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Abstract Hippocampal population codes play an important role in representation
of spatial environment and spatial navigation. Uncovering the internal represen-
tation of hippocampal population codes will help understand neural mechanisms
of the hippocampus. For instance, uncovering the patterns represented by rat hip-
pocampus (CA1) pyramidal cells during periods of either navigation or sleep has
been an active research topic over the past decades. However, previous approaches
to analyze or decode firing patterns of population neurons all assume the knowledge
of the place fields, which are estimated from training data a priori. The question
still remains unclear how can we extract information from population neuronal
responses either without a priori knowledge or in the presence of finite sampling
constraint. Finding the answer to this question would leverage our ability to exam-
ine the population neuronal codes under different experimental conditions. Using
rat hippocampus as a model system, we attempt to uncover the hidden “spatial
topology” represented by the hippocampal population codes. We develop a hid-
den Markov model (HMM) and a variational Bayesian (VB) inference algorithm
to achieve this computational goal, and we apply the analysis to extensive simu-
lation and experimental data. Our empirical results show promising direction for
discovering structural patterns of ensemble spike activity during periods of active
navigation. This study would also provide useful insights for future exploratory
data analysis of population neuronal codes during periods of sleep.
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1 Introduction

1.1 Motivation

Hippocampal population codes play an important role in representation of spa-
tial environment and spatial navigation [O’Keefe and Nadel 1978,Buzsaki 2006].
It is known that the receptive fields of hippocampal pyramidal cells encode infor-
mation of the position of space, hence those cells are referred to as “place cells”
[O’Keefe and Nadel 1978]. Using the multielectrode technique, spiking activity of
ensemble hippocampal place cells can be simultaneously recorded from rodents,
which enable us to examine the internal representation of the population codes at
different behavioral stages [Wilson and McNaughton 1993,Wilson and McNaughton 1994].
One of the goal in exploratory data analysis is to discover the hidden structures or
firing patterns of spiking activity from simultaneously recorded hippocampal popu-
lation neurons, either during periods of active behavior [Wilson and McNaughton 1993,
Harris et al. 2003,Foster and Wilson 2006] or during periods of sleep [Wilson and McNaughton 1994,
Louie and Wilson 2001,Lee and Wilson 2002,Ji and Wilson 2007]. For instance, find-
ing rodent hippocampus neuronal “replay” [Foster and Wilson 2006,Davidson et al. 2009]
or “preplay” patterns [Dragoi and Tonegawa 2011] in cell assemblies during either
quiet awakefulness or slow-wake sleep (SWS), as compared to the firing patterns
during periods of active navigation, has been an important research topic in recent
years [Skaggs and McNaughton 1996,Diba and Buzsaki 2007,Karlsson and Frank 2009].
Two types of neuronal codes were used in previous studies. One is based on
temporal code, which assumes that the individual cells of neuronal assembly
fire in a specific order when the animal navigates in the spatial environment
[Lee and Wilson 2002,Ji and Wilson 2007]. The other is based on rate code, which
assumes that the spiking activity of population cells follows a probabilistic rule
[Brown et al. 1998,Zemel et al. 1998,Zhang et al. 1998,Davidson et al. 2009]. How-
ever, these approaches have some drawbacks. First, all previous approaches rely
on the assumption that the receptive fields of population neurons (i.e., place fields
of hippocampal pyramidal neurons) are known, which are commonly constructed
from empirical training data. This assumption could be problematic since the re-
ceptive fields are plastic, thus the empirical internal representation of the stimulus
space could change at different stages (e.g., navigation vs. sleep) or at different
learning phases (first day vs. second day), or when the shape of the stimulus space
changes [Lever et al. 2002,Frank et al. 2004,Wills et al. 2005]. The change in hip-
pocampal place-cell representation is known as remapping. Second, if the goal of
the analysis is to examine the internal representation of the population codes,
we shall assume no or little knowledge about the environment (i.e., either linear
track, or T-maze, or open field). This is critically important especially when the
firing patterns are examined during SWS or REM sleep periods, or the animal
has been exposed to multiple distinct spatial environments before the experimen-
tal recording. Meanwhile, noticing the fact that knowing the receptive fields of a
real environment is not completely necessary for the replay or preplay analysis,
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since the place fields are only a proxy to examine the relative proximity of spa-
tial position in the environment. Therefore, one could imagine the possibility that
population neurons encode an internal representation of the “virtual environment”
which could be an abstract representation of the real environment. To our best
knowledge, very few study has been done in this area in the literature, except
for the work by Curto and Itskov [Curto and Itskov 2008]. Specifically, with the
same motivation (but completely different methodology) and with no assumption
of the hippocampal place fields, Curto and Itskov showed that simply knowing
which groups of cells fire together would reveal structure in the stimulus space,
which then enables the brain to construct its own internal representations. Put
in their words, “a rather unexplored question is how the output of hippocampal
place cells (without access to corresponding place fields) might be used by down-
stream structures in order to reconstruct position and the underlying space”. In
their method, the authors made certain assumptions of the place fields in an open
field environment, and identified the cell groups (a group of place cells that collec-
tively fire within a two theta-cyle, or 250 ms time window), and further computed
the homology groups and extracted the topological features of the spatial envi-
ronment, and finally constructed an internal representation of the environment
using a graph (that contains a vertex for every cell group and an edge between
neighboring cell groups) and a distance metric (that contains distances between
any two cell groups).

Motivated by these above-mentioned open questions, we develop a probabilistic
generative model and a statistical inference approach to solve the above-mentioned
problems. Our approach is different from the method of [Curto and Itskov 2008] in
terms of the assumptions of place fields and the use of mathematical tools. Finding
the internal representation of hippocampal population codes is viewed as an unsu-
pervised learning problem. More precisely, we propose a solution based on a hidden
Markov model (HMM) and an associated efficient Bayesian inference procedure.
Our computational goal is to infer or uncover the spatial topology represented by
the hippocampal population neuronal codes in rodent. It shall be pointed out that
the term “spatial topology” used here has a narrower meaning than its conven-
tional sense, it is simply referred to the structure of the stimulus space or behavior
sequences underlying the hippocampal population neuronal codes. As a byproduct
of our estimation procedure, we also recover the receptive fields of hippocampal
population neurons with respect to the virtual environment, which are referred to
as the “virtual place fields”.

1.2 Overview of methods

Inferring the spatial topology represented by the hippocampal population codes
is considered as an inverse problem with missing data [Dabaghian et al. 2008,
Dabaghian et al. 2011]. To our best knowledge, very few study has been found
in the literature. In this study, we examine this problem from a computational
perspective. From a statistical data analysis viewpoint, the observed data are the
spiking activity of hippocampal ensemble place cells, whereas the missing data
are the hidden trajectory (in the virtual environment) associated with the fir-
ing patterns exhibited by the place cells, as well as the neuronal tuning curves
with respect to the spatial environment. The unobserved trajectory is treated
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as a hidden state, which is assumed to follow a Markovian structure. For sim-
plicity, we also assume that the number of hidden states is finite. To model
the dynamical system, HMM is a powerful tool for inferring hidden variables
given partially observed data. In the computational neuroscience field, to name
a few, HMM [Cappé et al. 2005,Rabiner 1989] has been widely used either for
decoding natural stimuli [Jones et al. 2007], or for inferring states of population
neurons during periods of SWS [Chen et al. 2009], or for detecting neural-state
transition for motor cortical prostheses [Kemere et al. 2008], or for sorting neu-
ronal spikes [Herbst et al. 2008], or for spatial-temporal clustering of neural data
[Darmanjian and Principe 2009].

Once the statistical model is determined, two kinds of inference approaches can
be considered: one is the maximum likelihood approach [Pawitan 2001], the other
is the Bayesian approach [Robert 2001,MacKay 2003,Gelman et al. 2004]. Maxi-
mum likelihood estimate is asymptotically optimal and invariant, but it is prone
to overfitting in the presence of small sample size. In contrast, Bayesian inference
imposes priors (e.g., sparsity, invariance) onto the model, and its estimate is more
meaningful and efficient; in addition, the uncertainty of the estimate can be repre-
sented by the posterior in place of the point estimate. There are various Bayesian
inference methods available in the literature [Scott 2002], such as the Markov
chain Monte Carlo (MCMC) [Gilks et al. 1995,Rydén 2008], Laplace approxima-
tion [MacKay 2003], and variational methods [MacKay 2003,Bishop 2006]. Specif-
ically, in contrast to the MCMC methods, variational Bayesian (VB) methods
are more computationally appealing, and they have been proposed for learn-
ing a number of statistical models [Beal 2003,Bishop 2006,Katahira et al. 2010,
Chen et al. 2011,Wu et al. 2011].

Spatial topology is typically visualized by graphs. Force-based algorithms are
a class of algorithms for drawing graphs in a way that the nodes of a graph are
positioned in two dimensional or three dimensional space so that all the edges
are of more or less equal length and there are as few crossing edges as possi-
ble [Tollis et al. 1999]. The force-based algorithms achieve this by assigning forces
amongst the set of edges and the set of nodes; the most straightforward method
is to assign forces as if the edges were springs (Hooke’s law) and the nodes were
electrically charged particles (Coulomb’s law). The entire graph is then simulated
in the same fashion as a physical system. The forces are applied to the nodes,
pulling them closer together or pushing them further apart. This process is re-
peated iteratively until the system reaches an equilibrium state (i.e., their relative
positions no longer change or change very little from one iteration to the next).
The physical interpretation of this equilibrium state is that all the forces are in
mechanical equilibrium.

Our computational approach consists of two steps: first, infer the unknown
parameters of the HMM using VB inference; second, infer the spatial topology of
the animal behavior within the environment based on the parameters of the HMM
using a force-based algorithm. The rest of the paper is organized as follows. Sec-
tion 2 presents the background of the finite-state HMM. Section 3 presents the VB
inference algorithm for HMM. Section 4 introduces the force-based algorithm for
visualizing the spatial topology. Section 5 presents results from a number of com-
puter simulations and experimental data. Interpretations and implications of these
results are discussed in detail. Finally, in Section 6 we present some discussions on
important issues and conclude the paper in Section 7.
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2 Finite-state hidden Markov model

Let us consider a discrete-time homogenous Markov chain. By discrete time, we
assume that the time is evenly discretized into fixed-length intervals, which have
time indices t = 1, . . . , T . The standard HMM is characterized by three elements:
transition probability, emission probability, and initial state probability.

