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Introduction
In most all solid cancers, dissemination of cells and estab-
lishment of distant metastases is an essential step in disease 
mortality (Lazebnik, 2010). Dissemination of carcinomas 
occurs by invasion across a basement membrane layer and 
migration through interstitial matrix to blood or lymph ves-
sels. Efficient migration in this context requires coordinate 
regulation of cytoskeletal protrusion, adhesion, proteolysis, and 
contraction (Lauffenburger and Horwitz, 1996; Friedl and Wolf, 
2009), each of which is modulated by paracrine and autocrine 
growth factor cues.

Cell migration has principally been studied as transloca-
tion across rigid 2D substrata. Despite the relevance of migration 
within ECM to tumor progression (Wolf et al., 2009) and known 
qualitative and quantitative differences in cell movement be-
tween 2D and 3D environments (Zaman et al., 2006; Doyle 
et al., 2009; Fraley et al., 2010), analysis of cells embedded 
within the ECM remains relatively uncommon because of 
technical difficulty and incompatibility with most biochemical 
analyses. Functional genomic screening techniques have been 
used to identify regulators of cell migration in planar contexts 

(Simpson et al., 2008; Lara et al., 2011), and analogous efforts 
were used to identify small molecule drug targets (Yarrow  
et al., 2005) or ascertain dependence on key signaling pathways 
(Wolf-Yadlin et al., 2006). The physiological relevance of  
results obtained from such high-throughput efforts is related  
directly to the degree that cellular responses measured in 2D 
systems correlate to those within ECM environments. Deter-
mining whether in fact any metrics easily obtained from 2D  
assays correlate robustly with 3D migration behavior across a 
broad range of treatment conditions is therefore critical.

We herein address this challenge for the important case 
of breast carcinoma cell migration. Through quantitative analy-
sis of motility across multiple triple-negative (estrogen re-
ceptor [ER]/progesterone receptor [PR]/HER2 normal) 
breast carcinoma cell lines moving in 3D within collagen I 
matrix, we evaluate the predictive value of measurements, 
such as receptor expression, and motility surrogates, such as 
cell translocation in 2D. We fail to observe correlation be-
tween growth factor–induced motility responses on either stiff 
or compliant ECM in a 2D context and those within 3D ECM.  

Growth factor–induced migration is a critical step 
in the dissemination and metastasis of solid 
tumors. Although differences in properties char-

acterizing cell migration on two-dimensional (2D) sub-
strata versus within three-dimensional (3D) matrices 
have been noted for particular growth factor stimuli, the 
2D approach remains in more common use as an efficient 
surrogate, especially for high-throughput experiments. 
We therefore were motivated to investigate which migra-
tion properties measured in various 2D assays might be 
reflective of 3D migratory behavioral responses. We used 

human triple-negative breast cancer lines stimulated by a 
panel of receptor tyrosine kinase ligands relevant to mam-
mary carcinoma progression. Whereas 2D migration 
properties did not correlate well with 3D behavior across 
multiple growth factors, we found that increased mem-
brane protrusion elicited by growth factor stimulation did 
relate robustly to enhanced 3D migration properties of the 
MDA-MB-231 and MDA-MB-157 lines. Interestingly, we 
observed this to be a more reliable relationship than 
cognate receptor expression or activation levels across 
these and two additional mammary tumor lines.
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Hutcheson et al., 2007; Pasanisi et al., 2008; McIntyre et al., 
2010; Tyan et al., 2011; Wilson et al., 2011). Semiautomatic 
centroid tracking was used to extract multiple parameters 
that describe the migration phenotype of each cell. Each indi-
vidual cell track provides five distinctly quantifiable proper-
ties (Fig. 1 D): (1) a root mean squared (RMS) speed of each 
time interval; (2) the variance of that speed; (3) a total speed 
calculated as the total path length normalized by the time of the 
experiment; (4) a net speed or the net displacement normalized 
by the duration of the experiment; and (5) a random motility 
coefficient calculated by fitting to a random walk model (Kipper 
et al., 2007). The migration parameters were independent  
of position within the gel, and cells were not biased in their  
direction of migration, indicating homogenous physical charac-
teristics (Kim et al., 2008) and that the growth factors had 
distributed fairly uniformly throughout the gels before the 
observation period. Of 10 breast carcinoma cell lines investi-
gated across clinical markers and subtypes, five were ob-
served to migrate robustly (Table S1). Vimentin expression 
and subtype classification distinguished cells that did or did 
not migrate in 3D.

