T m with an unobstructed path to the goal at Xgoal = {[−2.5, 3.5, 1]T m}.

The presence of a cluttered obstacle environment presents several challenges over the previous example
for the planning algorithm. First, the vehicle must be able to maintain feasibility by avoiding these obstacles;
this is itself a challenging problem, since the vehicle moves at a fixed speed and thus cannot safely come
to a stop, and may actually drive itself into a state where a collision is inevitable. Second, obstacles in the
environment can occlude observations between sensors and targets, greatly complicating the representation
of the sets of vehicle states for which the target(s) are observable. Whereas most heuristic approaches would
have to adjust the path in an ad hoc manner to achieve both feasibility and visibility, these characteristics
are embedded naturally in the IRRT algorithm.

A representative trial of the scenario is depicted in Figure 3; here the RRT trees have been left visible
to demonstrate how the set of feasible paths evolves over time. Due to anticipation of occlusion between
the sensor and targets, the planner selects paths that result in long periods of visibility. The agent initially
plans to move toward the goal and then loiter in its vicinity, occasionally making distant measurements of
the targets (Figure 3(a)). As the agent approaches the goal, the algorithm identifies a path in the tree that
entails a more informative observation sequence while still avoiding obstacles (Figure 3(b)). As the target
locations are made more precise, subsequent snapshots show the agent carefully moving through the obstacle
field, attempting to take measurements at closer range while ensuring a safe return trajectory to the goal
is available (Figures 3(c)-3(e)). When the vehicle has gathered enough information with respect to its cost
function, it expeditiously plans a path to the goal through a tight corridor (Figures 3(e) and 3(f)).

6.3 Analysis

Before proceeding to more complex examples, it is instructive to analyze how effective the IRRT algorithm
is in gathering information along prospective trajectories, and how that capacity is weighed against the
objective to reach the goal. In this section, we revisit the complex Dubins scenario considered in Section 6.2,
with particular focus on reduction in target uncertainty over time.

Figure 4 plots the value of the information A-optimality cost, (12), for the complex Dubins scenario trial
shown in Figure 3 as a function of time. The colored bars at the bottom of the figure correspond to the time
intervals during which each target is visible for measurement by the agent. It is apparent that reduction in
the A-optimality occurs when the targets are visible, with the slope of the curve depending on which targets
are visible. As target 2 is slightly more visible in the opening phase of the mission, there is a diminishing
return associated with taking data on this target later in the mission, as compared with that of target 1.

Another important consideration is the effect of varying β, a user-specified parameter governing the trade-
off between uncertainty reduction and path traversal cost. To evaluate its impact, we performed multiple
simulations of the complex Dubins scenario for different values of β, recording the final A-optimality and path
duration at the conclusion of each simulation. Seven values of β ∈ {10−1, 100, 101, . . . , 105} were considered.
Note that as β → 0, the standard, information-näıve RRT algorithm is recovered. For each value of β,
25 trials were performed, consisting of 5 trials each on the same 5 instances of the complex Dubins scenario,
with each instance having a distinct, randomized (feasible) obstacle arrangement and initial target estimate.

Figure 5 shows the resulting relationship between average mission duration and average terminal A-
optimality as a function of β, which increases from log β = −1 at bottom-right to log β = 5 at top-left.
As expected, as β increases the final A-optimality decreases, at the expense of a longer final path. For the
lowest values of β, the algorithm essentially behaves as standard RRT, ignoring the target in pursuit of the
goal. As β increases, the A-optimality value becomes relatively more important when selecting paths, and
the algorithm will opt to select longer paths that entail longer observation sequences about the target.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Snapshots of a complex simulation of a Dubins car with side mounted camera navigating toward
a goal while tracking two aerial targets. See Figure 2 for a full legend. Three-dimensional obstacles (black)
in the environment are drawn as projected into two dimensions. The RRT tree (magenta edges, with darker
nodes) is left visible in all figures to demonstrate how the tree evolves over time; for clarity, the vehicle, the
sensor FOV pyramid, and the trail are represented here in blue.
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Figure 4: Comparison of the information A-optimality cost versus time for the complex Dubins scenario as
shown in Figure 3. The colored bars at the bottom of the figure correspond to the time intervals during
which each target is visible for measurement by the agent.

