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Abstract. Recently, Chen et al (2011 New J. Phys. 13 083018) presented
experimental results, accompanied by quantum-mechanical analysis, showing
that the quantum interference behavior of Bell states could be simulated in a
modified Mach–Zehnder interferometer whose inputs are pseudothermal light
beams obtained by passing laser light through a rotating ground-glass diffuser.
Their experiments and their theory presumed low-flux operation in which the
simulated quantum interference is observed via photon-coincidence counting.
This work is a comment on the paper by Chen et al (2011). We first show
that the Chen et al photon-coincidence counting experiments can be fully
explained with semiclassical photodetection theory, in which light is taken
to be a classical electromagnetic wave, and the discreteness of the electron
charge leads to shot noise as the fundamental photodetection noise. We then use
semiclassical photodetection theory to show that the same simulated quantum
interference pattern can be observed in high-flux operation when photocurrent
cross-correlation is used instead of photon-coincidence counting.
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1. Introduction

The polarization Bell states of a pair of quantized spatiotemporal electromagnetic modes A and
B are

|ψ±
〉 ≡

|H〉A|V 〉B ± |V 〉A|H〉B
√

2
(1)

and

|φ±
〉 ≡

|H〉A|H〉B ± |V 〉A|V 〉B
√

2
, (2)

where |H〉K and |V 〉K , for K = A, B, denote single-photon states of horizontal and vertical
polarization, respectively. These states form a maximally entangled basis for the two-qubit
Hilbert space of single-photon states for modes A and B. As such, they are extremely important
for applications such as quantum teleportation [1], quantum superdense coding [2] and quantum
key distribution [3], as well as their fundamental role in the Clauser–Horne–Shimony–Holt
(CHSH) inequality [4]. The standard approach to generating these states is to post-select the
biphoton output from spontaneous parametric downconversion (SPDC) [5], and the standard
approach to verify their entanglement behavior is via quantum-interference measurements [5].
Recently, Chen et al [6] reported an experiment that mimicked the quantum-interference
behavior seen with an SPDC entanglement source using two independent pseudothermal
light beams obtained by passing laser light through a rotating ground-glass diffuser. Their
experiments were performed in the low-flux regime using photon-coincidence counting, and
they provided a quantum-mechanical explanation that ascribed their observations to two-photon
interference, just as is the case for SPDC light.

It has long been known that the semiclassical theory of photodetection—in which light is
treated as a classical electromagnetic wave and the fundamental photodetection noise is the shot
noise arising from the discreteness of the electron charge—produces quantitatively identical
predictions to those obtained from quantum photodetection theory when the illumination is
in a classical state, i.e. a coherent state or a statistical mixture of such states. See [7] for a
detailed review of this topic. Except for any excess noise it may carry, laser light is coherent-
state light. Moreover, its propagation through ground-glass diffusers, free space, optical fibers
and beam splitters are all linear transformations, for which classical-state inputs yield classical-
state outputs. It follows that there must be an explanation for the experiments reported in [6] that
relies on semiclassical photodetection theory, i.e. one that only needs classical electromagnetic
waves. Our aim in this paper is to present that explanation. Furthermore, although we will
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Figure 1. The modified Mach–Zehnder interferometer with pseudothermal
inputs, after [6]. GG is a rotating ground-glass diffuser. IF is an interference
filter. BS1 and BS2 are 50 : 50 beam splitters. d is the nominal ground-glass to
fiber-tip propagation distance, and δ is a variable offset in one arm. P1 and P2
are polarizers that select orthogonal polarizations that we shall take to be x and
y, respectively. A1 and A2 are polarization analyzers set for angles θA and θB ,
respectively. DA and DB are single-photon detectors.

begin with a treatment that applies to low-flux operation using photon-coincidence counting,
our approach readily extends to high-flux operation using photocurrent cross-correlation.

The remainder of the paper is organized as follows. In section 2, we describe the modified
Mach–Zehnder interferometer—with photon-coincidence counting in the low-flux regime—that
was employed in [6]. In section 3, we introduce our classical-light model for this interferometer
and use it to derive the singles and coincidence rates as functions of the interferometer’s
differential time delay and its polarization-analysis angles. Here we will show that our results
can explain the observations reported in [6]. Finally, in section 4, we indicate how our theory
can be extended to high-flux operation with photocurrent cross-correlation and we provide some
concluding remarks about the implications of this work.

