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Abstract

We propose a scheme for indoor place identi�cation based on the recognition of global scene

views. Scene views are encoded using a holistic representation that provides low-resolution

spatial and spectral information. The holistic nature of the representation dispenses with the

need to rely on speci�c objects or local landmarks and also renders it robust against variations

in object con�gurations. We demonstrate the scheme on the problem of recognizing scenes in

video sequences captured while walking through an oÆce environment. We develop a method

for distinguishing between 'diagnostic' and 'generic' views and also evaluate changes in system

performances as a function of the amount of training data available and the complexity of the

representation.
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I. Introduction

Much attention in high-level vision has been devoted to the problem of individual object

recognition. An equally important but less researched problem is that of recognizing entire

scenes. Scene recognition underlies many other abilities, most notably navigation through

complex environments.

Scene-based navigation strategies are prevalent in the animal kingdom. Animals as sim-

ple as bees and ants can perform impressive feats of navigation using image matching.

Desert ants of the genus Cataglyphis, for example, can reliably return to their nest fol-

lowing foraging trips that can exceed several hundred meters in length. [Wehner, 1987].

It is unlikely that Cataglyphis use chemical cues for path guidance since no marker would

persist long enough in the extreme heat of the desert. Careful experiments suggest that

the ants rely primarily on the visual information regarding the environment [Wehner and

Raber, 1979]. There is evidence that bees too associate direction vectors with particular

scenes [Cartwright and Collett, 1987]. When captured near their hives and transported

in enclosed containers to di�erent feeding spots, bees upon being released are able to 
y

straight in the direction of the hive. Since they cannot rely on dead-reckoning in these

experiments, the likely explanation is that the bees learn to associate speci�c direction

vectors with particular scenes. Such associations are useful when insects have to learn

complex foraging routes and are required to execute a sequence of vectors in the correct

order [Janzen, 1971].

Most of systems developed for localization of robotic systems based on visual information

focus on the analysis of 3D scene information and/or the location of visual landmarks like

edges or interest points [see Borenstein et al, 1996 for a review]. A di�erent approach for

localization is used by research in wearable computing [e.g. Clarkson et al, 2000] in which

the system uses information about the statistics of simple sensors (acoustic and visual) for

identifying coarse locations and events.

Besides navigation, many other perceptual abilities such as object localization also rely

on scene recognition. This, in general, is a complex task. One way to reduce the com-

plexity of the problem is by relying on prominent landmarks or distinctive markings in

the environment. However, such localized cues may not always be readily available in
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all circumstances. A general-purpose scene recognition scheme has to be able to func-

tion without critically relying on distinctive objects. In this paper, we develop a system to

accomplish this task in arbitrary indoor environments. Our scheme represents scene struc-

ture holistically [Oliva and Torralba, 2001] and, therefore, does not require the presence

of speci�c landmarks.

II. Low dimensional scene representation

Much of the prior work on scene recognition uses the identities of speci�c objects present

in a scene for scene classi�cation. However, this strategy requires a prior step of object

recognition. Furthermore, the human visual system is able to analyze scenes even under

degraded conditions that obscure the identities of individual objects [Schyns and Oliva,

1994]. We therefore opt to develop a holistic representation of scene structure that does

not need a prior assessment of individual objects. The overall scene properties that are

believed to be relevant for discriminating between di�erent scenes are (e.g. Gorkani and

Picard, 1994; Carson et al, 1997; Lipson et al, 1997; Oliva and Torralba, 2001; Szummer

and Picard, 1998; Torralba and Oliva, 2000; Vailaya et al, 1998; De Bonet and Viola,

1997):

� The statistics of structural elements: Di�erent structural elements (e.g., buildings,

road, tables, walls, with particular orientation patterns, smoothness/roughness) com-

pose each context (e.g., rooms, streets, shopping center).

� The spatial organization: The structural elements have particular spatial arrange-

ments. Each context imposes certain organization laws (e.g. for streets: road in the

bottom, buildings in the sides, an aperture in the center).

� Color distribution

As described below, we use a low dimensional holistic representation that encodes the

structural scene properties. Color is not taken into account in this study, although the

framework can be naturally extended to include this attribute. The image features most

commonly used for describing local structures are the energy outputs of oriented band-pass

�lters, as they have been shown to be relevant for the task of object detection [e.g. Itti et

al, 1998; Rao et al, 1996; Schiele and Crowley, 1997] and scene recognition [e.g. Gorkani

and Picard, 1994; Oliva and Torralba, 2001]. Therefore, the local image representation at



4

the spatial location (~x) is given by the vector ~vL(~x) = fv(~x; k)gk=1;N with:

v(~x; k) =

�����
X
~x0

i(~x0)gk(~x� ~x0)

����� (1)

i(~x) is the input image and gk(~x) are oriented band-pass �lters de�ned by gk(~x) =

ek~xk
2=�2

ke2�j<
~fk;~x>. In such a representation, v(~x; k) is the output magnitude at the location

~x of a complex Gabor �lter tuned to the spatial frequency ~fk. The variable k indexes �lters

tuned to di�erent spatial frequencies and orientations. The absolute value provides some

invariance with respect to the input phase information.