– The initial probability of state is denoted by a vector π = {πi}, where πi =
Pr(S0 = i) (i = 1, . . . ,m). Without loss of generality, we assume that the
discrete variable St ∈ {1, . . . ,m}, and size of the discrete state is dim{S} = m.

– The m-by-m transition probability matrix is written as

P =

0BBB@
P11 P12 . . . P1m

P21 P22 . . . P2m

...
... · · ·

...
Pm1 Pm2 . . . Pmm

1CCCA (1)

with Pij corresponding to the transition (conditional) probabilities from state
i to state j.

– For c-th cell, the Poisson spike counts yc,t observed at the t-th time bin follows
products of exponentiated Poisson distributions (denoted by Poi)

p(yc,t|St) =
mY
i=1

p(yc,t|St = i)St,i

=
mY
i=1

Poi(yc,t|λic, St = i)St,i

=
mY
i=1

„
exp(−λic)λyc,tic

yc,t!

«St,i
(2)

where the exponent St,i denotes a Kronecker delta, i.e., St,i = 1 if and only if
St = i. The λic ≥ 0 denotes the rate parameter for cell c at the i-th hidden
state. Given all c = 1, . . . , C cells, the emission probability for the i-state is
given by

QC
c=1 p(yc,t|St = i)St,i .

Let Λ = {λic} be an m-by-C matrix, and let θ = (π,P ,Λ) denote all the un-
known parameters. Under the assumption of Poisson distribution for spike counts,
the observations yt at different time indices t are mutually independent, the ob-
served data likelihood is given by

p(y1:T |S1:T , θ) = Pr(y1:T |S1:T , θ)

=
TY
t=1

CY
c=1

mY
i=1

„
exp(−λic)λyc,tic

yc,t!

«St,i
. (3)

The hidden variables S1:T are treated as the missing data, y1:T as the observed
(incomplete) data, and their combination {S1:T ,y1:T } as the complete data, we
write the complete data likelihood as

p(S1:T ,y1:T |θ) = p(y1:T |S1:T , θ)p(S1:T |θ)

=
TY
t=1

p(yt|St, θ)p(St|St−1, θ). (4)



6 Zhe Chen et al.

And the complete data log-likelihood, denoted as L, is derived as (by ignoring the
constant)

L = log p(S0:T ,y1:T |θ)

=
TX
t=1

CX
c=1

mX
i=1

γt(i)
“
yc,t log λic − λic

”
+

mX
i=1

γ1(i) log πi

+
TX
t=2

mX
i=1

mX
j=1

ξt(i, j) logPij , (5)

where γt(i) = Pr(St = i) and ξt(i, j) = Pr(St−1 = i, St = j).
The maximum likelihood (ML) inference procedure for the standard finite

HMM is given by an efficient estimation procedure known as the EM algorithm
[Dempster et al. 1977,McLachlan and Krishnan 2008], which is also referred to as
the Baum-Welch algorithm [Baum et al. 1970]. The EM algorithm iteratively and
monotonically maximizes (or increases) the log-likelihood function given the in-
complete data. In the E-step, a forward-backward procedure is used to recursively
estimate the hidden state posterior probability. In the M-step, based on the suf-
ficient state statistics (estimated from the E-step), the re-estimation procedure
is used to estimate the unknown parameters θ = (π,P ,Λ). For self-contained
purpose, the details of the EM algorithm is presented in Appendix A.

In our current application, the hidden state trajectory corresponds to the an-
imal’s directional position in the track, the number of states m corresponds to
the number of bins used for representing the virtual environment, and the m-by-
C matrix Λ corresponds to the place fields of ensemble neurons, with each row
representing one neuronal tuning curve with respect to the m-dimensional state
space.

2.1 Practical estimation issues

The above-described estimation procedure is based on ML estimation. In practice,
the ML estimation might not be desirable while dealing with large-scale problems
in the presence of small size. For the current estimation problem, assuming that the
spatial environment is divided into m non-overlapping regions that are represented
by m discrete states. Given the observation of spike counts from C neurons within
T time intervals, the size of unknown parameters is dim(θ) = m2 +mC +m. In a
typical experimental protocol of a spatial navigation task, we have T � dim(θ).
Therefore, for an ensemble of C = 20 ∼ 50 cells and a reasonable size m =
60 ∼ 200, the parameter space is very large and estimation might be subject to
overfitting. On the other hand, since the EM algorithm only searches for the locally
optimal solution that are prone to the local optima problem, the initialization of
the parameters are important for obtaining for a good solution.

With these practical concerns in mind, it is important to impose certain con-
straints or priors onto the HMM. In the probabilistic framework, the ML estima-
tion problem is converted into a maximum a posteriori (MAP) problem; and the
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likelihood inference is replaced by the Bayesian inference. The Bayesian estimate
is optimal, especially in the presence of small sample size in statistical inference
[Gelman et al. 2004]. For the HMM, the following three types of Bayesian inference
approaches can be considered, with gradually increasing model and computational
complexity.

– empirical Bayesian: In this approach, strong structural priors can be imposed
onto the HMM, such as the entropic prior [Brand 1999,Brand and Ketnaker 2000].
In this case, the MAP solution is straightforward to resolve a modified opti-
mization problem.

– parametric hierarchical Bayesian: In this approach, the parameters of the HMM
are assigned with hierarchical priors. The inference algorithm can be based on
either MCMC [Scott 2002,Rydén 2008], or ensemble learning [MacKay 1997],
or VB-EM [Beal 2003,Ji et al. 2006,McGrory and Titterington 2009].

– nonparametric hierarchical Bayesian: In this approach, the statistical model
is treated as a stochastic process with an infinite capacity; a direct extension
of the HMM gives rise to the infinite HMM [Beal et al. 2002,Beal 2003]. Sta-
tistical inference is based on either Gibbs sampling [Teh et al. 2006] or beam
sampling [van Gael et al. 2008].

In the case of space navigation task for rodent, due to behavior prior or constraint,
it is reasonable to impose a sparsity structure on P , which is either diagonal or
banded diagonal. With this imposed constraint, the size of unknown variables
reduces dramatically, decreasing from quadratic O(m2) to linear O(m) order.

Another important issue for using the HMM is to determine m—the size of
hidden states. A naive solution is to empirically choose different values of m, and
then conduct model selection based on certain statistical criteria. However, this
solution is not necessarily effective since the EM algorithm has the local minimum
problem and it is dependent on the initialization of the parameters. Alternatively,
the natural solution is to learn all unknown parameters θ = {m,π,P ,Λ} from the
observed data. In this paper, for the purpose of reducing computational complexity
and gaining empirical insights in the first-round investigation, we fix the model
size or the number of the hidden states in the inference procedure. We will revisit
the model selection issue in Section 6.

3 Variational Bayesian inference for hidden Markov model

In the literature, the VB inference has been used for HMM in various problem set-
tings [MacKay 1997,Beal 2003,Ji et al. 2006,McGrory and Titterington 2009,Katahira et al. 2010].
The advantage of VB inference lies in its computational efficiency for Bayesian in-
ference. To avoid model overfitting in the ML estimation, instead of maximizing
the log-likelihood function log p(y1:T |θ), the objective of VB inference is to maxi-
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mize the marginal log-likelihood or its lower bound

log p(y1:T ) = log

Z
dπ

Z
dP

Z
dΛ

X
S1:T

p(π,P ,Λ)p(y1:T , S1:T |π,P ,Λ)

= log

Z
dπ

Z
dP

Z
dΛ

X
S1:T

q(π,P ,Λ, S1:T )
p(π,P ,Λ)p(y1:T , S1:T |π,P ,Λ)

q(π,P ,Λ, S1:T )

≥
Z
dπ

Z
dP

Z
dΛ

X
S1:T

q(π,P ,Λ, S1:T ) log
p(π,P ,Λ)p(y1:T , S1:T |π,P ,Λ)

q(π,P ,Λ, S1:T )

=
D

log p(y1:T , S1:T ,π,P ,Λ)
E
q

+Hq(π,P ,Λ, S1:T ) ≡ F(q) (6)

where q(π,P ,Λ, S1:T ) is called the variational posterior distribution that approxi-
mates the joint posterior of the hidden state and parameter p(π,P ,Λ, S1:T |y1:T ).
The term Hq of Eq. (6) represents the entropy of the distribution q, and F is
called the free energy (in light of statistical physics).

By assuming a factorial form of variational posterior distribution

q(π,P ,Λ, S1:T ) = q(π,P ,Λ)q(S1:T )

≈ p(π,P ,Λ, S1:T |y1:T ) (7)

Eq. (6) can be further simplified as

log p(y1:T ) ≥ log

Z
dπ

Z
dP

Z
dΛX

S1:T

q(π,P ,Λ, S1:T ) log
p(π,P ,Λ)p(y1:T , S1:T |π,P ,Λ)

q(π,P ,Λ, S1:T )

= log

Z
dπ

Z
dP

Z
dΛ

X
S1:T

q(π,P ,Λ)

»
log

p(π,P ,Λ)

q(π,P ,Λ)
+
X
S1:T

q(S1:T ) log
p(y1:T , S1:T |π,P ,Λ)

q(S1:T )

–
≡ F(q(π,P ,Λ), q(S1:T )) (8)

where for notation simplicity we have made the conditional on y1:T in the varia-
tional posteriors q(·) implicit.

To maximize the free energy F(q(π,P ,Λ), q(S1:T )), we optimize alternatingly
with respect to its arguments q(π,P ,Λ) and q(S1:T ), which will be done in the
VB-M and VB-E steps, respectively.

3.1 VB-M step

In the VB-M step, taking functional derivatives of F with respect to q(π,P ,Λ)
yields

log q(π,P ,Λ) ∝ log p(π,P ,Λ)
˙

log p(y1:T , S1:T |π,P ,Λ)
¸
q(S1:T )

∝ log p(π) + log p(P ) + log p(Λ) +
˙

log p(S1|π)
¸
q(S1)

+
˙

log p(S2:T |S1,P )
¸
q(S1:T )

+
˙

log p(y1:T |S1:T ,Λ)
¸
q(S1:T )

(9)
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We further impose a factorial form onto the variational posterior of the pa-
rameters

q(π,P ,Λ) = q(π)q(P )q(Λ) (10)

To derive individual variational posteriors, we assume appropriate conjugate prior
in order to get an analytic form of the posterior.

