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Abstract

P-wave electrical alternans is a beat to beat alternation in the morphology of the P-
wave, the wave in an electrocardiogram corresponding to atrial depolarization. In this
investigation, software to measure p-wave alternans was developed and then tested
on simulated data and on real data previously recorded from human subjects. The
software consists of C programs managed by shell scripts and contains several features
to minimize user interaction in data processing. The software can also calculate a
signal averaged P-wave, apply various filters, and find the P-wave duration.
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Chapter 1

Introduction

Atrial fibrillation (AF) is an arrhythmia in which the atria enter into a condition of

uncoordinated muscular activity and are unable to perform their function of pumping

blood to the ventricles. AF is not an acute medical condition, and therefore it is

possible for someone to have the condition yet not have it affect his or her daily life.

Since the atria are not functioning, the ventricles do not fill as completely and cardiac

output is decreased slightly. More importantly, a patient with AF has 5 to 6 times

the chance of stroke as a person without AF due to pooling of blood in the atria [23].

This pooling of blood may result in the formation of clots which enter the systemic

circulation and become lodged in blood vessels in the brain. However, once AF has

been detected, it can be treated with antiarrhythmic drugs which can decrease the

possibility of stroke [18,23].

1.1 Objective

The primary objective of this thesis was to develop the algorithms and software nec-

essary to measure P-wave alternans and the duration of the P-wave signal averaged

ECG. This software was tested on a few samples of patient data to verify its correct-

ness and robustness. The software can be used to perform a larger clinical study of
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P-wave alternans.

Measurement of P-wave alternans is a multi step process, modeled after previously

developed algorithms for the measurements of T-wave alternans. The process involves

detecting the QRS peaks, aligning the beats on those peaks using an autocorrelation

method, and then aligning on the P-waves using another series of autocorrelations.

To aid in the evaluation of the clinical predictive value of P-wave alternans, the signal

averaged P-wave was also calculated.
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Chapter 2

Background

In this section, the anatomy of the human heart and its electrophysiology is discussed

to allow an understanding of atrial fibrillation and P-wave alternans.

2.1 Anatomy and Electrophysiology of the Heart

The human heart is a hollow, thickly muscular organ which facilitates blood flow

through the vascular system by rhythmic contraction. The heart is responsible for

supplying all organs of the body with blood, which provides them with necessary

nutrition and oxygen.

The heart consists of four chambers as shown in Figure 2-1: the left and right

ventricles and the left and right atria. The right side of the heart receives blood from

the systemic (main body) circulation and pumps it to the lungs for oxygenation. The

left side of the heart receives the blood from the lungs and pumps it back to the

systemic circulation.

The ventricles are responsible for the primary pumping action as they pump blood

out of the heart. The atria act as receiving chambers for blood entering the heart.

A typical cardiac cycle consists of filling of the atria, contraction of the atria,

filling of the ventricles, and contraction of the ventricles, in sequence. These contrac-
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Figure 2-1 Anatorey of the Heart (From [1])
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tions are achieved through a wave of muscular depolarization traveling through the

heart which causes contraction of myocardial muscle. The electrical impulses begin

in the heart's natural pacemaker, the sinoatrial node, located in the right atrium.

An impulse then travels to the atria and results in their contraction. Conduction

continues through the atrioventricular node and finally to the ventricles [1]. This

wave of conduction occurring on the cellular level can be summed to a single overall

three dimensional heart vector which can be projected onto various lines, or leads

going across the surface of the body. The projection onto a particular lead over time

is called an electrocardiogram (ECG). A typical ECG is shown in Figure 2-2. This

ECG is shown over one cardiac cycle, or one period of contraction and relaxation of

the heart. The first wave, the P wave, shows the electrical activity associated with

10



Figure 2-2 A Typi'cal ECG showing P, QRS, and T waves (From [1]).
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atrial depolarization, which results in contraction of the atria. After a slight pause

in the A-V node, the depolarization wavefront proceeds to the ventricles through

the heart's conduction system as described above. The depolarization and resulting

contraction of the ventricles is visible on the ECG as the QRS complex. Afterward,

the T wave results from the repolarization of the ventricles as they prepare for the

next wave of depolarization. The atria also repolarize; however, this waveform is not

visible on the ECG because atrial repolarization often overlaps with the QRS and is

thus obscured by this much larger waveform [1].

2.1.1 Atrial fibrillation

The description given above is one of a normal heart in which the atria and the

ventricles are pumping in a coordinated manner. However, various dysfunctions in

the heart's rhythm or conduction may be present and are termed arrhythmias.

The main arrhythmia of interest in this study is atrial fibrillation, a very common

arrhythmia which affects 0.5-1% of the general population rising to over 10 percent
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Figure 2-3 ECG Showing Atrial Fibrillation (from [1]).

in people over 70 [18]. Fibrillation is a condition which can occur in either the atria

or the ventricles. In fibrillation, the heart muscle does not undergo a coordinated

contraction, but instead, various regions of the muscle contract in a disorganized,

uncoordinated fashion [1]. While normal function may be regarded as a singular

contraction of the muscle, fibrillation more closely resembles a quivering of the muscle.

In this state, the muscle is completely unable to contract and is rendered useless for

the purpose of pumping blood. A EGG of a patient in atrial fibrillation is shown in

Figure 2-3. Note the absence of P-waves.

When such a condition occurs in the ventricles, it is life threatening. Ventricular

fibrillation is almost immediately followed by unconsciousness and death will occur

within minutes if the condition persists. This is because the ventricles are the primary

agents which pump blood to the body, including the brain.

Atrial fibrillation, on the other hand, is less life threatening. Since the atria serve

to help filling of the ventricles, loss of atrial function results in a less efficient overall

pumping of the heart. This loss is minor in most people and may only have a real

effect during physical exertion or when combined with heart failure [1, 4]. The main

symptoms of atrial fibrillation are palpitations or a sensation of erratic or irregular

heart beating. In some cases, patients may be unaware that he or she has AF [1].

The main danger of AF is the increased incidence of stroke [1, 13, 181. Because

the atria are not pumping effectively, blood may pool in the atria and form blood
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clots. These blood clots may eventually enter the systemic circulation and go to the

brain, where they cause a stroke. Studies have shown a fivefold to sixfold increase

in the rate of stroke associated with AF [13]. Overall, AF is responsible for more

hospital admissions and days spent in hospitals in the United States than any other

arrhythmia [18].

Once AF has been diagnosed, it can be treated directly with antiarrhythmatic

drugs which keep the atria from fibrillating. Another method of treatment is to

prescribe anticoagulants to prevent blood clots from forming, therefore preventing

stroke [18].

2.1.2 Paroxysmal Atrial Fibrillation and Vulnerability

Paroxysmal Atrial Fibrillation (PAF) is often a precursor to atrial fibrillation. Pa-

tients with this arrhythmia go in to AF under certain conditions or may have seem-

ingly random sporadic episodes of AF. At other times their atria beat normally.

Currently, there is no effective treatments to give to patients with PAF to prevent

the development of chronic AF [9,13].

The causes of PAF and sustained AF are not completely known. However, these

conditions are often found in people with organic diseases of the heart or with a mitral

valve defect [9].

Atrial fibrillation is thought to be analogous to ventricular fibrillation in its origins.

Atrial fibrillation is thought to be due to a reentrant mechanism in which the atria

require areas of slow conduction to initiate and maintain the reentrant circuit [13,18].

In this thesis, we postulate that the heart has a certain vulnerability, or suscep-

tibility, to atrial fibrillation based on the character of the atrial muscle. In most

adults, this susceptibility is extremely low, but in a certain elderly population the

susceptibility is higher. It is especially high in patients with PAF, making them likely

to become chronic AF.
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Figure 2-4 ECG showing T wave alternans. Here the ABABAB... pattern is clearly
visible (from. [2].

If one could measure the susceptibility to AF of a certain individual, one could (1)

test the efficacy of different medicines in preventing the onset of AF and (2) diagnose

patients with PAF (who are unaware of their condition) or patients with a high atrial

susceptibility so that may be monitored more closely in the future. There is currently

no convenient method available to predict efficacy of one medication over another in

a given individual [18].

2.2 P-Wave Alternans

One of the aims of this thesis is to determine whether P-wave alternans can be used

as a measure of atrial susceptibility. First, some background on P-wave alternans will

be given.

Alternans is a beat to beat variation in the morphology of a certain waveform, such

as the P, QRS, or T. The waveforms should alternate in an ABABAB... pattern. A

case of T wave alternans is shown in Figure 2-4. Alternans has long been recognized in

the electrocardiogram. The first record of this was in Feigenbaum who described large

beat to beat alternans in the T wave. T wave alternans have since been researched

extensively . It has been found that T wave alternans correspond to a ventricular

instability which may be predictive of ventricular fibrillation [5,16,17,20]. Patients

with a high T-wave alternans level may choose to have a defibrilator or some other
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P-wave alternans example (from [7]).

I I. IM

intervention to prevent the onset of ventricular fibrillation.

P-wave alternans has also been documented though its clinical significance is

highly unclear [3, 7, 15]. Since T wave alternans is associated with ventricular in-

stability and fibrillation, it is possible that P wave alternans are associated with

similar problems in the atria, as will be explored in this thesis. Figure 2-5 depicts

very large P-wave alternans visible to the naked eye. However, examples of T-wave

and especially P-wave alternans which are visible to the naked eye are very rare. Thus

more sophisticated methods must be used to detect and quantify alternans which may

be a result of fluctuations on the microvolt level.

2.3 T-wave Alternans measurement

A technique for measuring these microvolt potentials has previously been developed

for use with T-wave alternans [17, 20]. The software described in this thesis will

use a similar technique for the measurement of P-wave alternans. However, as will
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be described later, several modifications were required because of the nature of the

P-wave.

T-wave alternans measurement is often done by aligning a series of several succes-

sive beats on their QRS complexes to form a two dimensional array of points as shown

in Figure 2-6. Next an fast Fourier transform (FFT) is taken across the beats on a

point by point basis, as illustrated. Thus, alternations occurring in an ABABABAB

fashion should result in a high power content at the Nyquist frequency. If we let the

sampling frequency be 1 Hz, then the Nyquist frequency will be 0.5 Hz the power at

that frequency will be alternans.

2.4 P-wave Signal Averaged ECG

A signal averaged ECG (SAECG) is a signal which is generated by averaging a se-

quence of beats on a given reference point (for example on the QRS peak). The

purpose of the SAECG is to produce a "high resolution" beat by averaging out noise

which is uncorrelated from beat to beat [10]. Thus, a 128-beat SAECG will have a

noise variance 1/128th that of a single beat from an ECG.

The P-wave Signal Averaged ECG has been used in a manner similar to how this

thesis proposes to use P-wave alternans. A P-wave SAECG is a SAECG where the

P-wave is the focus of the signal averaging (the goal is to obtain a high resolution

P-wave). A P-wave SAECG is necessary for many types of P-wave analyses since the

P-wave is a small signal relative to the noise level, and is difficult to analyze unless

noise is decreased significantly. To compute an SAECG, several beats are aligned on a

reference and the average of all beats is taken. For the best results, alignment should

be on the P-wave, since there may be a beat to beat variation in the PR interval,

resulting in some jitter when averaging P-waves [4,8,9].

Once the SAECG is obtained, certain measurements can be made. Two methods

16



Figure 2-6 T-wave alternans calculation, (from [16])
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relevant to assessing vulnerability to AF will be discussed here. First, as mentioned

above, human studies have shown that intra-atrial conduction delays and short right

atrial refractory periods characterize patients with atrial fibrillation. The result is an

elongated P-wave or the presence of high frequency components at the tail end of the

P-wave. An automated algorithm, as discussed later, can be used to determine the

onset and offset of the P-wave in a SAECG. The SAECG can therefore be used to

measure atrial instability and to predict the onset of atrial fibrillation [4,8].

Before measuring the P-wave length, the P-wave should be band pass filtered,

as this has been shown to make the difference of measurements between PAF and

normal patients much more significant. Several filters have been previously tested

and compared on the basis of sensitivity, specificity, predictive accuracy, and p-value

when used to predict AF [8]. Filtering can serve several functions: eliminate contam-

ination by low frequency artifact, ensure isolated detection of depolarization (without

contamination by repolarization), and enhance detection of onset and offset of a low

amplitude signal like the P-wave. Onset and offset are easier and more consistently

detected when low frequencies are removed because the baseline on both sides of the

P-wave is set to nearly zero and the P-wave stands out much more easily (see Fig-

ure 3-7). A high pass filter would also enhance the high frequency components late

in the P-wave thought to be associated with atrial instability [8].