In order to reduce the dimensionality of this representation, we decompose the image

features v(~x; k) into the basis functions provided by PCA

an =
X
~x

X
k

v(~x; k) n(~x; k) (2)

with:

v(~x; k) '
DX
n=1

an n(~x; k) (3)

We propose to use the decomposition coeÆcients ~vC = fangn=1;D as context features.

The functions  n(~x; k) are the eigenfunctions of the covariance operator given by v(~x; k).

Therefore, the functions  n(~x; k) incorporate both spatial and spectral information. D

is the dimensionality of the representation. By using only a reduced set of components

(D = 60 for the rest of the paper), the coeÆcients fangn=1;D encode the main spectral

characteristics of the scene with a coarse description of their spatial arrangement. In

essence, fangn=1;D is a holistic representation as all the regions of the image contribute

to all the coeÆcients, and objects are not encoded individually [see Oliva and Torralba,

2001].

As shown in �gure 1 the �rst principal components encode only low resolution spatial

and spectral information. The low-resolution representation, combined with the absolute

value in 1, provides some robustness with respect to objects arrangements. This is an

important factor for scene representation as particular scenes are de�ned by the coarse

organization of the major elements (bookshelves, tables, doors, windows, etc.) without

being a�ected by the redistribution of minor elements as oÆce supplies, chairs, books, etc.
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Fig. 1. Examples of functions  n(~x; k). For simplicity of the visualization we show the principal compo-

nents of the spectrogram [Oliva and Torralba, 2001]. The �gure shows how the spectral components

are weighted at each spatial location to obtain an.

This representation has been shown to be relevant for outdoor natural and urban scene

categorization [Oliva and Torralba, 2001] and for modeling contextual in
uences on object

detection and recognition [Torralba and Sinha, 2001]. We show next that it is also e�ective

for recognizing indoor scenes.

III. Visual scene landmarks

When trying to identify a place based on a single view, not all-possible points of view

will provide enough information for making a reliable decision. For instance, in the case

of a robot exploring the environment, many of the views may be close-up views of simple

surfaces or views of generic objects (�g. 5.b). Such frames are likely to be ambiguous

as similar views may be found in many di�erent places. The views that provide use-

ful information for place identi�cation will depend on the number of di�erent places to

discriminate and the variability among places (�g. 5.a).

In the system that we propose, place recognition will be based on visual scene landmarks.

This is distinct from visual landmarks based on particular objects or signs. Our system

will recognize global views of the environment without the use of localized information
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Fig. 2. Spatial layout of spectral components. The middle image shows the section of the magnitude

of the local Fourier transforms (spectrogram) for each image. The right hand side image shows the

approximation of spectrogram obtained from the �rst 20 PCs. The obtained layout captures the

dominant orientations and scales with coarse image regions.

as objects. Each view is encoded using the holistic structural features described in the

preceding section. Therefore, the system does not require building a 3D model of the

scene.

Figure 3 shows a few scenes of a �lm that simulates a visit to the Department of Brain

and Cognitive Science at MIT. The total �lm contains about 3000 frames (5 frames per

second) and 15 di�erent places and is used for training the system. The �lm was made

without taking any particular care to choose good viewpoints. Some of the views are

close-ups of doors, walls or objects and do not provide information about the identity of

the place, other views are global views of the place. Some frames are corrupted by motion
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Fig. 3. Example of some frames of a sequence taken while visiting the lab.

blur or have noise due to poor illumination. Those frames were not removed from the

sequence.

The �lm used for training entailed visiting the di�erent places and trying to avoid loops

so that the time in the sequence is roughly correlated with distance from the departure

point. By avoiding repeat visits in the training video, we implicitly have a way for dis-

tinguishing between non-generic and generic views. Non-generic views (landmarks) would

not be expected to have high correlations with frames beyond one contiguous segment of

the video. Generic views, on the other hand, will yield high correlations across multiple

segments because they are not speci�c to any particular place.

One way of accounting for the similarities of a single frame across the temporal sequence

is by means of the conditional probability density function p(t j~vC). Given the structural

features ~vC of a frame, the PDF provides the distribution of frames that have similar

features. The PDF p(t j~vC) represents the intuitive notion of 'when did I see a scene

similar to this one'. p(t j~vC) provides the most likely temporal window in the training

sequence that can produce the structural features ~vC .
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Fig. 4. The conditional PDF p(t j~vC) has very di�erent forms for distinctive versus generic views and

can therefore be used to select discriminant frames.

