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Observations in the Synthesis of the Core of the Antitumor Illudins
via an Enyne Ring Closing Metathesis Cascade

Mohammad Movassaghi*, Grazia Piizzi, Dustin S. Siegel, and Giovanni Piersanti
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract
Observations concerning the synthesis of the core spirocyclic AB-ring system of illudins using an
enyne ring closing metathesis (EYRCM) cascade are discussed. Substituent effects, in addition to
optimization of the reaction conditions and the olefin tether for the key EYRCM reaction, are
examined.

The illudins are a family of naturally occurring sesquiterpenes isolated from the poisonous
mushroom, Omphalotus illudens.i Illudins M and S (1 and 2, respectively) are among the most
cytotoxic members of this family of natural products. They inhibit DNA synthesis through a
two-step sequence involving enzyme assisted hydride/nucleophilic addition to the C8 enone
followed by DNA alkylation through cyclopropyl-ring opening and B-ring aromatization.ii
Significantly, two semi-synthetic derivatives of illudin S (2), namely acylfulvene (3) and
irofulven (4), have shown very promising antitumor activity.iii In particular, the hydroxymethyl
derivative irofulven (4) has demonstrated efficacy in clinical trials for treatment of various
cancers both as a monotherapy and in combination with other known chemotherapeutic
agents.iv In light of this promising therapeutic potential, these targets have received
considerable interest from scientists, leading to several inventive syntheses.v We reported
enantioselective syntheses of (–)-acylfulvene (3) and (–)−irofulven (4) employing a key enyne
ring closing metathesis (EYRCM) cascade reaction.vi Herein, we describe our observations in
the context of related studies directed toward a general strategy for the synthesis of the
functional spirocyclic pharmacophore common to all of these cytotoxic agents.

Our approach to the functional spirocyclic illudin core 5 relies on a tethered enyne ring closing
metathesis cascade vii to rapidly generate the cyclohexenyl B-ring (Scheme 1). An array of
substrates 7, poised for the key EYRCM, can be convergently assembled by the addition of a
variety of acetylides to the key aldehyde 8, followed by chemoselective addition of a suitable
tethered olefin. Through this strategy, aldehyde 8 provides a platform for the rapid and
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convergent synthesis of a broad range of derivatives of the functional illudin core structure
(Scheme 1).

In the context of these studies, we evaluated several olefin tethers for the key EYRCM using
model substrates 9 in order to identify optimal tethers that were both stable to the EYRCM
reaction conditions and readily removable (Table 1). Both Grubbs’ first- and second-generation
metathesis catalysts (G1viiia and G28b, respectively) were evaluated, with G2 generally
providing the desired product 10 with greater efficiency compared to G1. Under optimal
EYRCM reaction conditions, neither the carbonate nor the carbamate tethers (entries 1 and 2,
Table 1) provided the desired EYRCM product 10. Instead, the carbonate tether fragmented
to afford the corresponding propargylic alcohol,ix and the Lewis basic carbamate likely reduced
the activity of the G2 metathesis catalyst through an unproductive coordination event.
Interestingly, when the cyclohexyl (Cy) carbamate (entry 3, Table 1) was submitted to the
EYRCM conditions, the product 10 was generated in 47% yield. We attribute this enhanced
reactivity to the expected substrate preference to adopt the carbamate rotamer that positions
the allyl substituent trans to the carbonyl. In this conformation the olefin is oriented in close
proximity to the alkyne and is poised for the ensuing EYRCM with minimal interference by
the Lewis basic carbonyl. In light of this, we also prepared the t-butyldimethylsilyl allylamide
(entry 4, Table 1), which would enable access to a more hydrolytically labile cyclic–carbonate
by treatment with tetra-n-butylammonium fluoride (TBAF). However, the tandem EYRCM–
TBAF treatment provided the desired product in only 15% yield, due to the lability of the
silylcarbamate under the EYRCM conditions.

None of the carbonate or carbamate based tethers proved superior to silicon based olefin
tethersvi examined for this transformation. When the allylsilane tether, first reported by Grubbs
and Yao,x was subjected to the EYRCM conditions, the desired product 10 was afforded in
91% yield (entry 5, Table 1) within 30 min. Furthermore, the allyloxysilane tether (entry 6,
Table 1)xi also provided the desired enyne metathesis product in 92% yield, albeit requiring a
longer reaction time. Interestingly, in related systems we observed that the diethylallyoxysilane
tether (entry 6, Table 1) was optimal as compared to the corresponding dimethyl and
diisopropyl variants. The diethylallyloxysilane tether provided the best balance between
stability and reactivity. The dimethylallyloxysilane tether was too labile under the EYRCM
reactions conditions leading to premature desilylation, while the diisopropylallyloxysilane was
both more difficult to prepare due to lower rate of etherification and also gave the desired
metathesis products in low yields.

The two optimal silicon based tethers for the key enyne metathesis (entries 5 and 6, Table 1)
were utilized in the synthesis of the bicyclic core structure of the illudins. In addition to our
previously described enantioselective synthesis of (+)-aldehyde 8,vi we also developed a
simple, large-scale four-step synthesis of racemic aldehyde 8 from pentane-2,4-dione (11,
Scheme 2) given the activity of both enantiomers of irofulven.vg Sequential double
alkylation,xii mono olefination, and InBr3 catalyzed trimethylsilylcyanationxiii provided the
versatile silyl cyanohydrin 14 in multi-gram quantities (Scheme 2). Reduction of the nitrile
14 with diisobutylaluminum hydride (DIBAL-H) readily provided the desired racemic
aldehyde 8 in 69% yield on 2-gram scale. This facile synthesis allowed rapid access to multi-
gram quantities of aldehyde 8 as the key precursor for the AB-ring system shared in
illudins.vi