A detailed discussion of the filters which were chosen for implementation are dis-

cussed in the next chapter.
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Chapter 3

Methods

This chapter will discuss the implementation of the P-wave alternans and P-wave

SAECG software.

3.1 Data Input and Vector Magnitude

The input to the program is electrocardiogram (ECG) data. Currently, the supported

input type are the three Frank leads, X, Y, and Z. Formulas to approximately convert

12-lead ECGs to Frank Lead ECGs have been published.

Data preparation consists of detecting the QRS peaks in the ECG and of con-

structing a vector magnitude ECG. In the Frank lead system, the three leads repre-

sent orthogonal projections of the heart vector so the vector magnitude can be easily

computed as follows:

VectorMagnitude = V/X 2 + Y 2 + Z 2 (3.1)

19



Figure 3-1 Overview of steps in calculating P-wave alternans

Detect QRS peaks
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Detect beginning and end of desired
waveform (P-wave). Sum alternans measures.

3.2 Summary of Analysis

As described in the previous section, two analyses are performed: P-wave alternans

measurement and P-wave signal averaged ECG. Figure 3-1 is a summary of the steps

to calculate P-wave alternans. The steps for the P-wave SAECG will be presented

later.

3.3 Detect QRS peaks

The ECG peak detection was done on the individual leads rather than on the vec-

tor magnitude because the individual leads often contained sharper ECG peaks and

20

I



therefore were less prone to causing missed detection of beats. The software to detect

the peaks was written previously and is based on standard methods for ECG peak

detection. In short, it band pass filters the ECG and then attempts to detect a slope

above a certain threshold and below another threshold (to exclude glitches, etc.). It

then finds the peak value and annotates this as the peak of the ECG. There are also

some more sophisticated criteria used to decrease the number of false positives such

as a minimum and maximum peak length (in milliseconds) and a lockout time after

peak detection when no other peaks can be detected.

Although the algorithm is successful greater than 99% of the time, it does fail

on occasion. For this reason, the detected peaks should be reviewed by a human to

determine that no peaks have been left undetected and to make sure that no false

positives are present. This is the only point in running the software that human

intervention is currently required.

3.4 Cross correlate on the QRS peaks

Since alternans detection involves aligning the beats on a fiducial point and perform-

ing a Fourier transform across the beats on a point by point basis, a very accurate

alignment must be made to prevent beat to beat jitter from interfering with the anal-

ysis. Simple alignment on the maximum point of the ECG may not be the most exact

alignment, since the data is sampled at only 300-500Hz, allowing for jitter of up to

3ms.

The cross correlation is performed as follows. First, the QRS peaks are roughly

detected (and edited by the human operator) as described in the previous step. Once

the beats are detected, the start and end of the QRS waveform is detected from an

initial signal average. This region, the QRS region of the average beat, is used for

cross-correlation. This initial average beat is taken by aligning all beats on the roughly

21



detected QRS beat. It is possible that some baseline wandering in the ECG over time

may result in different beats having different DC offset values; however, this should

not affect the morphology of the average beat. It should only affect the average beat's

DC offset. Note that we assume that baseline wandering is not significant within a

beat. If this is not the case, then some preprocessing on the ECG, such as detrending,

must be performed to lower the baseline fluctuations to an acceptable level.

Once the average beat has been constructed, it can be used as a template for

cross correlating the other beats. In this procedure, the average beat is time reversed

and convolved with each beat separately and the point where the convolution reaches

maximum after normalizing the energy in both signals is considered to be the true

fiducial point. This is actually an implementation of a matched filter as we are using

the average beat as a type of detector of similar waveforms, the individual QRS peaks.

The output of this program is the exact time of each beat in an ASCII file. To make

the fiducial point as exact as possible, an additional (sinc) interpolation is done to

to determine the fiducial point to the nearest 0.2 sample points. This algorithm had

been previously developed for use with T-wave alternans measurement and it was not

necessary to modify it.

3.4.1 Detect Start and End of QRS

One crucial component of the cross correlation algorithm is determining which portion

of the ECG will be used for cross correlation. Since the goal at this stage is to cross

correlate on the QRS waveform, including other parts of the ECG in the correlation

will only increase noise and result in a less accurate alignment. Thus we need to

select the QRS in the average beat to do the correlation. QRS selection of each

individual beat is theoretically not necessary since the average beat should act as a

matched filter for the QRS. However, limiting the region to cross correlate over the

ECG will decrease computation time and possibly eliminate some spurious non-QRS
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spikes that may match the filter. Thus, the cross correlation is be restricted to the

region near the QRS spike (100 ms on either direction). Selection of the QRS is not

an exact procedure, since it is often not clear exactly when the QRS begins and ends;

however, even an approximation which grabs a significant amount of the QRS would

be acceptable.

The algorithm is outlined as follows:

The QRS is detected and then a window is constructed 100 points to the left of the

QRS (which is presumably before the QRS begins, as the human QRS varies in length

from 40-100 ms and the peak of the QRS spike is approximately in the middle of this).

The average and standard deviation of the ten points in this window are calculated.

Then five consecutive points which are located 10 points to the right of the window are

then compared to this mean and standard deviation. If the average of the five points

is greater than the mean plus three standard deviations of the previous ten points,

then we assume that the signal has undergone a significant increase in a short period

of time and thus the QRS portion has begun. This method was derived empirically

and was tested on several samples. Although its results may not correspond to a

clinician's idea of the start and end of the QRS, the algorithm is very robust and

useful for correlation purposes.

The end of the QRS was chosen by assuming that the peak is at the midpoint, so

its calculation is straightforward.

3.5 Detect bad beats and best segment

Alternans should only be measured on normal, sinus rhythm beats or on normal paced

beats in the case of paced data. As described in the background, I am attempting

to measure alternations in normal atrial beats. Thus, beats in which conduction

does not originate in the atria, such as premature ventricular contractions and other
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ectopic beats do not contribute valid data to the sample. However, simply omitting

a bad beat is not feasible, since this will have a detrimental effect on the alternans

calculatiofi by introducing a phase shift [16].

For instance, consider the sequence ABABABXBAB... where X is a bad beat. If

X is simply removed, then.the sequence becomes ABABABBAB.. and if the Fourier

transform is taken across beats, every beat after the bad one will be completely out

of phase resulting in phase cancellation and a spreading of power originally in the 0.5

Hz band to other frequencies.

One could also simply leave the bad beats in place, which usually will not cause

as much damage as phase shift cancellation. However, this will result in a significant

outlier point and when an FFT is taken, this point will result in some spectral leakage

[16].

The best solution is to replace the bad beats with a beat that will not significantly

damage the spectra. One way to achieve this is to replace the bad beat with the

average beat previously constructed; this is the method used for this program.

The program first decides which beats are bad, and outputs a complete list of

beats, showing which are good and which are bad. The criteria for bad beats is either

of the following:

1. Any beat which results in an interval greater than 250 ms different from the av-

erage. Such a beat is almost certainly ectopic, or is the result of a compensatory

pause after an ectopic beat.

2. Any beat in which the correlation coefficient is lower than 0.95 when the beats

are aligned such that the correlation is maximum. This is to reject waveforms

which are highly dissimilar from the average, which would contribute to outliers

in the alternans calculation.

Once the bad beats were identified, a continuous section of 128 beats was selected
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which had the fewest bad beats. This segment is found by a simple linear pass through

the correlation coefficients and RR intervals. The bad beats in this section are then

patched with average beats in the place of bad beats. This beat section is then used

for alternans analysis.

3.6 P-wave alignment

In the usual QRS or T wave alternans analysis, a single alignment on the QRS is

sufficient. However, for P-wave alternans, alignment on the QRS may not be sufficient

due to the fact that there is a variability from beat to beat in P-R interval. Thus,

we need to align beats on P-wave to do any meaningful alternans calculation. This

P-wave analysis consists of three steps: (1) construct an average beat aligned on the

original (or refined) QRS peaks. (2) detect the beginning and end of the P-wave on

this average beat, and (3) run the cross correlation on the P-waves rather than on

the QRS to align beats by the P-wave.

The construction of an average beat has been previously described. This average

beat may be constructed by aligning beats on the raw QRS or on the correlation-

refined QRS. In this algorithm, the refined QRS was used. The reason for this choice

is described later. Once the average beat has been constructed, the beginning and

end of the P-wave must be determined. The reason for automated P-wave detection

is the same as that for automated QRS detection - so that cross correlation can be

performed. It is important to note that the P-wave detection is carried out on the

average beat aligned on the QRS. It was observed that PR interval variation was small

enough to allow for a reasonable detection of the P-wave for correlation purposes.

The following method was used:

1. The location of the QRS in the average beat was determined as the maximum

point in the QRS complex.
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2. The baseline voltage of the beat was found by (a) finding the minimum point in

the 150 msec. preceding the QRS, (b) taking a window of 15 points and sliding

it across 60 msec of the beat centered at this minimum point, (c) when the

15 points in the window have minimum standard deviation, the center point is

chosen as the baseline point and the base amplitude is the mean of the 15 point

window centered at that point.

3. A search was conducted going to the left of the baseline to find a local maximum

over a 100 msec. area. This maximum should be the P-wave peak.

4. The minimum value in the 100 msec window to the left of the P-wave was found

(this is referred to the left baseline in further steps).

5. The beginning of the P-wave is determined to be the point to the left of the

P-peak where the signal falls 85 percent of the difference between the peak and

the left baseline.

6. The end of the P-wave is determined to be the point to the right of the P-wave

where the signal falls 85 percent of the difference between the peak and the

right baseline.

This method was determined mainly through trial and error. At first an attempt

was made to use the standard deviation of the baseline noise to determine when

a waveform is present (e.g. when the waveform abruptly rises above three times

the noise standard deviation). However, there was the problem that different ECG

recordings had different noise levels and that determination of coefficients to satisfy

all cases was not possible. If one is guaranteed that the noise level in the ECG will

be in a certain range, this simpler algorithm may be used.
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3.7 Baseline Measurement

This section gives an explanation for the first section of the P-wave alignment: de-

tection of a baseline. For the cross correlation and the alternans techniques to work

properly, the baseline of each beat must be known. If the baseline is not correct,

then the correlation will still most likely determine the proper location of the peak,

but it will report an incorrect correlation coefficient. This could be rectified by zero-

meaning the data; however, baseline calculation is necessary again in the calculation

of alternans, and thus it is useful to use the same algorithm in both places.

The ideal baseline is the isolectric segment closest to the waveform of interest

(either the QRS or the P, in our case). The isolectric segment satisfying this criteria

is the PQ segment, shown in the figure below. The PQ segment easy to identify, as it

is between two prominent waves, the P and the QRS. The baseline was determined

as the initial step for determining p-wave location, described above.

3.8 Second cross correlation

Once the P-wave has been detected on the average beat, it is cross correlated with

the ECG analogous to the method used for QRS cross correlation to properly align

the P-waves. During this cross correlation, the threshold for bad beats is lowered to

allow correlation coefficients as low as 0.8 since the signal to noise ratio in a typical

P-wave is lower than that for a QRS complex.

There are two possibilities for bad beat detection and replacement: one is to

detect bad beats during both the QRS correlation and during the P correlation while

the other is to only detect and replace bad beats during the P correlation step. In

practice, the difference is minor, since a beat with an ectopic or otherwise abnormal

QRS usually has an abnormal P wave also because conduction does not proceed

normally through the atria. In this program, bad beats were identified at both stages.
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3.9 Alternans calculation

The alternans calculation is illustrated in the figures 2-6 and 3-2. A series of beats

are aligned and a two dimensional matrix is constructed as shown in Figure 2-6. 128

consecutive beats were used for the analysis for the following reasons: (i) The FFT

which is taken across the beats must have an input which is a power of two in length.

(ii) The segment must be long enough to allow for a decent spectral estimate yet be

short enough to allow for a segment to be chosen which does not include many bad

beats or any phase resetting. 128 beats has been found to be optimal in many cases

for T wave alternans.