For the initial state probability π, we assume a conjugate Dirichlet prior (de-
noted by Dir):

p(π) = Dir
“
{π1, . . . , πm}|u(π)

”
=

Γ (u
(π)
0 )Qm

i=1 Γ (u
(π)
i )

mY
i=1

π
u

(π)
i −1
i (11)

where u(π) = [u
(π)
1 , . . . , u

(π)
m ], u

(π)
i ≥ 0, and u

(π)
0 =

Pm
i=1 u

(π)
i denotes the strength

of the Dirichlet distribution. From the Bayes rule, it is inferred that the posterior
is also a Dirichlet distribution:

q(π) = Dir
“
{π1, . . . , πm}|{w(π)

1 , . . . , w(π)
m }

”
(12)

where w
(π)
i = u

(π)
i + qS(S1 = i) = u

(π)
i + γ1(i).

Similarly, we can derive the posterior for the transition probability matrix P
as the products of posteriors of its row vectors

q(P ) =
mY
i=1

q(P i)

=
mY
i=1

Dir
“
{Pi1, . . . , Pim}|{w(P )

i1 , . . . , w
(P )
im }

”
(13)

where w
(P )
ij = u

(P )
ij +

PT
t=2 qS(St−1 = i, St = j) = u

(P )
ij +

PT
t=2 ξt(i, j).

Given the Poisson likelihood for the rate parameters Λ = {λic}, we assume a
conjugate gamma prior (denoted by Gam) for each state i (shared by all cell indices
c = 1, . . . , C):

p(λic) = Gam
“
α

(λ)
i , β

(λ)
i

”
=

(β
(λ)
i )

α
(λ)
i

Γ (α
(λ)
i )

λ
α

(λ)
i −1
ic e−β

(λ)
i λic (14)

where α
(λ)
i > 0 and β

(λ)
i > 0 are the shape and inverse scale parameters, re-

spectively.1 The above gamma distribution has a mean α
(λ)
i /β

(λ)
i and variance

α
(λ)
i

`
β

(λ)
i

´−2
. Correspondingly, the rate parameters follow a gamma posterior

q(Λ) =
mY
i=1

CY
c=1

q(λic)

=
mY
i=1

CY
c=1

Gam

„
Cα

(λ)
i +

TX
t=1

yc,tγt(i), Cβ
(λ)
i + li

«
(15)

1 The Jefferey’s improper prior corresponds to a limiting case of the gamma distribution,
with a shape parameter of 0.5 and inverse scale parameter of 0.
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where li =
PT
t=1 γt(i).

3.2 VB-E step

In the VB-E step, the variational joint posterior of the hidden state is given by

q(S1:T ) =
mY
i=1

π
γ1(i)
i

TY
t=2

mY
i=1

mY
j=1

P
ξt(i,j)
ij

TY
t=1

mY
i=1

CY
c=1

Poi(yc,t|λic, St = i)γt(i) (16)

Maximizing F precedes by taking a functional derivative with respect to q(S1:T ),
which yields

log q(S1:T ) =
˙

log p(S1:T ,y1:T |π,P ,Λ)
¸
q(π)q(P )q(Λ)

− logZ(y1:T )

=
mX
i=1

Ŝ1,i

˙
log πi

¸
q(π)

+
TX
t=2

mX
i=1

mX
j=1

Ŝt−1,iŜt−1,j

˙
logPij

¸
q(P )

+
TX
t=1

CX
c=1

mX
i=1

Ŝt,i
˙
− λic + yc,t log λic

¸
q(Λ)
− logZ(y1:T ) (17)

where Ŝt,i = Eq(S1:T )[St = i] = qS(St = i|y1:T ) ≡ γt(i) and Ŝt−1,iŜt,j =
Eq(S1:T )[St−1 = i, St = j] = qS(St−1 = i, St = j|y1:T ) ≡ ξt(i, j) will be com-
puted from the forward-backward algorithm (Appendix A). The last term of Eq.
(17), logZ(y1:T ), is a normalization constant that is independent of the variational
posterior. To compute the first term of Eq. (17), we have˙

log πi
¸
q(π)

=

Z
Dir(π|u(π)) log πidπ

= ψ
“
u

(π)
i

”
− ψ

„ mX
i=1

u
(π)
i

«
(18)

where ψ is the diagamma function. To compute the second term of Eq. (17), we
have ˙

logPij
¸
q(P )

=

Z
Dir(Pij |u(P )

ij ) logPijdP

= ψ
“
u

(P )
ij

”
− ψ

„ mX
i=1

u
(P )
ij

«
(19)

To compute the third term of Eq. (17), we have˙
− λic + yc,t log λic

¸
q(Λ)

=

Z
Gam

“
λic
˛̨̨
Cα

(λ)
i +

X
t

yc,tγt(i), Cβ
(λ)
i + li

”
×(−λic + yc,t log λic)dλic

= −Cα
(λ)
i +

P
t yc,tγt(i)

Cβ
(λ)
i + li

+yc,tψ
“
Cα

(λ)
i +

X
t

yc,tγt(i)
”

−yc,t log(Cβ
(λ)
i + li)

”
(20)
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From Eqs. (18) through (20), we update the new initial state probability as

π̃ = {π̃i}
= exp

˙
log πi

¸
q(π)

= exp

„
ψ(w

(π)
i )− ψ(

mX
i=1

w
(π)
i )

«
, (21)

and update the new state transition probability as 2

P̃ = {P̃ij}
= exp

˙
logPij

¸
q(P )

= exp

„
ψ(w

(P )
ij )− ψ(

mX
i=1

w
(P )
ij )

«
, (22)

and update the new emission probability as

Pr(yt|{λ̃ic}, St = i) =
CY
c=1

exp

„˙
− λic + yc,t log λic

¸
q(Λ)

«

=
CY
c=1

exp

„
− Cα

(λ)
i +

P
t yc,tγt(i)

Cβ
(λ)
i + li

«

× exp

„
yc,tψ

“
Cα

(λ)
i +

X
t

yc,tγt(i)
”
− yc,t log(Cβ

(λ)
i + li)

”«
(23)

The VB-E step further proceeds with the standard forward-backward algorithm
using the new parameter θ̃ = (π̃, P̃ , Λ̃) (computed from Eqs. 31 and 34, Appendix
A).

3.3 Computation of the lower bound F

Upon completing every iteration of the VB-E step, we compute the free energy
shown in Eq. (8), which is rewritten here:

F(q(π,P ,Λ), q(S1:T )) =

Z
q(π) log

p(π)

q(π)
dπ +

Z
q(P ) log

p(P )

q(P )
dP

+

Z
q(Λ) log

p(Λ)

q(Λ)
dΛ+ log Z̃(y1:T )

≤ log Z̃(y1:T ) (24)

where the inequality holds because the non-negativeness of the Kullback-Leibler
(KL) divergence. Note that the first term

R
q(π) log p(π)

q(π)dπ of Eq. (24) measures

the negative KL divergence between the variational posterior q(π) = Dir(π1, . . . , πm|u1, . . . , um)

2 Note that the new probabilities are sub-normalized probabilities (due to using the geometric

mean instead of the standard arithmetic mean), where
Pm
i=1 π̃i ≤ 1 and

Pm
j=1 P̃ij ≤ 1.
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and prior Dirichlet distribution p(π) = Dir(π1, . . . , πm|u′1, . . . , u′m) for vector π
(similarly, for each row of the matrix P in the second term of Eq. 24)

KLDir(q‖p) = log
Γ (u0)

Γ (u′0)
+

mX
i=1

log
Γ (u′i)

Γ (ui)
+

mX
i=1

(ui − u′i)
“
ψ(ui)− ψ(u′i)

”
(25)

The third term
R
q(Λ) log p(Λ)

q(Λ)dΛ of Eq. (24) measures the negative KL divergence

between two gamma distributions q = Gam(α1, β1) and p = Gam(α2, β2), which can
be computed analytically

KLGam(q‖p) = log

„
Γ (α2)βα1

1

Γ (α1)βα2
2

«
+ (α1 − α2)

“
ψ(α1)− log β1

”
+ α1

β2 − β1

β1
(26)

Furthermore, the last term log Z̃(y1:T ) of Eq. (24) is the new normalization con-
stant that can be estimated from the forward-backward algorithm (Eq. 35, Ap-
pendix A); it also corresponds to the estimated marginal log-likelihood of the data
(Eq. 36, Appendix A).

3.4 Initialization of priors and hyperparameters

The purpose of conjugate priors is to make the VB inference more tractable.
However, the hyperparameters of these priors are designed by user, depending on
the users belief on the data. The priors can be either very informative or very
uninformative. In that sense, the conjugate prior is still quite general. Obviously,
a highly structured solution will require a very specific prior for the desirable
solution.

In the previous subsection, the hyperparmeters are assumed to be known or
set by the user. In our problem, the hyperparameters are set according to the prior
knowledge as follows.

– We set u
(π)
1 = u

(π)
2 = · · · = u

(π)
m = 1/m, which corresponds to a uniform

distribution. If the hyperparameter is smaller than 1/m, it implies that the
solution favors a specific initial state, rather than a uniform solution.

– We set [u
(P )
i1 , u

(P )
i2 , . . . , u

(P )
im ] = α(P )[1/m, 1/m, . . . , 1/m], where α(P ) denotes

the concentration parameter. Values of the concentration parameter above 1
prefer variates that are dense, evenly-distributed distributions (i.e. all probabil-
ities returned are similar to each other). Values of the concentration parameter
below 1 prefer sparse distributions (i.e., most of the probabilities returned will
be close to 0, and the vast majority of the mass will be concentrated in a few
probabilities). We set α(P ) = 0.3.

– We set α
(λ)
i = β

(λ)
i = 0.0001, and the initial mean of the λic is set to be the

overall mean firing rate of neuron c, i.e. 1
T

PT
t=1 yc,t.

Alternatively, the hyperparameters α
(λ)
i and β

(λ)
i can be optimized iteratively by

maximizing the log-likelihood or marginal log-likelihood (Appendix C). However,
no closed-form solution exists for these hyperparameters.
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Fig. 1 Examples of experimental space topology explored by animal (For left to right: linear
track, T-maze, Y-maze, H-maze, cross maze). The arrow indicates the traveling direction. The
first row shows the physical shape of the track, and the second row shows the corresponding
(equivalent) topology by considering the bidirectional factor. Note that the T-maze and Y-maze
have two bifurcation points (each with 2 possible choices), the H-maze has four bifurcation
points (each with 2 possible choices), and the cross-maze has two bifurcation points (each with
3 possible choices).