Figure 5: Comparison of average mission duration versus average terminal information A-optimality cost.
Data points are parameterized by the relative information cost weighting term from (13) with values β ∈
{10−1, 100, 101, . . . , 105}. Each data point corresponds to one value of β, with log β = −1 at bottom-right
and log β = 5 at top-left.
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6.4 Three-Dimensional Scenario

The IRRT formulation can be applied in any number of dimensions; the following scenario demonstrates
the capability of IRRT to design information-rich paths for a vehicle operating in a realistic, fully three-
dimensional environment. Consider a quadrotor UAV agent navigating through an obstacle environment to
track a stationary aerial target; the agent is free to change both its altitude and heading. In this sense, the
RRT is actually sampling in four dimensions, three for position and one for heading. The agent’s monocular
sensor is mounted on the front of the vehicle, aimed forward and parallel to the ground, so it may be
advantageous for the agent to change its heading to gain a vantage point for the target.

In this scenario, the agent begins on one end of a hallway at x[q](t0) = [0.75, 5.25, 3.00]T m, with an
unobstructed path to the goal at Xgoal = {[5.25, 5.25, 1.00]T m}. However, the agent also seeks to gather
information on a target located at y = [2, 1, 2]T m, which is located in a room off the hallway and behind a
cluttered region of obstacles.

An example trial of the scenario is depicted in Figure 6. The agent begins with a path directly to the goal
(Figure 6(a)), but the planner then identifies a path which gives the agent sufficient time to rotate and peer
into the doorway (Figure 6(b)); upon doing so, the agent views the target. Now possessing more accurate
knowledge of the target, the planner decides to send the agent into the room and underneath the obstacles
(Figure 6(c)) to get a much closer view of the target behind them (Figure 6(d)). The planner then seeks to
return the agent to the goal, and after some wandering succeeds in doing so (Figures 6(e) and 6(f)).

6.5 Multiagent Scenarios

6.5.1 Single Target Scenario

Consider a team of two Dubins agents collectively tasked with localizing an aerial target. Each agent
generates and announces its own motion plan using IRRT, while broadcasting it to the other agent (Algorithm
2, line 11). It is assumed that the agents perform belief consensus on the target estimate after measurements
have been realized and processed locally. Each agent is equipped with a monocular sensor, mounted on the
vehicle’s front and pitched up 25◦ from the plane, with 50◦ horizontal and vertical fields of view. A target is
placed at y = [0, 1, 2]T m. The mission consists of planning paths for the two agents with starting positions

x
[1]
0 =

[
0, −3.8, 1.0

]T
m x

[2]
0 =

[
0, −3.0, 1.0

]T
m,

and goal positions

x[1]
g =

[
0, 3.0, 1.0

]T
m x[2]

g =
[
0, 3.8, 1.0

]T
m,

that minimize the individual agent cost functions, with β[1] = β[2] = 1900 s/m
2
.

A representative trial for a such a scenario is depicted in Figure 7. Initially, the target position estimate
is close to the true value, but the highly eccentric uncertainty ellipse is directed along the line-of-sight from
both vehicles (Figure 7(a)). Based on the evolving target estimate, the vehicles individually plan paths that
increase the difference in bearing between the two measurement sets, subject to the other agent’s announced
plan. Specifically, the path selected (Figures 7(b)-7(d)) balances deviation from the center-line (which forms
the minimal-time path for each agent) with time spent triangulating the target. As the joint maneuver
is sufficiently information-rich, when the target leaves the line of sight of both vehicles (Figure 7(e)), the
remaining path segments connecting each agent to the goal are followed (Figure 7(f)).