Once the beats have been chosen, the analysis is straightforward. FFTs with

rectangular windows are taken across the beats as shown. The purpose is to calculate

the alternans measure at each point in time, relative to each fiducial point. Two

measures of alternans can be calculated: (i) the alternans metric, which is the voltage

present in the 0.5 Hz peak, and (ii) the k-score, which is a measure of the ratio of

the alternans peak to the measure of the average noise surrounding the peak in the

FFT [16, 17,20]. Thus, a k-score (also called the Alternans Ratio) of 1 shows a lack

of alternans, while a k-score of 4 or more shows a high probability of alternans. This

is illustrated in Figure 3-2.

Alternans voltage = (a - q)2 (3.2)

(Alternans voltage) 2  (3
Alternans ratio = K-Score = (3.3)

Where a = standard deviation of the magnitudes of the power spectra in the

noise window, 7 = mean of magnitudes of power spectra in the noise window, and a

= magnitude of the power spectrum at 0.5 cycles/beat.

The program calculates the k-score and alternans metric at each point in the beat,

and then outputs graphs showing these values. These graphs (presented in the results
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Figure 3-2 Shown above are two plots of the power spectrum at a particular point
in the beat. Although both spectra have the same alternans voltage, they have very
different K-scores. Plot B shows a significant level of alternans while A does not. The
K-score is a measure of the alternans voltage relative to the noise level (From [16]).
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section) show the specific locations of alternans (beginning of P-wave versus end of

P-wave, etc.). One should note that the values given outside of the P-wave are most

likely invalid, or at least inaccurate, because the beats were aligned on the P-wave,

and therefore variability in the P-R interval would result in jitter in other areas of the

ECG. For example, beat to beat alternation in the PQ interval may manifest itself

as (spurious) T-wave alternans.

A further parameterization of alternans may be useful for clinical use. The sum-

new.c program sums the alternans measure and k-score over various time intervals

in the beat. For the present study, four intervals were chosen: The entire P-wave as

determined by the algorithm described above and the first, second, and last third of

the P-wave.

3.10 Signal Averaged ECG calculation

This measure is not directly connected with alternans, as it is a separate diagnostic

procedure as described in the background section. However, calculation of the SAECG

has several steps in common with alternans calculation. The steps in SAECG calcu-

lation are shown in Figure 3-3. Essentially, all steps are identical to alternans up to

and including calculating the average beat aligned on the P-wave. Once the average

beat has been calculated, it must be filtered and then the length of the filtered P-wave

can be determined.

3.11 Filtering the SAECG

The individual X, Y, and Z leads were passed through a high pass filter to magnify

the high frequency components of the P-wave and to get rid of the low frequency

components in the baseline to make P-wave detection somewhat easier and more

reliable. The filters were chosen based on the results of previous investigators, shown
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Figure 3-3 Overview of steps in calculating P-wave alternans

From Alternans: average beat based on P-wave alignment

y lead

I
z lead

Detect Center of P-wave
(for bidirectional filter)

Detect and remove QRS

Filter (Butterworth or LMS)

Combine to Vector Magnitude ECG

Detect start and end of filtered P-wave
(note that it is a different algorithm than that
used for correlation or alternans summation)
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Sensitivity Specificity Predictive Accuracy

Filter Type (%) (%) (%)
Bidirectional Butterworth 78.26 86.11 83.05

Unidirectional Butterworth 78.26 83.33 81.36

Least Mean Square 82.61 86.11 84.75

Table 3.1: Comparison of various filters for the P-wave SAECG (from [8])

in Table 3.1. A P-wave SAECG was taken on a control group and on a group with

PAF. The sensitivity, specificity, and predictive accuracy for distinguishing the groups

based on the filtered P-wave length for various filters is shown.

Two filters were chosen for implementation in this thesis: a four pole bidirectional

butterworth filter and a least mean squares (or Savitzky-Golay) filter.

3.11.1 Butterworth filter

A butterworth filter has a frequency response which is "maximally flat" near w = 0.

An example of this filter's magnitude and phase response is shown in Figure 3-4.

The magnitude frequency response of a continuous time butterworth filter is given as

follows [14],

IHc (jW)I 2 = 1(3.4)
1 + (w/wc)2N

where we is the cutoff frequency and N is the order of the filter. Although a four pole

butterworth filter has a fairly flat impulse response, ringing will still occur if there is a

significant discontinuity in the signal. Since the purpose of the filtering is to highlight

high frequency late potentials in the P-wave and not to extend the P-wave because

of ringing, a bidirectional butterworth filter is used.

The butterworth filter is a causal filter, meaning that ringing will only occur in

the direction of filtering, which is usually forward in time, as shown in part a of the

figure. In a bidirectional filter, a fiducial point is chosen, and filtering to the left of

that point is done forward in time while filtering to the right of the point is done
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Figure 3-4 Frequency response of a discrete-time butterworth filter. This filter is a
four pole high pass with a cutoff of 0.297r radians. So, if data is. sampled at 200Hz,
the cutoff is 29Hz.
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backward in time. If this fiducial point is chosen to be near the center df the P-wave,

ringing from the filter will not artificially extend its length.

Based on the suggestions of previous researchers [8], a bandpass filter with pass-

band 29Hz-250Hz was used.

3.11.2 Least Squares filter

A least squares filter, also called a Savitzky-Golay filter [21], is a type of finite impulse

response (FIR) linear filter. Unlike the butterworth filter, this filter is only applicable

to a discrete time signal as it relies on fitting a curve to discrete points. The least

squares filter is defined by two parameters: window width and filter order. To filter

a given point of a signal, the window is centered on the point and a polynomial curve
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Figure 3-5 The difference between a unidirectional and a bidirectional filter. The
original signal is a sirmulated P-wave, consisting of an ellipse with gaussian white noise
added. Note that the unidirectional filter elongates the signal due to ringing.
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is least squares fit to the points in the window to the specified order of the filter. The

value of the polynomial curve at the center point of the window is the filtered value

of the signal.

Although not immediately obvious, the least squares filter is a linear time invariant

filter. Given a window width and polynomial order, an FIR filter can be constructed

which performs the same filtering operation [21]. To achieve a bandpass filter with

a passband of 29-250Hz, a window width of 100 ms (36 points at 360Hz) and a

polynomial order of 4 was chosen. The impulse response and frequency response for
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Figure 3-6 Least Squares Filter. The least squares filter is always a low pass filter.
To perform a high pass filtering operation, a least squares filter is applied to the signal
and then the low pass result is subtracted off the original signal.
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this filter is shown in Figure 3-6.

3.11.3 Detecting the P-wave

P-wave detection for the purposes of measuring alternans has been described above.

A different method is used for the measurement of the length of the P-wave in the

filtered SAECG. This measurement must be more exact, which is possible because

the high pass filtering simplifies detection. Figure 3-7 shows the difference between a

typical ECG and a high pass filtered ECG. Detection is performed as follows:

1. Calculate the average noise as the average of 10 points 50 msec. from the start

of the P-wave.
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Figure 3-7 The Effect of Filtering the P-Wave. The two P-waves in the first row are
unfiltered, while the two in the second row are filtered. After filtering, high frequency
components are highlighted and the transition from baseline to P-wave is sharpened
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2. Keep checking to the right until the signal goes above 3 times the average noise

for 3 points in a row. The first of the three points is the start of the p-wave.

3. Keep going to the right until a 30 msec window where no point goes above 3

times the average is found. The beginning of this window is the end of the

p-wave.

4. Check to make sure that no point has been reached which is greater than 30%

QRS amplitude. In this case, step 3 has failed, so redo step 3, except this time

only look in a 7 msec window (this second check may catch cases where the

P-wave end is very close to the QRS complex).

5. Next, refine the beginning and ending points as follows: Go left of the starting

point of the p-wave until 2 successive points that are less than the average noise

value are reached. Similarly, Go th the right of the ending point of the p-wave

until 2 successive points that are less than the average noise value are reached.
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6. If step 5 takes you more than 40 points away from the initial p-wave estimate,

then revert back to the initial estimates.

The length of the p-wave is then simply calculated as the start time of the p-wave

minus the end time of the p-wave.

3.12 Software Description

The following briefly summarizes the functions of the various programs and gives the

procedure for calculating p-wave alternans and the p-wave SAECG.

1. Prepare the data: The data must be three channel data in woven format, where

each data point is a short, two-byte integer. Thus, the first point of the first

signal is stored in the first two bytes, the first point of the second signal in the

next two bytes, and so on.

2. Run the script RR.ii. It prompts the user for several parameters to be used for

detecting QRS complexes. Default values are provided, and it is nearly always

sufficient to use these default values.

3. Run the script display. This will run an interactive signal display program,

which will allow the user to look at the QRS annotations and make any changes.

In general, the QRS peak detection algorithm will make a mistake 0.2% to 5%

of the time, depending on the quality of the ECG recording and on the number

of ectopic beats present.

4. Run the script pwa-auto. This is a mostly automated script, which first performs

an autocorrelation on the QRS peaks to more closely align those peaks. To do

this, it detects the QRS start and end automatically, but also allows the user

to manually select it in case there is a problem. After the QRS correlation,
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an average beat is constructed and the P-wave is detected. Again, the user

can change the computer's choice. Next, a cross correlation is performed on

the P-waves. Bad P-waves must then be found - this is again automated by

rejecting P-waves which correlate poorly with other P-waves, or which come

very early or late. The user may override the computer's parameter choices if

necessary. Finally, the P-wave alternans is calculated in each lead and in the

vector magnitude using the program spitnew3..s.c, as described above.

5. The final portion of the analysis is currently done through matlab although it

would be fairly straightforward to compile the code if necessary for performance

purposes. The matlab script loads the results of spitnew3-s.c and plots them,

and provides an index of the overall alternans over the P-wave. It then filters

the individual leads of the average beat, and creates a filtered vector magnitude

to determine P-wave SAECG parameters. The start and end of the p-wave are

determined as described in the previous section.

Source code and shell scripts are provided in Appendix A.
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Chapter 4

Results

4.1 Programming

The programming consisted of updating previously existing software and of creating

new programs. The entire software package consists of 22 shell scripts and compiled

C programs. The previous set of programs was created to measure T-wave alternans,

as described earlier. I modified, to a small extent, about 15 programs, and I created

or rewrote 6 programs, listed in the appendix.

All programs have been tested on five datasets. In a future study, large amounts

of data will be processed to determine the clinical significance of P-wave alternans

and its correlation with atrial fibrillation. This thesis focuses on the technical aspects

of the software rather than its clinical application.

4.2 P-wave alternans results

P-wave alternans analysis was run on several test datasets from normal subjects (those

without atrial arrhythmias) and on some high resolution ECGs from goats. These

were used for algorithm development and testing purposes.
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4.2.1 Simulated Results

In addition, a "simulated" ECG signal was prepared as follows: (i) A single beat was

extracted from the ECG of a human subject by taking the data from 300ms before the

QRS to 400ms after the QRS. The P and T waves fell within this region. (ii) A copy

of the beat was created and was manually edited in MATLAB by multiplying the

P-wave by a cosine wave with a period equal to the P-wave (time zero at start of P-

wave). The rest of the beat was unchanged. The original beat was called type A, the

modified beat, type B. (iii) 25ms of data was cut out of the PQ intervals of both beats,

and then 64 A beats and 64 B beats were constructed by adding a random interval

of flatline data to the PQ intervals (0-50ms uniformly distributed). (iv) The beats

were concatenated in ABABAB... order to form a simulated ECG with a random

flatline interval added between beats (200-300ms uniformly distributed). (v) Finally,

gaussian white noise with variance of 2% the height of the QRS was added to the

entire ECG. Thus the simulated ECG had P-wave alternans with varying interbeat

intervals, varying PR intervals, and noise.

If P-wave alternans were perfectly detected then there would be alternans in the

P-wave in a cosine varying pattern: minimum alternans would be present at the start

and end of the P-wave and maximum alternans would be present at the trough of

the cosine, in the middle of the P-wave. When the dataset was run through the

alternans detection programs, initially the cross correlation on the P-waves failed: all

were considered "bad" p-waves since the correlation coefficients of all P-waves with

the average beat were lower than 0.85. This is a result of the artificially high level of

alternans in the P-waves; if the correlation cutoff is lowered to 0.75 then all beats are

detected as good beats. After this modification, alternans is detected in the P-waves.

