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Abstract— We describe a novel wireless receiver architecture
that is a broadband generalization of narrowband heterodyning
systems commonly used in radio. It can be constructed with
cochlea-like traveling-wave structures. We show how this archi-
tecture exploits the efficiency of cochlear spectrum analysis to
perform parallel, multi-scale analysis of wideband signals. We
discuss analogies between spectrum analysis in our architecture
and the process of successive-subranging analog-to-digital conver-
sion. When combined with our prior work on an RF cochlea, such
architectures may be useful in cognitive radios for creating “RF
foveas” that select the narrowband components present within
wideband, but spectrally sparse signals.

I. INTRODUCTION

The commercially interesting range of frequencies for wire-
less applications extends over approximately three orders of
magnitude from 100MHz to 100GHz. Nevertheless, this nat-
ural resource is becoming increasingly crowded. At the same
time, customers want higher quality of service, particularly
increased reliability and higher data rates. In order to satisfy
these conflicting goals, radios must utilize the RF spectrum
in a more efficient manner. The cognitive radio paradigm has
been proposed as a solution to this important problem [1]–[3].

Cognitive radios add intelligence to traditional wireless
communication systems. They are designed to sense their
local RF environment, learn from it, and dynamically adapt
their operating parameters, such as transmit power, carrier
frequency and modulation strategy, appropriately. In particular,
they actively search for spectrum holes, i.e., locations in the
time-frequency plane that are suitable for communication, and
operate there. As a result, they must be built upon dynamically
reconfigurable hardware platforms, such as software-defined
receivers and transmitters [4], [5]. Unused VHF and UHF TV
channels (54-806 MHz in the United States) currently provide
most of the spectrum holes that cognitive radios seek to exploit
[6]. However, in the future a wider range of frequencies will
need to be monitored for potentially usable holes.

We have recently demonstrated a single-chip RF spectrum
analyzer based upon a model of the biological cochlea,
or inner ear, that we termed an RF cochlea [7]. The RF
cochlea performs spectrum analysis over a broad range of
RF frequencies (600 MHz to 8 GHz in the implementation
in [7]) with low-power, wide dynamic range, low latency, and
efficient hardware usage as discussed in [7]. In this paper we
describe a novel architecture based upon the RF cochlea that
can benefit software-defined receivers by providing real-time
estimates of interesting portions of the local RF spectrum with

scalably high precision and low hardware and power costs. The
architecture is based upon a novel analogy between analog-to-
digital conversion and frequency estimation.

II. ADCS AND FREQUENCY ESTIMATORS

We define frequency estimators as systems that estimate the
instantaneous frequencies present in a signal. They separate
an incoming signal that is spread over a bandwidth B into N
outputs, or frequency bins. Spectrum analyzers are frequency
estimators that can, in addition to estimating the frequencies
present, also determine their amplitude, i.e., the power spectral
density, and/or phase. Spectrum analyzers form a subset of
frequency estimators, and may also be viewed as a parallel,
broadband generalization of narrowband radios that estimate
amplitude or phase of a narrowband signal centered around a
single carrier frequency [8].

We have found interesting analogies between frequency esti-
mators and analog-to-digital converters (ADCs). The problems
that frequency estimators and ADCs solve are similar, but
in different signal domains. ADCs find the value of an un-
known analog amplitude (voltage or current), while frequency
estimators do the same with an analog frequency variable.
As a result, analogous algorithms work in the two cases.
However, a signal can have many instantaneous frequencies
of interest, but only one instantaneous amplitude. A more
accurate analogy is therefore to view frequency estimators
as the frequency-domain analogs of multiple parallel ADCs.
Each ADC corresponds to estimating the frequency value (and
possibly the power content) of one output bin.

The basic operation of subtraction in the amplitude domain
is extensively used by ADCs and has a natural frequency-
domain analog through multiplication (mixing or heterodyn-
ing). A low-pass or band-pass filter at the output of the mixer
can be used to select the difference frequency component,
while rejecting the unwanted sum frequency component, as
in direct conversion receivers or traditional super-heterodyne
receivers, respectively. In this paper, we shall assume that all
signals are real. However, the architecture that we describe
can be extended to the quadrature signal domain as well.

