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On the invertibility of the XOR of rotations of a

binary word

Ronald L. Rivest∗

November 10, 2009

Abstract

We prove the following result regarding operations on a binary word
whose length is a power of two: computing the exclusive-or of a number
of rotated versions of the word is an invertible (one-to-one) operation if
and only if the number of versions combined is odd.

(This result is not new; there is at least one earlier proof, due to
Thomsen in his PhD thesis [12]. Our proof may be new.)
Keywords: invertibility, exclusive-or, rotation, binary words, circulant
matrix.

1 Introduction and proof of main result

This short note considers some simple operations on binary words.
We only consider binary words whose length is a power of two, as this

is typically the case for actual computer operations (e.g., with 32-bit or
64-bit words).

We focus on operations based on rotations and exclusive-ors, as these
are typically standard built-in operations.

Simple invertible operations such as these are used in many applica-
tions, such pseudo-random number generation [7, 9], encryption [4], and
cryptographic hash function design [10].

We state and prove the main result, and then provide some related
discussion afterwards.

Theorem 1 If n is a power of two, v is an n-bit word, and r1, r2, ..., rk

are distinct fixed integers modulo n, then the function

R(v) = R(v; r1, r2, . . . , rk) = (v <<< r1)⊕(v <<< r2)⊕· · ·⊕(v <<< rk) (1)

is invertible if and only if k is odd, where (v <<< r) denotes the n-bit
word v rotated left by r positions, and where “⊕′′ denotes the bit-wise
“exclusive-or” of n-bit words.
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Proof: Let V = {0, 1}, and let V n denote the set of all n-bit words.
We identify V n with GF (2)n, the set of n-element vectors over the finite
field GF (2).

With this identification, R is a linear operation over V n; R(v) may be
obtained by multiplying v by an n×n circulant matrix over GF (2) having
k ones per row and per column. (An equivalent statement of our theorem
is that when n is a power of two, an n×n circulant matrix over GF (2) is
invertible if and only if the number k of ones in each row is odd.)

We define the Hamming weight (or weight) of an n-bit word v to be
the number of ones in v.

Our proof identifies words in V n with polynomials in GF (2)[x] of de-
gree less than n.

For each n-bit word v we define an associated polynomial v(x) in
GF (2)[x] in the natural way: if

v = (vn−1, vn−2, . . . , v1, v0)

then the associated polynomial v(x) is

v(x) =

n−1∑
i=0

vix
i.

For example, the unit-weight word ui having a one in position i is asso-
ciated with the polynomial ui(x) = xi. This association between words
and polynomials is one-to-one.

Let fn(x) = xn + 1, a polynomial in GF (2)[x]. We now work with
polynomials modulo fn(x), so that rotation can be effected by polynomial
multiplication modulo fn(x), as is typically done when working with cyclic
error-correcting codes (see [6, Section 9.2]) or circulant matrices (see [1]).

Now the word
(v <<< r)

is associated with the polynomial

v(x) ∗ ur(x) (mod fn(x)) ;

reducing modulo fn captures the effects of the rotation. In other words,
multiplying by ur(x) modulo fn(x)) represents a left-rotation by r posi-
tions.

Computing R(v) combines the effect of several rotations, so the word
R(v) is associated with the polynomial

v(x) ∗ r(x) (mod fn(x))

where
r(x) = xr1 + xr2 + · · ·+ xrk .

Note that R is an invertible operation if and only if r(x) is relatively
prime to fn(x); (This result is due to Guan et al. [5, Theorem 2.4]; see
also Bini et al. [1, Theorem 2.2].) If gcd(r(x), fn(x)) = 1, then an inverse
to r(x) modulo fn(x) can be found by the extended version of Euclid’s
algorithm, otherwise no inverse exists. These propositions hold whether
or not n is a power of two.
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If n is a power of two, then

fn(x) = xn + 1 = (x + 1)n ,

since we are working in GF (2) (see [6, Thm. 1.46]). In this case, r(x)
is relatively prime to fn(x) if and only if r(x) is relatively prime to the
polynomial x + 1.

Polynomials that are not relatively prime to x+1 must be multiples of
x+ 1, since x+ 1 is irreducible. A polynomial in GF (2)[x] is a multiple of
x + 1 if and only if its value at x = 1 is 0. But r(1) = 0 if and only if r(x)
has an even number of non-zero coefficients. Therefore r(x) is relatively
prime to fn(x) if and only if k is odd.

Thus, when n is a power of two, R is an invertible operation on GF (2)n

if and only if k is odd.

2 Discussion

The inverse operation to R can be found using Euclid’s extended algorithm
on input polynomials r(x) and fn(x), to find polynomials s(x) and t(x)
such that

s(x) · r(x) + t(x) · fn(x) = 1 .

The inverse operation S to R corresponds to the polynomial s(x), rep-
resenting another function of the same form as R (that is, an xor of
rotations). In matrix terms, the inverse of a circulant matrix is another
circulant matrix.

In terms of computational complexity, R(v) is easy to compute when
k is small, requiring not more than k rotations and k − 1 xors. Although
the inverse S has the same form as R, it may require considerably more
work to compute. For example, if r(x) has degree d, then s(x) must
have degree at least n/d and at least n/d terms, so that evaluating S(v)
requires at least log2(n/d) additions, since each addition in a computation
chain can at most double the number of terms. Here multiplication by xr

(rotations) are “free” and we are only counting exclusive-ors. The exact
complexity, in terms of rotations and xors, of evaluating R(v) or S(v) may
be non-trivial to determine precisely, and we leave these questions as open
problems. Thus, when k and d are small R may be considered to be in
some sense “very modestly one-way”—easier to compute in one direction
than another. Stephen Boyack [3] has interesting related results on the
complexity of matrix operations over GF (2) and their inverses.

Efficient invertible operations are useful in many applications. A lin-
ear operation somewhat similar to the one studied here is the “xorshift”
operation:

v = v ⊕ (v << r)

where “<<” is the “left-shift” operator; xorshift has been used in pseudo-
random number generation [7, 9] and hash-function design [10]. Schnorr
and Vaudenay [11, Lemma 5] study the related operation

(v ∧ d)⊕ (v <<< r)
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where “∧” denote bitwise “and” and where d is a constant n-bit word; they
show that this operation is invertible if and only if the iterates (d <<< (r·i))
take for each bit position the value 0 for some i.

The result of this paper may be useful to those working on similar
applications. For example, we began our study of R when thinking about
possible improvements to the MD6 hash function [10]. We also note that
the k = 3 version of the operation discussed here is used in the C2 ci-
pher [2] (although not in manner that required its invertibility (it is part
of the feedback function in a Feistel block-cipher)), and in the SHA hash
function standard message expansion computation [8] (as the Σ function;
invertibility of Σ is not claimed or proven).

When n is not a power of 2, we don’t know of any comparably simple
characterization of when R(v) is invertible, other than the requirement
that gcd(fn(x), r(x)) = 1; perhaps simpler characterizations can be found
for some cases, such as when n = 3 · 2k.

3 Related Work

Lars Knudsen points out that a different proof for the same result is
available in the the Ph.D. thesis [12, Theorem 3.3, pages 86–87] of Søren

Thomsen. Thomsen’s cute proof considers powers R2i

of the original
operation, notes that

R2(v; r1, r2, . . . , rk) = R(v; 2r1, 2r2, . . . , 2rk)

from which it follows that R is invertible since Rn will be the identity
function (if and only if k is odd).

4 Conclusions

This note provides an alternate proof of a characterization as to when an
easily computed operation, based on the exclusive-or of rotated versions
of a word, is invertible.
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