Although alternans is not found in precisely the cosine pattern it was introduced,

the alternans metric and k-score were greatest in the center of the P-wave and least

at the edges. Alternans was detected in a smeared cosine pattern, possibly because
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during the cross correlation, the A and B p-waves were lined up in a slightly different

manner than the original alignment used to generate the waveforms. This is not a

problem with the alternans detection software, but a problem inherent in trying to

detect alternans in a waveform which is also being used for beat alignment, when the

alternans are large enough to affect cross correlation. A further investigation may

attempt to more clearly define alternans in cases such as this.

4.2.2 Clinical Testing

The primary aim of this thesis was to produce functioning software which can be later

used for clinical testing. Figure 4-1 shows the results of running the data on a typical

subject. This subject does not have significant P wave alternans.

Overall, five human data sets were tested:

- A patient with Wolff-Parkinson-White Syndrome, paced and unpaced.

- A patient with EP induced atrial flutter, paced and unpaced.

- A patient with EP induced atrial flutter, unpaced.

The alternans metric and k-score were calculated for the five data sets on the x,

y, z, and combined vector magnitude leads. These measures were summed over the

first, second, and last third of the P-waves. None of the patients showed significant

P-wave alternans (none had a k-score above 4 for a significant portion of the P-wave).

The re-triggering on the P-wave proved to be important in many of the patients.

Figure 4-2 shows a the same set of 128 beats triggered on the QRS and on the P

waves. One can see that the P-wave is more clearly visible in the beats aligned on

the P wave and the QRS is slightly blurred.
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Patient Butterworth Least Squares

1 WPW unpaced 131.2 133.1
1 WPW paced 121.3 123.1
2 EP induced AF unpaced 147.0 148.0

2 EP induced AF paced 144.0 141.7

3 EP induced AF unpaced 154.9 158.4

Table 4.1: Lengths (in ms) of filtered SAECG P-waves (from [8].

4.2.3 P-wave SAECG

P-wave SAECGs were taken for the five datasets listed above and for 7 normal

datasets. The values for the duration of the P-wave SAECG (vector magnitude)

are given in Table 4.1. The results are in the range of previously published values.
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Figure 4-1 Results of running the P-wave analysis software on a human subject in
sinus rhythm. Atrial flutter was induced in this patient during a previous EP test.
In this figure, the vector magnitude was used for alternans calculation and 12 out of
128 badbeats were replaced with the average beat. The K-Score is not consistently
above 4 in the region of the P-wave so alternans is not present.
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Figure 4-2 P-triggering vs. QRS-triggering.
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Chapter 5

Conclusions

In this thesis, software was developed to measure P-wave alternans from an input of

three digitized orthogonal ECG leads.

Previously existing code for measuring T-wave alternans was adapted to perform

triggering on the P-wave and to perform a more automated and consistent alternans

calculations by the use of various waveform detection algorithms, a more accurate

averaging procedure, and "intelligent" algorithms to allow cross correlation, bad beat

selection, and other functions to be done without user input. The user interface

was constructed, however, to allow the operator to override automatically detected

settings and parameters, if necessary. In addition, software to perform a P-wave

signal averaged ECG and P-wave length detection with two types of commonly used

filters was developed.

The alternans and P-wave software were tested on simulated and real data. A

simulated ECG with a known level of P-wave alternans was run through the software.

This ECG contained added signal noise with a known variance, random interbeat

intervals, and random PQ intervals (with given distributions). The alternans power

and K-score results were approximately equal to theoretically predicted values based

on the alternans and noise present in the simulated signal (see previous chapter for
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details). As long as the PR and interbeat interval variability stayed within physiologic

ranges, they had no effect on alternans levels.

The P-wave SAECG software was run with data from normal patients and on

data from patients with atrial arrhythmias and the results were similar to those from

previous investigators (Table 4.1).

The P-wave alternans software was tested on a limited set of patients with atrial

arrhythmias and controls, but no statistical alternans were observed in any of the

patients. A larger data set with a variety of atrial pacing rates and a variety of atrial

arrhythmias (PAF, WPW, EP induced AF) should be used to further investigate the

clinical significance of P-wave alternans in assessing atrial instability. The software

is suited performing this sort of batch mode automated analyses.
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Appendix A

Source code

In this chapter I present source code for my program. Note that this appendix only

contains code for the programs which I have created or to which I have added a major

section.

A.1 delqrs.c

/* delqrs.c -- Detects the beginning and end of QRS
Nikhil Iyengar, 10/22/97

Usage: delqrs

Takes column input file from standard input. This column file
should contain the vector magnitude of an average beat with the
annotation at precisely the center of -the beat (from sigavg.c, for
example).

Outputs three numbers on. one line: a b c
a = baseline. points to the right of b where baseline is located.

should always be negative
b = qrs center. points to the right of the annotation that qrs

center is located.
c = QRS width. width of the QRS around its center.

Procedure: 1. Baseline estimate
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#include <stdio.h>

#include.<stdlib.h>

#include <math.h>

double mean(double [], int, int);

double std(double [], int, int);

main()

{

double beat[3000], qrsampl, baseampl, rightmin;

int i, width, qrsindex, baseindex, newindex, rightindex, center;
double curstd, minstd, thresh;

int qrsstart, qrsend, outi, out2, out3;

i=1;

while (scanf("%lf", &beat [i) == 1) {
i++;

}
width = i-1;

center = width/2;

/* Find the maximum point in beat */

qrsampl = 0;
for(i=1;i<=width;i++) {

if (beat [i] > qrsampl) {
qrsampl = beat [i];
qrsindex =i;

}
}

/* Find the baseline point */

baseampl = qrsampl;
for(i = qrsindex-150 ; i<qrsindex ; i++) {

if (beat [i] < baseampl) {
baseampl = beat [i];
baseindex =i;

}

}

minstd = grsampl;
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for(i = baseindex - 30 ; i<baseindex + 30; i++) {
curstd = std(beat,i-7,i+7);
if (curstd < minstd) {

minstd = curstd;
newindex = i;

}
}
baseindex = newindex;
baseampl = mean(beat,baseindex-7,baseindex+7);

/* We found the baseline to the left of the QRS.
Now, find the minimum to its immediate right */

rightmin = qrsampl;
for(i = qrsindex; i < qrsindex+100 ; i++) {

if (beat[i] < rightmin) {
rightmin = beat [i];
rightindex = i;

}
}

/* The beginning and end of QRS will be when the amplitude first
falls below 5% of the difference between QRS and baseline */

thresh = baseampl + 0.05*(qrsampl - baseampl);
for(i = qrsindex; i >= qrsindex - 100; i--) {

if (beat [i] < thresh) {
qrsstart =

break;

}
}

thresh = rightmin + 0.05*(qrsampl - rightmin);
for(i = qrsindex; i <= qrsindex + 100; i++) {

if (beat [i] < thresh) {
qrsend = i;
break;

}
}

outi = baseindex - (qrsstart+qrsend)/2;

out2 = (qrsstart+qrsend)/2 - center;
out3 = qrsend - qrsstart;

printf("%d \t Xd \t %d\n", outi, out2, out3);

}
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double mean(double vec[l, int start, int end)

{
int i;

double sum=O, avg;

for(i=start ; i<=end ; i++) {
sum = sum + vec[i];

}

return sum/(end-start+1);

}

double std(double vec[], int start, int end)

{
int i;

double sum=O, avg;

for(i=start ; i<=end ; i++) {
sum = sum + veclil;

}
avg = sum/(end-start+1);

sum = 0;
for(i=start ; i<=end ; i++) {

sum = sum + (vec[i] - avg)*(vec[i] - avg);

}

return sqrt(sum/(end-start));

}

A.2 spitnew3s.c

/* spitnew3_s.c Nikhil Iyengar July 1997

Function Sample-point analysis and display for spectral
decomposition of variance in waveform morphology.
The entire waveform is analyzed, broken into

three abutting segments, the first is QRS wide,
the second is ST wide, and the third is T wide.
Baseline drift is subtracted, after it is estimated
100 milliseconds before the fiducial point.
DOES INTERPOLATION

A k-score is output for every point in the
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waveform.

#include <stdio.h>

#include <math.h>

#include <sgtty.h>

/* #include <libmp.h> */
#include "utils.cl"

#define MAXCHAN 3

#define TWOPI 6.2831854

#define MAXLEN 1700

#define MAXOBS 258

#define BASE 8

#define OFFSET 300

FILE *pksfp, *outfp, *klfp, *matrixfp, *spectfp;

FILE *matrixfp.x, *matrixfp-y, *matrixfpz;

short buf[MAXLEN*16];

int nchan=0, datachan=3, closept, joe-switch=0, smooth_ switch=0;

int beat_flag=0;
int chan[MAXCHAN]={0,1,2};

int datafd, nobs=256, result-fd, beat-fd, sum-window = 1;

int result-fd-x, result-fd-y, result-fd-z;

int beatfd_x, beatfd-y, beatjfd-z;

int beat-no, begin=50; /* begin QRS 50 msecs before mark */

int pk-offset=0, badcounter=0, bad-beats[128], beat-length=300;

char optiono, *opt-argvo, ctmp, bmatrix[20],

fmatrix[20], tmode = 0;
char *mname, mnamex [20], mnamey [20], mname-z [20];

char *Bname, *Bname-x, *Bname-y, *Bname-z;

char *beatfile, beatfilex[25], beatfiley[25], beatfile_z[25];

char cr;
char pksname [20], dataname [20];

long pks[MAXOBS]; /* peak locations */

double g[MAXCHAN] = {1.0,1.0,1.0};
float temp.offset[MAXOBS];

double kscore[MAXLEN], alt-metric[MAXLEN];

double r- array[MAXOBS], rmean, rstd, rsum, rsum2, total=0.0;

float bigarray[MAXOBS][MAXLEN];

float big.arrayx[MAXOBS][MAXLEN];

float bigarrayy[MAXOBS][MAXLEN];

float bigarrayz[MAXOBS][MAXLEN];

double inv-n-obs;

double datasum[MAXLEN];

double datasum-x[MAXLEN];
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/* matrix with average beat of lead X */
double datasumy[MAXLEN];

/* matrix with average beat of lead Y */

double datasum_z[MAXLEN];

/* matrix with average beat of lead Z */
double temparray [MAXOBS];

double tmp-array [MAXOBS];

double mean-est, var-est;

double energy[MAXLEN];

int best-index = 0, base.offset=0;
int Samprt = 1000;
int i-switch = 0;

main(argc, argv)

int argc;
char **argv;

{
int i=0, j=0;

double data[MAXLEN];

for(i=0;i<MAXLEN;i++) {
data[i]=0;

}

i=0;

while( (ctmp = option(&argc, argv)) != 0){
switch(ctmp){

case 'b': /* bad beats for exclusion */
bad-beats[bad-counter++] = atoi(optargv());
break;

case 'B': /* name of big output file */
Bname = opt-argv(;
break;

case 'c': /* channels to be analyzed */
chan[nchan++]= atoi(opt-argv();
break;

case 'd': /* data file */
datafd = ofile( opt-argv() );
break;

case 'g': /* relative gains of channels */
g[i++] = atof(opt-argv();
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break;

case 'i': /* Switch for individual lead analysis */
i-switch = 1;

break;

case 'j': /* just for joe - will throw out worst
beats */

joe-switch = 1;
break;

case '1': /* base offset */

base-offset = atoi(opt-argvo);
break;

case 'im': /* output filename for matrix file */
mname = opt-argvo;
break;

case 'N': /* # of chans in data */
data-chan = atoi(opt-argvo);
break;

case 'n': /* number of observations */
n-obs = atoi(opt-argvo);

n-obs = npwr2(n-obs);

break;

case 'o': /* name of beat file */
beatfile = opt-argvo;
beatjfd = cfile( beatfile );
beat-flag=1;

break;

case 'p': /* peaks file */
pksfp = fofile( opt-argvO, "r" );

break;

case 'r':
pk.offset = atoi(opt-argvo);
break;

case 'w': /* width of beat (max = 800) */
beat-length =atoi(opt-argvo);

break;

case 's': /* sum up last (number) points */
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sum-window = atoi(opt-argvo);
break;

case 'S': /* sampling rate */
Samprt = atoi(opt-argvo);
break;
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printf("\n ILLEGAL OPTION %c\n", ctmp);
exit(0);