6.5.2 Multitarget Scenario

A three-agent, eight-target scenario is now considered. Specifically, the performance of multiagent IRRT is
compared for two planning modes. In both modes, belief consensus may be performed after measurements
have been acquired and processed. The modal distinction arises from the treatment of planned information
contributions of agents in the network. In the noncooperative mode, when an individual agent plans its
path, the plan information contribution of all other agents in the network is ignored, effectively removing
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(a) t = 2s (b) t = 17s

(c) t = 31s (d) t = 41s

(e) t = 57s (f) t = 70s

Figure 6: Snapshots of a typical trajectory for a simulated quadrotor navigating in three dimensions toward a
goal while localizing an aerial target. The vehicle (magenta diamond) attempts to gather information about
the target (estimate and uncertainty in gold) and reach the goal waypoint (cyan) while avoiding obstacles.
The agent’s field of view is denoted by the magenta pyramid, while the vehicle’s current reference path is
denoted by magenta dots. The figure axes correspond to the environment boundaries.
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(a) (b) (c)

(d) (e) (f)

Figure 7: A multiagent Dubins scenario with sensor constraints. Each agent plans paths that minimize
the goal arrival time and maximize the shared information. The ability for each agent to simultaneously
take measurements from disparate measurement poses, as in (c) and (d), is considered favorable by the cost
function of each agent’s path planning module. (Timestamps are marked on each image, in seconds.)
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Table 1: Multiagent scenario: true target positions.

components in R3 [m]
Target xi yi zi

y1 [ 10.0, 5.0, 3.0 ]T

y2 [ 5.0, 15.0, 3.0 ]T

y3 [ 17.0, 9.0, 3.0 ]T

y4 [ 10.0, 10.0, 3.0 ]T

y5 [ 13.0, 18.1, 3.0 ]T

y6 [ 5.0, 8.0, 3.0 ]T

y7 [ 13.6, 13.6, 3.0 ]T

y8 [ 2.0, 18.0, 3.0 ]T

Table 2: Multiagent scenario: agent initial and goal states.

Agent θ
[q]
0 [rad] x

[q]
0 [m] y

[q]
0 [m] z

[q]
0 [m] x

[q]
g [m] y

[q]
g [m] z

[q]
g [m]

1 0.0 1.5 1.0 1.0 15.0 10.0 1.0
2 3.1 19.0 17.5 1.0 5.0 10.0 1.0
3 0.0 1.5 12.0 1.0 11.7 19.0 1.0

the second term of (10). Alternatively, in the cooperative mode, an individual agent fully utilizes, as in the
algorithm developed in Section 5, the plan information contribution of the other agents in the network.

The scenario environment, which is identical for all trials, consists of an axis-aligned box in the first
octant of R3 with dimensions [20, 20, 6]

T
m. The cube is populated by 20 randomly generated box-shaped

obstacles whose centroid placements are uniformly sampled within the environment, and whose lengths and
widths are uniformly selected from the intervals [0.5, 1.0] m and [0.25, 0.5] m, respectively.

The true positions of the eight targets are given in Table 1. The initial estimate for each target i is
random for each trial and is generated by perturbing the true positions according to

ŷi(t0) = yi + di, di ∼ N
(
0, ζ2dI3

)
, ζd = 0.5 m. (17)

All target covariances are initialized as Λi(t0) = ζ2I3, ζ = 2.0 m.
Each agent is a Dubins car with a diameter of 0.8 m and a monocular (bearings-only) sensor. The

components of the initial and goal states for each agent are specified in Table 6.5.2. The sensor, which
operates at 15 Hz and has 60◦ vertical and horizontal fields of view, is yawed 90◦ counterclockwise from the
front of each vehicle and pitched up 30◦ from the plane. Simulated bearing measurements are corrupted by
a zero-mean, additive white Gaussian noise sequence with a standard deviation of 5◦. The parameters of
the cost function (13) are set to α = 0.5 and β = 3000 s/m2 for all agents.

