
The Audiomomma Music
Recommendation System

Mariano Alvira, Jim Paris and Ryan Rifkin

AI Memo 2001-012 July 2001
CBCL Memo 199

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

Abstract

We design and implement a system that recommends musicians to listeners. The

basic idea is to keep track of what artists a user listens to, to �nd other users with

similar tastes, and to recommend other artists that these similar listeners enjoy. The

system utilizes a client-server architecture, a web-based interface, and an SQL database

to store and process information. We describe Audiomomma-0.3, a proof-of-concept

implementation of the above ideas.

This report describes research done within the Center for Biological & Computational Learning in the

Department of Brain & Cognitive Sciences and in the Arti�cial Intelligence Laboratory at the Massachusetts

Institute of Technology.

This research was sponsored by grants from: OÆce of Naval Research under contract No. N00014-

93-1-3085, OÆce of Naval Research (DARPA) under contract No. N00014-00-1-0907, National Science

Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI) under contract No.

DMS-9872936, and National Science Foundation under contract No. IIS-9800032.

Additional support was provided by: Central Research Institute of Electric Power Industry, Center for e-

Business (MIT), Eastman Kodak Company, DaimlerChrysler AG, Compaq, Honda R&D Co., Ltd., Komatsu

Ltd., Merrill-Lynch, NEC Fund, Nippon Telegraph & Telephone, Siemens Corporate Research, Inc., and The

Whitaker Foundation.

1 Introduction

For a variety of cultural and technological reasons, downloading music from the Internet is a

new national pastime. Primary enabling technologies for this \revolution" include the devel-

opment and widespread use of the MP3 �le format (mpeg level 3 encoding), the expansion

of fast networks throughout universities, and the development of easy to use �le distribution

software (such as Napster). The MP3 �le format allows music to be compressed to ap-

proximately 1 Megabyte per minute of music, while retaining near-CD quality. High speed

networks allow, in principle, the fast transfer of music �les between users, and music sharing

systems such as Napster allow users to share their music with others. As a result, many

people now �nd most of their 40 Gigabyte hard drives accomodating their MP3 collections.

Although it is easier than ever to �nd and obtain music we are looking for, a new problem

presents itself: how do we �nd good music? Previous approaches to this problem include

Usenet discussion groups, Napster chat channels, and user rating systems. The �rst two

approaches involve the user actively interacting with other users. The third approach requires

that the user actively rate content. All three introduce additional burden on the user, and

have not to date led to widely adopted systems.

Audiomomma is a system designed to solve this problem di�erently. Audiomomma con-

sists of a client-side system that observes what artists a user listens to, and stores this

information in a central database. Audiomomma users are then matched up to other users

with similar music taste based on music they play on their computer. Audiomomma provides

an easy interface for suggesting to its users music artists they will probably like. The system

was designed from the beginning to be computationally eÆcient, scaling to large numbers of

users.

Essentially, by observing what artists a user enjoys and storing this information auto-

matically, Audiomomma acts as a substitute for manual user ratings. Any algorithm which

takes as input user rating data could be integrated into the Audiomomma system. This

removes the burden of active rating from the user, resulting in an easy-to-use system.

A proof of concept system Audiomomma-0.3 was created at the Center for Biological

and Computation Learning at MIT. This paper describes the construction and perfor-

mance of this implementation of an Audiomomma system. The system can be used via

http://audiomomma.mit.edu.

2 System Architecture

The data-paths in Audiomomma-0.3 are structured as shown in �gure 1. Execution of the

system can be broken into four segments:

1. User creates an account.

2. User plays an MP3.

3. Audiomomma crunches pro�le data.

4. User gets artist suggestions.

1

Profile Cruncher

Artist Name
Hueristic User Space

System Space

Account InformationAccount Profiles

Artist Information Last Log
Profile Data

Suggestion Generator

Create Account

Get Suggestions

Download Plugin

Web Interface

Connection
Proxy

Audiomomma

MP3 player

Plug−in

MP3 Player

DataBase

User Creates an Account

User Gets Suggestions

User Gets Plugin

User Plays Song

Client Machine

Figure 1: Audiomomma-0.3 data paths

2.1 User Creates an Account

A user creates an Audiomomma account by visiting the web-site. They submit to Au-

diomomma, through a HTML form, their �rst name, last name, and email address.

The new user information from the HTML form is entered into the \Accounts" table in

Audiomomma's database (see Table 1). The new user is assigned a unique User ID number

(UID) and random password.