}
}

beat-length = beat-length*Samprt/1000;
sprintf (fmatrix, "Xs" ,rmname);
matrixfp = fofile(fmatrix, "w");
result-fd = cfile(Bname);

if(i-switch) {

Bname-x=(char *)malloc(strlen(Bname)+3);
sprintf (Bnamex, "%s-x",Bname);
resultfdx = cfile(Bname-x);
sprintf (mnamex,"%s-x",mname);

matrixfp-x = fofile(mname.x, "w");

Bnamey=(char *)malloc(strlen(Bname)+3);

sprintf(Bname-y,"%s.y",Bname);

result-fd-y = cfile(Bname-y);
sprintf (mname.y,"%s.y" ,mname);
matrixfp-y = fofile(mname.y, "w");

Bnamez=(char *)malloc(strlen(Bname)+3);

sprintf(Bname _z, "%s.z",Bname);

resultfd-z = cfile(Bname-z);
sprintf (mname-z,"%s.z",mname);

matrixfp-z = fofile(mname.z, "w");

}

getpkso; /* loads array of peak locations */

inv-n-obs = 1.0/((double)n-obs);
for(beatno=O; beat-no<nobs; beatno++)

get.data(data);

SCALE THE AVERAGE BEAT

for(i=O; i<MAXLEN; i++)

datasum[i] *= inv-n-obs;

if(i-switch) {
for(i=0; i< MAXLEN; i++) {

datasum-x[i] *= invnobs;

datasum-y[i] *= invnobs;
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datasum-z[i] *= invn-obs;
}

}

REPLACE BAD BEATS WITH THE AVERAGE */

for(i=0; i<bad-counter; i++){

printf ("Replaced beat Xd peak location %d \n", bad-beats[i],
pks [bad-beats [i]]);

for(j=0; j<MAXLEN; j++) {
big.array[bad-beats [i]] [j] = datasum[j];
if (iswitch) {

big.arrayx[bad-beats[i]][j] = datasum-x[j];
big-array-y[bad-beats[i]][jj = datasum-y[j];
big-arrayz[bad-beats [i]] [j] = datasum-z[j];

}
}

}

if (beatflag==1) {
for (i=O;i<n-obs;i++) {
write(beatfd, &big-array[i][0], sizeof(float)*1024);

}
if(iUswitch) {

sprintf (beatfilex, "Xs-x",beatfile);

beat-fd-x = cfile(beatfilex);
sprintf(beatfiley,"%s.y",beatfile);

beatfd-y = cfile(beatfiley);
sprintf (beatfilez, "Xs-z",beatfile);
beat-fd-z = cfile(beatfile-z);

for (i=0;i<n.obs;i++) {
write(beat_fd_x, &big-array-x[i][0], sizeof(float)*1024);

}

for (i=0;i<n-obs;i++) {
write(beat_fd_y, &big-array-y[i][0], sizeof(float)*1024);

}

for (i=0;i<n-obs;i++) {
write(beat_fd_z, &big-arrayz[i][0], sizeof(float)*1024);

}

}
}
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write(resultfd, &n-obs, sizeof(int));

write(result-fd, &badcounter, sizeof(int));

write(resultjfd, &beatlength, sizeof(int));

write(resultfd, datasum, sizeof(double)*beat-length);

makespect(O, beat-length, big-array, resultjfd, datasum);

out-results(matrixfp, datasum);

/* If individual lead analysis is desired the program runs the

analysis */
/* for each lead that the gain is not zero.

*-----------------------------------------------

if(iswitch) {

write(resultfdx, &nobs, sizeof(int));

write(resultfd_x, &bad-counter, sizeof(int));

write(result-fdx, &beatjlength, sizeof(int));

write (result.f dx, datasum-x, sizeof (double) *beat_length);

makespect(0, beat-length, big-array.x, resultfd-x, datasum-x);

out-results(matrixfp.x, datasum-x);

write(result-fd_y, &nobs, sizeof(int));

write(result-fdy, &bad-counter, sizeof(int));

write(resultfdy, &beatlength, sizeof(int));

write (resultfdy, datasum.y, sizeof (double)*beat_length);

makespect(O, beat-length, big-arrayy, result-fd_y, datasumy);

out-results(matrixfpy, datasum.y);

write(resultfd_z, &nobs, sizeof(int));

write(resultfd-z, &bad-counter, sizeof(int));

write(result_fd_z, &beatlength, sizeof(int));

write(result_fd_z, datasum-z, sizeof(double)*beatlength);

makespect(0, beat-length, bigarrayz, result-fd_z, datasum-z);

out-results(matrixfp-z, datasumnz);
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}

exit (0);
}

makespect(start, seg.end, bgarray, result, datasm)
int start, segend;

float bg.array[MAXOBS][MAXLEN];
int result;
double datasm[];

{
int i, j;
int wintype = 2;
double limit = 3.0;
register double temp-var, mean-energy = 0.0;

for(j=start; j<segend; j++){
temp-var datasm[j];
temp.var *= tempvar;

energy[j] *= invn.obs;

meanenergy += tempvar;
for(i=0; i<nobs; i++)

temparray[i] = bg-array[i] [j];
trim(temparray, n-obs, limit);

pse(temparray, n-obs, wintype);

mean-est = 0.0;

varest = 0.0;

write(result,temparray,sizeof(double)*(n-obs+1));

close-pt = 15*n-obs/16;
for(i=closept-8; i<closept; i++){

temp-var = temparray [i];
mean-est += temp-var;
temp.var *= temp.var;

var-est += temp.var;
}

meanest *= .125;
var-est = .125 * var-est - (meanest * mean.est);

total = 0.0;
for(i=0; i<sum-window; i++)

total += temparray[n.obs-i];

kscore[j] = (total-mean.est)/sqrt(sumwindow*var-est);

alt-metric[j] = (total-mean-est)/(datasum[j] * datasum[j]);
}

58



}

out-results(dum, datasm)
FILE *dum;

double datasm[];

{
register int i;

for(i=0; i<beat-length; i++) {
fprintf(dum,"Xg Xg %g\n", datasm[i], alt-metric[i],

kscore[i]);

alt.metric[i] = 0.0;
kscore[i] = 0.0;

}
}

getpks()

{
int i;
register double r = 0.0, rmax = 0.0, test=0.0;
float rcoef=0.0;

char dummyl[10], dummy2[10], dummy5[10];

for(i=0; i<n-obs; i++){
fscanf(pksfp, "Xs %ld %s Xf %f %s\n", dummyl, &pks[i], dummy2,

&tempoffset[i], &rcoef, dummy5);

r = rcoef;
if(r > rmax){

rmax = r;
best-index =i;

}
r.array[i] = r;

rsum += r;
r *= r;
rsum2 += r;

}
if(joe.switch){

rmean = rsum/nobs;

rstd = sqrt ((rsum2/n-obs)-rmean*rmean);
test = rmean - 3.0*rstd;

for(i=0; i<n-obs; i++){

if(rarray[i] < test)
bad-beats[bad-counter++] =i;

}
}

}
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get_data(data)
double data[];

{

/* Subroutine to retrieve vector magnitude of ECG given pk location

Data stored as interleaved samples of channels X, Y, and Z

register double *dptr;

register short *ptr, *eptr;

register int i;

register double temp, gain, b-est;

int bufsize, j;
double base[3];

double data-x[MAXLEN];

double data.y [MAXLEN];
double data-z[MAXLEN];

double datum[MAXLEN];

long offset;

bufsize = 1024 * 2 * data-chan; /* retrieve 1024 samples from each
channel */

/* Now, we start data OFFSET=300 msec before fiducial point */

off set = 2*data-chan * (pks[beat-no] + (pk-off set - OFFSET)*Samprt
/1000);

lseek(datafd, offset, 0);
read(datafd,buf ,buf size);

Create a baseline estimate for each channel

for(i=0; i<nchan; i++){

base[i] = 0.0;
Start baseline calculations -base-offset-8 to left of QRS */

ptr = &buf[chan[i]+(OFFSET+base-offset-8)*data-chan*Samprt/
1000];

eptr = &buf[chan[i]+(OFFSET+base-offset+8)*data-chan*Samprt/
1000];

while(ptr < eptr){
base[i] += *ptr;
ptr += data-chan;

}
base~i] *= 0.0625*1000/Samprt;

}
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dptr = data;
for(i=0; i<nchan; i++){

ptr = &buf[chan[i]];
eptr = &buf[MAXLEN*data-chan+chan[i]];
gain =g[i];

b.est = base[i];
while ( ptr < eptr ){

temp = (*ptr - best) * gain;

temp *= temp;

*dptr++ += temp;
ptr += data-chan;

}
dptr = data;

}

/* If individual lead analysis is desired the program creates

big-array */

/* and datasum arrays for each lead that the gain is not zero. */

if(iswitch) {

ptr = &buf[0];

eptr = &buf[MALEN*data-chan+0];
gain =g[0;

b-est = base[0];
j=0;
while ( ptr < eptr ){

data-x[j++] = (*ptr - b.est) * gain;
ptr += data-chan;

}
shiftdata(datax, temp.offset[beatno]);
for(i=0; i<MAXLEN; i++) {

datasum-x[i] += data-x[i];
bigarray.x[beat-no] [i] = data-x[i];
data_x[i] = 0.0;

}

ptr = &buf[1];

eptr = &buf[MAXLEN*data-chan+1];

gain =g[1;

b-est = base[1];

j = 0;
while ( ptr < eptr ){
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data-y[j++] = (*ptr .best) * gain;
ptr += datachan;

}
shiftdata(datay, tempoffset[beatno]);

for(i=0; i<MAXLEN; i++) {
datasum-y[i] += data-y[i];
bigarray.y [beat-no] i] = datay Ci];
data-y[i] = 0.0;

}

ptr = &buf[2];

eptr = &buf[MAXLEN*data.chan+2];

gain = g[2];
b_est = base[2];

j = 0;
while ( ptr < eptr ){

data-z[j++] = (*ptr - b-est) * gain;

ptr += data.chan;
}
shift_data(data-z, temp-offset[beat-no]);

for(i=0; i<MAXLEN; i++) {
datasum-z[i] += data-z[i];
big-array-z[beat.no][i] = data-z[i];
data-z i] = 0.0;

}

}

for(i=0; i<MAXLEN; i++){

*dptr = sqrt(*dptr);
dptr++;

}

shiftdata(data, temp-offset[beatno]);

for(i=0; i<MAXLEN; i++){
energy[i] += data[i] *data i];
datasum[i] += data[i];
big-.array[beat -no] [i] = data[i];
data[i] = 0.0;

}
}

shift-data(data, fract)
double data[];
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float fract;
{
int i;
double cfract;

if(fract > O){
cfract = 1 - fract;
for(i=0; i<MAXLEN-1; i++)

data[i] = cfract * data[i] + fract * data[i+1];
}

if(fract < 0){
fract *= -1;
cfract = 1 - fract;
for(i=1; i<MAXLEN-1; i++)

data[MAXLEN-i] = cfract * data[MAXLEN-i] + fract *
data[MALEN-i-1];

}
return(0);

}

/* trim */

NO LONGER ..trims the outliers of an array of length "length".
NO LONGER ..replaces elements which are "limit" standard deviations

from the mean by the mean

STILL ..zero-means the entire trimmed array
*/

trim(array, length, limit)

double array[];

int length;

double limit;

{
register int i;

double mean, stdev=0.0, sumsq = 0.0, sum = 0.0;
register double value,.temp;

for(i=0; i< length; i++){

temp = array[i];
sum += temp;
temp *= temp;

sum-sq += temp;

}
mean = sum/length;

/* stdev = sqrt( (sum.sq/length) - mean*mean );
temp = limit * stdev;

for(i=0; i< length; i++){
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value = array[i];
value -= mean;
if((value > temp) || (value < (-1)*temp))

value = 0.0; */
array[i] = value;

power spectrum estimate */

pse (arraylength, wintype)

double array[];

int length;

int wintype;