The qualitative behavior of the noncooperative and cooperative modes is illustrated in Figures 8 and 9,
respectively, for example trials. Typically, agents in the noncooperative mode commit to path plans that
are significantly longer than those selected by agents in the cooperative mode. While measurements taken
by all agents reduce the uncertainty (hence, information cost) apparent to a particular agent, the inability
to anticipate the plan information contribution of other agents leads each agent to selecting a (possibly
circuitous) path for the purposes of collecting (possibly redundant) information from all targets. As seen in
Figure 8, many of the agents’ paths end up overlapping over the same regions, a behavior not observed in
Figure 9.

Recall that in the IRRT algorithm, the relative weighting between the information collection and path
duration is β. Thus, in order to assess the mission performance, a mission-level cost C = ∆t + βIterm is
specified, where ∆t is the mission duration and I is the terminal A-optimality cost. A network of agents that
plan in the noncooperative mode typically gathers more information over the course of a mission, but does so
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(a)

(b)

Figure 8: Sample simulation of the noncooperative multiagent IRRT scenario. (a) Each agent, ignoring the
plan information content of the other agents, plans a circuitous path through the environment to collect
information from all targets. (b) The resulting state history of the three agents at mission termination.
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(a)

(b)

Figure 9: Sample simulation of the cooperative multiagent IRRT scenario. (a) Each agent, accounting
for the plan information content of the other agents, plans an efficient, information-rich path through the
environment to cooperatively collect information from all targets. (b) The resulting state history of the three
agents at mission termination. 21



Table 3: Tabulated results of the batch multiagent IRRT comparison of the cooperative and noncooperative
planning modes. The total cost is computed as c = ∆t+ βIterm, where ∆t is the mission duration, Iterm is
the terminal A-optimality cost, and β = 3000 s/m2.

Metric Cooperative noncooperative

Mission Duration [s]

median 74.29 97.11
mean 75.63 98.00
std 14.35 15.93
IQR [63.96, 85.63] [87.6, 106.8]

Terminal Information
median 5.02 2.99

Cost [10−3 m2]
mean 5.20 3.15
std 1.50 0.79
IQR [4.11, 5.92] [2.59, 3.62]

Total Mission Cost [s]

median 88.36 105.07
mean 91.23 107.46
std 12.92 14.56
IQR [80.77, 99.86] [97.69, 115.90]

at the expense of significantly longer mission durations. One would, therefore, expect the resultant mission-
level cost to be higher in the noncooperative mode. To better quantify this statement for multiagent IRRT,
a randomized algorithm, the performance of the noncooperative and cooperative modes are compared over
a set of 100 trials of each. The statistical results can be found in Table 3 and in Figure 10. As expected, the
cooperative mode generally outperforms the noncooperative mode, where the severity of underperformance
in the latter is a function the scenario and mission parameters, particularly the information cost weight β
in (13).

7 Conclusion

This paper has presented the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm as a solu-
tion to the constrained informative motion planning problem that embeds metrics on uncertainty reduction
at both the tree growth and path selection levels. IRRT possesses a number of beneficial properties, chief
among them being the ability to find dynamically feasible, informative paths on short timescales, even sub-
ject to the aforementioned constraints. The utility of IRRT in efficiently localizing stationary targets was
demonstrated in a progression of increasingly complex simulations, involving restrictive environments, mul-
tiple vehicles, and/or multiple targets. These results show that IRRT can be used in real-time to adaptively
generate and execute information-rich paths in otherwise prohibitively constrained settings.

Two areas of possible future work could be pursued. In the multiagent configuration, there is the potential
for “information loss” due to an agent publishing a plan and then reneging. Anticipating information
loss is a potentially difficult but necessary step towards achieving robustness in decentralized informative
motion planning. This work focused on parametric inference problems wherein the likelihood function is
parametrized by some underlying vector. We note the inherent difficulty in quantifying the uncertainty
reduction associated with observations in more general graph structures, for example, with hyperparameters
over the parameters of the likelihood function.
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Figure 10: Box plot of the batch multiagent IRRT scenario. (a) The mission duration for the cooperative
multiagent IRRT mode is significantly shorter, on average, than that of the noncooperative mode. (b) The
extended duration of noncooperative missions generally results in more information collected, (c) though the
overall cost may yet be adversely affected.
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