The PDF p(t j~vC) can be modeled by a Parzen window approach. For each frame of

the training �lm we compute the structural features presented before. Then, the training

data set consists of the pairs ti (the time index of the frame i in the training �lm) and the

structural features corresponding to the frame ~vi, with i = 1; :::; Nf , being Nf the number

of frames of the �lm. Then, given a new frame not included in the training, the PDF

p(t j~vC) is:

p(t j~vC) =

PNf

i=1K�1(t� ti)K�2(~vC � ~vi)PNf

i=1K�2(~vC � ~vi)
(4)

The kernel K�(~x) = k exp(�k~xk2=�2) is a radial gaussian kernel with width �2. k is

a normalization constant so that the kernel averages to one. In order to have a better

estimate of p(t j~vC) we average the PDF obtained during N consecutive frames. N is

selected so that the views considered belong to the same place and have relatively small

variations with respect to the point of view (here N = 10). The kernel K�2(~vC � ~vi)

accounts for the similarity between the target frame and the training sequence (the target

frame is not included in the training sequence used to evaluate eq. 4). If the target frame

has good matches in the sequence, then the PDF p(t j~vC) will have one or few maximums

that will indicate at which times in the training sequence there are frames similar to the

target frame. If there are no good matches, then the PDF p(t j~vC) will be a uniform

distribution (�g. 4).

The conditional entropy H provides a simple way for accounting for the dispersion:

H = �
Z
p(t j~vC) log p(t j~vC)dt (5)
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a)

b)

Fig. 5. a) Visual landmarks and b) generic views. The two categories have been derived using the

conditional entropy measure.

Figure 5.a shows a collection of views with small H and �gure 5.b shows views with the

largest H. As expected, images with low H correspond to large views of the environment

providing enough information for identifying the place. Views with large H correspond to

close-up views, doors, windows and walls which provide ambiguous information for place

identi�cation.

Until this point, no information about the identity of each place has been given to the

system. Place identi�cation requires that the training �lm also provide the identity of

each place at each frame (�g. 6).

IV. Place identification

A. Training

The system was trained to di�erentiate among 15 di�erent places (�g. 7). The training

is performed using one video sequence for which we provide the system with the identity

of each place at each instant by labeling the di�erent time windows in which the camera

is recording one place (�g. 6). The sequence contains a large variety of points of view for
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Fig. 6. The annotated training set for the system is created by labeling segments of the video sequence.

each place.

For the recognition, we evaluate the probabilities p(Cij~vC) where ~vC are the structural

features of an image that we want to identify and Ci are the labels of the 15 categories

de�ned. If we assume that the places Ci represent all possible places that the robot can

be in, then the PDFs p(Cij~vC) are modeled by:

p(Cij~vC) =
p(~vC jCi)p(Ci)

p(~vC)
=

p(~vC jCi)p(Ci)P
j p(~vC jCj)p(Cj)

(6)

with:

p(~vC jCi) =
X
j2Ci

K�(~vC � ~vj) (7)

where the kernel K�(~x) is a radial gaussian kernel with width �. The parameters of the

PDF p(Cij~vC) are the structural features ~vj of the images of the training sequence that

correspond to each place. We set p(Ci) = 1=15.

B. Results

For testing the ability of the holistic representation to discriminate among the 15 places

in which the system was trained, we used new sequences recorded on di�erent days and

times.

For each frame of the new sequences, we assign a label for the category that provides

the maximum p(Cij~vC) but only if this probability is above a prede�ned threshold. If

the maximum probability value is not high enough, then the frame is not labeled. The

probability p(Cij~vC) provides a measure of the con�dence that the system has for assigning

the labelCi to one frame. The frames that correspond to scene landmarks will produce high

con�dence classi�cations. On the other hand, generic views will match several places and

the probabilities p(Cij~vC) will remain under the threshold. Figure 8 shows some examples

of the p(Cij~vC) obtained with frames from a new sequence. The bars on the right of each
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Fig. 7. Examples of the 15 places (three pictures per place) that the system has to recognize.

image indicate the likelihood of the image belonging to each of the 15 possible classes.

Whenever any likelihood value exceeds a threshold (indicated here by the horizontal line)

the system outputs the corresponding label. The three images at the top correspond to

high con�dence recognized frames (visual scene landmarks) and the three images in the

bottom are unlabeled frames and correspond to generic views.