{
register int i;
double dummy[2050];

register double scale;

scale = 1.0/((double)length);

for(i=0; i<length; i++) dummy[i] = array[i]; /*

array */
pass values to dummy

for(i=length; i<2050; i++) dummy[i] = 0.0; /* pad dummy array */

length *= 2; /* twice as long due to padding */

fft(dummy, length); /* take fft of dummy and store results in dummy */

for(i=0; i<length+2; i++) dummy[i] *= scale;

ccmx(dummy, length); /* complex conjugate multiply */

ifft(dummy, length); /* inverse fft to construct autocorrelation */

window(dummy, length, wintype); /* window the autocorrelation function

with wintype

1 = rectangular, 2 = Hanning, 3 = Gaussian,
4 = Bartlett

Takes into account the biasing of zero
padding

fft(dummy, length); /* fft of autocorrelation function */

mag(dummy, length); /* create magnitude of fft == power spectrum
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est */

if(smooth-switch)

sm-spect(dummy, length); /* smooth the spectrum */

for(i=0; i<(length/2)+1; i++) array[i] = dummy[i];

}

fft(array, length)
double array [I;
int length;

{
float farray[2050];

register int i;

for(i=O; i<length+2; i++)

f array [i] = array [i;
ffa- (f array, &length);
for(i=O; i<length+2; i++)

array[i] = farray[i];

}

ccmx(array, length)

double array[];

int length;

{
register int i;
register double imag, real;

for(i=O; i<length+2; i=i+2){

real = array[i];
imag = array[i+1];
real *= real;
imag *= imag;

real += imag;
array[i] = real;
array[i+1] = 0.0;

}
}

mag(array, length)

double array [];
int length;
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{
register int i;
register double mag2, real, imag;

for(i=0; i<length+2; i=i+2){

real = array[i];
imag = array[i+1];
real *= real;

imag *= imag;

mag2 = real + imag;
array[i/2] = sqrt(mag2);

}
for(i=(length+2)/2; i<length+2; i++)

array[i] = 0.0;
}

ifft(array, length)

double array[];

int length;

{
float farray[2050];

int i;
for(i=0; i<length+2; i++)

farray[i] = array[i];
ffs_(farray, &length);
for(i=0; i<length+2; i++)

array [i] =f array [i];

}

window(array, length, wintype)
double array[];
int length;

int wintype;

{
register int i;

double sigt;

register double wind, scale;

sigt = ((double)(length))/(2*TWOPI);

Correct for biasing encountered by zero padding */

for(i=0; i<length/2; i++){

scale = length/((double)(length-2*i));
array[i] *= scale;
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}
array[length/2] = 0.0;
for(i=length/2+1; i<length; i++){

scale = length/((double)(2*i-length));
array[i] *= scale;

}

/* Rectangular Window */

/* if(wintype == 1) printf(" Using Rectangular window for spectral
estimation\n"); */

/* Hanning Window */

if(wintype == 2){
/* printf(" Using a Hanning window for spectral estimation\n");*/

for(i=0; i<length; i++){

wind = (1+cos(TWOPI*i/length))/2;

array[i] *= wind;

}

/* Gaussian Window (a la Ron Berger) */

if(wintype == 3){
/* printf(" Using a Gaussian window for spectral estimation\n");

*/
for(i=0; i<length/2; i++){

wind = exp(-(double)(i*i)/(2*sigt*sigt));
array[i] *= wind;

array[length-i] *= wind;

}
}

/* Bartlett Window */

if(wintype == 4){
/* printf(" Using a Bartlett window for spectral estimation\n");
*/

for(i=0; i<length; i++){

wind = 1 - 2 * ((double)(i))/(length);

if(wind < 0.0) wind = -wind;
array[i] *= wind;

}
}
if(wintype > 4 || wintype < 1) printf(" Bad window type - %d\n",

wintype);
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}

smspect(array, length)

double array[];

int length;

{
int i, j;
int smooth-window;
int half;
int vect-end;

double temp.smooth = 0.0;
float vector[2050];

half = length/2;
vect-end = 2*length;
smooth-window = length/128; /* length is twice the size of the

spectrum */

/* we want to smooth over 1/64 th of the
spectrum */

for(i=0; i<half; i++){
vector[half+i] = array[i];
vector[half-i] = array[i];
vector[length+i] = array[half+i];
vector[vect.end-i] = array[half+i];

}
vector[length+half] = array[length];
for(i=half; i<half+length+1; i++){

tempsmooth = 0.0;
for(j=0; j<smoothwindow; j++)

tempsmooth += vector[i-j];
tempsmooth /= smooth-window;

array[i-half] = temp.smooth;

}
}

npwr2 */

Finds the nearest power of 2 less than the candidate number */

npwr2(number)

int number;

{
register int i=1;

if(number < 2){
printf(" Bad number of observations - %d\n", number);
exit(0):
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}
while(number >= 2*i ) i *= 2;
return(i);

}

A.3 pwa-auto

#!/bin/sh

# pwaauto

# Nikhil Iyengar, October 1997

# Run this script after running RR.ii and display to revise the

# annotations

# This script will then detect p-waves and calculate p-wave

# alternans

DB=" /home/nik/header" ;export DB
datapath="/ldata2/nik" ;export datapath

BEATS=" 128"

rate=" s"
#Number of iterations for cross-correlation

ITERS="3"

rev='expr $ITERS - 1

if [ -z "$case" ]
then

echo -n "Case number does not exist. "

echo -n "Enter Case number "

read case

else

case="$case"

fi

if [ -z "$int" ]
then

echo -n "Enter intervention code (e.g. nsr,a600,...) "

read int
else

int="$int"

fi

# Assign ID code
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ID="$case. $int"
echo "ID=$ID"

if [ -z "$1" ]
then

file="$ID"

else

file="$1"

fi

dpath=" $datapath/$case/"$case" _$int";export dpath
echo "dpath=$dpath"

if [ -z "$dpath" ]
then

echo "ERROR dpath does not exist."
exit I

fi

wpath='pwd'

if [ ! -f "$dpath/$file" ]
then

echo "Can't find $file in $dpath "

echo "Your choices of data files are "
ls $dpath

exit 1
fi

export wpath file

#Sampling rate

SAMP='awk 'NR==5 (print $0}' $DB/header.$file'

#Number of channels to analyze

channels=cawk '/channels/ (print $2}' $DB/header.$file'

if [ -z "$channels" ]
then

echo "Can't find channel # in header file "

echo -n "Enter number of data channels [3] "
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read channels

if [ -z "$channels" I
then

channels="3"

fi
fi

#set channel calls to variable C

a=1
C=1"-cO"

while [ "$a" -lt "$channels" I
do

C="$C -c$a"
a=' calc "$a + 1"'

done

#SET GAINS FOR STUDY

OLDGAIN=""

G=" k "D

G1='awk '/gains/ {print $2}' $DB/header.$file'

G2='awk '/gains/ {print $3}' $DB/header.$file'

G3='awk '/gains/ {print $4}' $DB/header.$file'

for GAIN in $G1 $G2 $G3

do

G="$OLDGAIN -g $GAIN"

OLDGAIN="$G"

done

# Check to see if a pks file exists.

skipqrs="no"

if [ -f "pks.$ID" ]
then

echo -n "pks file detected. Use it and skip QRS correlation? "

read ans

if [ "$ans" = "y" I
then

skipqrs="yes"

fi

fi

# BEGIN CONDITIONAL A

if [ "$skipqrs" = "no" ]
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then
# Create a crude sig. avg. based on RR file

WIDTH='RRstats RR.$ID I awk '{print \$2}''
WIDTH='calc "int( ($WIDTH/$SAMP) * 1000 )"'
sigavg -aint.$ID -d$dpath/$file $G -n 100 -pRR.$ID -w$WIDTH $C
-N $channels -S $SAMP -b -50

# Detect baseline and beginning and end of QRS.

cat int.$ID I awk '{print $7}' 1 delqrs > temp.1
baseshift='awk '{print $1}' temp.1'
peakshift='awk '{print $2}' temp.1'
WINDOW='awk '{print $3}' temp.1'
rm temp.1

#Allow the user to make changes if program messed up

echo "baseshift="$baseshift
echo "peakshift="$peakshift
echo "WINDOW="$WINDOW
plot.windownik RR.$ID $file $peakshift $WINDOW $baseshift
echo -n "Do you want to make any changes in the template window ? "

read decision
until [ "$decision" = "n" I
do

echo -n "Shift for baseline estimate (- = left , + = right) [-35 ms] "

read baseshift
[ -n "$baseshift" ] || baseshift="-35";
echo -n "Shift raw peak for centering template ( - = left , + = right)

[0 ms] "
read peakshift
[ -n "$peakshift" ] || peakshift="O";
echo -n 'Window size[70 ms]? '

read WINDOW
[ -n "$WINDOW" ] | WINDOW="70";
plot.windownik RR.$ID $file $peakshift $WINDOW $baseshift
echo -n "Do you want to make more !!! changes ? "

read foo
if [ "$foo" = "n" ]

then
break 1

fi

done
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#Maximum allowable shift for template to cross-correlate

SHIFT='calc "int( $WINDOW/2 )"

#note -x switch in xcnew will prevent a reloction of raw peak

#estimate to the highest point within the template window.

#If you want Alternans Metric and K Score to be calculated
#from last 4 points of spectrum (rather than last point e.g.

#Nyquest frequency) insert -s4 as switch to spitnew program."

#THIS OPTION IS USEFULL WHEN THE ALTERNANS ENERGY IS SHIFTED OVER

#TO ADJACENT FREQUENCY BANDS SECONDARY TO PHASE RESETTING OF BEATS

echo "baseshift=$baseshift" >> var.$file
echo "peakshift=$peakshift" >> var.$file
echo "WINDOW=$WINDOW" >> var.$file
echo $baseshift > base.$ID

xcnew_$rate -aavg.$ID -d$dpath/$file $G -n$ITERS -pRR.$ID \
-s$SHIFT -w$WINDOW -1 $peakshift -o $baseshift -x $C \
-N $channels -S $SAMP

get :1, pks.rev$rev % -P > pks.$ID
rm pks.rev*

WIDTH='RRstats pks.$ID I awk '{print $2}''
badbeat -w $WIDTH -c 0.95 -i 1 -m 1 -p pks.$ID -t 150 -b bad.$ID

export start end

echo "start: \$start" >> "var.$file"
echo "end: \$end" >> "var.$file"

echo

echo "QRS cross-correlation completed. Press return ... "
read anykey

else

WIDTH='RRstats pks.$ID I awk '{print $2}''

baseshift='cat base.$ID'

fi
#END CONDITIONAL A

# Check to see if a p-pks file exists.
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skipp="no"

if [ -f "p-pks.$ID" ]
then
echo -n "ppks file detected. Use it and skip P correlation? "
read ans

if [ "$an" = "y" ]
then

skipp="yes"

fi

fi

#BEGIN CONDITIONAL B

if [ "$skipp" = "no" ]
then

#Now do p-detection. Start by averaging on the QRS, skipping badbeats

OLDGAIN=""

GX="" 1

echo -n "Enter p-detection gain for channel 0 [$G1]: "
read GX1

echo -n "Enter p-detection gain for channel 1 [$G2]:
read GX2

echo -n "Enter p-detection gain for channel 2 [$G3]:
read GX3

[ -n "$GX1" ] || GX1="$G1";
[ -n "$GX2" ] || GX2="$G2";
[ -n "$GX3" ] || GX3="$G3";
for GAIN in $GX1 $GX2 $GX3

do

GX="$OLDGAIN -g $GAIN"

OLDGAIN="$GX"

done

peaks="pks.$ID"
WIDTH='calc "int( ($WIDTH/$SAMP) * 1000 )"'

sigavg -aint.$ID -d$dpath/$file $GX -n 100 -p pks.$ID -w$WIDTH $C \
-N $channels -S $SAMP -b $baseshift -x bad.$ID

# Detect baseline and beginning and end of P.

cat int.$ID I awk '{print $7}' 1 delp > temp.1
baseshift='awk '{print $1}' temp.1'

peakshift='awk '{print $2}' temp.1'

WINDOW='awk '{print $3}' temp.1'

rm temp.1
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#Allow the user to make changes if program messed up