4 Visualization of spatial topology via force-based algorithm

Spatial topology is a mathematical abstraction of the real environment space.
Spatial topology reflects the geometrical structure and spatial relations that are
invariant or unaffected by the continuous change of shape or size of figure. For
a rodent spatial navigation task in a two-dimensional space, the spatial topology
determines the animal’s natural behavior. Figure 1 shows a few example exper-
imental spatial topology commonly used in navigation tasks. As seen in Fig. 1,
the physical shapes of the experimental tracks (top row) can be converted into the
equivalent spatial topology (bottom row) by considering the directional factor; two
tracks with physically different shapes (e.g., T-maze vs. Y-maze) share the same
spatial topology. The bifurcations of the track increases the complexity of the
topology since it introduces multiple pathways connecting one point in the track
to another. In representing the space, the spatial environments are often binned
and linearized. Note that the linearization strategy is non-unique, and there are
multiple ways to discretize and represent the same space.

The inference outcomes of the HMM consist of the estimated state trajectory,
the state transition probability matrix, and the tuning curves (place fields) of
the population neurons. Particularly, the estimated state trajectory and transi-
tion probability matrix reveal important cues about the spatial environment and
the animal behavior in that environment. Since the behavior determines the state
transition probability, we will use the transition probability matrix to infer the
spatial topology of the environment. Specifically, we would like to draw a graph
that consists of multiple nodes representing the hidden states, the edges between
the graph represents the link between the spatial locations coded by the hidden
states, whereas the strengths of the edges reflects the values of transition prob-
ability between two states, which not only depends on the spatial topology but
also the animal’s actual behavior. For instance, for the same spatial topology such
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as a linear track, the state transition matrix will be different between a regular
back-and-forth navigation without turns and a navigation with frequent turns in-
side the track. A non-stop navigation between two end points will induce a shifted
diagonal-like structure in the state transition matrix, whereas frequent stops and
turns inside the track will induce many nonzero off-diagonal elements in the tran-
sition matrix.

A direct way to visualize the spatial topology is to draw graphs. A graph dis-
plays the geometrical relationship between distinct nodes or different objects via
edges. There are various graph-drawing methods, most of which rely on certain
distance metrics. In general, a high transition probability implies a short distance
between two nodes in the graph. Meanwhile, for the aesthetic reason, it is preferred
that all the edges are proportional in length, and there are as few crossing edges as
possible. For instance, the classical or nonclassical multidimensional scaling (MDS)
methods [Cox and Cox 2001,Borg and Groenen 2005], which are originally used in
information visualization for exploring similarities or dissimilarities in data, can
be used here for visualizing the relationship between nodes based on a selected
distance metric. To do that, we can transform the transition probability matrix
into a symmetric distance (or dissimilarity) matrix. However, the choice of trans-
formation is rather ad hoc, and from our practical experiences the visualization of
the graph is less satisfactory and the results are more difficult to interpret (results
not shown).

Another type of popular graph drawing methods is based on the force-based
algorithm [Tollis et al. 1999]. Typically, this type of algorithm is motivated from
physics, whereas the nodes are viewed as particles, and the graph is treated
as physical (mechanical or electrical) system. At the end of the completing the
graph drawing, the total kinetic energy is minimized and the system reaches
an equilibrium state. Some publicly available softwares, for instance the Tulip
(http://tulip.labri.fr/) and Gephi c© (http://gephi.org), provide interfaces to draw
aesthetically satisfactory graphs with various levels of user control. The typical
force-based algorithms are generally considered to have a O(m3) running time,
where m is the number of nodes of the graph. It shall be emphasized out that
the force-based algorithm is based on iterative optimization, which also has the
poor local minimum problem; thus the graph drawing outcome also depends on
the initial condition.

In addition to the available public resources, we have also written our own
custom MATLAB c© (MathWorks, Natick, MA) programs to visualize the spatial
topology in either two-dimensional (2D) or three-dimensional (3D) space. The
only input for the program is the estimated (with or without thresholding) state
transition matrix and the algorithmic convergence criterion (a default value is also
set). The pseudocode for the force-based algorithm is given below (Algorithm
1).3

3 Online resource: http://en.wikipedia.org/wiki/Force-based algorithms (graph drawing).
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Algorithm 1 Pseudocode for the force-based algorithm.

Initialize node velocities to (0, 0), initialize node positions randomly.
while non-convergence (i.e., total kinetic energy is greater than desired value) do

Set total kinetic energy to 0. // running sum of total kinetic energy over all particles
for each node

net-force = (0, 0) // running sum of total force on this particular node
for each other node

net-force = net-force + Coulomb-repulsion( this node, other node )
next node
for each spring connected to this node

net-force = net-force + Hooke-attraction( this node, spring )
next spring

// without damping, it moves forever
this node.velocity = (this node.velocity + timestep × net-force) × damping
this node.position = this node.position + timestep × this node.velocity
total kinetic energy = total kinetic energy + this node.mass × (this node.velocity)2

next node
end while

Table 1 Summary of all computer simulations.

No. environment m C T (laps × bin/lap) remark
1-1 linear track (bidirectional) 62 21 1240 (20×62) 31 bins per direction, without turns

1-2 linear track (bidirectional) 62 21 3720 (20×186) with turns in both directions

2-1 T-maze 86 21 5070 (15×338) two bifurcations

2-2 T-maze 86 35 4240 (20×212) two bifurcations, with turns

3-1 linear track A + T-maze 86 21 8790 A is part of of T, multiple transitions

3-2 linear track A + linear track B 86 21 1075 A and B are gated, one transition

5 Results

5.1 Computer simulations

We have done a variety of computer simulations to verify our analysis. The setup
of the simulated experiments is listed in Table 1. In all simulations, we assume that
the animal is always in the RUN-mode (i.e., stop periods are excluded), with a 250
ms temporal bin size (about two theta-cycle). For the sake of simulation simplicity,
we also assume that the animal runs multiple laps, the running trajectory at
each lap is identical (i.e., the overall trajectory is periodic). In addition, the spike
activity of ensemble neurons is drawn from a Possion distribution based on the
real tuning curves constructed from experimental tracks.

Due to the presence of local maxima, in each experimental condition we run
the VB-EM algorithm multiple times, each with different random initializations.
We examine and select the results with the free energy criterion. The solution as-
sociated with the higher free energy is more likely to be a better solution. However,
the free energy criterion alone may not be sufficient, quantitative assessment of
the estimated solutions is also necessary.

5.1.1 Quantitative assessment

For computer simulations, we propose two quantitative indices to measure the
quality of the estimation results. The first index measures the quality of estimated
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b1b2

c1 c2

d1 d2

Fig. 2 Cartoon illustration for comparing two matrix-rows that have two dominant off-
diagonal elements, where a1, b1, c1, d1 are the one-column-right-shifted diagonal elements (i.e.,
column index = row index + 1).

trajectory. It is noted that because of the permutation ambiguity of the state ID,
two correct trajectories may exhibit different forms after remapping the state ID.
For that reason, we first compute the occupancy time (OT) of each state and then
sort these values denoted by a vector OT. We then compute the difference between
the two vectors

D1 =
‖OTtrue −OTest‖

T/m
, (27)

where ‖ · ‖ denotes the L1 norm of the vector, and the denominator T/m denotes
the averaged occupancy time of m states within the total T time bins. The index
D1 is aimed to check the consistency between two state trajectories: when two
trajectories are perfectly consistent (upon permutation), D1 = 0. In the presence
of the state ID ambiguity, provided that each state has a different occupancy
number, after sorting the OT, the consistency of two trajectories can be checked
without explicit state remapping.

The second index measures the similarity between the true and estimated
state transition matrices. Again, due to permutation ambiguity of the state ID,
it is difficult (if not impossible by an exhaustive search) to compare all possi-
ble permutations. To illustrate this point, let’s consider a simple example shown
in Fig. 2. Suppose that we have two matrices, each of them have two rows that
have more than one (here, say two) dominant nonzero off-diagonal entries. All
entries of the matrix are nonnegative, and each row entries sum to 1. As illus-
trated in Fig. 2, we denote the row entries as (a1, a2) and (b1, b2) in the first
matrix (say, the true matrix), and denote the row entries as (c1, c2) and (d1, d2)
in the second matrix (say, the estimated matrix), among which a1, b1, c1, d1 are
the one-column-right-shifted diagonal elements. Given the permutation ambigu-
ity, there are two possibilities to compute the matrix row deviation (MRD): one
is MRD1 = |a1 − c1| + |a2 − c2| + |b1 − d1| + |b2 − d2|, the other is MRD2 =
|a1 − d1| + |a2 − d2| + |b1 − c1| + |b2 − c2|. Obviously, the one with the smallest
MRD value would be a more desirable solution; namely, using the row permuta-
tion option associated with the smallest MRD, the estimated matrix will be more
similar to the true matrix (at least for the two rows under consideration).

The cartoon example in Fig. 2 is only aimed to illustrate the situation when
considering two matrix rows that have two dominant nonzero off-diagonal entries.
In a more general setting, when considering to compare n rows in the m-by-m true
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matrix (where n ≥ 2 and n � m) that have two dominant nonzero off-diagonal
entries,4 there will be n! (the factorial of n) permutation possibilities and we would
need to compute a total of n! MRD values. From which, we define the second index
as

D2(n) = min
k
{MRDk}, k = 1, . . . , n! (28)

For the sake of computational simplicity, we have ignored the comparison among
the remaining (m − n) rows between two matrices. In our case (when only two
dominant nonzero off-diagonal elements in each row are considered), it can be
shown that 0 ≤ D2(n) ≤ n. In all computer simulations conducted below, we only
consider either n = 2 or n = 3. Since we can only consider a low dimensionality
of n, D2 shall be combined with D1 as an additional criterion to assess the solu-
tion. Alternatively, we can also use the continuity of state trajectory sequences to
compare a large chuck of (more than 3) rows between two matrices.

