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[1] The seeds of many aquatic plants are buoyant and thus transported at the water surface,
where they are subject to surface tension that may enhance their retention within emergent
vegetation. Specifically, seeds may be trapped by surface tension (i.e., by the Cheerios
effect) at the surface-piercing interface of the vegetation. In this work we develop a
physical model that predicts this mechanism of seed trapping, advancing the model
proposed by Defina and Peruzzo (2010) that describes the propagation of floating particles
through emergent vegetation. The emergent vegetation is simulated as an array of cylinders,
randomly arranged, with the mean gap between cylinders far greater than the particle size,
which prevents the trapping of particles between pairs of cylinders, referred to as net
trapping. Laboratory experiments are used to guide and validate the model. The model also
has good agreement with experimental data available in the literature for real seeds and
more complex plant morphology.
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1. Introduction
[2] Seed dispersal can play an important role in structur-

ing aquatic habitat. The seeds of many aquatic plants are
buoyant, which enhances their dispersal by keeping the
seeds afloat for longer advection times [e.g., Nilsson and
Danvind, 1997; Van den Broek et al., 2005; Nilsson et al.,
2010]. The fate of these seeds within a region of vegetation
is mainly controlled by the flow velocity and by the effi-
ciency of a variety of seed-plant interaction mechanisms
that trap the seeds [Chambert and James, 2009; Defina and
Peruzzo, 2010]. The main mechanisms responsible for tem-
porary or permanent trapping of particles are (1) inertial
impaction [Palmer et al., 2004], which occurs when a parti-
cle deviates from a streamline because of its inertia and
collides with a stem; (2) wake trapping, which occurs
when a particle enters the unsteady recirculation zone
behind a stem [e.g., White and Nepf, 2003]; (3) trapping
due to surface tension, i.e., the Cheerios effect, in which
floating particles are attracted toward stems by the rising
meniscus [e.g., Vella and Mahadeven, 2005]; and (4) net
trapping, which occurs where leaves and/or stems overlap
enough to form a netlike structure that intercepts the float-
ing particle [Defina and Peruzzo, 2010]. When the mean
gap between leaves or stems is comparable to the particle

size, then net trapping is the most efficient trapping mecha-
nism [Defina and Peruzzo, 2010, 2012]. Alternatively,
when the mean gap between plant elements is large com-
pared to the particle size, and flow velocity is moderately
slow, then the Cheerios effect is the main, if not the only,
mechanism impacting seed propagation, capture and diffu-
sion [Chambert and James, 2009]. The present study con-
siders the latter flow condition and develops a physically
based model to predict the impact of surface tension
(Cheerios effect) on the fate of floating particles within a
region of emergent vegetation.

2. Model and Experimental Methods
[3] The emergent vegetation is simulated as an array of

randomly arranged cylinders, each with diameter d. The
array density is described by the cylinders per unit bed
area, n. The cylinder spacing is assumed to be far greater
than the particle size, which eliminates net trapping, i.e.,
the trapping of particles between a pair of cylinders. In this
case the capture of floating particles by the cylinders is
dominated by inertial impaction [Palmer et al., 2004] and
by the attraction due to the surface tension (i.e., the Cheer-
ios effect).

2.1. Model

[4] As a particle advects through the array of cylinders,
it passes, on average, one cylinder within each longitudinal
distance, �s ¼ ðndÞ�1, as shown in the work of White and
Nepf [2003]. As each cylinder is passed, the particle has
some probability of colliding with it, Pi, so that on average
a particle will interact (collide) with a cylinder once per
distance

�si ¼
�s

Pi
¼ 1

ndPi
: (1)
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[5] Except for the extreme cases (i.e., for high cylinder
density or very low flow velocity) we expect that the proba-
bility Pi does not depend on n. Preliminary experiments,
discussed in section 3, confirm this.

[6] Observations have shown that particles may collide
(interact) with several cylinders, before being captured by,
i.e., permanently attaching to, a specific cylinder [Defina
and Peruzzo, 2010]. Based on this, we separately define the
process of interaction (collision followed by release) and
the process of capture (permanent trapping). Below, the
subscripts ‘‘i’’ and ‘‘c’’ will be used to denote parameters
associated with interaction and capture, respectively.

[7] Following Defina and Peruzzo [2010], we define the
probability PðX > LÞ that a particle travels a distance X
greater than L before being captured, as

PðX > LÞ ¼ ð1� PcÞNi ; (2)

where Pc is the capture probability (i.e., the probability that
a particle, which interacts with a cylinder, is permanently
captured), and Ni is the number of interactions between a
particle and the cylinders within the distance L, which we
approximate as Ni ¼ L=�si. We can rewrite equation (2) as

PðX > LÞ ¼ eL=�; (3)

in which

� ¼ � �si

lnð1� PcÞ
¼ � 1

ndPi lnð1� PcÞ
(4)

is the mean distance traveled by a particle before it is per-
manently captured.