Initial analysis of the full dataset by multidimensional 
reduction techniques illustrated that speed (RMS speed and 
total speed) and persistence (net speed and random motility) 
broadly cluster into two groups (Fig. S1 C). This multidimensional 

Although cognate receptor expression can weakly predict the 
relative motility responses across cell lines, it fails to quantita-
tively predict motility enhancement caused by growth factor 
stimulation. By examination of individual migration-related 
biophysical processes, we identify that acute lamellipodial pro-
trusion dynamics of cells in response to growth factor cues can 
predict motility within 3D ECM. These findings have broad 
consequence in the assessment of motility responses in vitro, 
both for high-throughput experiments and for deeper investiga-
tion of how growth factor–elicited signaling network activities 
govern migration behavior.

Results and discussion
Systematic quantification of migration
To address multicomponent responses to growth factor stimula-
tion, we performed a battery of quantitative single-cell migration 
assays using multiple human breast tumor cell lines and assay 
geometries (see Materials and methods; Fig. 1, A and B). Cells 
were fluorescently labeled to facilitate image analysis, and 
their displacement was tracked via live-cell microscopy over 
the course of 16 h in the presence or absence of seven growth 
factor cues relevant to the tumor microenvironment (Fig. 1 C and 
Fig. S1, A and B; Mograbi et al., 1997; Hankinson et al., 1998; 
Dunn et al., 2004; Cheng et al., 2005, 2008; Goswami et al., 2005; 

Figure 1. Schematic of the migration assays. (A) Schematic of the migration assay protocol. (B) Cells were seeded on or in matrix or on plastic for 18 h 
before growth factor stimulation. 4 h after growth factor stimulation, cells were imaged for 16 h. Arrows show cell movement. (C and D) Tracks of each cell 
were produced (C) and used to calculate five parameters summarizing the migration phenotype of each cell (D). dL/dt, change in length over time.

 on June 18, 2012
jcb.rupress.org

D
ow

nloaded from
 

Published June 4, 2012

http://www.jcb.org/cgi/content/full/jcb.201201003/DC1
http://www.jcb.org/cgi/content/full/jcb.201201003/DC1
http://jcb.rupress.org/


723Growth factor–induced 3D cell migration • Meyer et al.

tumor subtype. Total protein expression was measured for 
three different growth factor receptors, which were impli-
cated in breast cancer invasion and metastasis (Charafe-
 Jauffret et al., 2006; Jin and Esteva, 2008; Mader et al., 
2011), in 2D for each cell line (Fig. 3 B), and every pairwise 
comparison of receptor expression and motility enhancement in 
3D was performed (Fig. 3 A). With 24 comparisons (4× C(4,2)), 
≥17 trials must correspond between receptor expression and 
motility for this relationship to be considered significantly 
predictive (P < 0.05). The analysis revealed a weak, but sig-
nificant, association for three of four motility properties, 
with 15–18 correct associations (Fig. 3 C). Normalizing the 
measured properties for each cell line across the range of 
growth factor treatment conditions by variance, which may 
potentially account for differences among cell lines in their 
intrinsic motility capabilities, slightly improved the predic-
tive capacity of receptor expression to 16–20 correct associ-
ations (Fig. 3 C). As receptor activation might have improved 
predictive capacity overexpression, we additionally tested 
the ability of EGF receptor (EGFR) pan-pY measurements to 
predict EGF and TGF- motility enhancement (Fig. 3 E). 
Both stimulations may be directly compared in this case, result-
ing in 28 (C(8,2)) comparisons. Receptor activation, although 
distinct from expression, was not a better predictor of motility 
enhancement (Fig. 3 F).

scaling seeks to preserve distance as a description of relative 
difference between each motility metric and indicates that cell 
speed and persistence are distinct parameters to describe migra-
tion captured by the assay. Using unsupervised clustering tech-
niques, cell lines (Fig. 2 A) and dimensionalities or ECM in 2D 
(Fig. 2 B) were found to be separable. Weaker clustering among 
speed- or persistence-related motility metrics from identical 
cell lines or geometries was obtained, consistent with single 
cell–based clustering (Fig. S1 C). In some cases, distinguish-
able responses were observed when analyzing different quan-
tiles of the single-cell migration metrics (Fig. S1 D), resulting 
in different response profiles (Fig. 2). Analysis of “outlier” cell 
populations is particularly important in invasive disease, as bulk 
population responses may not reflect disease etiology (Bernards 
and Weinberg, 2002; Al-Hajj et al., 2003; Cristofanilli et al., 
2004; Weigelt et al., 2005). One important advantage of our 
large single-cell migration parameter dataset is the ability to 
quantify differences in responses within distinct cell subpopu-
lations across assay conditions.