Audiomomma emails the new user a cordial greeting to the system; it includes simple

instructions as well as his password { serving to welcome the new user and to verify his email

address.

Accounts

email unique

�rst name

last name

password

AID unique, numeric

Table 1: Accounts Table in Audiomomma-0.3 database.

2

2.2 User Plays MP3

After the user has created an account with Audiomomma, he must download the client

software which includes a plugin for his MP3 player.

Each time the user plays an MP3 the client software attempts to send the artist name

stored in the ID3 tag of the MP3. If there is no ID3 tag the client sends the �lename of

the MP3. Audiomomma-0.3 uses a plug-in for Nullsoft's WinAmp as well as a stand-alone

program which handles sending the HTTP requests to the server. For complete details of the

client implementation used in Audiomomma-0.3 see Appendix A: An Audiomomma Client

for Windows

The data sent to the server is the user's email address, password, some number of �le-

names, the same number of artist names (from the ID3 tags), and a count equal to the

number of �lenames/artists pairs sent in the request. If the ID3 tag for a particular MP3 is

not present, the artist �eld is left blank.

This protocol allows for multiple �lenames/artists to be sent with a single request. Sup-

port for this is necessary for people who do not have a persistent Internet connection. In

their case, the client caches their songs played until a connection is available.

If there is no ID3 tag for a particular request (i.e. the artist �eld is blank) then the

artist is extracted from the �lename. This is possible since most MP3s are named according

to some logical scheme. A common one, for example, is \Artist Name - song title.mp3".

Audiomomma-0.3 contains a sophisticated set of patterns and �lters for reducing a MP3

�lename into something that is probably an artist name. The artist names from ID3 tags

are similarly processed to normalize them (e.g. uppercase characters are made lower and

spaces are removed). We call the reduced �lename and normalized artist name 'squash'.

For a complete discussion about the details of the squashing heuristic see Appendix B:

Obtaining and Normalizing Artist Names from MP3 Filenames.

Audiomomma assigns each squash an Artist ID number (AID) and keeps track of a

human-readable form of the artist name. This is done in the Artist Information table of the

database. See Table 2.

Artist Information

AID unique, numeric

artist name

squash unique

Table 2: Artist Information Table in Audiomomma-0.3 database.

Some typical entries may look like:

3

aid name squash

14 The Police police

15 John Mellencamp johnmellencamp

16 Bush bush

17 Soul Coughing soulcoughing

18 Ben Folds Five benfolds�ve

19 R.E.M. rem

New entries are created for squashes that don't exist in the database already.

When an HTTP request containing user listening information is received, Audiomomma

uses the Artist Information table to lookup or create an AID for each squash not already in

the database. The UID of the user is obtained from the Accounts table with the supplied

email address and the password is veri�ed. Then a counter in the \Pro�les" table (see Table

3) of the database, which indexed by UID and AID, is incremented.

Pro�les

UID numeric

AID numeric

count numeric

Table 3: Pro�les Table in Audiomomma-0.3 database.

It is in this way Audiomomma keeps track of the number of times each user plays each

artist. It is easy to perform numeric calculations on the data in this format. The pro�les table

can be linked to human-readable data by table joins with Artist Information and Accounts

tables.

2.3 Audiomomma Crunches Pro�le Data

Audiomomma is designed to be scalable to the order of millions of users. Millions of database

lookups and preference algorithms over millions of points are expensive in terms of time. This

creates a serious design problem when the lag time from when a user requests a suggestion

and his suggestion is actually computed is considered. Ideally computation should be on the

order of seconds.

A suggestion generator can do two types of precomputation to reduce the lag time:

1. crunching database lookups into a pregenerated format that can be quickly read by a

preference algorithm.

2. precompute costly operations of the preference algorithm.

Both of these solutions create an 'o�-line' system, that is, a system whose suggestions will

not be based on real time data. This is problematic, in that we would like our system to give

4

as up-to-date as possible recommendations. Audiomomma handles this by using real-time

data for the requesting user's pro�le data, but older data for �nding users that closely match

the current user. In other words, if I am an Audiomomma, I will �nd other users whose

pro�les at one point matched my current pro�le, although I may not necessarily match their

current pro�les. Currently, the \other users" portion of the matching algorithm (see below)

is updated every night, so the users matched against can be up to one day out of date.

This approach, combined with the fact that all changes to user preferences are stored

in the database, creates some interesting features of the system. One user speci�ed option

could be to match the user up with other users from �ve minutes ago, one month ago, or a

decade ago. This could be a way for people in the future to get not just popular songs of

today but music that was popular years ago.