5.1.2 Simulated linear track

In the first simulation scenario, the simulated animal’s behavior follows a non-
stop back-and-forth navigation (i.e., animal moves from one end of the track to
the other end, then returns and the motion repeats). The animal stops nowhere
in the middle track (neither at the ends of the track) and makes no turn inside
the track. In this case, we would know in advance that the state transition matrix
P would have a shifted-diagonal structure. In inference, to impose a linear-track
topology preference, in parameter initialization we first set P to have a dominant
shifted-diagonal structure; we further add small positive values randomly into the
elements of P (to allow other possible state jumps to account for animal’s behavior
turns inside the track). Each row of P is normalized such that the sum of the
entries is 1. In practice, we found that this initialization strategy is very effective
and leads to fast algorithmic convergence and good estimation performance.5

In the second simulation scenario, the animal still navigates in the same linear
track environment, but the animal’s behavior is different from the first case in that
it now makes a few turns in the middle of the track. For instance, the state sequence
in one lap to account for the animal’s behavior and moving direction is [1 : 15,−15 :
−1, 1 : 31,−31 : −1, 1 : 25,−25 : −10, 10 : 31,−31 : −1] (where the negative sign
indicates the reverse direction). The simulated true trajectory in one lap and the
decoded trajectory obtained from VB-HMM are shown in Fig. 2. As comparison,
two trajectories are very similar, so are the true and estimated transition matrices
(Fig. 3). As expected, due to behavioral turns at certain state locations (e.g., state
15, 25), there are more than one nonzero elements in a few rows of the transition
matrix, indicating the presence of a shortcut between two non-neighboring states.
Furthermore, when comparing with the true tuning curves of 21 cells, it is found
that the estimated tuning curves have a faithful resemblance (Fig. 4). It is also

4 In this paper, we only consider this situation. More generally, if there are more than two
(say l) dominant nonzero off-diagonal entries, we have to consider not only row permutation
but also column permutation, there will be a total of n!× (l − 1)! permutation possibilities.

5 Note that this trick attempts to impose a structural prior. In contrast, a completely random
P will cause a slow convergence and a poor solution.
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Fig. 3 One illustrated estimation result from the linear track (Simulation 1-2): the true trajec-
tory in one lap (top) and the corresponding estimated trajectory (middle). State 1-31 represents
the left-to-right positions inside the linear track, and state 32-62 represents right-to-left posi-
tions inside the track. The color-coded true (bottom left) and estimated (bottom right) transi-
tion matrices are qualitatively and quantitatively similar. Note that the transition matrix has a
shifted-diagonal structure. Quantitative indices:D1 = 0.1333, D2(2) = 0.0407, D2(3) = 0.0479.

noted that the VB algorithm is capable of decoding state trajectory accurately
despite the fact that many cells have multiple-peak place fields.

It shall be pointed out that there are many equivalent solutions (due to the
singularity of latent probabilistic model and the ambiguity of state permuta-
tion). In other words, even the decoded state sequence trajectory appears dif-
ferent from the true one, but the solution is actually consistent with the true
one after remapping state ID (this can be confirmed by visual inspection or
quantitative evaluation). Figure 5 shows such an example. In Fig. 5, the quan-
titative metrics are D1 = 0.2, D2(2) = 0.0292, D2(3) = 0.0363, as compared to
D1 = 0.1333, D2(2) = 0.0407, D2(3) = 0.0479 in Fig. 3.

Notes: At this point, it is worth mentioning several important observations
from computer simulations:

– Given a sensible initialization, the VB-HMM algorithm converges very fast,
typically within less than 20 iterations. Our algorithm also produces much
a better solution than the standard EM-HMM algorithm. Without the im-
posed prior information (as in the VB), the decoded state trajectory obtained
from the EM algorithm is rarely comparable to the true trajectory (result not
shown). In addition, the estimated transition matrix from the EM algorithm
lacks the sparsity structure (data not shown). This is because without the con-
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Fig. 4 The simulated (left) and estimated (right) tuning curves of 21 neurons from the same
result shown in Fig. 3 (Simulation 1-2). The full length of the vertical bar marks the firing
rate scale of 40 Hz.

straints, the solution space is too large, and the EM algorithm is prone to being
stuck in poor local maxima.

– As illustrated in Fig. 3 and Fig. 5, there are non-unique but equally satisfactory
solutions for the decoded trajectory (because of permutation ambiguity). Even
the decoded trajectory may appear different from the true trajectory at the first
sight, the solution can be consistent and valid upon state ID remapping. The
proposed quantitative measures D1 and D2 provide a hint about the quality
of the estimation. However, it shall be noted that the D1 value also depends
on the distribution of the actual state occupancy time. Because of the data
dependency, the comparison of the D1 value only makes sense among the same
simulation experiment.

– Typically, a small D1 value is accompanied by a small D2 value and a large
free energy F . However, the reverse statement is not always true. In other
words, sometimes a large free energy may be associated with relatively large
D1 and D2 values, or sometimes even when D2 and the negative free energy
−F is small, the D1 value can be large. To show that, we have conducted 50
independent Monte Carlo simulations for Simulation 1-2, and the statistics of
D1,D2 and F are shown in Fig. 6. Note that these results consist of all solutions
with different degrees of performance (both failures and successes). In our
observations, a “qualitatively good” solution is often accompanied with lower
values of D1 and D2, in combination of reasonably high value of free energy; a
“qualitative bad” solution is often accompanied with a low free energy, a high
D2 value. In this specific Monte Carlo experiment, the conservative failure rate
estimate is around 10-14% (5-7 cases).
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Fig. 5 In comparison with the results illustrated in Fig. 3, another correct estimation result
from the trajectory in a linear track (Simulation 1-2). Note that the the raw (top panel) and
remapped (second panel, dashed line) state trajectories will become nearly identical upon state
ID remapping (using the following ID map: [1:25]→[38:62], [26:62]→[1:37]). Also note that the
true (bottom left) and estimated (bottom right) transition matrices will become nearly identical
upon state ID remapping. Quantitative indices: D1 = 0.1333, D2(2) = 0.0560, D2(3) = 0.093.

0 1 2
0

0.05

0.1

0.15

0.2

0.25

D
1

D
2(2

)

0 1 2
−8500

−8000

−7500

−7000

−6500

D
1

F
re

e 
en

er
gy

0 0.1 0.2
−8500

−8000

−7500

−7000

−6500

D
2
(2)

F
re

e 
en

er
gy

Fig. 6 Scatter plots of statistics of D1, D2(2), and free energy F . Statistics are obtained from
50 independent Monte Carlo simulations (Simulation 1-2).

5.1.3 Simulated T-maze

Linear track is the simplest spatial topology among all rat navigation tasks. Next,
a slightly more complex spatial topology—T-maze, is considered. In the first simu-
lation scenario, the animal navigates in a T-maze (Fig. 7, leftmost panel). In each
lap, the animal makes random exploration to the left or right arms of the maze. In
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Fig. 7 Left: illustration of linearization of a simulated T-maze. Due to the bidirectional factor
of the place field, a total of 43×2 = 86 states represents the 43 bins. Linearized bin assignment:
A→ B: 1:20, B → C: 21:31, C → B: 32:42, B → A: 43:62, B → D: 63:74, D → B: 75:86. One
illustrated result from the simulated T-maze (Simulation 2-1): color-coded true (middle) and
estimated (right) transition probability matrices, and D2(2) = 0.015. The comparison of the
true and estimated trajectories are not shown here.

this case, the animal makes no turn in the middle of two arms. Based on the same
initialization setup as before, the VB-HMM algorithm is capable of producing very
accurate estimation results. One of the estimation results from this simulation is
illustrated in Fig. 7. As seen, the estimated state transition probability matrix is
very similar to the true one (D2(2) = 0.015). Note that the transition matrix has
two bifurcation points at states 20 and 42, and there is also a break point at state
62. In addition, the estimated state sequence trajectory is also consistent with the
true one (D1 = 0), and so are the estimated tuning curves (not shown).

In the second simulation scenario, the animal is assumed to navigate in the
same T-maze environment. However, the animal makes regular turns inside the
two arms of the maze. Using the VB-HMM algorithm, one of the estimation results
from this simulation is illustrated in Fig. 8. By inspection, the estimated state tran-
sition matrix and state sequence trajectory are also consistent, achieving excellent
quantitative metrics: D1 = 0, D2(2) = 0.024, D2(3) = 0.038.

5.1.4 Combined environments

We further examine the scenario with two combined spatial environments, which
is not uncommon in some rodent navigation protocols. In the first simulation
scenario, we consider one linear track A and one T-maze, where the linear track
A is part of the T-maze (i.e., one arm of the T-maze). The linear track A is
represented by 62 states, and the T-maze is represented by 86 states. Therefore,
the combined environment is also represented by 86 states. In each lap, the animal
first explores the linear track (state 1-62), and then the animal is exposed to the
complete environment (state 1-86). Although the task is more challenging than
the first two scenarios, the VB-HMM algorithm still performs quite well. One of
the estimated results is illustrated in the left panel of Fig. 9. By inspection, we see
the estimated state sequence is consistent with the true one, this is also confirmed
by D1 = 0.783 and the statistics of the respective sorted state occupancy time
(right panel, Fig. 9). The estimated transition probability matrix has a relatively
similar structure as the one shown in Fig. 7 (data not shown, D2(2) = 0.698).
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Fig. 8 One illustrated snapshot from the simulated T-maze (Simulation 2-2). Top: comparison
of the true and estimated trajectories. Bottom: comparison of the true (left) and estimated
transition matrices (right). Quantitative indices: D1 = 0, D2(2) = 0.024, D2(3) = 0.038.

In the second simulation scenario, we consider the combination of two linear
tracks (A and B) without overlapping region between each other. Two linear tracks
are represented by 43 states, resulting a total of 86 states with the bidirectional
factor. In the first 865 temporal bins, the animal first explores the linear track A
(state 1-62), and then the gate between two tracks opens and closes behind once
the animal moves to the linear track B (state 63-86) and explores in the remaining
147 temporal bins. Therefore, there is only one single transition chaining two
environments. To our little surprise, the VB-HMM algorithm is still capable of
recovering the behavior trajectory. One of the estimated results are illustrated in
Fig. 10. As seen, even with a sample size as small as 1012 bins, our approach can
decode the state trajectory rather reliably (D1 = 3.04) and produce a reasonably
good estimate of the state transition matrix (D2(2) = 0.313, D2(3) = 0.445).