Prediction of motility enhancement  
by receptor expression
We tested the ability of growth factor receptor expression  
to predict differential motility response upon stimulation, as  
receptor expression is widely used to define clinical breast 

Figure 2. Large-scale quantification of migration responses 
enables systems analysis of migration. (A and B) Shown are 
mean-centered motility responses across eight growth fac-
tor conditions and four cell lines within collagen I gels (A) 
or MDA-MB-231 cells across different 2D and 3D motility 
assays (B; also see Fig. 1 B). Each profile and growth fac-
tor is clustered by rank correlation and mean linkage. Both 
the median (top) and 90th quantile (bottom) responses are 
shown as well as each migration metric (indicated by num-
bers). IGF, insulin-like growth factor 1; HRG, Heregulin 1;  
HBEGF, heparin-binding EGF-like growth factor; HGF,  
hepatocyte growth factor.
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sufficient to identify the particular growth factor cues driving 
invasion and metastasis in the context of myriad heterogeneities 
among various samples.

Growth factor motility responses  
are distinct in 2D and 3D
Migration across a planar substratum has been the principal 
means for quantitative studies of responses to compound and 
genetic manipulations intended to inhibit metastasis (Simpson 
et al., 2008; Lara et al., 2011). Dissimilarities in unstimulated 
migration between 2D and 3D have been noted (Doyle et al., 

Receptor expression levels thus predicted growth factor–
elicited motility enhancement to a small degree that barely 
reached statistical significance. Although this provides support 
that receptor expression can account for some of the variation 
observed among cell lines and presumably among tumors, it is 
manifest that receptor expression or activation levels do not 
readily explain disparities in relative or absolute growth factor–
enhanced migration responses (Fig. 3, D and G). Therefore,  
although expression measurements across many samples may 
indicate etiologically important changes, measurement of  
receptor expression alone within tumor cells will likely not be 

Figure 3. Cognate receptor measurement is weakly informative of relative growth factor motility enhancement. (A) Illustration of the pairwise comparison 
of receptor measurement and motility enhancement made between each cell line. (B) EGFR, IGF1R, and c-Met expression was measured across four cell 
lines. Lines separate loading controls from a different portion of the same membrane. Thin lines indicate portions of a membrane shown from a separate 
channel on the same membrane, position, and scan. (C) Every pairwise comparison of receptor expression and motility enhancement was made between 
cell lines for each metric of motility. Additionally, the motility enhancement for each cell line across all growth factor conditions was used to normalize for 
differences in the ability of each cell line to globally respond by migrating. The left and right y axes indicate the number and percentage of correct compari-
sons, respectively. Significance was tested by use of the binomial distribution (dotted line, P < 0.05). Migration measurements are the mean of at least three 
independent experiments. (D) Plots of RMS speed enhancement upon receptor stimulation versus relative receptor expression. Error bars indicate SEM from 
at least three independent experiments. (E) EGFR pan-pY measurement in cells stimulated with either EGF or TGF- for 5 min. Error bars indicate the range 
of duplicate measurements. (F) Similar pairwise comparison analysis using measurement of p-EGFR to predict migration response. Migration measurements 
are the mean of at least three independent experiments. The continuous line indicates the maximum likelihood outcome of random chance. The dotted line 
indicates the P < 0.05 threshold. (G) Plot of RMS speed enhancement upon EGFR stimulation versus EGFR pan-pY measurement. Vertical error bars indicate 
SEM of at least three independent experiments; horizontal error bars indicate the range of duplicate measurements. Numbers refer to different cell lines.
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enhancement correlates with metastatic capacity and migration 
metrics in vivo in one case (Philippar et al., 2008; Roussos  
et al., 2011).