[8] In order to estimate Pi, and thus �si, we consider the
trajectory of individual particles as they pass an individual
cylinder (Figure 1). For example, to describe inertial impac-
tion, previous authors assumed that the particle trajectory
was set by the fluid drag and particle inertia. A set of trajecto-
ries associated with these assumptions is shown in Figure 1a.
The length-scale b is the distance between the outermost
trajectories that lead to collision. Geometrically, Pi ¼ b=d
(Figure 1). Models to predict b, and thus Pi, for inertial
impaction are described in Shimeta and Jumars [1991] and
Palmer et al. [2004].

[9] However, in this paper we focus on floating particles
at low-flow velocity, for which the acceleration caused by
surface tension (i.e., by the Cheerios effect) may be impor-
tant drawing particles toward the cylinder from distances
greater than d. An example of trajectories for surface par-
ticles influenced by surface tension is shown in the Figure 1b.
Because it is possible for b > d, the probability of collision
Pi can be greater than one. While this sounds contradictory, it
is physically sound. It characterizes the fact that the influence
of surface tension can generate more frequent cylinder colli-
sions than would be predicted from the mean spacing, i.e.,
�si < �s. In section 2.2 we develop a model to predict b,
and thus Pi, for floating particles influenced by surface
tension.

2.2. Theoretical Prediction of Pi for Floating Particles
Under the Influence of Surface Tension

[10] The Cheerios effect is influenced by the relative im-
portance of inertial forces and surface tension. However,
these two forces act on the particle in different directions,

so that Pi cannot be parameterized simply by the ratio of
the force magnitudes. Instead, we use a kinematic approach
for defining Pi. For this description x and z are the stream-
wise and transverse coordinate directions, respectively
(Figure 2). We define a rectangular area of influence, cen-
tered at the cylinder, whose edge in the x direction is the

Figure 1. Definition sketch for the probability of particle
collision (interaction) with a cylinder of diameter d. Solid
lines indicate particle trajectories that lead to collision. The
outermost trajectories that lead to collision are separated by
distance b. The collision probability is Pi ¼ b=d. (a) Iner-
tial impaction occurs when the forces of drag and inertia
dominate the particle trajectory approaching the cylinder.
(b) For floating particles, the Cheerios effect adds to inertia
and drag in controlling the particle trajectory, thus affecting
the size of b.

Figure 2. A particle trajectory influenced by surface ten-
sion which leads to collision with the cylinder. H0 represents
the maximum distance from the cylinder from which a parti-
cle can be drawn to collide with the cylinder by the action
of surface tension. H0 ¼ b=2, with b defined in Figure 1.

W07512 PERUZZO ET AL.: CAPILLARITY TRAPPING OF BUOYANT PARTICLES W07512

2 of 9



capillary length, 1/q, which is the characteristic length scale
of the meniscus. In the z direction the edge has an infinite
length. We assume that a particle crossing this area is
attracted toward the cylinder through the Cheerios effect. If
we assume that the particles move, on average, at the ve-
locity U=�q in the streamwise direction, with U the bulk
flow velocity and �q a correction factor, then, on average, a
particle will spend time Tq ¼ �q=ðqUÞ, within the zone of
influence. Tq is also the time available for the Cheerios
effect to draw a particle to the cylinder, before it leaves the
influence of the cylinder. From this time-scale we can esti-
mate the maximum distance from the cylinder, H0, from
which a particle can be drawn to collide with the cylinder
by the action of surface tension (Figure 2).

[11] This maximum distance corresponds to b=2 of
Figure 1, i.e., b ¼ 2H0 and

Pi ¼ 2H0=d: (5)

[12] The distance H0 is computed, as a first approxima-
tion, by assuming that only the capillary force acts on both
the particle and the cylinder. The particle is assumed to be
spherical. The capillary force, Fc, is given by [Dushkin
et al., 1996]

Fc ¼ �
�

2
dpd� sinð�p þ  pÞ sinð pÞ sinð cÞK1ðqzÞ: (6)

[13] In (6) dp is the particle diameter, �p is the particle-
water contact angle,  p and  c are the meniscus slope
angles at the particle and cylinder contact line, respectively
(defined in Appendix A), � ¼ 0.073 N m�1 is the surface
tension, q�1 ¼ 0.0027 m is the capillary length and K1ðqzÞ
is the modified Bessel function of the first kind, with z the
transverse distance of the particle from the cylinder.