#BEGIN LOOP A

until [ "black" = "white" ]
do

echo "baseshift="$baseshift

echo "peakshift="$peakshift
echo "WINDOW="$WINDOW

plot.windownik $peaks $file $peakshift $WINDOW $baseshift

echo -n "Do you want to make any changes in the template window ? "

read decision

#BEGIN LOOP B

until [ "$decision" = "n" ]
do

echo -n "Shift for baseline estimate (- = left , + = right) [-35 ms] "

read baseshift

[ -n "$baseshift" ] || baseshift="-35";
echo -n "Shift raw peak for centering template C - = left , + = right)

[0 ms] "
read peakshift

[ -n "$peakshift" ] || peakshift="O";

echo -n 'Window size[70 ms]?

read WINDOW

[ -n "$WINDOW" ] || WINDOW="70";

plot.windownik $peaks $file $peakshift $WINDOW $baseshift
echo -n "Do you want to make more ! H changes ? "

read foo

if [ "$foo" = "n" ]
then

break 1

fi

done

#END LOOP B

SHIFT='calc "int( $WINDOW/2 )"

echo "baseshift=$baseshift" >> var.$file

echo "peakshift=$peakshift" >> var.$file
echo "WINDOW=$WINDOW" >> var.$file
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echo $baseshift > p-base.$ID

rate=s

xcnew_$rate -aavg.$ID -d$dpath/$file $GX -n$ITERS -p$peaks -s$SHIFT
-w$WINDOW -l $peakshift -o $baseshift -x $C -N $channels -S $SAMP
get :1, pks.rev$rev % -P > p-pks.$ID
rm pks.rev*

#display $file ppks.$ID

echo "Finished p-wave cross-correlation. Press return ... "

read anykey

#BEGIN LOOP C

until [ "good" = "bad" ]
do

corcof="0.95"

echo -n "Correlation coef. threshold to use [0.95]? "

read corcof

[ -n "$corcof" ] || corcof="0.95";

threshr="100"
echo -n "Maximum allowable RR interval deviation (msec) [100]? "

read threshr

[ -n "$threshr" ] || threshr="100";

WIDTH='RRstats p-pks.$ID I awk '{print $2}''

badbeat -w $WIDTH -c $corcof -i 1 -m 1 -p p-pks.$ID -t $threshr -b p-bad.$ID

numbad=ccat p.bad.$ID I awk '{print $4}' 1 grep 1 1 wc -l'

totalnum='cat p-bad.$ID I wc -l'
echo "There are $numbad bad beats out of $totalnum beats."

echo -n "Try with a different threshold (y/n)? "

read barfu

if [ "$barfu" = "n" ]
then

break 1
fi
done

#END LOOP C

echo "Running display. Be sure to redo the cross-correlation if"

echo "you make any changes"
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display $file "p_ps.$ID"

echo -n "Do you want to redo the cross-correlation? "

read fubar

if [ "$fubar" = "n" ]
then

break I
fi
peaks="ppks.$ID"
peakshift=0
done
#END LOOP A

else

WIDTH='RRstats p-pks.$ID I awk '{print $2}"
baseshift=' cat pbase .$ID'

fi
# END CONDITIONAL B

start='segment -b pbad.$ID -c 3 -1 $BEATS'

end='calc "$start + $BEATS - 1"'

awk '(NR - 1) >= '$start' { print $0 }' p-pks.$ID > bestpks.$$
beatout=""

for F in 'awk '$1 >= '$start' && $1 <= '$end' && $4 == 1 \
{print ( $1 - '$start' ) }' p-bad.$ID

do

beatout="$beatout -b $F

done
WIDTH='calc "int( ($WIDTH/$SAMP) * 1000 )"'

mkavnew_$rate -aint.$ID -d$dpath/$file $G -n 10 -pbestpks.$$ \
-w$WIDTH $C -N $channels -S $SAMP -b $baseshift

PTERM=xw

export PTERM

segs $ID $start $end p.pks > seg.$ID
spitnew3_$rate -n$BEATS -l $baseshift $G -d$dpath/$file -pbestpks.$$ \

-mmat.$ID $C -N $channels -Bbig.$ID -w $WIDTH $beatout -S $SAMP -i

rm *.$$

# Now do the stuff in FINAL,

######################################################################

PTERM=xw; export PTERM
BEAT="128"
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# First step: use vector magnitude from spitnew to determine
# pstart and pend.

# IMPORTANT: The number of points in mat.*.* before the fiducial

# point (now the P-wave) is hard-coded into spitnew_3. Currently

# this value, spitoff, is:

spitoff=300

cat mat.$ID I awk '{print $1}' 1 delp > temp.1
pcent='awk '{print $2}' temp.1'

pwin='awk '{print $3}' temp.1'

# So, the center of the p-wave is at spitoff and the window width

# is pwin.

pstart='calc "int( $spitoff - (pwin/2) )"'

pend='calc "int( $spitoff + (pwin/2) )"'
math mat.$ID 0 -o"row*1000/$SAMP,cO" |plt 0 1 -st -F"

hl .5 1.1 c 1

Vector Magnitude $ID

xa 0 - 10 - 5 -"

echo -n "Enter start of p-wave (ms) [$pstart] "

read ans

if [ "$ans" != "" ]
then

pstart="$ans"
fi

echo -n "Enter end of p-wave (ms) [$pstart] "

read ans
if [ "$ans" != "" ]
then

pend="$ans"
fi

echo -n "Enter start of BLANKING interval for P-wave (ms) "

read bstr.p
echo -n "Enter end of BLANKING interval for P-wave (ms) "

read bend-p

blank-p=""
if [ "$bstrp" != "" ]
then

Bstr.p='calc "$bstr.p*$SAMP/1000"'
if [ "$bend.p" != "" ]
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then
Bendp='calc "$bend-p*$SAMP/1000"'

blankp="-B $Bstrp $Bend.p"
fi

fi

# Now, write out the start and end of P-wave to be used for matlab

echo "$pstart $pend" > ptimes.$ID

A.4 sigavg.c

/* sigavg.c October, 1997

By Nikhil Iyengar

based on mkavgm.c by Joe Smith, December, 1987

Function: constructs a signal average of each of N

ECGs together with the vector magnitude.

Note: only n GOOD beats are included in the average.

Output: eight ASCII columns

column 1: baseline subtracted from channel 1 beats, beats averaged.

column 2: baseline subtracted from channel 1 beats, beats squared
and the average of the squares taken

columns 3-6: same for channel 2,3
column 7: baseline subtracted from each channel of each beat,

vector mag. of each beat computed, vector mags. averaged

column 8: baseline subtracted from each channel of each beat, vector

mag. of each beat computed, squares of vector mags averaged.

*/

#include <stdio.h>

#include <math.h>

#include <sgtty.h>
/* #include. <libmp.h> */

#include "utils.c"

#define OFFSET 200,

#define MAXCHAN 3

#define MAXSCHAN 8

#define MAXLEN 1600

#define MAXOBS 1024

FILE *pksfp, *outfp, *badfp;
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int
int
int
int

char
char
char
long
long
double
double
double
double
double
double
double
short
int
int

main(argc, argv)
int argc;
char **argv;
{

char xtitle [20], ytitle [20];

int i, j, k;

while( (ctmp = option(&argc, argv)) != 0){
switch(ctmp){

case 'a': /* output file name

outfp = fofile( opt-argvO, "w" );

break;

case 'b': /* baseshift */

base-offset = atoi(opt-argvo);
break;

case 'c': /* channels to be analyzed */

chan[cflag] = atoi(opt-argvo);
cflag += 1;
break;

case 'd': /* data file */
datafd = ofile( opt-argvO, 0 );
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chan[MAXCHAN];

datafd, n-obs=256, width = MAXLEN, s=NO, data-chan, nchan;
beat-no;
baseoffset=0;

optiono, *opt-argvo), ctmp, tmode = 0;
cr;

pksname [20], dataname [20];

pks[MAXOBS]; /* peak locations */
pk;
base, g[MAXCHAN];
data[MAXCHAN][MAXLEN];
data2[MAXCHAN][MAXLEN];
mag[MAXLEN], mag2[MAXLEN];
temp-array [MAXCHAN] [MAXLEN];
temp.offset[MAXOBS];
inv-n-obs;
Samprt=1000, gflag=0, cflag=0;

f-beat=0, bufoff;

badbeat[1000], badcount=0, curbad=0;



break;

case 'g': /* relative gains of channels */
g[gflag] = atof(opt-argv());
gflag += 1;
break;

case 'N': /* number of channels in data */
data-chan = atoi(opt-argvo);
nchan = data-chan;
break;

case 'n': /* number of beats to average */
n-obs = atoi(opt-argvo);
/* n-obs = npwr2(n.obs); */
break;

case 'p': /* peaks file */
pksfp = fofile( opt.argvO, "r" );

break;

case 's': /* Number of first beat */
f-beat = atoi(opt-argvo);
break;

case 'w':
width = atoi(opt-argvo);

break;

case 'x': /* badbeats file */
badfp = fofile(opt-argvo, "r");
break;

case 'S':
Samprt = atoi(opt-argvo);
break;

case 'h': /* help */
printf("\n\n");

printf("mkavgm.c - N-channel ecg average\n");
printf(" expects a pks file in the csp

format\n");

printf("\n\n");

printf ("command line arguments:\n");
printf(" -a(filename) - name of ouput

(average) file\n");

printf(" -c(chan #) - iteratively
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called for each channel\n");

data file\n");

called for each channel\n");

to average\n");

file\n");

averaging buff er\n");

beat to start averaging\n");

rate\n");

file\n");

}

printf ("

printf("

printf ("

printf("
printf("

printf C"

printf C'

printf ("

printf ("

printf("\n");

exit(0);
printf("\n IL

exit(0);

-d(filename)

-g(gain)

-n(number)

-N(# of data

-p(filename)

-w(number)

-s(number)

-S(number)

-x(filename)

- name of raw

- iteratively

- number of beats

chans)\n");

- name of peaks

- width of

- number of first

- the sampling

- name of badbeat

default:
LEGAL OPTION %c\n", ctmp);

}

bufoff = width/2;

/* Init arrays to zero */

for(i=0;i<MAXLEN;i++) {
for(j=0;j<MAXCHAN;j++) {

data[j][i] = -0;
data2[j][i] = 0;

}
mag[i] = 0;

mag2[i] = 0;

}

if(outfp NULL) outfp = fofile("average", "w" );
get-pkso; /* loads array of peak locations */

inv-n-obs = 1.0/(double)n-obs;

for(beat-no=O; beat-no<n-obs; beatno++)

get-datao;

for(j=O; j<(width*Samprt/10Q0); j++){
for(k=0; k<nchan; k++){
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data[k] [j] *= invn.obs;
data2[k] [j] *= invnobs;

}
mag[j] *= inv-n-obs;

mag2[j] *= inv-n-obs;

}
for(i=0; i<(width*Samprt/1000); i++)

{
for(k=0; k<nchan; k++)

{
fprintf(outfp, " g

data2[k][i]);

}
fprintf(outfp," %g

}
exit (0);

Xg ", data[k] [i],

Xg \n", mag[i], mag2[i]);

get.pks()

{
int chk, i, row, val, done;

char dummyl[10], dummy2[10), dummy4[10], dummy5[10];

char buf[100];
float tmpoff;

/* Open the badbeats file.

the program will say so,

good */

Note that if this file does not exist,

and will simply assume all beats are

if (badfp == NULL) {
fprintf(stderr, "sigavg: No badbeat file specified. Assuming all beats

are good.\n");
badbeat[0] = 10000;

}
else {

/* Read in the badfile */

row = 0;
while (fgets(buf, sizeof(buf), badfp) != NULL) {

/* Get the value of the 4th column of badfile */

if (sscanf(buf, "%*f %*f X*f %d", &val) != 1) {
fprintf(stderr, "sigavg: error encountered in row %d\n", row);

return(-2);

}

if (row >= f-beat) {
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if (val == 1) {
badbeat[badcount++] = row;

}
if ((row-f-beat-badcount+1) == n-obs) {
done=1;

}
}

if (done) break;
row++;

}
}

curbad=O;

for(i=O; i<f-beat+n.obs+badcount; i++){
chk = fscanf(pksfp, "%s %ld %s %f %s %s\n", dummyl, &pk, dummy2, &tmpoff,

dummy4, dummy5);
if ((i>=f-beat) && (i != badbeat[curbad])) {
pks[i] = pk;
temp-offset[i] = tmpoff;