Acute changes in the area of MDA-MB-231 cells after 
growth factor stimulation were quantified (Fig. 5 A). This 
profile of growth factor response (the 50th, 90th, or 95th 
quantile area change across growth factors) was then com-
pared with that of each motility metric in differing dimensional 
contexts. We found that lamellipodial protrusion correlates 
positively with 3D migration (Fig. 5 B). Upon comparison to 
all 2D motility and protrusion assays, 3D migration correlated 
better with the acute membrane protrusion response than with 
any 2D migration measurements (Fig. 5 C). The generality 
of the link between migration in 3D and early protrusion was 
tested independently by measuring protrusion across all growth 
factor conditions in MDA-MB-157 cells (Fig. 5 A). Signifi-
cant association between 3D migration and lamellipodial 
protrusion was once again observed despite differences in the 
growth factor responses between the two cell lines (Figs. 5 D 
and 2 A). This test is especially stringent, as it requires similarity 
across growth factors that promote different intracellular sig-
naling responses (Kim et al., 2011).

To more stringently test our observed link between initial 
protrusion and eventual migration in 3D, as well as to evaluate 
whether protrusion plays a specific causal role in 3D migration 
or is simply an auspicious measure of signaling, we selected 
three drugs that disrupt cytoskeletal elements to test whether 2D 
migration or protrusion would better predict eventual 3D migra-
tion. Notably, drugs that block migration in both 2D and 3D 
would not address our prediction because we sought to assess 
the ability of protrusion to evaluate 3D migratory capacity spe-
cifically. Nocodazole and blebbistatin were selected for their 

2009; Fraley et al., 2010). However, although migration in vivo 
is driven by autocrine and paracrine growth factor cues, the  
effects of growth factor stimulation have not been compared in 
different dimensional contexts. It is conceivable that growth 
factor motility responses may be similar in distinct dimensional 
contexts if various migration-related processes (e.g., protrusion, 
proteolysis, and retraction) are similarly modulated by growth 
factor cues.

To study the contributions of dimensional and matrix 
context on cell migration in vitro systematically, we performed 
all pairwise comparisons of growth factor–enhanced cell mo-
tility metrics in MDA-MB-231 cells (Fig. 4 A). A stronger cor-
relation exists between different motility metrics within a single 
dimensional or matrix type, reflected by analysis for significant 
correlations (P < 0.05; Fig. 4 B), which only exist within, and 
not across, dimensionalities.

Here, we systematically demonstrate for the first time 
that growth factor–enhanced motility is distinct between  
dimensional contexts. This difference holds serious implica-
tions for studies investigating migration in general and, in 
particular, for analyzing intracellular signaling events that 
promote migration.

Early protrusion is a better surrogate for 
measurement of 3D migration response
Next, we sought to identify biophysical processes that may 
better reflect growth factor–enhanced 3D motility. Within sec-
onds after growth factor stimulation, cells respond through 
actin polymerization and lamellipodia protrusion, which can 
be measured in 2D as an area change (Mouneimne et al., 2004). 
We hypothesized that initial 2D protrusion may reflect even-
tual motility enhancement in 3D, particularly as 2D protrusion  