5.1.5 Interpretation of graphs

The topological graph reveals important information about the spatial topology of
the environment as well as the animal’s behavior. Take a look at the examples of
the inferred graphs shown in Fig. 11, Fig. 11a is a graph obtained from Simulation
1-1, Fig. 11b is the inferred graph from the true state transition matrix used in
Simulation 1-2, Fig. 11c and Fig. 11d are the inferred graphs from the estimated
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Fig. 9 One illustrated snapshot from two combined environments (Simulation 3-1): the com-
parison of the snapshots of the true (left top) and estimated (left bottom) trajectories, with the
transition marked by a dashed line. In this case, two environments have overlapping regions.
From the true and estimated state trajectories, we can compare the statistics of the state
occupancy time (right) and obtain D1 = 0.783.

state transition matrix in the same simulation, without and with thresholding,
respectively.

We would like to point out a few important facts in interpretation of the graphs:

– The end-to-end navigation behavior (i.e., no turns) in the linear track and T-
maze environment will have simpler graphs (shown in Fig. 1, bottom left two
graphs). This example is perfectly illustrated in the graph of Fig. 11a, which
is inferred from Simulation 1-1.

– Whenever there are navigation turns inside the track, shortcuts will be created
in the graph. The number of locations at which the turns occur determines the
number of shortcuts. This can be perfectly illustrated in the graph of Fig. 11b:
in addition to the “8”-figure topology (solid string in dark color), two shortcuts
(weak edges in light color) are created.

– In the T-maze, since there are bifurcation points (e.g., states 20 and 42 in
Simulation 2-2) as well as a break point (i.e., discontinuity), the end points of
the inferred graph are not connected (left panel of Fig. 12). However, there are
two shortcuts due to the existence of behavior turns in the simulation.

– In the combination of two environments (Simulation 3-2), the graph inferred
from the true transition matrix (Fig. 13, left panel) consists of two separate
yet weakly linked loops, each of them has its own shortcuts. The large loop on
the top of the left panel (Fig. 13) represents the state space 1-62, whereas the
small loop represents the state space 63-86, and these two loops are linked by
a week edge (states 62 and 63).

All of these facts are observed from a “ground truth” graph inferred from a true
state transition matrix. In statistical inference, the statistical estimation error in
the state transition matrix will inevitably make the graph interpretation more
difficult (e.g, Fig. 13, right panel). In practice, we found that thresholding small
probabilities before using the force-based algorithm will improve the graph pre-
sentation (e.g., Fig. 11c vs. Fig. 11d).
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Fig. 10 One illustrated result from two combined environments (Simulation 3-2): the com-
parison of the snapshots of the true (top left) and estimated (bottom left) trajectories. Note
that two environments have no overlapping region, the one-time transition between A and B
(31 → 63) is marked by a dashed line. Linear track A has state ID 1-31 (forward direction)
and 32-62 (reverse direction); linear track B has state ID 63-74 (forward direction) and 75-86
(reverse direction). Quantitative indices: D1 = 3.04, D2(2) = 0.313, D2(3) = 0.445.
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Fig. 11 (a) The graph inferred from the estimated transition matrix from a simulated linear
track without behavioral turns (Simulation 1-1, m = 62). (b-d): the graphs inferred from a
simulated linear track with behavioral turns (Simulation 1-2, m = 62): from the true transition
matrix (b), the estimated transition matrix (c) and the estimated transition matrix followed
by 0.05 thresholding (d).
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Fig. 12 The graphs inferred from the true estimation matrix (left) and the estimated transi-
tion matrix without thresholding (right) in a simulated T-maze (Simulation 2-2, m = 86). The
nodes represent the states, and the edges represent the strengths between the nodes. Notice
the similar spatial topology between these two graphs.
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Fig. 13 The graphs inferred from the true transition matrix (left) and the estimated transition
matrix with 0.01 thresholding (right) in Simulation 3-2 (m = 86).

5.2 Experimental data

Given the successful estimation results from the extensive computer simulations,
we further apply our analysis to two experimental data sets. The statistics of
experimental data are summarized in Table 2.

5.2.1 Linear track

In the first experimental protocol, the rat navigated in a 3.1-m linear track en-
vironment. To exclude the rat’s pause or stop periods inside the track, we apply
a velocity filter (15 cm/s) to obtain run-only periods of recording in one session.
A total of 30 putative pyramidal cells were simultaneously recorded from the rat
hippocampal CA1 area based on multiple tectrodes. Spikes are sorted and binned
with a 250-ms window, and the spike count statistics of the ensemble neurons are
obtained.

We run the VB-HMM algorithm more than 50 times (each with independent
random initialization) and select the result associated with the highest free energy.
A range of model size of m = 60 ∼ 80 has been tested. The estimated trajectory,
the transition probability matrix, and the optimized 2D topology from the best
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Table 2 Summary of experimental data. All data use a 250-ms bin size. The run-only data
are obtained with a 0.15 m/s velocity filter.

environment selected m C T remark
3.1-m linear track 60∼80 30 1138 ∼4.7-min run period extracted from 30-min recording

T-maze 70∼80 39 952 ∼4-min run period extracted from 16-min recording

result are illustrated in Fig. 14. The spatial topology is optimized with the force-
based algorithm using the estimated transition matrix (upon 0.01 thresholding).
In a closer examination of the graph, the basic topology appears to be a closed-
loop circle, reflecting the nature of the back-and-forth navigation inside the linear
track (Fig. 14, first panel). In addition, there are two or three weak edges within
the closed-loop circle, implying there are shortcuts between the states. This is also
consistent with the rat’s behavior: the rat make turns at two specific locations:
one is around 70 cm and other two are around 200 cm and 250 cm.

5.2.2 T-maze

In the second experimental environment, the rat navigated in a T-maze (as illus-
trated in the left panel of Fig. 2). After linearization, the environment is about 200
cm in length. A total of 39 putative pyramidal cells were simultaneously recorded
from the rat hippocampal CA1 area based on multiple tectrodes. Spikes are sorted
and binned with a 250-ms window, and the spike count statistics of the ensemble
neurons are obtained. Again, a velocity filter is applied to extract about 4-min run
periods from a total of 16-min recording.

Similarly, we run the algorithm more than 50 times (each with independent
random initialization) and select the best result associated with the highest free
energy. A range of model size of m = 70 ∼ 80 has been tested. The estimated
trajectory, estimated transition probability matrix, and the optimized 2D and 3D
topologies from the best result are illustrated in Fig. 15. Specifically, the 3D graph
is simply another perspective to visualize the topological graph (using the same
force-based algorithm). As seen, the spatial topology inferred from the T-maze is
more complex than that obtained from the linear track, the presence of twisted
loop and weak edges make the inferred graph more difficult to interpret. This result
is not too surprising, since in comparison to the simulated T-maze, the animal’s
behavior is more versatile and the real data length is about 4∼ 5 times shorter;
which all make the inference task more challenging.

6 Discussion

6.1 Model selection and local maximum

For the finite m-state HMM, an important issue in statistical inference is to choose
the model size m. Various model selection studies have been conducted in the
HMM literature [Scott 2002,Cappé et al. 2005,Rydén 2008]. In this paper, we fo-
cus on highlighting the methodology of VB inference and uncovering the spatial
topology. For this reason, we have either selected the true model size (as in com-
puter simulations) or empirically selected the model size (as in experimental data).
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Fig. 14 One illustrated estimation result from the experimental linear track (m = 60): True
position during the run period (top panel) and the decoded state sequence (middle panel).
The estimated transition probability matrix (bottom left) and the inferred 2D graph (bottom
right) are also shown. Note that there are three weak edges or shortcuts appended to the
well-connected closed-loop.

Detailed comparison of results from using various model sizes is beyond the scope
of current paper. Despite that, in order to illustrate the important issue of model
selection, we use one example to illustrate how different model sizes will affect the
estimation results. In the example of Simulation 1-2, the true model size is 62, we
have also conducted inference using either a smaller (m = 50) or a larger (m = 80)
model size. Two selected results are shown in Fig. 16. As seen, when the model size
is insufficient, mistakes will be found in the inferred results (Fig. 16, left panels);
when the model size is too large, redundant states are often found (Fig. 16, right
panels).

In the terms of the optimized free energy function, a larger model size is typi-
cally accompanied with a greater free energy value. However, the local maximum
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Fig. 15 One illustrated estimation result from the experimental T-maze (m = 80): True
position during run period (top panel) and the decoded state sequence (middle panel). The
estimated transition probability matrix (bottom left) and the inferred 2D (bottom middle)
and 3D graphs (bottom right) are also shown. The 3D graph is simply another perspective to
visualize the topological graph.

problem would make direct comparison of different model sizes nontrivial. To illus-
trate this point, we run Monte Carlo experiments using different model sizes and
compare their statistics (Fig. 17). Three important observations are noteworthy
from Fig. 17: (i) When the right model size is selected, the greater free energy
value is achieved upon convergence; in contrast, models with either too large or
too small size will have lower free energy values. (ii) Compared to the small model
size (m = 50), the large model size (m = 80) has a slightly more spread-out free
energy distribution, whereas its best performance is slightly better. (iii) In the case
of using a large model size, there often appear many redundant states—namely,
not all state IDs are used in trajectory decoding. The actually used states are
referred to the effective states. A commonly observed phenomenon when select-
ing a large model size is that most of ‘good’ performance is only obtained when
the effective state size is around 62, but not always vice versa (namely, the good
performance is not guaranteed when the effective state size is around 62).

In practice, one can use the free energy or the Bayesian deviance information
criterion (DIC) as a guiding principle for model selection. Specifically, the DIC is
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Fig. 16 Illustration of the estimated trajectory where the model size mismatch (Simulation
1-2). Underestimation (left): m = 50, D1 = 8, D2(2) = 0.087, D2(3) = 0.093. Overestimation
(right): m = 80, D1 = 4, D2(2) = 0.017, D2(3) = 0.182.

defined as the sum of the expected deviance and the model complexity measure
pD [McGrory and Titterington 2009]:

DIC = Ep(θ|y)

h
− 2 log p(y|θ)

i
+ pD

≈ −2 log p(y|θ̃)− 2

Z
qθ(θ) log

qθ(θ)

p(θ)
dθ + 2 log

qθ(θ̃)

p(θ̃)
(29)

where θ̃ denotes the posterior mean computed with respect to the variational
posterior qθ(θ), and p(y|θ̃) can be computed from the forward-backward algorithm
(Appendix A).