Five readily available acetylidesxiv 15a–d were added to aldehyde 8 as the corresponding
lithium acetylides to provide diols 16a–d (Scheme 3).vi The diastereoselectivity (ca. 6:1)xv of
these reactions was consistent with a Felkin-Ahn mode of addition. The allylsilane tether was
introduced on substrates 16a–c through selective silylation of the secondary hydroxyl group
to afford the dienynes 17a–c in 68–83% yields.
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With the allylsilane substrates 17a–c in hand, we examined their respective EYRCM reactions
for accessing the functional bicyclic core common to the illudins (Table 2). These optimization
studies were monitored directly by 1H NMR analysis. Gratifyingly, when 17a was submitted
to the conditions established by the model substrate 9 (G2, 10 mol%, C6D6, 0.02M, 65 °C, 1
h, entry 5, Table 1), the desired product 18a was efficiently generated as the major product
(entry 1, Table 2).xvi A plausible mechanism for the desired EYRCM pathway is shown in
Scheme 4 (Path A). A minor amount (6%) of the uncyclized triene product 19a was also
observed as a result of an intermolecular cross-metathesis outcompeting the desired
intramolecular ring closing metathesis at the C4–C5 olefin (Scheme 4, Path B). The formation
of the intermolecular cross metathesis product 19a was greatly favored by increasing both the
concentration from 0.02M to 0.06M and temperature from 65 °C to 80 °C in addition to
reducing the catalyst loading to 5 mol% (entry 2, Table 2). Interestingly, 8% of the minor
cyclopentenyl product 20a was also observed under these conditions. It is plausible that the
formation of this product corresponds to the metathesis occurring first at the sterically
congested C4–C5 gem-disubstituted olefin followed by enyne metathesis (Scheme 4, Path
C).xvii The structure of cyclopentenyl product 20 was secured through X-ray analysis of a
related derivative (vide infra).

We also explored the EYRCM reaction with substrate 17b containing the trisubstituted olefin.
Unexpectedly, when 17b was submitted to G1 in C6D6 at 65 °C (entry 3, Table 2), the five
membered ring substrate 20b was the only observable product. By changing the solvent to
CD2Cl2 and lowering the temperature to 40 °C, both the desired product 18b and the undesired
cyclopentene product 20b were afforded in a 4:5 ratio (entry 4, Table 2). Significantly, the
EYRCM conditions employing G2 in C6D6 at 65 °C for 1 h generated the desired product
18b exclusively (entry 6, Table 2). Interestingly, when the tetraenyne 17c was exposed to the
EYRCM reaction conditions (G2 10 mol%, C6D6, 0.02M, 80 °C, 32 h), none of the desired
product 18c was generated (entry 7, Table 2). Instead, over prolonged reaction times,
desilylation occurred to generate 16c, indicating that conjugation of the alkyne may
significantly deactivate the substrate towards EYRCM.

Given the complications with oxidative desilylation of allylic silanes 18,vi we also explored
the corresponding dialkylallyloxysilanes as well. Gratifyingly, the diethylallyloxysilane
tethered substrates 27a and 27d were efficiently prepared through selective silylation of the
secondary alcohol (Scheme 5).xviii 1H NMR studies on the diethylallyloxysilyl substrate
27a indicated that the EYRCM reaction to form the 7,6-bicycle 28a (entry 1, Table 3) required
higher reaction temperatures than those observed with the allylsilane tether (vide supra, entry
1, Table 2). The desired product 28a was cleanly generated when subjected to the EYRCM
reaction in toluene-d8 at 110 °C (entry 2, Table 3). The heptacyclic silyloxy ring system 28
was very sensitive to isolation, hence we sought a tandem EYRCM-desilylation sequence.
Using this method, we were able to directly isolate the corresponding triols 5a and 5d in 48%
and 64% yields, respectively (entries 3 and 4, Table 3). Notably, the versatile product 5d
contains a p-methoxybenzyl (PMB) group poised for further elaboration toward the synthesis
of various functional bicyclic illudin derivatives. Interestingly, when 27d was subjected to this
optimal EYRCM-TBAF condition we also isolated the diol 29d in 17% yield (entry 4, Table
3). The formation of this product is consistent with the EYRCM pathway involving initial
enyne metathesis at the C4–C5 olefin (vide supra, Scheme 4, Path C). The structure of 29d
was secured through X-ray crystallographic analysis of the corresponding bis-p-nitrobenzoate
derivative. xix.

In summary, the subtle factors influencing the competing pathways in a critical EYRCM
reaction were discussed. Our convergent approach to the bicyclic warhead of illudins involves
the union of a readily accessible key aldehyde 8 with various lithium acetylides and optimal
silicon based olefin tethers to enable access to an array of dienynes 7. A versatile EYRCM
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cascade reaction rapidly constructs the cyclohexenyl B-ring common to the illudins. Subtle
changes in the EYRCM conditions greatly affect the outcome of the metathesis reaction, which
can proceed through three different pathways to generate products 18, 19, and 20 (Scheme 4,
Paths A–C). This strategy provides ready access to the synthesis of various functionalized
precursors to the core warheads of the illudin antitumor natural products. The evaluation of
these fused-bicycles in the synthesis illudin derivatives and their respective biological
evaluation will be reported in due course.
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Scheme 1.
Strategy to the functional illudin core 5.
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Scheme 2.
Synthesis of the aldehyde 8.
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Scheme 3.
Use of aldehyde 8 for synthesis of various dienynes.
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Scheme 4.
Plausible mechanisms for the EYRCM reaction.

Movassaghi et al. Page 9

Tetrahedron Lett. Author manuscript; available in PMC 2010 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 5.
Synthesis of the allyloxysilane tether substrates.
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