Figure 4. Motility enhancement in 2D and 3D in MDA-MB-231 is broadly distinct. (A) All Spearman pairwise correlation coefficients between each motility 
metric in each 2D and 3D migration assay across growth factor stimuli. The top and bottom diagonals show coefficients corresponding to the median and 
90th percentile response profiles, respectively. Arrows show cell movement. (B) Significant correlations (P < 0.05) are indicated in black. Correlations are 
observed along the diagonal between motility metrics but not between different migration assays and 3D migration.
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Figure 5. Protrusion correlates specifically with 3D motility enhancement. (A) MDA-MB-231 and MDA-MB-157 cells were stimulated with each growth factor 
condition, and the fold change in cell area was calculated by manual tracing of DIC images (MDA-MB-231, n = 60–138; MDA-MB-157, n = 15–25 from at least 
three independent experiments). (B) Rank correlation coefficients were calculated for MDA-MB-231 between the median, 90th percentile, and 95th percentile 
protrusion responses and the migration responses across different metrics of migration and assays. Each box is bounded by the highest and lowest correlation 
calculated, with a line indicating the median correlation calculated. Bars on the top indicate the number of quantiles for which the correlation is significant (Storey 
correction, q < 0.05; 0.75 false positive). (C) Similar analysis shows correlations between 3D motility and protrusion or different 2D motility assays (q < 0.05; 
0.2 false positive). (D) Protrusion and 3D motility also correlate in MDA-MB-157 cells. Bar indicates correlations that are significantly nonzero (P < 0.05). (E) Net 
displacement of MDA-MB-231 cells treated with three cytoskeleton-related inhibitors with or without EGF stimulation on stiff collagen matrix. (F) Net displacement 
of cells treated similarly within 3D collagen gels. (G) Protrusion in response to EGF stimulation for cells treated with each cytoskeletal drug. For inhibitor experi-
ments, a single representative experiment is shown. An independent replicate showed qualitatively identical results but was not quantified. (E–G) Bars on the top 
indicate significant differences with respect to the no inhibitor control (P < 0.05). (A and E–G) The lines indicate the median. The box is bound by the 25th and 
75th quantiles. The whiskers extend to either the maximum and minimum values or three halves the interquartile range, depending on which is closer to the median. 
IGF, insulin-like growth factor 1; HRG, Heregulin 1; HBEGF, heparin-binding EGF-like growth factor; HGF, hepatocyte growth factor.
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A detailed mechanistic picture describing the modula-
tion of multiple essential processes involved in interstitial mi-
gration remains to be constructed, with careful consideration 
of intricate forms of cross talk between these processes being 
an important key. Here, we have presented a systematic decon-
struction of migration behaviors across an especially invasive 
and lethal subtype of breast cancer. Our findings point toward 
the initial steps in actin polymerization–driven membrane 
protrusion as an important regulator of invasive potential in 
these cells. Our contribution offers an improved basis for ratio-
nal experimental design and pinpoints the time scale that may 
be most relevant for quantification. As migration in vivo may 
occur via directed paracrine cues from tumor-associated cell 
populations, high-throughput analyses of migration responses 
to growth factor cues are likely to reveal effective targets of 
metastatic suppression.

Materials and methods
Antibody reagents, growth factors, and inhibitors
Antibodies against EGFR, IGF1R, C-Met, and glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) were purchased from Cell Signaling Technology. 
EGF, PDGF-BB, and TGF- were purchased from Invitrogen. IGF1, hepatocyte 
growth factor, heparin-binding EGF-like growth factor, and Heregulin 1 
were purchased from PeproTech. EGF and IGF1 were used at 100 ng/ml, 
Heregulin 1 was used at 80 ng/ml, and all others were used at 50 ng/ml 
for all experiments. (S)-(-)-Blebbistatin, cytochalasin D, and nocodazole were 
purchased from Santa Cruz Biotechnology, Inc. and used at 50 µM, 25 nM, 
and 10 µM, respectively.

Cell culture
MDA-MB-231, BT-549, and MDA-MB-157 cells were cultured in high-
glucose DME supplemented with 10% FBS and 1% penicillin–streptomycin. 
SUM-159 cells were cultured in Ham’s F12 media supplemented with  
5 µg/ml insulin (Lonza), 1 µg/ml hydrocortisone (BD), 5% FBS, and 1% 
penicillin–streptomycin.

Migration analysis
For 3D migration assessment, cells were labeled with CMPTX (Invitrogen) 
for 20 min and mixed with 2.2 mg/ml pH-neutralized, acid-extracted, 
nonpepsin digested collagen I (BD) with DME at 500,000 cells/ml. The 
matrix–cell solution was placed in a glass-bottom multiwell plate (MatTek), 
polymerized for 30 min at 37°C, and then overlaid with full serum media 
overnight. Cells were stimulated 4 h before imaging on an environment-
controlled microscope (TE2000; Nikon) with a camera (C4742-95-12ERG; 
Hamamatsu Photonics) and a Plan Apochromat 10× 0.45 NA differential 
interference contrast (DIC) L air objective. Image stacks of 70 3-µm slices 
were obtained every 60 min for 16 h using MetaMorph (Molecular De-
vices). Where indicated, inhibitors were added simultaneously to stimu-
lation. To avoid artifacts caused by potential gradients in stiffness near 
the edges of the gel, analysis fields were selected >200 µm from the 
glass surface.

For soft 2D migration assays, 100 µl pH-neutralized, acid-extracted 
2.2 mg/ml collagen I or 100% matrigel was spread across wells of a 
48-well plate and allowed to polymerize. For stiff 2D migration assays, 
either 100 µg/ml collagen I in 20 mM acetic acid or 0.2% matrigel in 
serum-free medium was used to coat uncoated glass multiwall plates for 
30 min (MatTek). Cells were then labeled with CMFDA (Invitrogen) for 
20 min and seeded sparsely on wells with matrix or directly on tissue-
culture plastic. The next day, cells were stimulated 4 h before imaging every 
10 min for 16 h. Where indicated, inhibitors were added simultaneously 
to stimulation.