[14] The following differential equation governs the par-
ticle position, z,

d2ðqzÞ
dt2

¼ cK1ðqzÞ; (7)

with

c ¼ 3d�q2

�pd2
p

sinð�p þ  pÞ sinð pÞ sinð cÞ; (8)

and �p the particle density. We assume that the particle
starts from rest at position z ¼ H0, i.e., boundary condi-
tions

t ¼ 0
z ¼ H0

dz=dt ¼ 0
:

(
(9)

[15] We approximate the Bessel function in equation (7)
as K1ðqzÞ � 1=ðqzÞ3 for qz < 5, and find the solution as

qz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqH0Þ2 � cðqH0Þ�2t2

q
: (10)

[16] The maximum distance, H0, will be that associated
with the maximum time available for lateral transport

driven by surface tension, that is Tq. For simplicity, we
assume that the particle collides with the cylinder at z ¼ 0,
i.e., neglecting the radius of both the cylinder and the parti-
cle (Figure 2). The impact of this assumption on the time-
scale for the particle to reach the stem is absorbed into the
scale constant within Tq, i.e., �q. Then, setting z ¼ 0 and
t ¼ Tq, we solve (10) for H0

H2
0 ¼ �q

ffiffiffi
c
p

Uq3
: (11)

[17] Using (5), (8), and (11) we find

Pi ¼
2H0

d
¼

2
ffiffiffiffiffi
�q

p
dq

ffiffiffiffi
U
p 3d�

�pd2
p

" #1=4

½ sinð�p þ  pÞ sinð pÞ sinð cÞ�1=4:

(12)

[18] Since We ¼ �dU2=� is the Weber number, equation
(12) can be rewritten as

Pi ¼
�

ffiffiffiffiffiffiffiffiffiffi
d=dp

p
dqWe1=4

�

�p

 !1=4

½ sinð�p þ  pÞ sinð pÞ sinð cÞ�1=4; (13)

where � ¼ 31=42
ffiffiffiffiffi
�q

p
and � is the water density. Experi-

ments described in section 3 suggest � ¼ 2:46, such that
�q ¼ 0:87, which is close to unity, as expected.

2.3. Capture Probability Pc

[19] After a particle collides with a cylinder, it may
become permanently attached, or it may be pulled away
from the cylinder by the action of fluid drag. The probabil-
ity of remaining permanently attached, Pc, depends on the
ratio between the capillary force acting when the particle is
stuck to the cylinder and the drag force due to the local
mean flow, to turbulence and to vortex shedding. We
assume that this drag force Fd, is proportional to the bulk
velocity, U

Fd ¼ kdCD�ApU2; (14)

where kd is a scale factor, Ap is the projected area of the
submerged part of the particle and CD is the particle drag
coefficient.

[20] When the ratio of capillary force (6) to drag force
(14) is large, the particle remains attached to the cylinder,
i.e., Pc ¼ 1.0. We define Ecr as the critical value of this
force ratio above which the probability of capture becomes
unity, i.e.,

Ecr ¼
Fc

Fd
jPc¼1 ¼ �

�

2

dpd�q

kdCD�ApU2
e

sinð�p þ  pÞ sinð pÞ sinð cÞK1 q
dp þ d

2

� � ; (15)

in which we define Ue as the escape velocity, i.e., the ve-
locity above which particles may escape from the cylinder.
We introduce the shape factor, kp, which depends on the
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particle draft (see Appendix A), such that Ap ¼ kpd2
p , then

rearrange (15) to describe the escape velocity, to

U2
e ¼ �e

d

dp

�q=�

kpCD
sinð�p þ  pÞ sinð pÞ sinð cÞK1 q

dp þ d

2

� �
;

(16)

with

�e ¼
�

2Ecrkd
; (17)

which we will use as a calibration parameter. Experimental
investigations described and discussed in section 3 suggest
�e ¼ 1.26.

[21] The escape velocity Ue is the scale velocity of the
problem. When U < Ue the capillary force is greater than
the drag force no matter the position (with respect to the
mean flow) at which the particle is stuck to the cylinder,
therefore the probability of permanent capture is Pc ¼ 1.
When U > Ue, drag forces may locally and temporarily
exceed the attraction force due to capillarity, and the parti-
cle may escape from the cylinder. Increasing of the ratio
U=Ue reduces the probability Pc.