Audiomomma-0.3 uses option 1 only. Option 2 is not used since the underlying suggestion

algorithm in Audiomomma-0.3 is k-nearest neighbors which has no reasonable precomputa-

tion that can be done over millions of points.

2.3.1 Audiomomma-0.3's suggestion generator

In Audiomomma-0.3 suggestion generation occurs in two steps.

The �rst is crunching the pro�le data from the database into a format that can be read

quickly. Table 4 illustrates the �le format used to store the pro�le data. The crunched data

�le stores UID, AID and times played information in a convenient format for the suggestion

algorithm. Times played is a normalized value of the count stored in the database (i.e. the

current AID count divided by the total number of song plays for this UID). UID and AID

are 32-bit integers and times played is an 8-bit oat. The two integers i and j represent the

total number of users and the total number of artists known to the system when the �le

is generated. This �le is generated every night, and used to �nd matching users whenever

suggestions are requested, until a new �le is made the following night.

i

UID1

j

AID1

times playedAID1

...

AIDj

times playedAIDj

UID2

...

UIDi

...

Table 4: Crunched �le format

5

2.4 User Gets Artist Suggestions

Audiomomma-0.3 uses a k-nearest neighbor algorithm to generate artist suggestions. Each

UID is a point in the space with dimensions of all possible AIDs. The value of each dimension

is the normalized times played number. The Euclidean distance is found between the current

user's point and all other points. Audiomomma-0.3 then goes through the points, closest

points �rst, �nding artists the current user has never listened to. Audiomomma-0.3 stops

suggesting artists after some arbitrary MAX SUGGESTIONS number is reached.

In plain English, Audiomomma �nds users whose pro�le closely matches the requesting

user's, then �nds artists that those users have listened to that the current user has not yet

listened to.

2.5 Conclusions and Future Directions

We have developed Audiomomma, an online, automated system for suggesting new artists

to users. The system is implemented and functional. Informal experiments with toy data

indicated that the system scales well to many users.

These experiments also indicated that relatively obscure but popular bands can propagate

through the system: if you and I both like many of the same popular artists, and you start

spending a lot of time listening to \Obscure Band X", this band will likely be recommended

to me as well. There is some hope that such a system might allow people to be exposed

to music they wouldn't otherwise see, and allow artists to become known to their target

audience without having to be heavily marketed by record companies.

By avoiding the need for manual interaction and input, we avoid many of the problems

associated with other systems for �nding new music. There is hope that this system, if

widely adopted, would be bene�cial to many.

Unfortunately, we are faced with something of a chicken-and-egg problem. Without a lot

of data, the system cannot make good recommendations, but without being able to make

good recommendations, why would anyone use the system? Certainly, we urge all Windows

users to go to http://audiomomma.mit.edu and try out the software. If enough people begin

to use it, the recommendations should get steadily more useful. If there is enough interest,

it would not be overly diÆcult to make additional clients, to allow Linux or Macintosh users,

or users who don't play music via Winamp, to use the system.

3 Appendix A: An Audiomomma Client for Windows

3.1 Architecture

For the Audiomomma system to gain widespread use, it is important that clients capable

of talking to the Audiomomma server exist for as many MP3 playing programs as possible.

It is bene�cial, therefore, to develop a Windows client system that makes it easy and quick

to add support for new and additional MP3 programs. It was decided that an eÆcient

method of doing this was to break the client side of the system into two parts: a standalone

Audiomomma application and an MP3-program-speci�c plugin or helper.

6

The standalone Audiomomma application, which inherits the name Audiomomma, han-

dles the details of communicating with the Audiomomma server as well as all authentica-

tion, encryption, errors, and other issues related to network communications. The program-

speci�c plugins, on the other hand, need only to gather speci�c artist names from the songs

that the user chooses to play and communicate these artist names back to the standalone

Audiomomma application.

3.2 Communication Model

Data transfer between the plugins and the standalone application is achieved through the

Windows Registry. This is not the most elegant way to transfer data, but the alternatives

are also non-ideal:

� IPC (Inter-process communication): Using named pipes or other o�ine IPC

methods would be ideal, but they are only supported under Windows NT, 2000,

and XP. Using Internet-domain sockets for IPC (either TCP/IP or UDP/IP) would

work, but is complicated and subject to security issues when working with an Internet-

connected host.

� Temporary Files: The artist data could also be stored in temporary �les. If the

temporary �les are stored in a �xed location, however, the system is prone to hardware-

dependent incompatibilities. If the �les are stored in a user-de�nable location, an extra

level of con�guration and inconvenience is introduced to the end-user.