2. The modified Mach–Zehnder interferometer with pseudothermal inputs

The configuration for the experiment from [6] is shown in figure 1. A continuous-wave mode-
locked Ti : sapphire laser operating at λ= 780 nm wavelength with 78 MHz pulse-repetition
frequency and τp ∼ 150 fs pulse duration illuminated an interference filter, to somewhat increase
the pulse duration, followed by a rotating ground-glass diffuser, to render the light spatially
incoherent. The diameter D ≈ 5 mm output beam from the diffuser was divided by the 50 : 50
beam splitter BS1, with the resulting output beams propagating d ≈ 200 mm (from the diffuser)
to collection planes, one of which could be offset, longitudinally, by δ. Each collection plane
contained the tip of a single-mode fiber, whose transverse coordinates, ρ+ and ρ−, satisfied
|ρ+ − ρ−| � `c, where `c ≈ 31µm is the correlation length of the speckles cast in these planes.
The fibers routed the light they collected to polarizers P1 and P2, set for orthogonal polarizations
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that we shall take to be x and y, respectively, before entering the 50 : 50 beam splitter BS2. The
outputs from BS2 then underwent polarization analysis, by analyzers A1 and A2 set for angles
θA and θB with respect to x , prior to single-photon detection. Computer processing completed
the experiment by averaging the detector outputs over many pulses to obtain the singles rates
SA and SB and the coincidence rate CAB .

Chen et al used quantum-mechanical analysis to show that CAB consisted of a background
term plus a quantum interference term that is proportional to sin2(θA − θB) when δ = 0. Their
background term arises from what in a related prior experiment [8] they called ‘self-intensity
correlations’. These correlations can be measured by summing the coincidence rates when a
beam block is placed in front of the fiber tip at ρ+ and when a beam block is placed in front of the
fiber tip at ρ−. Subtracting the self-intensity correlations from the full coincidence rate obtained
at δ = 0 then yields, according to theory, a unity-visibility quantum interference pattern. This
background-subtracted quantum-interference pattern can then be used to obtain a violation of
the CHSH inequality, in the same manner as it was done [5] for the polarization-entangled signal
and idler obtained from an SPDC source. The experimental data from [6] bear out this theory:
the authors report 93.2 ± 5.1% visibility in their background-subtracted quantum-interference
pattern at δ = 0.

Chen et al do not attempt to explain their experiments with a classical-light model, i.e.
with semiclassical photodetection theory. In their previous work on a related anticorrelation
experiment [8], they claimed that there was no classical-light explanation for their results. We
have, however, shown that this is not the case [9]. In particular, we reported a straightforward
classical-field analysis that reproduced the essential characteristics of the anticorrelation
observed in [8]. Our demonstration is particularly important for the following reason. If Chen
et al [8] were correct in asserting that their anticorrelation measurement could not be explained
in this manner, it would present quantum optics with a major conundrum: either the laser light
that has undergone linear transformation is not in a coherent state or a random mixture of
coherent states, or the quantum and semiclassical theories of photodetection can make different
quantitative predictions on the measurement statistics of classical-state light. In this paper,
we shall extend our scalar-wave model of [9] to provide a classical-light explanation for the
simulated Bell state reported in [6].

3. Singles and coincidence rates

The linear velocity of the ground-glass diffuser where it was illuminated in [8] was ∼ 0.8 m s−1,
so that for the τp ∼ 345 fs and τp ∼ 541 fs post-IF pulse durations considered therein it is fair
to say that the ground glass was completely stationary while a single laser pulse propagated
through it. We shall assume this to be the case for the experiments in [6]. The differential
time delay δt = δ/c corresponding to the longitudinal variation δ was ±4 ps in [6] and we will
assume that the photodetectors employed therein had the same T ∼ 1 ns coincidence gate as
in [8]. Hence, with τp < 1 ps, we have that |τp ± δt | � T . Because the fibers are single mode,
and because their transverse coordinates have been set to ensure that the light beams they collect
are uncorrelated, we will assume (see [9]) that E+(t) and E−(t), the positive-frequency classical
fields emerging from polarizers P1 and P2, respectively, are given by

E+(t)= v+ f (t + δt/2) e−iω0t ix (3)
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and

E−(t)= v− f (t − δt/2) e−iω0t iy. (4)

Here, v+ and v− are independent, identically distributed, zero-mean, isotropic and complex-
valued Gaussian random variables with the common mean-squared strength

〈|v+|
2
〉 = 〈|v−|

2
〉 = N , (5)

representing constant-in-time speckle;

f (t)≡
e−t2/τ 2

p

(πτ 2
p /2)

1/4
(6)

is a transform-limited Gaussian pulse normalized to satisfy∫
dt | f (t)|2 = 1, (7)

with τp being the post-IF pulse duration; and ix , iy are orthogonal unit vectors along the x and
y directions. Note that in (3) and (4) we have chosen

√
photons s−1 units, so that the average

energy in either field is Nh̄ω0, i.e. N is their average photon number.
Because Chen et al used photon-coincidence counting, their experiment was necessarily in

the low-brightness regime wherein N � 1 prevails. As a result, we can say that the singles rates
(counts per gate) and the coincidence rate (coincidences per gate) obey [7]