A simplified view of the n-th stage of a generic successive-
subranging ADC is shown in Fig. 1(a). The input Vn is limited
to the range ±VFS/2n, where VFS is the initial, or full-scale
range. The output of the comparator is bn ∈ [−1, 1], the next
output bit. It is converted into an analog signal by a one-
bit digital-analog converter (DAC) whose output voltage is
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bnVFS/2n+1. The DAC output is subtracted from the input Vn
to extract a residue Vn+1 that spans half the range of Vn and
is the input to the next conversion stage. In general the one-bit
quantizer and DAC can be replaced by multiple-bit versions,
and the stages pipelined or reused during the conversion cycle.

We can begin to map the ADC of Fig. 1(a) to a frequency
estimator in Fig. 1(b) by replacing the full-scale voltage
range with an initial frequency range B and by replacing the
voltage comparator with a frequency comparator. However,
frequency estimation requires estimation of bandpass input
signals, analogous to an ADC that requires signals within a
certain positive voltage range to be digitized. Hence, at each
recursive conversion stage in a frequency estimator, the offset
or ‘common-mode’ frequency used to compare the input fre-
quency against and the bandwidth of the conversion decrease
by a factor of 2. Thus, in Fig. 1(b), the DAC of Fig. 1(a)
is replaced with a digitally-controlled oscillator (DCO) whose
output frequency is ωDCO = (ωREF + bnB) /2n+1 and the
subtractor of Fig. 1(a) is replaced by a mixer and band-pass
filter as shown.
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Fig. 1. A single successive-subranging stage for (a) an analog-to-digital
converter and (b) a frequency estimator.

The frequency comparator can be built by converting the
input and reference frequencies into voltages, and then using
a voltage comparator. Frequency-to-voltage converters can
be created using tuned circuits (discriminators) or phase-
locked loops. The converters should be matched; otherwise
the comparator will have a static offset. In addition, the
functional relationship between input frequency and output
voltage should be monotonic (it need not be linear).

III. THE RF FOVEA

The RF spectrum is sparse over large bandwidths, i.e., dom-
inated by a limited number of relatively narrowband signals
which cumulatively occupy only a small fraction of the total
bandwidth. Some of these signals are of interest to the user,
while others, referred to as interferers, are not. In practical
situations interferers can be much larger than desirable signals.
A system capable of simultaneously observing several narrow,
arbitrarily placed frequency bands can therefore capture es-
sentially all significant information present within the entire
RF spectrum. An architecture that uses successive subranging
in the frequency domain to solve this problem is shown in

Fig. 2. This cascaded super-heterodyne architecture decides
where observed regions of the spectrum should be located by
using filter banks to decompose spectra into multiple channels.
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Fig. 2. A successive-subranging architecture for hierarchical analysis of
spectrally-sparse broadband signals. Interfering tones can be rapidly estimated
to a scalably high degree of precision and then canceled out using tunable
notch filters.

The filter banks in Fig. 2 have band-pass transfer functions
with center frequencies and bandwidths that scale arbitrarily
with horizontal position i. The outputs at each position are
analyzed by a cascade of successive subranging stages, each
of which is similar to that shown in Fig. 1(b). We may
identify ωREF /2n and B/2n with the local center frequency
and bandwidth, respectively. The latter can remain constant
with i, or scale with center frequency to generate constant-
Q characteristics. Here Q = ωREF /B is the quality factor.
In addition, for a fixed value of i the center frequencies and
bandwidths change with vertical position j, usually decreasing
by a constant factor α at each row. The bandwidth of the i-th
filter in the j-th bank, which we denote by Bj,i, is given by

Bj,i =
Bj−1,i

α
=
B0,i

αm
. (1)

A common value for α is 2, in which case the decision
network consists of one-bit quantizers, i.e., frequency com-
parators that determine which half of the input bandwidth
Bj−1,i should be included in the output bandwidth Bj,i. In
general we must use quantizers with log2(α) bits. Thus, the
output of each successive filter bank allows the user to deter-
mine the frequencies of N signals of interest in parallel with
exponentially-increasing precision, where N is the number of
filters in each filter bank. The outputs of the decision network
can be viewed as the results of N parallel frequency-to-digital
conversions (analogous to analog-to-digital conversions). The
architecture is also efficient in terms of hardware requirements
because it only needs M filter banks and M × N mixers
to increase precision by a factor of αM . Finally, it retains
amplitude information about each output signal and thus acts
as a spectrum analyzer as well as a frequency estimator.

