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By
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Abstract

We develop three extensions to a previously published model which assists
managerial planning in a multi-sector job shop [Graves, 1986]. This model
provides insight into the trade-off between two aspects of system behavior,
production smoothing and size of work-in-process inventories, which will be
affected by management's choice of production lead times. For all three
extensions we provide numerical examples of application.

First, we develop a model of a production release rule which coordinates
demand forecasts over a planning horizon with knowlege of the projected
completion times of items currently in work-in-process inventory in order to
determine the number of items to start into production. This release rule model
is necessary in order to apply Graves' model to a production line which produces
in response to demand forecasts rather than in response to order arrivals, as is
typical of a job shop.

Second, we develop two measures of the service level of a shop and show how
these are affected by the choice of production lead times. The service measures
considered are the probability that demand during a random period is met and
average length of failure runs (by a failure run we mean several periods in
succession during which the facility fails to meet demand). We discuss how
management can evaluate the impact of lead time choice on the expanded set of
trade-offs among service measures, production smoothing, and size of
inventories.

Third, we model the dynamic behavior of a shop in response to various types
of change in demand. The changes considered are a one-period increase,
permanent increase, linear growth, and cyclical demand. We show how to
assess the time the system will take to achieve its new equilibrium and the
nature of the path followed during the transition and how these responses
depend upon lead time choices.

These three extensions should enhance the usefulness of Graves' model by
widening the scope of facilities to which it may be applied and by extending
knowledge about the impact of lead time choices on additional important aspects
of system behavior.

Thesis Supervisor: Dr. Stephen C. Graves

Title: Associate Professor of Management Science



3

Acknowledgments

This research was conducted with the support of a research assistantship
administered by the Sloan School of Management.

I wish to express my sincere appreciation to my advisor, Stephen C. Graves,
whose guidance, wisdom and encouragement have been instrumental in the
completion of this work. His patience with my frequent mental wanderings into
absurd and irrelevant areas has constantly amazed me.

My wife Kathleen has been a constant source of love and encouragement
while I performed the research, and she contributed in a very tangible way by
conquering a word processor which was filled with astounding behavioral quirks
to type the several drafts and the final copy.

To her I dedicate this thesis:

A wife of noble character who can find?
She is worth far more than rubies.

Her husband has full confidence in her
and lacks nothing of value.

She brings him good, not harm,
all the days of her life.

Many women do noble things,
but you surpass them all.

Give her the reward she has earned,
and let her works bring her praise at the city gate.

Proverbs 31: 10-12,29,31.



4

Contents

Chapter 1 Introduction Page No.

A. Purpose 6

B. Organization 6

C. The Underlying Model 7

D. The Electronic Component Manufacturing Line 11

E. Preview of Chapters 2, 3 and 4 14

Chapter 2 Production Release Rule

A. The Need for a Release Rule 16

B. The Release Rule Model 19

C. Calculation of Exit Probabilities 23

D. Example of Exit Probability Calculations 25

E. Conclusion 27

Chapter 3 Service Measures

A. The Need for Service Measures 28

B. Definition of Service Level 30

C. Simplified Model of a Manufacturing System 32

D. Shipping Level 35

E. Failure Runs and Expected Crossings 36

F. Formula for Expected Number of Crossings 39

G. Evaluation of Expected Number of Crossings and

Inferences About Run Lengths 44

H. Management Implications: Achieving Balance Between

Production Smoothing and Desired Service Levels 51



5

Chapter 4 Transient Behavior

A. The Need for Models of Transient Behavior 62

B. Preliminary Results 65

C. One-Period Change 67

D. Step Change 68

E. Linear Growth 70

F. Cyclical Pattern 71

G. Transient Behavior of Production Levels 73

H. Transient Behavior of Work-In-Process Inventories 76

I. Application to the ECM Line 77

Chapter 5 Summary and Suggestions 80

for Additional Research

References 82



6

Chapter 1

Introduction

A. Purpose

The purpose of this thesis is to develop and apply three extensions to a

tactical planning model in a job shop environment. This work grew out of a

research project during which a team of professors and students (one of whom

was the author) applied the underlying model to a shop which manufactures

electronic components.

The work contained herein is a combination of model development and model

application. Chapter 2 records development and application work which was

done during the course of the research project and was essential to the project's

ability to use the underlying model for the electronic component line. Chapters

3 and 4 record work which is primarily theoretical development and which

occurred after termination of the research project to follow up on additional

modeling issues that were identified during the project.