We can also consider an alternative HMM. The infinite HMM is a nonpara-
metric Bayesian extension of the HMM with an infinite number of hidden states
[Beal et al. 2002]. The key difference in hierarchical Bayesian modeling of the infi-
nite HMM from the finite HMM is to treat the priors in the context of stochastic
process. Recall that the prior used for the state transition matrix follows a Dirichlet
distribution [van Gael et al. 2008]:

P j ∼ Dir(αβ) =
Γ (
P
i αβi)Q

i Γ (αβi)

mY
i=1

(Pij)
αβi−1

β ∼ Dir(γ/m, . . . , γ/m)

where P j denotes the j-th row of the transition matrix P , and β are the shared
prior parameters. The infinite-dimensional generalization of the Dirichlet distri-
bution is a Dirichlet process. As m → ∞, the hierarchical prior approaches a
hierarchical Dirichlet process (HDP) [Teh et al. 2006]. A HDP is a set of Dirichlet
processes (DPs) coupled through a shared random based measure G0 which is it-
self drawn from a DP. The concentration parameter α > 0 governs the variability
of the base measure, with small α implying greater variability. However, learning
an infinite HMM would require a large amount of data samples, it may not be
very practical in dealing with the experimental data in our current problem.
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Fig. 17 Illustration of the distribution statistics of the converged free energy value based
on independent random initializations. In each setup (from Simulation 1-2), 100 Monte Carlo
experiments are conducted. As expected, when the selected model order matches the true
model size (m = 62), a higher free energy value is typically achieved.

In learning latent probabilistic models, it is well known that the iterative EM
and VB-EM algorithms are subject to the local maximum problem during opti-
mization. The value of the local maximum highly depends on the initial conditions
of the parameters or priors. Therefore, for every experimental data set, multiple
runs of the iterative algorithm is a common practice. Meanwhile, the local max-
imum problem can be alleviated by using the so-called deterministic annealing
(DA) procedure (see Appendix B for details). The key idea of the DA is to opti-
mize a modified free energy function using an annealing parameter (in the analogy
of the inverse temperature). As the inference process continues, the temperature
is lowered and the annealing parameter is increased, it is expected (with higher
probability) that the VB-EM algorithm can escape from the local maximum and
approach a better solution. As a trade-off, the DA version of the algorithm is com-
putationally slower and the result is also sensitive to the choice of the annealing
parameter. Our observation of using DA in our current experiment is that the DA
computation is very slow and it is wiser to spend the CPU resource in running the
standard algorithm a few more times. Another possible solution is to use MCMC
methods for exact Bayesian inference (in opposition to approximate Bayesian in-
ference in VB). In this case, the VB-EM would be replaced by a Monte Carlo
EM algorithm [McLachlan and Krishnan 2008]. The inference principle remains
similar: in the E-step, run the forward-backward algorithm, in the Monte Carlo
M-step, run the Gibbs sampler for estimating the unknown parameters (using the
same conjugate priors). Finally, the posteriors of the parameters would be repre-
sented by simulated Monte Carlo samples. However, as we have discussed earlier,
the MCMC methods are more computationally expensive and a large memory
space is required for storing samples for the parameter Λ of size m-by-C.
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6.2 Extension with a dummy state

Thus far, we have only considered the spiking activity within the periods of ac-
tive behavior. In principle, this can also be extended to periods of sleep or quiet
wakefulness (although the temporal bin size needs to be adjusted). However, be-
cause of the distinct neural mechanisms of hippocampal circuitry between periods
of behavior and periods of sleep or quiet awakefulness, it is important to analyze
these periods separately. Currently, we use a velocity criterion to segment the run
and stop periods in behaving animals. The stop epochs have been excluded in the
analysis.

Alternatively, the stop epochs can be treated as an observed indicator variable
and included in the analysis. In this case, we use a dummy or NULL state (with-
out loss of generality, the augmented (m + 1)-st state) to represent the situation
in the presence of either non-RUN period or missing data (e.g., no recording is
available between two independent episodes or between the change of experimen-
tal conditions). Since the (m + 1)-st state is not hidden (i.e.,, being observable
via the velocity filter), the inference of the HMM can be adapted to accommodate
this scenario. Basically, the transition probability Pi,m+1 represents the condi-
tional probability from state i to STOP, and the transition probability Pm+1,i

represents the conditional probability from STOP to state i, where the i-th state
represents the i-th location in the virtual environment. The inference algorithm
still remains similar, except for a slight modification of the forward-backward al-
gorithm employed in the VB-E step.

For illustration, we apply the augmented HMM to the experimental data in
the linear track. In the experimental linear track example, we include all non-RUN
periods into our analysis, which consist of many RUN→STOP and STOP→RUN
transitions. As expected, the estimated transition probability matrix has a shifted-
diagonal substructure (as before) plus an additional column that reflects the
RUN→STOP behavior (Fig. 18, left panel) . The non-sparse patterns in the last
column reflects the stop behavior from various spatial locations. Applying the
force-based algorithm to the shifted-diagonal substructure of the transition prob-
ability matrix (by excluding the last row and the last column) yields the spatial
topology shown in the right panel of Fig. 18. Note that the loose ends of the graph
are due to systematic stop behavior at the ends of the track. Therefore, the in-
ferred graph reveals not only important cues about the spatial topology, but also
important information about the animal’s behavior.

6.3 About the Markovian assumption

In this paper, we have assumed that the latent state process, which represents
the rat’s position combined with the directionality, follows a first-order Markovian
process. This assumption is reasonable while using a relatively large temporal bin
size (here, 250 ms). In reality, this assumption might not be completely valid. For
example, there could be a high-order Markovian dependence in terms of motion,
or there could be a non-Markovian or semi-Markovian behavior. Nevertheless,
modeling these situations would require a large amount of data for fitting a more
complex statistical model, which is beyond the scope of the current paper.
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Fig. 18 Illustration of the estimated transition matrix in the presence of dummy state (left)
and the inferred graph (right). The results are obtained from the experimental linear track
data (using m = 60). Note that in the left panel, the non-sparse pattern of the 61st column
implies frequent stop behavior from various spatial locations. Also note that in the right panel,
the graph is drawn excluding the dummy state (i.e., based on the 60 × 60 submatrix of P ),
which gives rise to a spatial topology without the closed loop.

Also note that, based on the decoded state trajectory, one can estimate the
high-order transition probability. For instance, the second-order transition proba-

bility, represented by a 3D tensor P (2) = {P (2)
ijk} (where

P
j

P
k P

(2)
ijk = 1), reveals

information about a 3-bit state sequence i → j → k. Imaginably, at the bifurca-

tion point (denoted by state j), we will see two (or more) dominant values P
(2)
ijk

and P
(2)
ijl (l 6= k). These high-order statistics would be even more important when

navigating in an open field environment.

6.4 Extension to non-Poissonian firing model

In Eq. (2), we have assumed that all neurons follow a pure Poisson spiking model.
However, this assumption can be extended to other non-Poisson firing models,
such as the Gamma distribution (which will be associated with a conjugate prior
with four hyperparameters). Also, we may introduce individual neuronal firing
history or ensemble neuronal firing activity as an observed covariate and char-
acterize the neuronal firing within a generalized linear model (GLM) framework
[Truccolo et al. 2005], the regression coefficients of the GLM can be estimated with
a VB approach [Chen et al. 2011] in the VB-M step.

6.5 Identifiability

A model is said to be identifiable if it is theoretically possible to learn the true value
of this model’s underlying parameter after obtaining an infinite number of samples
from it, which is also equivalent to saying that different values of the parameter
would generate different probability distributions of the observable samples. In our
statistical model, the unknown variables θ = (π,P ,Λ) are estimated by optimizing
the free energy (Eq. 24) assuming a factorial form of the posterior distribution
(Eq. 10). Due to non-convexity of the objective function, there might be many
equivalent solutions in the joint space of (P ,Λ) (permutation). This issue, in
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combination with the large dimensionality of θ and small sample size, makes the
task of statistical inference very challenging.

6.6 Assessment criterion

In computer simulations, in addition to visual inspection, we assess the quality of
the estimation via two quantitative metrics: D1 and D2. However, visual inspec-
tion would become difficult when dealing with experimental data associated with
complex behavior, or when selecting varying model sizes (since different m values
would induce different state reconstruction results). Because of the state permu-
tation ambiguity, it is important to check the consistency between two solutions.

From an information coding perspective, the HMM can be viewed as trying
to represent or remap a continuous space S with a finite discrete alphabet A
using a code book: S = f(A). The criterion for the consistency is to assure a
one-to-one mapping between S and A: (i) Any element in S is not simultaneously
represented by Ai and Aj (i 6= j); (ii) The same Ai does not represent two or
more distinct regions in S (except for neighboring regions, since two neighboring
regions can be combined into one by a merging operation). In addition, the binning
strategy may be very flexible, Ai and Aj can encode two regions with different
amounts of spatial coverage. Although it is easy to state the consistency principle, a
practical quantitative evaluation of the estimated result is nontrivial, especially in
the absence of ground truth for the experimental data. This issue requires further
investigation.

6.7 Computational issue and computer software

Depending on the data size and the initial condition, the convergence speed of the
VB-HMM algorithm is fast, typically less than 30 iterations. During the inference
process, we can monitor the learning curves of the free energy as well as the
estimated parameters, see Fig. 19 for a simulation illustration. The algorithm
can handle a large number of neurons with large sample size (in Simulation 3-1,
T = 8790 corresponds to about 36 minutes with a 250 ms bin size). However,
the number of states could become very large when considering a hypothetically
complex spatial environment, exploiting the sparse structure of the state-transition
matrix would be important in the presence of small sample size.

All software implementations are done in MATLAB c©. Custom-written codes
on the VB-HMM and the force-based algorithm used in this paper will be made
available upon request.

7 Conclusion

In conclusion, we have used the rat hippocampus as a model system to uncover the
“spatial topology” represented by the population codes. With the help of graph
illustration, we develop a HMM and a VB inference algorithm to achieve this com-
putational goal. Our empirical results from both extensive computer simulations
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Fig. 19 Illustration of the algorithmic convergence and stability (Simulation 2-2). At different
stages (1st and 3rd iterations, and final convergence), the free energy (top row), the estimated
state transition matrix (middle row), and the tuning curve of one neuron (bottom row) are
shown.

and experimental data have shown a promising direction in uncovering the struc-
tural patterns of ensemble spike activity during the periods of active navigation.
Since the spatial topology graph is just the proxy of the state-transition matrix,
our proposed approach can also be extended to other model systems with the inter-
est of characterizing the behavior-related transition probability [Jones et al. 2007,
Kemere et al. 2008].