The ultimate precision of successive subranging architec-
tures for frequency estimation is limited by three factors:
quantization noise, random errors (caused by device mismatch,
thermal noise, and flicker noise), and interference from signals
in adjacent channels. The first two factors also affect the
performance of ADCs, while the third is unique to frequency
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estimation. Such interference is due to overlap between the
transfer functions of the initial filter bank, and can be reduced
by using higher-order filters with larger roll-off slopes and
stopband rejections. The main function of subsequent filter
banks is to further reduce the relative amount of interference
through additional filtering. They can be omitted, or their order
reduced, if interference levels are low enough.

One application of the cascaded super-heterodyne structure
is to accurately estimate the frequencies and bandwidths of
unwanted interferers. The interferers can then be canceled
out, allowing weak signals to be detected in their presence.
A simple interference-cancellation strategy that uses tunable
notch filters is shown in Fig. 2. This scheme was simulated
using MATLAB; the results are shown in Fig. 3. Two tones one
octave apart are fed into the structure, with one being 80dB
larger in amplitude than the other. The curve labeled “original”
shows the results without interferer cancellation: The smaller
tone is invisible. The lower curve shows filter bank outputs
after the large interfering tone has been estimated and notched
out: The small tone is now clearly resolved.
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Fig. 3. Simulated performance of the cascaded super-heterodyne architecture.
The plots show outputs of the final filter bank before and after a large
interfering signal was estimated and cancelled out.

Cochlea-like traveling-wave structures consist of transmis-
sion lines or filter cascades with maximal-response frequencies
that decrease exponentially with position. They are an efficient
way to synthesize high-order, constant-Q filter banks because
of extensive hardware reuse: Each output is filtered by multiple
stages, each of which simultaneously produces its own output.
Unlike other spectrum analysis algorithms, such as the FFT
or simple filter banks, each cochlear stage is used multiple
times to synthesize output transfer functions with large roll-
off slopes, and consequently, high frequency selectivities. As a
result, the hardware and power costs of the cochlea are much
lower than comparable algorithms [7].

An added advantage of constant-Q frequency decomposition
is that it is better matched to the real RF environment.

The RF spectrum today is divided into licensed and unli-
censed bands that roughly follow constant-Q characteristics,
i.e., have bandwidths that are approximately proportional to
center frequencies. For example, the Q of the unlicensed
industrial-scientific-military (ISM) frequency bands allocated
internationally only varies by about a factor of ten as the
center frequencies vary by three orders of magnitude. It is
thus advantageous to replace the filter banks in Fig. 2 with
cochlea-like traveling-wave structures. We refer to this special
case, which is shown in Fig. 4, as the RF fovea, because
it uses an RF cochlea to rapidly obtain an overview of the
entire spectrum, and then adaptively “locks in” or “foveates”
on the largest components in that spectrum with exponentially-
increasing precision.

As in Fig. 2, center frequencies and bandwidths in Fig. 4
decrease exponentially with vertical position j. The center fre-
quency of the j-th output from the i-th cochlea is proportional
to its bandwidth (constant-Q behavior) and is given by

fi,j = f0,02−i/Noctα−j = f0,0e
−[i ln(2)/Nnat+j ln(α)], (2)
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Fig. 4. The RF fovea, an example of the cascaded super-heterodyne
architecture that uses cochlear models to obtain frequency selectivity.

where each cochlea is assumed to produce Noct outputs per
octave, and α is the constant that represents the exponentially
increasing precision as we move from RF to lower-frequency
IF stages in Fig. 4. The outputs of each cochlea are downcon-
verted using mixers. Each downconversion step selects 1/α
of the output bandwidth of the previous cochlear output. For
example, if α = 2, one-bit decisions determine which half
gets selected by changing the DCO frequency fji fed into
the mixer between fji,0 and fji,1, where 1 ≤ j ≤ M and
1 ≤ i ≤ N are the cochlear and output indices, respectively.
In order to reduce hardware costs we can downconvert only
those outputs that appear significant, such as local maxima
(peaks). The output of the mixer at location i can be directly
fed into the i-th stage of the next cochlea, as shown in Fig. 4.
Alternatively, all outputs of the j-th cochlea can be added and
fed into the first stage of the j + 1-th cochlea.