We believe this work will enhance the usefulness of the underlying model by

first providing some additional practical guidelines for use in its

implementation to a specific situation and second by enhancing its ability to

answer questions of importance to manufacturing management.

B. Organization

In the next section we briefly describe the underlying model, which this

thesis extends. Following this, we provide an overview of the manufacturing
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facility to which the model was applied, and then we give a synopsis of the model

extensions contained in Chapters 2, 3 and 4.

C. The Underlying Model

The underlying model is one proposed by Graves in his article, "A Tactical

Planning Model for a Job Shop" [Graves, 1986]. Graves develops a model which

provides the steady-state distribution of production levels and of queue lengths

at each work center, or sector, of a job shop which result from a proposed control

rule for setting production levels of each sector. He shows how to use the model

to evaluate choices of controls in order to produce acceptable shop behavior.

We present here a very abbreviated overview of the Tactical Planning Model

(referred to hereafter as the TPM) and its key equations. We refer the reader to

Graves' article for a more extended treatment of the TPM and a discussion of the

rationale underlying its development.

The TPM is a discrete time model and identifies all flow variables as

occurring during a period, which may be specified to be an hour, shift, day, or

whatever unit is convenient in applying the model. In this thesis we will refer

simply to "periods".

Graves proposes to control production by a rule that at each sector a period's

production be established as a chosen fraction of the work-in-process queue

(WIP) at the sector:

(1.1) Pit i it

where pit is the production during period t for sector i, qit is the WIP at sector i at

the beginning of period t, and the control parameter i, O<i 1, is the selected

fraction. Choice of ki is equivalent to choice of a lead time ni at the sector. By

"lead time" we mean the number of periods, on the average, an item will take to
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be processed through the sector. Clearly, i is the inverse of ni: choosing

i= 0.50 is equivalent to choosing a two-period lead time.

The units in which Pit and qit are measured is a critical issue in applying the

model to a given shop as the units must be uniform across all products. In a job

shop which produces a variety of products, pit and qit cannot be stated in items

since each item may have a substantially different work content. Graves

suggests stating these in terms of hours of work for the sector. In the remainder

of this thesis we will think of these quantities as units of product since this

interpretation was appropriate for the manufacturing line to which the model

was applied. The reader should keep this difference from Graves in mind and

carefully make the correct choice of units when using the TPM and these

extensions.

The WIP queue at each sector is governed by an inventory balance equation,

(1.2) qi, _ -- pi,t_1 + a ,

where ait is the amount of work that arrives at sector i at the beginning of period

t. These arrivals may come from many other sectors, and the flow from sector j

to sector i is modeled by

(1.3) auit = P. pt-1 + e,

where 4ij is the expected number of hours of work generated for sector i by every

hour of work completed by sectorj, and eijt is a random variable with zero mean.

The term eijt is a noise term introducing uncertainty in the arrival stream. It is

assumed that the terms of the time series {eift} are i.i.d. The total arrivals to a

sector in equation (1.2) are the sum over all preceding sectors of (1.3):

(1.4) a = p + P_ ,

where

(1.5) e = Nit + Ie t
J.
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where Nit is a random variable representing new jobs which enter the shop

directly to sector i. The elements of each time series {Nit} are assumed to be i.i.d.

The element eit can be thought of as an innovation to the system at time t,

consisting of new items introduced plus a random noise.

By substituting (1.4) into (1.2), and (1.2) into (1.1), solving for pit, and then

restating the system of equations in vector and matrix form, we have

(1.6) Pt = (I - D + D)P,_1 + De,

where P, is the vector of elements p, e, is the vector of elements eit, D is a

diagonal matrix with the control parameters (i = 1/ni on the diagonal, and 4 is

a matrix whose ijth element is 4ij. The identity matrix is I. By successively

substituting into (1.6) for Pt.1, Pt-, etc., and by assuming an infinite history to

the system, Pt can be written as a weighted sum of all past innovations

(1.7) P = D e -s where B=(I-D+ D(D).

s=O

The expected production levels are, taking the expectation of (1.7):

(1.8) E(P,) = p = BsDp,
s=O

where the vector p is the expected value of the innovation vector e,. Graves

shows that the geometric series converges provided that the spectral radius of

the matrix D is less than 1, which is necessary and sufficient for the spectral

radius of B to be less than 1. With convergence guaranteed, (1.8) can be written

in the equivalent form:

(1.9) E(P,) = p = (I-4) p

The variance of production is

(1.10) Var (P) = B D E D B's,
s=O

where E is the variance-covariance matrix of the innovation vector e,.