[22] The measurements, discussed below, suggest that
the probability of capture Pc decays exponentially with
U=Ue, specifically

Pc ¼
1 U=Ue � 1

e1�U=Ue U=Ue > 1
:

(
(18)

[23] From the models developed above we can now pre-
dict the following from the particle characteristics (dp, �p),
the contact angles (�p, �c), the cylinder diameter (d), the
stem density (n), and the bulk flow velocity (U) : (i) the
mean spacing between two interactions �si from equations
(1) and (13), (ii) the escape velocity Ue from equation (16),
the capture probability Pc from equation (18), (iii) the

mean distance a particle travels before it is permanently
captured, from equation (4), and (iv) the path length distri-
bution PðX > LÞ from equation (3). In section 3 we use ex-
perimental observations to evaluate the two model
parameters, � ¼ 2.46 and �e ¼ 1.26.

2.4. Experiments

[24] To cover a wider range of flow conditions, two
flumes are used in this investigation. The small flume has a
channel width of 40 cm and length of 2.8 m, the large flume
has a width of 120 cm and length of 13 m. In both flumes
the water is recirculated by a pump that maintains steady
flow. In both flumes the bottom is horizontal and the water
depth is adjusted by a downstream weir. In the small flume
the bulk flow velocity U is measured with an ADV (U is
averaged over 33 points per cross section), while in the
large flume U is estimated through a calibrated relationship
between the pump frequency and the flowrate. The bulk ve-
locity was varied between 0.7 and 5 cm s�1. Seven of the
velocity experiments were carried out in the small flume
(U¼ 0.007– 0.032 m s�1), while higher velocity experiments
(U ¼ 0.04 and U ¼ 0.05 m s�1) were carried out in the large
flume. In both flumes, a random array of cylinders was con-
structed on three boards to create a total test section length of
1.80 m. The array filled the flume width. We constructed six
different arrays, with n ¼ 299 m�2 to 1780 m�2. The cylin-
ders used in the experiments are wooden dowels with a di-
ameter d of 6.0 mm, fitted into holes drilled into the boards.

[25] The model floating particles were cut from wood
cylinders to have equal diameter and height of 3 mm
(Figure 3). The relative density �r ¼ �p=� was �0.7. These
are the same as particle C used by Defina and Peruzzo
[2012].

[26] In the experiments, we release one particle at a time
just upstream of the test section and at random positions in
the transverse direction. For each experiment we released
200 particles. We observed the particle trajectory and
measured the distance traveled by each particle, before it
was permanently captured by a cylinder. We assumed a

Figure 3. Snapshots of particles trapped against the cylinders through the Cheerios effect.
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particle was permanently captured if it stayed stuck to one
cylinder for more than 10 min, a time interval that was
more than 1 order of magnitude longer than the mean time
a particle took to travel the whole test section.

3. Results and Discussion
[27] We first consider the impact of cylinder density, n,

while holding the bulk velocity constant (U ¼ 2.5 cm s�1).
In all cases the exponential distribution given by (3) could
be fit to experimental data with R2 > 0.95. From this fit we
extracted the mean path length, �, for each stem density.
From our theory, we expected that � would have a depend-
ence on the stem spacing, �s ¼ ðndÞ�1 (see equation (4)).
This relationship is observed in the measured � (Figure 4).
Since we use a single value of cylinder diameter, d, these
graphs are plotted with n�1 alone. The data indicate a con-
stant relationship between � and n�1, specifically � ¼ 230/n
for the present data (Figure 4, black circles). Since n is a
constant, from (1) and (3) together, we can infer that the
product Pi lnð1� PcÞ is also a constant. Consistent with the
derivation above, we expect that the probability Pc is only a
function of the flow near an individual cylinder, and that it
does not depend on cylinder density, n. Then, Pi must also
be independent of n.

[28] Further experiments were carried out with the aim of
investigating how the model parameters change with the
bulk flow velocity, U. The distance traveled by 200 particles
is measured for n ¼ 968 m�2 and seven different flow veloc-
ities (Table 1). In each case, the probability distribution of

distances traveled by a particle before permanent capture fol-
lowed an exponential law with R2 > 0.95, except for the
data with U ¼ 0.040 m s�1 where, possibly because of
the presence of a weak transverse seiche in the channel, the
determination coefficient was lower (R2 ¼ 0.90), but still
highly significant. Again, the exponential fit was used to
determine the mean path length, �, and to observe how this
parameter varied with bulk flow velocity (see Table 1 and
Figure 5). The dependence of � on velocity comes through
both Pi and Pc: notice that Pi � U�1=2 (from equation (12))
and Pc is also inversely proportional to U (equation (18)), so
that � increases with increasing U (Figure 5). The behavior
is consistent with physical reasoning: as velocity increases,
the inertial forces become stronger relative to the capillary
forces, leading to reduced interaction and capture by stems.