SK = η

∫ T/2

−T/2
dt 〈|EK (t)|

2
〉, for K = A, B, (8)

and

CAB = η2

∫ T/2

−T/2
dt

∫ T/2

−T/2
du 〈|E A(t)|

2
|EB(u)|

2
〉. (9)

In these expressions, η is the photodetectors’ quantum efficiency; the complex envelopes of the
fields that illuminate detectors DA and DB are

E A(t)=
cos(θA)v+ f (t + δt/2)+ sin(θA)v− f (t − δt/2)

√
2

(10)

and

EB(t)=
cos(θB)v+ f (t + δt/2)− sin(θB)v− f (t − δt/2)

√
2

, (11)

where we have suppressed all propagation delays except for the interferometer’s differential
delay δt . Using the statistics of v+ and v−, along with the disparities between τp, δt and T , it is
easy to evaluate the singles rates and the coincidence rate.

The statistical independence of the v+ and v−, and their mean-squared strengths,
immediately gives us

SK =
η

2

(
〈|v+|

2
〉 cos2(θK )

∫ T/2

−T/2
dt | f (t + δt/2)|2 + 〈|v−|

2
〉 sin2(θK )

∫ T/2

−T/2
dt | f (t − δt/2)|2

)
(12)
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≈
ηN

2
, for K = A, B, (13)

where the approximation follows from |τp ± δt/2| � T . Similarly, for the coincidence rate, the
statistical independence of v+ and v− leads to

CAB =
η2

4

(
c2

Ac2
B〈|v+|

4
〉

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u+)|

2

+c2
As2

B〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u−)|

2

+c2
Bs2

A〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u+)|

2

−2cAcBsAsB〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt

∫ T/2

−T/2
du Re[ f ∗(t+) f ∗(u−) f (t−) f (u+)]

+ s2
As2

B〈|v−|
4
〉

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u−)|

2

)
, (14)

where cK ≡ cos(θK ) and sK ≡ sin(θK ), for K = A, B,w± ≡ w± δt/2, forw = t, u, and the first
and last terms on the right are the self-intensity correlations. Following [6], we shall suppress
these self-intensity correlations—they can be found by first measuring the coincidence rate with
E+(t) blocked and then measuring the coincidence rate with E−(t) blocked—by subtracting
them from CAB and focus our attention on

C̃AB =
η2 N 2

4

(
c2

As2
B

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u−)|

2 + c2
Bs2

A

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u+)|

2

− 2cAcBsAsB

∫ T/2

−T/2
dt

∫ T/2

−T/2
du Re[ f ∗(t+) f ∗(u−) f (t−) f (u+)]

)
, (15)

where we have used the mean-squared values of v+ and v−. Now, exploiting |τp ± δt/2| � T
and some trigonometric identities, the preceding expression reduces to

C̃AB ≈
η2 N 2

4

[
sin2(θA − θB)+

sin(2θA) sin(2θB)

2
(1 − e−δt2/τ 2

p )

]
. (16)

At this point we are ready to compare our classical-light theory with the experimental
results of [6]. There it is shown that θA = θB = π/4 leads to an anticorrelation dip of width ∼ τp

in C̃AB as δt is scanned through zero. Moreover, this anticorrelation dip has near-unity visibility,
namely

max(C̃AB)− min(C̃AB)

max(C̃AB)+ min(C̃AB)
≈ 1. (17)

From (16) we find that

C̃AB =
η2 N 2

8
(1 − e−δt2/τ 2

p ), (18)
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in agreement with those observations. Similarly, Chen et al find that when θA = π/4 and
θB = 3π/4 there is a near-unity visibility correlation peak of width ∼ τp in C̃AB as δt is scanned
through zero. From (16), we obtain that

C̃AB =
η2 N 2

8
(1 + e−δt2/τ 2

p ) (19)

for this case, as was found in the experiment. Finally, at δt = 0, the work [6] reports simulated
Bell-state quantum interference when θA − θB is varied. This characteristic is present in (16),
where we find that

C̃AB =
η2 N 2

4
sin2(θA − θB) (20)

when δt = 0. Collectively, these matches between the Chen et al experimental results and the
predictions of our classical-light theory are consistent with their experimental configuration’s
illuminating its detectors with classical-state light and the quantitative agreement of the
quantum and semiclassical theories of photodetection for such illumination. Because light is
quantum mechanical, and photodetection is a quantum measurement, the quantum explanation
of their work is of course the fundamental one, but we have just shown that it is not necessary
to invoke a quantum description of the light to explain their results.