Cells were tracked using Imaris (Bitplane). From each track, the RMS 
cell speed was calculated from position intervals between time points as 
well as the standard deviation of the mean. Total and net speeds were calcu-
lated by dividing the total path length and net displacement by the duration of 
the experiment. Each track was then fit to a random walk model using the 
method of nonoverlapping intervals as previously described to calculate 
the random motility coefficient (Kim et al., 2008). In brief, individual cell 

documented distinct effects in 2D and 3D contexts (Doyle et al., 
2009), whereas cytochalasin D was chosen for its ability at 
low doses to reduce barbed-end elongation of actin filaments 
(Bear et al., 2002). MDA-MB-231 cells were treated with the 
three drugs with or without EGF stimulation on stiff collagen 
in 2D (Figs. 5 E and S2 A) or in 3D collagen gels (Figs. 5 F 
and S2 B). In parallel, initial protrusion was evaluated as before 
(Fig. 5 G). Whereas 2D migration was not affected by any of 
these three drug treatments under EGF stimulation conditions 
(Fig. 5 E), EGF-induced 3D migration was noticeably decreased 
by nocodazole and blebbistatin (Fig. 5 F). These decreases cor-
responded well to strongly diminished EGF-elicited protrusion 
response for both these two drugs (Fig. 5 G). The effect of cyto-
chalasin D on EGF-elicited protrusion was milder than for 
nocodazole and blebbistatin, so the lack of significant reduction 
of 3D migration serves as at least an intermediate correspon-
dence for this third drug.

Our results ought not be taken to imply that modulation of 
membrane protrusion dynamics be considered to necessarily be 
the sole, or even predominant, governing mechanism for motil-
ity enhancement in response to growth factor stimuli. Strong 
evidence exists indicating that 3D migration is concomitantly 
modulated by other processes, such as traction and proteolysis. 
Focal proteolysis in 3D collagen gels has been suggested to  
be driven by pericellular constriction resulting from pseudopo-
dial protrusion, promoting integrin- and membrane-associated 
protease clustering (Wolf et al., 2007). Whether by functional 
or phenomenological means, protrusion frequency and matrix 
deformation correlate significantly in 3D collagen (Fraley et al., 
2010). However, interpretation of results obtained from probing 
protease function by biochemical or genetic means is compli-
cated by the effects of proteases on growth factor ligand and 
receptor shedding along with their effects on matrix degrada-
tion. Thus, mechanistic relationships for convoluted effects of 
protease activities between membrane protrusion and migration 
will remain extremely difficult to parse until quantitative multi-
variate measurement and analysis technologies (e.g., Miller et al., 
2011) can be applied across broad treatment landscapes. Impor-
tantly, the correspondence found here between acute actin po-
lymerization responses and longer term 3D migration response 
in response to growth factor stimulation offers an opportunity 
for more vigorous investigation of intracellular signaling path-
ways regulating 3D migration. Biochemical analyses from or 
on a plate of sparsely seeded cells with enough physical space 
for robust membrane protrusion are much more tractable than 
collection of cells or real-time analysis of signaling events 
within cells in a 3D matrix.

As migration within 3D was only observed with cells of 
one clinical subtype (ER/PR/HER2 normal), our observa-
tion of correspondence between short-term protrusion and mi-
gration in 3D remains to be tested for cells of other clinical 
subtypes and lineages. However, although bulk tumors may  
not be represented by the cell lines of mesenchymal phenotype, 
metastasis-relevant subpopulations may show a distinct expres-
sion signature (Giampieri et al., 2009). Our results urge consider-
ation of protrusion measurement, at least over measurement of 
2D motility, as an indicator of 3D migration-relevant response.
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hypothesis correction was not performed, as type I error is not a concern. 
When comparing protrusion and 3D migration results, identical quantiles 
of single-cell data were always used.

