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Among various sites of nitric oxide reactivity in biology,1 iron-sulfur clusters have emerged
as an important class of metallocofactors targeted by NO.2 Proteins containing these clusters
perform a diverse array of functions from electron transfer to small molecule sensing and
substrate binding.3 Consequently, iron-sulfur clusters are potential sites for both NO-derived
physiological signal transduction4 and toxicity.2a,5

The primary products of NO reactivity at iron-sulfur clusters are dinitrosyl iron complexes
(DNICs).6 Identification of DNICs in proteins and tissue samples has traditionally relied upon
the diagnostic g = 2.03 EPR signal,7 which is characteristic of these S = ½ species. Because
iron dinitrosyls can exist in forms other than the paramagnetic mononuclear species (Chart 1),
however, EPR characterization is not definitive.8 Other means of characterization
include 57Fe Mössbauer,9 UV-vis,10 Raman,11 and X-ray absorption spectroscopy,12 but each
of these techniques lacks diagnostic spectroscopic markers and cannot easily deconvolute
spectra resulting from a mixture of species.

In order to overcome these challenges, we have utilized 57Fe nuclear resonance vibrational
spectroscopy (NRVS) to characterize the core vibrations of dinitrosyl iron complexes. This
technique is selective for motion of the 57Fe nucleus, making it an ideal means of probing
DNICs in protein environments.13 NRVS is not limited by the selection rules of infrared and
Raman spectroscopy, ensuring that a complete set of vibrational modes involving motion of
the 57Fe nucleus is observed. Here we present the first NRVS results for a nitrosylated iron-
sulfur cluster protein, as well as complimentary data on several biomimetic model compounds
of dinitrosyl iron complexes.

In order to provide spectroscopic benchmarks to identify dinitrosyl iron complexes in proteins,
we investigated synthetic analogs comprising the four structures displayed in Chart 1. To
provide maximum NRVS signal intensity, the model compounds were prepared from 57Fe-
enriched Fe(OTf)2·2CH3CN (see Supporting Information, SI, for experimental details). The
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benzene thiolate ligand (Chart 1, R = Ph) was chosen because it facilitates the synthesis and
isolation of the three different 57Fe-labeled derivatives and because the NRVS spectrum of the
related Fe-S cluster, [Fe4S4(SPh)4]2−, was recorded previously.14 Additionally, (Et4N)[Fe
(NO)2(SPh)2], [Fe2(μ-SPh)2(NO)4] (Roussin's red ester, RRE), and (Et4N)[Fe4S3(NO)7]
(Roussin's black salt, RBS) were prepared using both 14NO and 15NO to help identify normal
modes involving the nitrosyl ligands.

A representative NRVS spectrum of one of the model compounds, (Et4N)[Fe
(14/15NO)2(SPh)2], is shown in Figure 1. Of note are the intense peaks above 500 cm−1, which
shift to lower energy upon 15N substitution. The NRVS spectra of [Fe(μ-SPh)2(14/15NO)4] and
(Et4N)[Fe4S3(14/15NO)7] display similarly shifted peaks (Figure S14), indicating that
vibrations in this region most likely originate from the symmetric and asymmetric stretching
modes of the N–Fe–N unit.11 In all four model compounds, the peak near 600 cm−1 appears
to contain a higher energy shoulder (e.g., Figure 1). We assign this feature to Fermi resonance
based on the calculated spectrum for each model compound (see SI) and the disappearance of
these peaks upon 15N substitution (Figure 1). Despite these minor complexities, the region of
the spectrum between 500 and 700 cm−1 provides important diagnostic NRVS signatures for
each of the iron dinitrosyl complexes displayed in Chart 1 (Figure S20). Furthermore, the
vibrations occur in a region of the spectrum that does not overlap with normal modes due to
thiolate ligands or the {Fe4S4} core, thereby providing clear information about the nature of
the Fe-NO species present. EPR spectroscopy fails in this regard because the RRE and RBS
compounds are diamagnetic, and 57Fe Mössbauer spectroscopy is complicated by the fact that
isomer shifts for all four dinitrosyl-containing species are very similar (Figure S25 and Table
S2).

For protein studies, a ferredoxin D14C variant from Pyroccocus furiosus was selected as a
model system because of its stability at high concentrations (mM) and relatively solvent
exposed Fe4S4 cluster (Figure S26).15 In the native form of the protein, the iron-sulfur cluster
is bound by one aspartate (D14) and three cysteinate residues. For the present purposes, a D14C
mutant was examined because it provides a more representative model of Fe4S4 clusters, which
typically have four terminal cysteine thiolate ligands. Moreover, NRVS data on the untreated
D14C mutant were already available,16 providing an opportunity to distinguish vibrations of
the unmodified protein from those of the NO reaction product(s) (Figure S28).

Reaction of P. furiosus ferredoxin with the nitric oxide donor PAPA NONOate gave rise to a
single gav = 2.03 EPR signal characteristic of a protein-bound DNIC (Figure S27). EPR
spectroscopy provided no evidence for formation of rRRE (gav = 1.99),17 and spin quantitation
of the DNIC signal demonstrated that this species only accounted for about 5 – 10% of the
total protein concentration. Examination of the reaction mixture by NRVS, however, indicated
significant formation of a dinitrosyl iron complex (Figure 2 and Figure S28). The spectral
features of this species were inconsistent with either the DNIC or the diamagnetic RRE. By
comparison with the model compounds, we assign this product as the tetranuclear Roussin's
black salt, RBS ([Fe4S3(NO)7]−, Chart 1).

Formation of RBS by nitrosylation of a protein-bound Fe4S4 cluster has not been previously
reported, although reactions of a variety of synthetic Fe4S4 clusters with NO gas generate the
black salt.18 RBS formation may be related to the highly solvent-exposed nature of the
Fe4S4 cluster in P. furiosus Fd, but further work is required to test this possibility as well as
its potential generality. The formation of RBS, however, could help explain the results obtained
in reactions of with other Fe4S4 cluster proteins with NO, where EPR spin quantitation of
protein-bound DNICs accounts for only a fraction of the total iron content.19
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Roussin's black salt is toxic to cells2a,20 and its formation from Fe-S clusters is a plausible
mode of NO-derived toxicity in vivo. Our data provide the first evidence for the direct
formation of this species from an iron-sulfur protein. The presence of RBS in addition to DNICs
may have important implications for the repair of nitrosylated iron-sulfur clusters,21 the
mechanism of NO signal transduction,4 and other biological consequences of nitric oxide
chemistry at iron-sulfur protein cores.2

In conclusion, we provide here the first NRVS spectra of non-heme iron nitrosyl compounds
and demonstrate the value of this technique in identifying the products of iron-sulfur cluster
nitrosylation. In particular, the method has proved valuable in identifying diamagnetic
dinitrosyl iron species that would otherwise be very difficult to observe. Moving forward, we
envision extending these studies to identify the products of other biological NO targets and to
help define the roles of nitric oxide in modulating the functions non-heme iron proteins.
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Chart 1.
Examples of sulfur-ligated iron dinitrosyls.
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Figure 1.
57Fe partial vibrational density of states for (Et4N)[Fe(NO)2(SPh)2].
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Figure 2.
Comparison of the NRVS spectrum of RBS and the spectrum resulting from treatment
of 57Fe-enriched P. furiosus Fd D14C with PAPA NONOate.
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