[29] Using the set of nine (U, �) pairs, we calibrated the
model parameters � and �e. First, we used the following
trial and error procedure to find �. We fixed a tentative
value for � and used it to compute the probability of inter-
action, Pi, from equation (13), which in turn is used to find
the mean spacing between interactions �si from (1) and
(13). Together with the observed �, we find the capture
probability Pc from equation (4). With nine pairs of (Pc,
U), we find Ue by fitting equation (18). The value for � is
then tuned to until we find the best fit to (18).

[30] Second, using the best-fit value for �, �e is com-
puted from (16). In this computation we used dp ¼ 0.003 m,

Figure 4. Mean path length as a function 1/n. Present ex-
perimental results (U ¼ 0.025 m s�1, black circles aligned
along the curve � ¼ 230/n) ; Defina and Peruzzo [2012] ex-
perimental results with particle C and U ¼ 0.033 m s�1

(white circles, � ¼ 3600/n) ; and (half-full symbols) experi-
mental data for Nasturtium (� ¼ 3.5 � 104=n) and Sun-
flower seeds (� ¼ 1.5 � 104=n) [Chambert and James,
2009].

Table 1. Summary of Present Experimental Data and Model
Parametersa

U (m s�1) We (102) Re Pi �si (m) � (m) Pc

0.007 0.403 42 2.32 0.074 0.021 0.971
0.009 0.666 54 2.05 0.084 0.025 0.965
0.017 2.380 102 1.49 0.116 0.086 0.739
0.020 3.290 120 1.37 0.125 0.110 0.680
0.025 5.140 150 1.23 0.140 0.234 0.451
0.028 6.440 168 1.16 0.148 0.353 0.343
0.032 8.420 192 1.09 0.159 0.642 0.219
0.040 13.200 240 0.97 0.177 1.357 0.122
0.050 20.500 300 0.87 0.198 3.549 0.054

aThe observed travel distances for 200 particles are fit to (3) to find �. Pi

is predicted from (13). �si is predicted from (1). The experimental esti-
mates of Pc are based on (4), Pc ¼ 1� exp ½�1=ðnd�PiÞ�, and Pi predicted
from (13).

Figure 5. Mean path length as a function flow velocity in
log linear scale (present experiments).
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�r ¼ 0.7, and the measured contact angles �p ¼ 60� and
�c ¼ 55� for the particle and the cylinder, respectively. We
computed  p ¼ 1.55. (see Appendix A) and  c ¼ 90� � �c

¼ 35�. Through this procedure we find Ue ¼ 0.013 m s�1,
� ¼ 2.46 and �e ¼ 1.26.

[31] With these values, the interaction probability Pi, the
mean spacing �si, and the probability Pc are computed as
given in Table 1. The theoretical model for Pc (equation
(18)) is shown as a solid line in Figure 6. The values of Pc

estimated for individual cases are shown by symbols. The
experimental estimates of Pc are based on (4), Pc ¼ 1�
exp ½�1=ðn�dPiÞ�, using the measured value of �, and Pi

predicted from (13).
[32] We now use experimental results from previous

studies, Defina and Peruzzo [2010, 2012] and by Chambert
and James [2009], to validate the model. These studies
consider particle sizes and stem diameters which are differ-
ent from those in the present study.

[33] Defina and Peruzzo’s [2010, 2012] experiments were
carried out in a 6 m long, 0.3 m wide tilting flume. The bed
slope and a downstream weir were adjusted to achieve uni-
form flow conditions with a water depth of �0.1 m. The
model plant canopy consisted of plastic plants inserted into
a perforated Plexiglas board covering the middle 3 m length
of the flume. The plants were arranged either randomly or in
a staggered pattern. The plastic plants, which resemble
Spartina Maritima, were 0.15 m high and composed of
approximately 120 leaves per model plant. Here, we tenta-
tively assume that each leaf piercing the free surface can be
represented as a cylinder having a diameter of 2 mm, which
corresponds to the larger dimension of the leaf, which has

an elliptical cross-section. This leaf diameter is smaller than
the particle diameter, dp (see Figure 7). Three different par-
ticles were used in the experiments to mimic different buoy-
ant seeds: particle A was a wood particle with diameter of
�2:5 mm and a relative density of 0.95, particle B (see Fig-
ure 7) was a smooth spherical berry with a mean diameter
of 3.7 mm and a relative density of 0.83, and particle C was
the same particle used in the present experiments.