Online supplemental material
Fig. S1 shows an example of fluorescent stacks from a 3D migration assay 
and preliminary analysis of the migration phenotypes. Fig. S2 shows the RMS 
speed measurements for the experiments shown in Fig. 5 (E and F). Table S1 
shows the subtype characteristics of each cell line examined and whether it 
was observed to migrate in 3D. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.201201003/DC1.
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speeds were calculated from each track using the mean of each time  
interval. Mean squared displacements were then calculated as the mean 
squared distance of all nonoverlapping intervals within a track. Using the 
mean squared displacement (MSD) for varying time intervals, the follow-
ing equation was fit using least squares to yield a fit persistence:

	 MSD S P t P e t P= − −( )





−2 12 / . 	

From the fit, the random motility coefficient (RMC) was calculated as 
RMC = S2P, analogously to the diffusion coefficient (S, speed; P, persis-
tence; t, time).

Protrusion assays
Glass-bottomed dishes (MatTek) were coated with 0.2% matrigel in  
serum-free media for 30 min. Cells were seeded sparsely overnight and 
then serum starved for 4 h in L15 media with 0.35% bovine serum albu-
min. Inhibitors, when indicated, were added at the beginning of serum 
starvation. DIC images were acquired every 10 s for 1 min before stim-
ulation and 9 min after stimulation. Cell areas were traced immediately 
before stimulation and 9 min after stimulation using ImageJ (National 
Institutes of Health). Single-cell information was aggregated from at least 
three independent experiments.

Receptor expression and activation measurement
Cells were plated sparsely on 15-cm plates overnight, washed with PBS, 
and lysed with 500 µl of radioimmunoprecipitation assay buffer containing 
protease inhibitor (Roche) and phosphatase inhibitor cocktail (Boston Bio-
Products). Equal protein was loaded for SDS-PAGE analysis using a bicin-
choninic acid assay and blotted using standard techniques with antibodies 
against GAPDH, EGFR, IGF1R, and C-Met. Densitometry was performed 
on an imager (Odyssey; LI-COR Biosciences) and normalized to GAPDH as 
a loading control.

For activation measurement, cells were seeded sparsely overnight 
and starved for 4 h the next day followed by stimulation with either 100 ng/ml 
EGF or 50 ng/ml TGF- for 5 min. Cells were lysed using lysis buffer (Bio-Rad 
Laboratories) containing protease inhibitor (Roche) and phosphatase inhib-
itor cocktail (Boston BioProducts). EGFR pan-pY was measured using a 
bead-based ELISA assay (Bio-Rad Laboratories) loaded with equal protein 
using a bicinchoninic acid assay. Linearity of the assay with respect to pro-
tein concentration was verified.

Numerical analysis
All analysis was performed in MATLAB (MathWorks). Single-cell data from 
each experiment were imported, and each quantile of interest (50th, 90th, 
or 95th) was calculated for each motility metric and condition. Each set of 
growth factor conditions within a given quantile was then normalized to 
the condition absent of growth factor stimulation (or mean centered if indi-
cated). The mean and standard error were then calculated from indepen-
dent experiments. Comparisons of motility metrics between single growth 
factor conditions were performed using the Student’s t test or the Mann–
Whitney test for single-cell data.

For single cell–based migration parameter clustering, Spearman 
correlation () of the parameters for individual cells from all experiments for 
a single cell line in 3D (n ≥ 3) were calculated and used to calculate pair-
wise distances, in which perfect correlation corresponds to a distance of 
zero, and anticorrelation corresponds to a distance of two (1  ). Multidi-
mensional scaling in two dimensions captured >99% of the distance quan-
tities for all cell lines. The first principle component captured 90–95% of 
the distance quantities, whereas the second principle component captured 
5–10%. Standard error was calculated by jackknife, during which each 
cell was removed separately, and each time, both the distances and scal-
ing repeated (Efron and Gong, 1983). For clustering of quantile-level 
migration metrics, each growth factor profile was mean centered and 
averaged across experimental replicates. Clustering of profiles and 
growth factors was performed by rank correlation and mean linkage.

Receptor expression and motility enhancement comparison were 
tested for significance using the binomial distribution. Where indicated, 
motility enhancement was variance normalized between cell lines by log 
transformation (so as to center fold-change values around zero) and by divi-
sion by the standard deviation across growth factor conditions.

Growth factor profiles were compared by calculating the Spearman 
correlation, and significance was calculated by permutation. Where many 
comparisons were performed, multiple hypothesis testing was performed 
as indicated. When comparing migration in 2D and 3D contexts, multiple 
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