Our study provides important insights for future direction in exploratory data
analysis of population neuronal codes. In addition to further investigation of some
technical issues (e.g., selecting optimal temporal window and model size, model ex-
tension), we are planning to apply the same methodological analysis to the other
rodent data recorded in more complex spatial environments (e.g., H-maze and
open field), which will pose more challenges for interpreting the trajectories and
graphs. The same exploratory analysis can also be applied to spiking data of en-
semble neurons recorded during periods of sleep [Wilson and McNaughton 1994,
Louie and Wilson 2001,Lee and Wilson 2002,Ji and Wilson 2007] or during “pre-
play analysis” without prior exposure of spatial environment [Dragoi and Tonegawa 2011].
Other challenges can also arise due to the complex dynamics and multiple func-
tional representations of the hippocampal place cells, as reported in the litera-
ture [Wood et al. 2000,Jackson and Redish 2007]. Incorporating new neurophys-
iological findings in space representation within the rat hippocampal circuitry,
such as the spiking activity from head-direction cells and entorhinal cortical cells
[McNaughton et al. 2006], would further enrich the model and pave the way for a
deeper understanding of hippocampal neural mechanisms.
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Appendix A: EM and Viterbi algorithms

The goal of ML inference is to maximize the log-likelihood function (Eq. 5) based
on missing data. In each full iteration, the EM algorithm [Dempster et al. 1977,
McLachlan and Krishnan 2008] iteratively maximizes the so-called Q-function

Q(θnew|θold) = E
h

log p(Ŝ1:T ,y1:T |θ)
˛̨̨
θold

i
= E

» TX
t=1

CX
c=1

mX
i=1

γt(i)
“
yc,t log λ̂ic − λ̂ic

”
+

mX
i=1

γ1(i) log π̂i

+
TX
t=2

mX
i=1

mX
j=1

ξt(i, j) log P̂ij

˛̨̨̨
θold

–
, (30)

and the new θnew is obtained by maximizing the incomplete data likelihood con-
ditional on the old parameters θold; and the iterative optimization procedure con-
tinues until the algorithm ultimately converges to a local maximum or a stationary
point.

E-step: Forward-backward algorithm In the E-step, the major task of the forward-
backward procedure is to compute the state conditional marginal probabilities:

Pr(St = i|y1:T , θ) =
Pr(y1:T , St = i|θ)

Pr(y1:T |θ)

=
Pr(y1:T , St = i|θ)
mP
l=1

Pr(y1:T , St = l|θ)
(31)

as well as the state conditional joint probabilities:

Pr(St−1 = i, St = j|y1:T , θ) =
Pr(y1:T , St−1 = i, St = j|θ)

Pr(y1:T |θ)

=
Pr(y1:T , St−1 = i, St = j|θ)

mP
l=1

mP
n=1

Pr(y1:T , St−1 = l, St = n|θ)
. (32)

To make the notation simple, in the derivation below we will let the conditional θ
be implicit in the equation.

To estimate Eq. (7) and Eq. (8), we first factorize the joint probability as

Pr(y1:T , St = l) = Pr(y1:t, Sk = l) Pr(yt+1:T |y1:t, St = l)

= Pr(y1:t, St = l) Pr(yt+1:T |St = l)

≡ at(l)bt(l) for l = 1, . . . ,m (33)
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where

a1(l) = πl Pr(y1|S1 = l)

at(l) = Pr(y1:t, St = l) for t = 2, . . . , T

bt(l) = Pr(yt+1:T |St = l) for t = 1, . . . , T − 1

bT (l) = 1

and the forward and backward messages at(l) and bt(l) can be computed recur-
sively along the time index t [Rabiner 1989]

at(l) =
X
i

at−1(i)Pil Pr(yt|St = l)

bt(l) =
X
i

bt+1(i)Pli Pr(yt+1|St+1 = i),

where Pil denotes the transition probability from state i to l.
Given {at(·), bt(·)}, the state posterior conditional joint probability (Eq. 8) is

determined by

Pr(St−1 = i, St = j|y1:T ) ∝ at(i)Pij Pr(yt+1|St+1 = j)bt+1(j). (34)

In light of Eq. (9), the observed (incomplete) data likelihood is computed as

p(y1:T ) =
mX
l=1

Pr(y1:T , St = l)

=
mX
l=1

at(l)bt(l) =
mX
l=1

aT (l). (35)

Alternatively, the incomplete data likelihood is given by

p(y1:T ) =
TY
t=1

p(yt|yt−1)

=
TY
t=1

ζt(yt) = Z(y1:T ) (36)

where ζt(yt) ≡ p(yt|yt−1) is a normalization constant; Z(y1:T ) is also called the
marginal likelihood.

From Eq. (9) and Eq. (11), the state posterior conditional marginal probability
(Eq. 7) is determined by the Bayes’ rule

Pr(St = i|y1:T ) =
Pr(y1:T , St = i)

p(y1:T )

=
at(i)bt(i)Pm
l=1 at(l)bt(l)

∝ at(i)bt(i). (37)

Equations (10) and (13) are the sufficient statistics computed from the E-step (to
be used in the M-step).

In the term of the computational overhead for the m-state HMM, the above-
described forward-backward procedure requires an order of computational com-
plexity O(m2T ) and memory storage O(mT ).
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M-step: Re-estimation In the M-step, we update the unknown parameters by
setting the partial derivatives of the Q-function to zeros: ∂Q(θ)

∂θ = 0, from which
we may derive either closed-form or iterative solutions.

Let ξt(i, j) = Pr(St−1 = i, St = j|y1:T , θ) and γt(i) = Pr(St = i|y1:T , θ)
denote, respectively, the state posterior conditional marginal and joint probabilities
(which are the sufficient statistics for the complete data log-likelihood). From the
E-step, we may obtain

γt(i) =
at(i)bt(i)Pm
l=1 at(l)bt(l)

=
X
j

ξt(j, i) =
X
j

ξt+1(i, j). (38)

The transition probability estimates are given by the Baum’s re-estimation
procedure

P̂ij =

PT
t=2 ξt(i, j)PT

t=2

Pm
j=1 ξt(i, j)

=

PT
t=2 ξt(i, j)PT
t=2 γt(i)

. (39)

And the rate parameter estimates Λ = {λic} are given by solving ∂Q
∂λic

= 0 from

Eq. (6)6

λ̂ic =

PT
t=1 yc,tγt(i)PT
t=1 γt(i)

(40)

Finally, the convergence of the EM algorithm is monitored by the incremental
changes of the log-likelihood as well as the parameters. If the quantity of the
absolute change or relative change of the log-likelihood is smaller than a desirable
value, the EM algorithm is terminated.

Viterbi algorithm Upon estimating parameters θ = (π,P ,Λ), we can run the
Viterbi algorithm [Viterbi 1967] for decoding the most likely state sequences. The
Viterbi algorithm is a dynamical programming method [Bellman 1957] that uses
the “Viterbi path” to discover the single most likely explanation for the observa-
tions. Specifically, the MAP estimate Ŝt at time t is

ŜMAP
t = arg max

i∈{1,...,m}
γt(i) 1 ≤ t ≤ T. (41)

The computational overhead of the forward Viterbi algorithm has an overall time
complexity O(m2T ) and space complexity O(mT ).

6 To avoid numerical problem we set λ̂ic = 0 if the denominator is 0 or nearly 0.
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Appendix B: Deterministic annealing

For the discrete m-state HMM, there are exponential numbers (i.e., O(2m)) of
local maxima. The local maximum problem is particularly severe when the tran-
sition matrix P is sparse (many zero elements) or there are equal state emission
probabilities for distinct states. This phenomenon is known as the “singularity” of
the objective function [Amari et al. 2003,Watanabe 2009], which is omnipresent
in many estimation problems of probabilistic models and artificial neural network
models. In order to alleviate the local maximum problem, the so-called determinis-
tic annealing (DA) procedure was proposed for several latent probabilistic models,
such as the mixture models and HMM [Beal 2003,Katahira et al. 2008].

The key idea of DA-VB is to modify the original free energy function (Eq. 6)
by introducing an annealing parameter ρ:

F(q) =
D

log p(y1:T , S1:T ,π,P ,Λ)
E
q

+
1

ρ
Hq(π,P ,Λ, S1:T )

=
D

log p(y1:T , S1:T ,π,P ,Λ)
E
q(θ)q(S1:T )

+
1

ρ
Hq(S1:T )(S1:T ) +

1

ρ
Hq(θ)(θ) (42)

where ρ = 1/T can be viewed as an inverse temperature parameter. The annealing
procedure gradually lowers the temperature (or increases ρ) during the inference
process, hoping to escape from local maxima and ultimately to reach the global
maximum with a higher probability.

Consequently, the new state posterior probabilities will be recomputed from
the VB-E step:

γ̃t(i) =
γt(i)

ρPm
j=1 γt(j)

ρ
(43)

ξ̃t(i, j) =
ξt(i, j)

ρPm
l=1

Pm
n=1 ξt(l, n)ρ

(44)

whereas in the VB-M step, we have the following new update equations (used for
Eqs. 12, 13 and 15):

w
(π)
i = ρ

“
u

(π)
i + γ̃1(i)− 1

”
+ 1 (45)

w
(P )
ij = ρ

“
u

(P )
ij +

TX
t=2

ξ̃t(i, j)− 1
”

+ 1 (46)

q(λic) = Gam

„
Cα

(λ)
i +

TX
t=1

yc,tγ̃t(i), Cβ
(λ)
i +

TX
t=1

γ̃t(i)

«
(47)

Note that when the annealing parameter ρ = 1, the standard VB-EM algorithm
(Sections 3.1 and 3.2) is recovered.
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Appendix C: Optimizing hyperparameters

In light of Eq. (23), taking the derivatives of the logarithm of Eq. (23) with respect

to α
(λ)
i and β

(λ)
i and setting them to zeros yields

0 =
CX
c=1

−C +
P
t yc,tγt(i)

Cβ
(λ)
i + li

+ Cyc,tψ
′
“
Cα

(λ)
i +

X
t

yc,tγt(i)
”

(48)

0 =
CX
c=1

Cα
(λ)
i +

P
t yc,tγt(i)

(Cβ
(λ)
i + li)2

− yc,t

Cβ
(λ)
i + li

(49)

There is no closed-form solution to these two equations. However, solving these
two fixed-point equations using a gradient or Newton-type algorithm within each
VB-M step would increase the marginal log-likelihood or free energy.
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