[34] For particle C, Defina and Peruzzo [2012] showed
that the mean path length � varied inversely with the num-
ber of plants per unit area np, i.e., np� ¼ const. Since each
plant had the same number of leaves, the mean path length
also varies inversely with the number of leaves (i.e., cylin-
ders) per unit area, as shown in Figure 4.

[35] From equations (1) and (4) we have n� ¼ �1=
½dPi lnð1� PcÞ�. The constant value n� differs, in the dif-
ferent experiments by orders of magnitude (see Figure 4).
For example, compare the present study (� ¼ 230=n) with
the Defina and Peruzzo [2012] experiments (� ¼ 3600=n),
which use the same particle, but different stem diameter
and velocity. The difference in � is explained in part by the
difference in velocity. Using the data in Table 1, we can
see that an increase in velocity from 0.025 m s�1 to
0.033 m s�1 increases � by a factor of 2.7. The remaining
difference (an additional factor of about 5.7) can be attrib-
uted to the difference in stem diameter which affects Pi and
Pc through Ue. On comparing the present study with the
Chambert [2006] experiments, which use the same cylinder
diameter, the differences can be ascribed to the different
particle diameter, which affects both Pi and Pc and, mainly,
to the different flow velocity: in the Chambert [2006]
experiments velocity is 6.4 times the present velocity; as
such both Pi and Pc reduces dramatically.

[36] In the study from the work of Defina and Peruzzo
[2010], individual leaves were, in some places, spaced
closely enough to create net trapping, so that the probabil-
ity of capture, Pc, measured in those studies reflects both
the net trapping and the trapping associated with the

Figure 6. Comparison between theoretical and experi-
mental probability of capture as it varies with U=Ue. The
capture probability is plotted both in (top) natural scale and
(bottom) logarithmic scale.

Figure 7. Particle B attached to a leaf through the Cheer-
ios effect.
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Cheerios effect. The theory presented here only accounts
for the Cheerios effect, and so we must isolate that mecha-
nism from the data reported by Defina and Peruzzo [2010].
We assume that the probability of capture due solely to the
Cheerios effect is given by the measured total probability of
capture (which includes the net trapping mechanism) times
the measured percentage of captures due to the Cheerios
effect, which is reported in the work of Defina and Peruzzo
[2010]. Moreover, for the plastic leaves we measured a con-
tact angle �c � 30� so that  c ¼ 90� � �c � 60�. Experi-
mental data as well as the results of the computations are
given in Table 2.

[37] The values of Pc and U=Ue reported in Table 2 are
included in Figure 6. The Defina and Peruzzo [2010] data
points are consistent with the model curve (solid line)
developed for an array of cylinders. This agreement is
encouraging, especially given the rather different experi-
mental conditions and possible uncertainties, e.g., Spartina
leaves are not cylinders, some of the net-trapping captures
may actually have been through the Cheerios effect, i.e.,
net trapping may mask some of the captures through the
Cheerios effect. These experimental results suggest that the
relationships proposed in the present paper to estimate the
model parameters when the Cheerios effect is the dominant
capture mechanism can be extended, with due care, to real
plants. In this connection, an allometric study to establish
the equivalence between real plant morphologies and the di-
ameter and density of a group of cylinders could be of use.

[38] Chambert and James [2009] experiments were con-
ducted in a 20 m long and 0.38 m wide flume. The model
vegetation comprised an array of cylinders with a diameter
of 0.006 m, arranged across the full width of the flume in
staggered pattern. The total array length was 1.88 m, and
the array began 1 m downstream from the seed feeder.
Three sets of experiments were carried out with the three
different stem densities given in Table 3 and the same
mean flow velocity, U ¼ 0.16 m s�1. Five types of natural,
buoyant seeds were used for the experiments : African
Daisy, Nasturtium, Rhubarb, Sunflowers, and Marigold.
The flume was fed with 300 seeds during 4 min, and the
flow was stopped after a total duration of 8 min. The num-
ber of seeds retained (i.e., permanently captured) was then
counted visually (see Table 3).

[39] The mean path length given in Table 3 was calcu-
lated from (3), specifically

� ¼ 1

�ln ½PðX > LÞ� ;

where we take L ¼ 1.88 m, and PðX > LÞ is the percentage
of noncaptured seeds, i.e., PðX > LÞ ¼ 1� Nc=300. Please
note that the estimation of � is rather uncertain, because it
uses data for a single value of L, rather than a large set of
data ðP; LÞ to fit PðX > LÞ, as in the present experiments.