The total acquisition time of the RF fovea is determined
by the sum of the settling times of all the cochleas. It is
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dominated by the final cochlea since it analyzes the lowest
input frequencies, and is given by

Tacq ≈
γNoct
fM,N

(
α

α− 1

)
, (3)

where γ is a constant, of order unity, that depends on the
cochlear model, fM,N = f0,N/α

M is the lowest frequency
analyzed by the final cochlea, there are a total of M cochleas
and f0,N is the lowest frequency analyzed by the first (input)
cochlea. The hardware complexity of the system is modest: It
scales as O(NM), where N is given by

N = Noct (log2(β) + 1) . (4)

This formula assumes (conservatively) that the first Noct
stages of each cochlea are necessary for building up the
transfer functions and do not produce useful outputs. Also,
β = fj,Noct

/fj,N is defined as the ratio of maximum and
minimum frequencies analyzed by each cochlea.

Fig. 5 shows the simulated frequency estimation error
of the RF fovea for various values of M . We generated
this plot by feeding artificial spectra into the system. Each
spectrum consisted of Nf tones with random frequencies
and amplitudes, uniformly distributed in log-frequency and
log-amplitude space, respectively. We used the unidirectional
cochlear model described in previous work [7], and set Noct =
10 for the simulations. If simple energy extraction, i.e., no
pattern-recognition or phase-based spectral computations, is
performed on the cochlear outputs, a single cochlear model can
localize the frequency corresponding to a spatial-response peak
to a worst-case fractional bandwidth of ∆f/f ≈ ln(2)/Noct
when the output signal-to-noise ratio is 1. If the unknown
frequency is uniformly distributed in this interval, the resulting
RMS estimation error with this conservative assumption is
(∆f/f)/

√
12 = 2.0% for Noct = 10, and corresponds to

M = 1 in Fig. 5. Our simulations confirm that the frequency-
estimation error initially decreases with M as expected.

However, the error asymptotes to a fixed value as M
increases. This asymptotic error increases monotonically with
Nf , indicating that the precision of our algorithm is ultimately
limited by interference from other parts of the spectrum if they
have not been notched out as in Fig. 2. Besides notching, we
can also increase Nnat, which is proportional to the high-
frequency rolloff slopes of the cochlear transfer functions, to
reduce such interference. The result is improved precision at
the cost of increased hardware and power consumption.

IV. CONCLUSION

We have described an RF fovea, a successive-subranging
receiver architecture that allows users to focus on selected por-
tions of a broadband input spectrum. The RF fovea architecture
is a generalization of heterodyning concepts from the narrow-
band domain to the broadband domain. It can be efficiently
implemented using traveling-wave cochlear models, creating a
cascaded cochleas or cochlear heterodyning architecture, and
may be useful as a dynamic spectrum-sensing front end for
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Fig. 5. Frequency estimation error of the RF fovea to inputs consisting of
Nf tones with random frequencies and amplitudes as a function of M , the
total number of cochleas, obtained from MATLAB simulations.

software-defined and cognitive radio receivers. For example,
the dynamic range of such receivers can be increased by
detecting strong unwanted signals (interferers) and adaptively
removing them, resulting in a form of distributed gain control.
Our cochlear models themselves use gain control to increase
dynamic range, i.e., they amplify strong signals less than weak
signals. The gain-control process causes two-tone suppression:
Strong tones reduce the gain of weaker signals at nearby
frequencies, thus enhancing spectral contrast [9]. As a result
our system can detect interferers in noisy environments more
reliably than purely linear schemes.
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