By using a high threshold (near 1), the system will require a high con�dence to put a

label and therefore most of the time the system will not take any decision. By using a

low threshold, the system will take decisions almost in any frame increasing the number

of errors.

Therefore, there is a trade o� between the percentage of time that we need the system

to take decisions and the accuracy of performance. This trade o� is also a function of a

few other parameters of the system, in particular:

� N : The number of frames used for the training of the PDF p(Cij~vC) for each place.

� D: The dimensionality of the scene representation. Increasing the dimensionality

increases the distinctiveness of each scene.
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Fig. 8. Some results. The bars on the right of each image indicate the likelihood of the image belonging

to each of the 15 possible classes. Whenever any likelihood value exceeds a threshold (indicated here

by the horizontal line) the system outputs the corresponding label. The three images at the top

correspond to high con�dence recognized frames (visual scene landmarks) and the three images in the

bottom are unlabeled frames and correspond to generic views.

� T : The extend of temporal integration: To make the system more robust we integrate

the obtained probabilities p(Cij~vC) over time by averaging over T frames (for the

results presented here, T = 10 frames).

Figure 9 summarizes the results obtained demonstrating the in
uence of changes in N

and D. By decreasing the number of frames used for training we decrease the quality of

the estimation of the PDF p(Cij~vC) and, therefore, performance degrades (�g. 9.a). When

using less than 25 training images per category, the system fails to reach high con�dence

ratings for nearly all frames.

Fig. 9.b shows the results when reducing the dimensionality of the representation (the

training set size is 100 images per category for all the graphs). By reducing the number

of features we decrease the amount of time that the system can be con�dent about the

identity of the place. But, even for very low dimensional representations, the system can

still provide a few labels with high con�dence and yielding a 95% recognition rate within

this set of labeled frames.

Figure 10 shows the results of place identi�cation in a sequence in which the con�dence

level was set experimentally in order to provide labels at least for 40% of the frames.
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a) b)

Fig. 9. Each curve shows system performance as a function of the proportion of frames that the system

is required to label. This is adjusted by varying the degree of con�dence required to take a decision.

By lowering the con�dence requirements we increase the number of frames with label but in doing

so we decrease performance. The two graphs show the performance as a function of the number of

training images for each category (a) and as a function of the number of structural features used

for representing each frame (b). The best trade-o� between model complexity and performance is

obtained with 80 features per image and 100 images for the training set. However, the computational

complexity can be reduced if the application allows providing labels in a smaller percentage of frames.

100 200 300 400 500 600 700

basement

corridor 1

corridor 1b

corridor 2

elevator CBCL

hall CBCL

hall building

kitchen

main door CBCL

room 201

room 202

room 225

room Bernt

room Gadi

stairs

Frames

Fig. 10. Some results. 100% correct detected in this sequence. The continuous line indicates the ground

truth of the places visited in the sequence. The thick lines indicates the labeled frames.
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V. Conclusion

The problems of individual object recognition on the one hand and scene recognition

on the other have been treated as qualitatively di�erent undertakings. Past studies have

typically treated scene classi�cation as a problem of inference that obtains its basic tokens

from a prior step of object recognition. The viewpoint we have adopted here is very

di�erent. In our approach, scenes are represented holistically, as a single entity that does

not need to be parsed further into distinct objects. This viewpoint renders both problems

(scene and object recognition) to have equivalent complexity.

It has been shown how the holistic scene representation strategy can be used for classi-

fying outdoor scenes and also for incorporating contextual in
uences on the task of object

recognition. In this paper we have focused on indoor scene recognition. This choice of

domain allows us to test the versatility of the representation scheme and also enables us

to build a system that has important potential applications. For instance, a mobile robot

intended for use in houses, factories or oÆces will bene�t from an ability to identify its

surroundings visually. Additionally, since our scheme is experimentally motivated and

uses neurally plausible computational mechanisms, it can serve as a model of place recog-

nition by biological systems. Indeed, a straightforward extension of this system can serve

to model the 'place cells' that have been reported in the hippocampal tissue of rats and

other animals [McNaughton et al., 1996].

There are several interesting directions in which to extend this work. For instance,

even though the current implementation of our system does not require individual object

recognition as a prerequisite for scene recognition, the two processes can be made to operate

synergistically. Thus, inferences about scene identity can prime an object detection system

and the latter's results can, in turn, improve scene classi�cation performance. Another

interesting direction involves determining whether the training from one environment can

be useful for making inferences in a novel setting. In other words, can a system trained in

the oÆce space at MIT use some of its knowledge to infer place categories in a di�erent

oÆce? Finally, there is the issue of exploring other representation strategies. We have

experimented with one particular choice of representation scheme. There may well be

other strategies that can robustly encode the stable and discriminant aspects of scenes
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with less computational expense.
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