[40] In addition, the experimental procedure adopted by
Chambert and James [2009] is different from the present
experiments. We follow the trajectory and fate of one parti-
cle at a time, whereas Chambert and James [2009] release
all the 300 seeds in 4 min, allowing the seeds to accumulate
within the array. As a result, when the number of captured
seeds is large, seeds released near the end of the run find lit-
tle or no room to interact with the cylinders, and may
instead attach, to previously captured seeds (see, e.g., their
Figure 14), forming clusters of seeds within the array. The
clustering likely increases the probability of capture for
seeds released later in the run, a behavior that is not
included in the present model. As a consequence the mean
path length � of the lighter seeds (i.e., African Daisy, Mari-
gold, and Rhubarb), which are more easily trapped and
thus exhibited more clustering, does not follow 1=n, as
observed in the present study. However, the heavier seeds,
Nasturtium and Sunflower, which did not form clusters, ex-
hibit the relationship � � n�1 consistent with the model
developed in this paper (Figure 4).

[41] We use data for Nasturtium and Sunflowers seeds to
compute Pc as it varies with U=Ue. We assume a contact
angle �p in the range 15�–35� for Sunflowers seeds,
whereas for Nasturtium seeds we measured a contact angle
�p ¼ 17.5�. In both cases we assume, for the cylinder, a
contact angle  c ¼ 55� (i.e., the same contact angle for the
cylinders used in the present experiments). We then com-
pute the meniscus slope angle at the particle contact line
 p, the escape velocity Ue and the interaction probability Pi

(see Table 4).
[42] Combining equations (4) with (1) we have

lnð1� PcÞ ¼ �
1

Pidn�
:

[43] We use d ¼ 0.006 m and the mean experimental
value for n� (n� � 3:5� 104 m�1 for Nasturtium seeds
and n� � 1:5� 104 m�1 for Sunflowers seeds, Figure 4) in
the above equation to compute the probability of capture Pc

(shown in Table 4). These values are also plotted in Figure 6,
and they compare favorably with the theoretical curve. It is
interesting to observe in Table 4 that the capture probability
is not very sensitive to the contact angle �p so that uncertain-
ties in evaluating �p have a minor impact on the estimation

Table 2. Summary of Experimental Conditions and the Results of
Present Computationsa

Particle dp (mm) �p/� �p (deg)  p (deg) U (m s�1) Ue (m s�1) Pc

A 2.5 0.95 – – 0.073 – –
A 2.5 0.95 – – 0.081 – –
B 3.7 0.83 35 3.55 0.073 0.020 0.13
C 3.0 0.70 60 1.55 0.033 0.016 0.24
C 3.0 0.70 60 1.55 0.050 0.016 0.16
C 3.0 0.70 60 1.55 0.133 0.016 0.02

aExperimental conditions come from the work of Defina and Peruzzo
[2010, 2012]. Data in italic is unpublished.

Table 3. Number of Captured Seeds Nc and Mean Path Length �
Between Brackets, for the Three Different Stem Densities na

Seed Type n ¼ 431 (m�2) n ¼ 1251 (m�2) n ¼ 1681 (m�2) CSF

Sunflower 20;(27.2) 44;(11.9) 51;(10.1) 0.43
African Daisy 194;(1.8) 204;(1.6) 215;(1.5) 0.19
Marigold 134;(3.2) 155;(2.6) 162;(2.4) 0.15
Rhubarb 137;(3.1) 141;(3.0) 149;(2.7) 0.54
Nasturtium 5;(111.9) 21;(25.9) 29;(25.9) 0.87

aThe Corey Shape Factor (CSF), which measures the seed roundness, is
also given as reported by Chambert [2006]. Nc is out of 300. � is in meters
and n is in m�2.
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of Pc. For example, for the Sunflowers seeds a 40% change
in �p (�p ¼ 25� 6 10�) leads to only a minor (2.2%) change
in Pc (Pc ¼ 0.01135 6 0.00025); for the Rhubarb seeds a
23% change in �p (�p ¼ 15.5� 6 3.5�) leads to a 8:8%
change in Pc (Pc ¼ 0.0048 6 0.0004). Finally, we also com-
puted the capture probability for Rhubarb seed, which,
among the three lighter seeds, has the greatest roundness
(CSF), and thus comes closest to fitting the assumptions of
the theoretical equations used to predict meniscus slope angle
 p (see Appendix A). Since the product n� is not constant in
this case, we computed three different values for Pc using the
mean path lengths given in Table 3 for the three different
cylinder densities. Results are plotted in Figure 6 and again a
good agreement with the theory is found.