By storing the artist data in the registry, the plugin is kept simple (since the location

in the registry is �xed), fast (since the registry is designed to be changed and indexed

quickly and repeatedly), and well-supported (since all versions of Windows since the release

of Windows 95 have the same registry model).

The registry is organized as a hierarchy of keys, values, and data. Upon the user's

playing of a song, the MP3 program's Audiomomma plugin, helper, or native code will

store information about the song in the HKEY LOCAL USERnSoftwarenAudiomommanPlugin

key. The value is set to a �lename that uniquely identi�es the MP3, and the data is set to

the artist name, as best determined by the plugin. One such source of the artist name is the

ID3 tag of the song, but other sources such as program-speci�c databases or even user input

could be used. If no source of this information is available, the Audiomomma server will use

a heuristic on the �lename in an attempt to extract the artist (as described in Appendix B).

3.3 Audiomomma Standalone Program

The standalone Audiomomma client program, as described above, deals with all of the

aspects of communicating with the Audiomomma server. The client resides in the system

tray in the lower right corner of the screen, using dialog boxes to interact with the user for

con�guration. The user-con�gurable options include username, password, network and proxy

settings, and preferences regarding the frequency of sending artist information to the server.

7

Figure 2: Audiomomma Standalone Program

Most defaults are reasonable, and users will typically only need to enter their Audiomomma

username and password to get started with the client.

The client corresponding to Audiomomma 0.3 does not yet support secure connections

to the server (via SSL) but is otherwise fully functional.

3.4 Winamp Plugin

The gen mom Winamp plugin follows the \general purpose" plugin speci�cation as de�ned

at http://www.winamp.com/nsdn/. The Winamp plugin interface is minimal and provides

no support for automatic noti�cation of song playing, so the gen mom plugin polls Winamp

every �ve seconds to get the �lename of the currently playing song. If the current song di�ers

from the previous song, or there was no previous song, the plugin proceeds to add the song

to the registry according to the model described in section 3.2. The artist name is taken

from the ID3 identi�cation tag, if one is found in the �le. If no ID3 tag is found, the artist

name is left blank.

4 Appendix B: Obtaining and Normalizing Artist Names

from MP3 Filenames

Many MP3 �les lack the ID3 identi�cation tag, and the name of the artist is therefore

unavailable. Fortunately, it is exceedingly common to include the artist in the �lename of

the song. The Audiomomma server uses a Perl script to apply a procedural heuristic to

incoming �lenames in order to best determine the artist name. A high-level overview of

process is described below. Four example �lenames are provided here and after each step to

demonstrate the process.

C:\MP3s\Track_02_-_Stone_Temple_Pilots_-_Down.mp3

/mp3s/swim%20-%2001%20-%20clearview.mp3

TheyMightBeGiants-AnaNG.MP3

02-[Radiohead]-High-and-Dry.mp3

8

1. Strip directory names and �le extensions:

Track_02_-_Stone_Temple_Pilots_-_Down

swim%20-%2001%20-%20clearview

TheyMightBeGiants-AnaNG

02-[Radiohead]-High-and-Dry

2. Replace URL (%xx) and MIME (=xx) encoded sequences with ASCII equivalents, and

convert various forms of word delimination to spaces. The heuristic can, depending on

the string, decide to use underscores, dashes, or capitalization as delimination:

Track 02 - Stone Temple Pilots - Down

swim - 01 - clearview

They Might Be Giants - Ana N G

02 [Radiohead] High and Dry

3. Strip o� track numbers from the beginning, end, or middle of a line. Track numbers

are identi�ed by strings such as \track" or \trk", or by the presense of bare numbers

in the string:

Stone Temple Pilots - Down

swim - clearview

They Might Be Giants - Ana N G

[Radiohead] High and Dry

4. Try to match the string to a number of prede�ned patterns, returning the artist:

Stone Temple Pilots

swim

They Might Be Giants

Radiohead

The examples provided here were fairly straightforward, but many steps of the heuristic

are repeated, conditionally executed, or modi�ed based on the data. As a result, much more

complicated input data will pass through the heuristic successfully and return the artist.

After extraction of the artist, an additional step is taken to ensure that the artist names

are consistent in the database. Articles such as \the" are stripped, artist names are converted

to lowercase, and most numerals are converted to their English equivalents. In addition,

names such as \Bj�ork" are simpli�ed to \Bjork". All of these changes are intended to

facilitate later matching by ensuring that artists are referenced in a consistent way.

9