4. Discussion

Our work in section 3 presumed low-flux (single-photon) operation, specifically N � 1, in
deriving the singles and coincidence rates for the figure 1 experiment. Chen et al raised the
question of what would happen if the illumination in this experiment was performed in the high-
flux regime, wherein N � 1 prevails [6]. With our classical-light theory, it is easy to answer that
question. Suppose that E±(t) are as given in section 2 except that N � 1. Also assume that the
single-photon detectors in figure 1 are replaced by shot-noise-limited PIN photodiodes, whose
photocurrent outputs are iA(t) and iB(t), respectively, and that the singles and coincidence-
rate measurements are replaced by average photocurrent and photocurrent cross-correlation
measurements, I (1)K ≡ 〈iK (0)〉, for K = A, B, and I (2)AB ≡ 〈iA(0)iB(0)〉. We then have that [7]

I (1)K =
qη

2

(
〈|v+|

2
〉 cos2(θK )

∫
dτ | f (τ + δt/2)|2h(−τ)+ 〈|v−|

2
〉 sin2(θK )

×

∫
dτ | f (τ − δt/2)|2h(−τ)

)
, (21)

where q is the electron charge and h(t) is the photodiodes’ baseband impulse response, which is
normalized to satisfy

∫
dt h(t)= 1. To make the connection to the case of photon-coincidence

counting, we shall ignore causality and take h(t) to be

h(t)=

{
1/T for |t |6 T/2,
0 otherwise,

(22)

with T ∼ 1 ns, so that we again have |τp ± δt/2| � T . We can then reduce our expression for
the average photocurrents to the following simple form:

I (1)K ≈
qηN

2T
, for K = A, B. (23)
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For the photocurrent cross-correlation, we have

I (2)AB =
q2η2

4T 2

(
c2

Ac2
B〈|v+|

4
〉

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u+)|

2

+c2
As2

B〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u−)|

2

+c2
Bs2

A〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u+)|

2

−2cAcBsAsB〈|v+|
2
〉〈|v−|

2
〉

∫ T/2

−T/2
dt

∫ T/2

−T/2
du Re[ f ∗(t+) f ∗(u−) f (t−) f (u+)]

+ s2
As2

B〈|v−|
4
〉

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u−)|

2

)
, (24)

where we have used (22) for h(t), and the first and last terms on the right come from self-
intensity correlations. Subtracting the self-intensity correlations from I (2)AB and using Ĩ (2)AB to
denote the result, we arrive at

Ĩ (2)AB =
q2η2 N 2

4T 2

(
c2

As2
B

∫ T/2

−T/2
dt | f (t+)|

2

∫ T/2

−T/2
du | f (u−)|

2

+c2
Bs2

A

∫ T/2

−T/2
dt | f (t−)|

2

∫ T/2

−T/2
du | f (u+)|

2

− 2cAcBsAsB

∫ T/2

−T/2
dt

∫ T/2

−T/2
du Re[ f ∗(t+) f ∗(u−) f (t−) f (u+)]

)
(25)

≈
q2η2 N 2

4T 2

[
sin2(θA − θB)+

sin(2θA) sin(2θB)

2
(1 − e−δt2/τ 2

p )

]
. (26)

Thus the same simulated Bell-state behavior seen in photon-coincidence counting in low-flux
operation will be present in the photocurrent cross-correlation in high-flux operation.

Let us conclude with a brief meta-lesson that can be gleaned from what we have done.
Chen et al [6] use quantum analysis to show that photon-coincidence counting in the figure 1
configuration—after subtraction of self-intensity correlations—mimics Bell-state quantum
interference. Because classical-state light is employed in their experiments, their observations
have an equivalent quantitative explanation from semiclassical photodetection theory. Moreover,
as we have just seen, that same mimicking of Bell-state quantum interference will be present in
photocurrent cross-correlations, taken in high-flux operation, after self-intensity correlations are
subtracted. In the high-flux regime, it is clear that semiclassical theory ascribes the interference
pattern to intensity–fluctuation correlations between |E A(t)|2 and |EB(t)|2. In as much as the
experimental results of [6] cannot distinguish between the quantum and semiclassical theories,
it is disingenuous to claim that the figure 1 configuration generates Bell states, as opposed
to simulating the quantum-interference pattern produced by the detection of a Bell state.
After all, Bell states are entangled states, and entangled states are nonclassical. Hence, their
photodetection statistics cannot be fully and properly quantified by semiclassical photodetection
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theory. In this regard, we note that post-selection, which is used to identify Bell-state photon
pairs produced by SPDC, is very different from subtracting the self-intensity correlations in the
figure 1 experiment to see Bell-state quantum interference. This is because post-selection is just
selecting the occurrence of a photon coincidence, i.e. it can be performed on a pulse-by-pulse
basis, whereas subtracting the self-intensity correlations in figure 1 requires collecting averages
of coincidences with both beams present at BS2 and with only one beam or the other present on
that beam splitter.

Acknowledgments

This work was sponsored by the DARPA Information in a Photon Program under US Army
Research Office grant no. W911NF-10-1-0404.

References
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