4. Conclusions
[44] In this work we improve upon the model developed

by Defina and Peruzzo [2010] by reducing model complex-
ity and by developing a physically based prediction for
model parameters. We focused on the role of surface ten-
sion in capturing floating seeds within emergent vegetation.
Two scaling parameters within the model were estimated
using data from the present study of floating particles
within an array of cylinders. Observations from Defina and
Peruzzo [2010, 2012], which consider a different morphol-
ogy of model plant, and from Chambert and James [2009],
which considers real floating seeds, compare favorably
with the model predictions, validating the model and con-
firming that it can be extended to other plant and seed mor-
phologies. Indeed, the good agreement between model
predictions and experimental results by Defina and Peruzzo
[2012], with plants having a moderately complex geometry,
suggests that the model can be used, with due care, with
natural vegetation, provided that stem density is relatively
small so that net trapping can be neglected, and that flow
velocity is sufficiently slow so that the Cheerios effect is
comparable to inertia.

Appendix A: Evaluation of the Meniscus Slope
Angle wp

[45] The meniscus slope angle at the particle contact line
 p is estimated by the dynamic analysis of vertical forces
acting on a floating sphere (see Figure 8). For light particle
(�p < �) the equilibrium position is reached when the weight
of the sphere and the surface tension in the vertical direction
are balanced by the pressure force acting on the sphere

�d3
p

6
�pg þ 2�ri� sinð pÞ ¼ �h2 dp

2
� h

3

� �
�g � �g�h�r2

i : (A1)

[46] Because of elementary geometric considerations the
contact radius is

ri ¼ dp sinð#pÞ=2 (A2)

with #p ¼ �p þ  p and �p the contact angle of the particle.
Equation (A1) can be rewritten as

�d3
p

6
�pg þ �� sinð pÞ sinð#pÞ ¼ �h2 dp

2
� h

3

� �
�g: (A3)

[47] The contact radius ri can also be written as

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

p

4
� dp

2
� h

� �2
s

: (A4)

[48] From equations (A2) and (A4) the sphere immersion
h can be expressed as a function of #p

h ¼ dp

2
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð#pÞ

q
� ¼ dp

2
½1þ cos ð#pÞ�: (A5)

[49] Replacing (A5) In (A3) and rearranging, the equilib-
rium position of the sphere is given by

sinð#pÞ sinð pÞ þ Bo

�
�r

6
� 2þ 3 cosð#pÞ � cos3ð#pÞ

24
þ

þ sin2ð#pÞ�h

4dp

�
¼ 0

; (A6)

Table 4. Summary of Seed Characteristics and Computed Model Parametersa

Seed Type
Average

Diameter (mm) Mass (g/seed) �p/� nd� �p (deg)  p (deg) Ue (m s�1) Pi Pc

Sunflower 6.2 0.0576 0.46 77 15–35 21.0–29.5 0.035–0.032 1.11–1.15 0.011–0.012
Nasturtium 7.0 0.1320 0.73 227 12–19 18.8–23.5 0.021–0.022 0.98–1.00 0.004–0.005
Rhubarb 4.7 0.0169 0.32 8; 22; 28 38–46 14.7–16.9 �0.039 1.19–1.21 0.099–0.100:

�0.037; �0.030

aThe average seed diameter is computed as the geometric average of the three axes reported in the work of Chambert [2006]: orthogonal long d1, inter-
mediate d2 and short axes d3. The seed density is computed as the ratio of seed mass [Chambert, 2006] to the volume of a sphere having the average
diameter.

Figure 8. Forces acting on floating particle with density
�p < � ; � is the surface tension acting along the wetted
perimeter.
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where �r ¼ �p=� is the relative density of the sphere and
Bo ¼ �gd2

p=� is the Bond number that represents the ratio
between gravitational force and surface tension.

[50] According to Kralchevsky and Nagayama [2000] the
shape of the meniscus wetting the sphere (see Figure 8) is
given as

�ðrÞ ¼ ri sinð pÞK0ðrqÞ; (A7)

where 1=q is the capillary length and K0 is the modified
Bessel function of order 0.

[51] Replacing (A2) in equation (A7) we obtain the rise
of the meniscus with respect to the undisturbed free surface

�h ¼ dp

2
sinð#pÞ sinð pÞK0

dpq

2
sinð#pÞ

� �
: (A8)

[52] By replacing (A8) in (A6) the equilibrium condition
becomes

sinð#pÞ sinð pÞ þ Bo

�
�r

6
� 2þ 3 cosð#pÞ � cos3ð#pÞ

24
þ

þ
sin3ð#pÞ sinð pÞK0

dpq

2
sinð#pÞ

� �
8

�
¼ 0

(A9)

which can be used to compute the meniscus slope angle  p.
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