}
else if (i == badbeat[curbad]) {
curbad++;

}
}

get-data()
{

Subroutine to retrieve vector of data given pk location
*/

int i,j,k;
short buf[2*MAXLEN*MAXSCHAN]; /* twice MAXLEN available */
int m, bufsize;
double temp2, temp, gain;
long offset;

bufsize = 4 * MAXLEN * MAXSCHAN; /* twice the needed data */
/* begin data buffer bufoff.,msecs to left of QRS marker */

offset = 2 * data-chan * (pks[beat-no] - bufoff*Samprt/1000 );
lseek(datafd, offset, 0);
read(datafd,buf,bufsize);

/* DO IT CHANNEL BY CHANNEL */
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for(k=0; k<nchan; k++){

base = 0.0;
for(i=bufoff+base-offset-8;

i<bufoff+base-offset+8;
i++)

base += (double)(buf[data-chan*i+chan[k]]);

base *= .0625*1000/Samprt;

gain =g[k];

for(i=0; i<MAXLEN; i++){
m = data-chan * i;
temp = gain * (buf [m + chan[k]] - base);
temp.array[k][i] = temp;

}

lin-shifto;

/* At this point, temparray[k][i] contains the current beat
for each channel k. */

for(i=0; i<MAXLEN; i++){

temp2 = 0.0;
for(k=0; k<nchan; k++){

temp = temp-array [k] [i];
temp2 += (temp * temp);
data[k] [i] += temp;
data2[k][i] += temp * temp;

}
mag2[i] += temp2;

mag[i] += sqrt(temp2);

}
}

npwr2 */

/* Finds the nearest power of 2 less than the candidate number */

npwr2(number)

int number;

{
int i=1;

if(number < 2){
printf(" Bad number of observations - %d\n", number);

exit(0);

}
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while(number >= 2*i ) i *= 2;
return(i);

}

lin-shift()

{
int k, p;
double fract, cfract;

fract = temp-offset[beatno];
if(fract > 0){

cfract = 1 - fract;
for(k=O; k<nchan; k++){

for(p=O; p<MAXLEN-1; p++){

temparray[k][p] = cfract * temparray[k][p] +
fract * temp..array [k] [p+1];

}
}

}
if(fract < 0){

fract *= -1;

cfract = 1 - fract;

for(k=O; k<nchan; k++){
for(p=1; p<MAXLEN; p++){

temp-array[k][MAXLEN-p] = cfract *

temp.array [k] [MAXLEN-p] + fract * temp-array [k][MAXLEN-p-1];

}
}

}
return(0);

}

A.5 delp.c

/* delp.c -- Detects the beginning and end of P

Nikhil Iyengar, 10/24/97

Usage: delp

Takes column input file ,from standard input. This column file
should contain the vector magnitude of an average beat with the

annotation at precisely the center of the beat (from sigavg.c, for

example).

Outputs three numbers on one line: a b c

a = baseline. points to the right of b where baseline is located.
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b = P center.

c = P width.

should always be positive

points to the right of the annotation that p

center is located.

width of the P around its center.

*/

#include <stdio.h>

#include <stdlib .h>
#include <math.h>

double mean(double [], int, int);

double std(double [], int, int);

main()

{

double beat[3000], qrsampl, baseampl;

int i, width, qrsindex, baseindex, newindex, center;

double curstd, minstd, thresh;

double curmax, prevmax, leftmin, pampl;

int curcount, pindex, pstart, pend, outi, out2, out3;

i=1;
while (scanf("Xlf", &beat [i]) == 1) {

i++;

}
width = i-1;

center = width/2;

/* Find the maximum point in beat */

qrsampl = 0;
for(i=1;i<=width;i++) {

if (beat [i] > qrsampl)
qrsampl = beat [i;
qrsindex = i;

}

{

}

/* Find the baseline point */

baseampl = qrsampl;
for(i = qrsindex-150 ; i<qrsindex ; i++) {

if (beat[i] < baseampl) {
baseampl = beat [i];
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baseindex = i;

}
}

minstd = qrsampl;
for(i = baseindex - 30 ; i<baseindex + 30; i++) {

curstd = std(beat,i-7,i+7);
if (curstd < minstd) {
minstd = curstd;
newindex = i;

}
}
baseindex = newindex;
baseampl = mean(beat,baseindex-7,baseindex+7);

/* Go left from the baseline looking for a local maximum over
a hundred point area. This should be the P-peak */

curmax = 0;

prevmax = 0;

curcount = 0;

for(i = baseindex; i>0 ; i--) {
if (beat Ei] > curmax) {

curmax = beat[i];
curcount = 1;

}
else

curcount++;

if (curcount == 100) {
if (curmax > prevmax) {

prevmax = curmax;
pindex = i+99;

}
curmax = 0;

}
}
pampl = beat[pindex];

/* Find the minimum to the left of the p-wave */

leftmin = qrsampl;
for(i=pindex-100 ; i<pindex ; i++) {

if (beat [i] < leftmin) {
leftmin = beat i];

}
}
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/* The beginning and end of the P will be when the amplitude first
falls below 15% of the difference between QRS and baseline */

thresh = leftmin + 0.15 * (pampl - leftmin);

for(i = pindex; i > pindex-100; i--) {
if (beat [i] < thresh) {

pstart = i;
break;

}
}

thresh = baseampl + 0.15 * (pampl - baseampl);

for(i=pindex; i < pindex+100; i++) {
if (beat [i] < thresh) {

pend = i;
break;

}
}

outi = baseindex - (pstart+pend)/2;

out2 = (pstart+pend)/2 - center;

out3 = pend - pstart;

printf("%d \t %d \t %d\n", outi, out2, out3);

}

double mean(double vec[]l int start, int end)

{
int i;

double sum=0, avg;

for(i=start ; i<=end ; i++) {
sum = sum + vec[i];

}

return sum/(end-start+1);

}

double std(double vec[], int start, int end)
{

int i;
double sum=0, avg;
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for(i=start ; i<=end ; i++) {
sum = sum + vec[i];

}
avg = sum/(end-start+1);

sum = 0;
for(i=start ; i<=end ; i++) {

sum = sum + (vec[i] - avg)*(vec[i] - avg);

}

return sqrt(sum/(end-start));

}

A.6 dofinal.m

function out = dofinal()

olddir = pwd;
subplot(1,1,1);
number = input('What number? 's');
exper = input('What experiment (nsr, etc.) ? ','s');

newdir = ['/ldata2/nik/' number '/' number '_' exper];
cd(newdir)

fidi = fopen(['mat.' number '.' exper], 'rt');
a = fscanf(fidl, '%f %f X f', [3,inf]);
avgbeat = a(1,:)';
alt-met = a(2,:)';
kscore = a(3,:)';
clear a;

fclose(fidl);

XXXXXXXXXXXXXXXXX size of plot
pc = 3; %columns in plot

pr = 4; %rows in plot

subplot(pr,pc,1)

plot(avgbeat)

title('Nonfiltered vec. mag.');
%subplot(3,1,2)

%plot(alt-met)

%subplot(3,1,3)

%plot(kscore)
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%startp = input('What is the start of the p-wave? ');
Xendp = input('What is the end of the p-wave? ');
%startp = 250;
Xendp = 320;

fidi = fopen(['ptimes.' number '.' exper], 'rt');
a = fscanf(fidl, 'Xf Xf');
startp = a(1);
endp = a(2);
fclose(fidl);

kscoretot = mean(kscore(startp:endp));
alt-mettot = mean(altjmet(startp:endp));

fprintf(1, 'The k-score over that region is %f.\n', kscoretot);

fprintf(1, 'The alt-metric over that region is %f.\n', altjmettot);

subplot(pr,pc,2);

plot(avgbeat(startp-50:endp+50));

title('magnified unfilt. p-wave');

% Now, load up the individual leads and plot them

fidi = fopen(['mat.' number '.' exper '_x'], 'rt');
fid2 = fopen(['mat.' number '.' exper 'y')], 'rt');
fid3 = fopen(['mat.' number '.' exper '_z'], 'rt');

[a] = fscanf(fid1, '%f %f %f', [3,inf]);

avgbeat-x = a(1,:)';
if length(avgbeatx) -= length(avgbeat)

avgbeat-x = zeros(length(avgbeat),1);
end

clear a;

[a] = fscanf(fid2, '%f %f Xf', [3,inf]);

avgbeat-y = a(1,:)';
if length(avgbeat-y) ~= length(avgbeat)

avgbeat-y = zeros(length(avgbeat),1);
end

clear a;

[a] = fscanf(fid3, '%f %f %f', [3,inf]);

avgbeat-z = a(1,:)';
if length(avgbeat.z) -= length(avgbeat)

avgbeat-z = zeros(length(avgbeat),1);
end

clear a;
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subplot(pr,pc,3)

plot(avgbeat.x(startp-50:endp+50));

subplot (pr,pc,4)
plot(avgbeat-y(startp-50:endp+50));

subplot(pr,pc,5)

plot (avgbeat-z(startp-50:endp+50));

X now pass each lead through a filter to get the filtered output.

sampfreq = 1000;
[b,a] = butter(4, 40/(sampfreq/2), 'high');

yl = filtfilt(b,a,avgbeatx);
y2 = filtfilt(b,a,avgbeat.y);
y3 = filtfilt(b,a,avgbeat.z);

subplot(pr,pc,6)

plot(y1(startp-50:endp+50));

subplot(pr,pc,7)

plot(y2(startp-50:endp+50));

subplot(pr,pc,8)

plot(y3(startp-50:endp+50));

% combine the individual filtered leads into a vector magnitude

filtavg = sqrt(y1.^2 + y2 .^2 + y3.^2);
subplot (pr,pc,9)
plot (filtavg)
subplot(pr,pc,10)

plot(filtavg(startp-50:endp+50));

% now, find the start and end of the p-wave according to valverde.
% calculate the average noise 100 points from the start

avgnoise = mean(filtavg(95:105))

X The algorithm:
% 1. find where the signal goes above 3 times the average noise for

X five points in a row. This is the start of the p-wave. (note:

X skip the first 50 points because there may be a filter transient

% there).
% 2. keep going until you find a 30 msec window where nothing goes above

X 3 times the average. The beginning of this window is the end

X of the p-wave.

% 3. Check to see if you have reached 30% QRS amplitude. In this case,

X step 2 has failed. Go to alternate algorithm in step 4.

X 4. Redo step 2 except now only a 7 msec window is used.
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% 5. Refine the beginning and ending points as follows: Go left or

X right for startp and endp, respectively, until you get down

% to a point that is less than or equal to 1 * average noise.

% 6. If the refining process takes you more than 20 points away, scrap

% it and use the initial point +/- 10ms.

for curpoint = 50:length(filtavg)
if sum(filtavg(curpoint:curpoint+2) > 3*avgnoise*ones(3,1)) == 3

startp = curpoint;
break;

end

end

startp

successful = 0;
maxpeak = max(filtavg);
for curpoint = startp:length(filtavg)

if filtavg(curpoint) > 0.3*maxpeak
break;

end

if sum(filtavg(curpoint:curpoint+29) < 3*avgnoise*ones(30,1)) ==30
endp = curpoint;
successful = 1;
break;

end

end

if successful == 0
for curpoint = startp:length(filtavg)

if filtavg(curpoint) > 0.3*maxpeak
break;

end

if sum(filtavg(curpoint:curpoint+6) < 3*avgnoise*ones(7,1)) ==7
endp = curpoint;
successful = 1;
break;

end

end

end

success2 = 0
for curpoint = startp:-1:startp-40

if sum(filtavg(curpoint:-1:curpoint-1) < 1*avgnoise*ones(2,1)) == 2

startp = curpoint;
success2 = 1;
break;

93



end
end
if success2 == 0

startp = startp - 10;

end

success2 = 0;

for curpoint = endp:endp+20
if filtavg(curpoint) <= avgnoise

endp = curpoint;
success2 = 1;
break;

end

end

if success2 == 0
endp = endp + 10;

end

if successful == 1
fprintf(l, 'startp: %f endp: %f length: Xf.\n', startp, endp,

endp-startp);

end

out = avgbeat;

fclose('all');

cd(olddir);

%fprintf(1,'Where are the files [%s] ? ', pwd)

Xnewdir = input('','s');
%cd(newdir);

Xls

%cd(olddir);
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