Equilibrium levels of Qt may be stated from the equilibrium levels of Pt, since,
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from (1.1), qit = pit /ki. Thus, in matrix form we have:

(1.11) =D- Pt

(1.12) E(Q) =D-p and

(1.13) Var(Q,) = D- [Var(P,)] D~

From the equilibrium levels for E(Pt), Var(Pt), E(Qt) and Var(Qt) given by

(1.9), (1.10), (1.12) and (1.13), Graves gives prescriptions for management choice

of control parameters, ki. First, as can be seen from (1.9), the choice of ki's has no

effect on equilibrium production levels. These depend only on the required work

flows of the system, as contained in the matrix <P. The variance of production at

each sector is, however, affected by the choice of ki, as can be seen from (1.10). In

general, ki operates as a smoothing parameter: decreasing ki, which is the same

thing as increasing lead time ni, will smooth production and reduce variance.

In most circumstances management will desire to reduce variance of

production levels as much as possible in order to reduce the costs of shifting

labor to respond to variations and the extra capital necessary to assure

sufficient capacity to respond to the peaks of production demands. There is a

cost, however, of reducing production variance. Increasing lead time obviously

creates a larger work-in-process inventory. This effect is evident intuitively,

and its effect is seen directly in equation (1.12). Equation (1.13) demonstrates

that increased smoothing of production levels is accomplished at the expense of

increased variance of WIP levels.

The equations (1.9), (1.10), (1.12) and (1.13) are the primary results of the

TPM. They permit management to obtain a characterization of the shop

behavior for various choices of control parameters. By using these results,

management can assess the impact and costs of different lead time choices and
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hopefully identify an appropriate level of trade-off between the benefits of

production smoothing and the cost of extra inventory.

D. The Electronic Component Manufacturing Line

During the course of the research project, the TPM was applied to a

production line which manufactures components for electronic equipment. To

preserve confidentiality of the manufacturer, we will refer to this facility only as

the "electronic component manufacturing line", or as "the ECM line". In this

section we provide only a concise view of the ECM line since a full

understanding of all its characteristics is not important in following the balance

of this work.

The project team identified thirteen work sectors into which it was

convenient to divide the various operations performed in the ECM line. Figure

1.1 shows the flows of work among sectors, and the numbers on the flows are the

4ij elements from the matrix <P. The product units flowing through the line

have nearly uniform work content at each sector, so it was convenient and

appropriate to state and interpret the 5ij as proportions or probabilities of flow.

That is, we can say that an item leaving sector 1 flows to sector 2 with 30%

probability, and to sector 3 with 70% probability. As we discussed above, this

interpretation would not be appropriate in a job shop which had a variety of

products flowing through it.

The line produces new components, which start at sector 1 and flow through

several assembly steps until they are tested at sector 6. As is not unusual in

electronics manufacturing, a moderately high number of components fail the

test. The test results are analyzed in sector 7 and here it is determined that

some of the items which failed the test are indeed good and that others need to
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Figure 1.1
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be reworked. Those which need rework are sent to sector 11 to begin that

process, and those which do not are sent to sector 8 for final assembly.

In addition to reworking items which failed the test, the line also rebuilds

units which have failed in service. These items enter through sector 9 and

undergo cleaning and disassembly processes before they join the items shunted

from the new-build side for reworking.

Even though the ECM line is not a job shop in the sense that we usually use

this term there are two features it has in common with a job shop and these led

to the decision to model it using the TPM. The existence of many alternate

paths an item can take through the line is one of these features, and this is one

which the TPM was designed to capture. Second, variability in the flows (which

is increased by the existence of multiple paths) causes large variations in

production requirements at each sector in the line, creating capacity problems

and difficulties in making daily staffing decisions. This flow variability is,

again, a characteristic for which the TPM was designed.

The TPM was applied and a program to run on a personal computer was

developed which allows the line management to test the effect of different

choices of sector lead times. Management inputs the level of demands and

hypothetical choices of lead times. In response, the program reports expected

production and WIP levels and their variances. If the results indicate

unacceptably high production variance, management can try an alternate

choice of lead times. Thus, using the program management can explore the

trade-offs between WIP levels and production variations.
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E. Preview of Chapters 2, 3 and 4

In the process of implementing the TPM on the ECM line, three significant

questions arose. These are the subjects of the model extensions developed in

these chapters.

First, as a prerequisite to implementing the TPM it was necessary to develop

a model of the method of releasing new-build units into the ECM line at sector 1.

In a job shop, releases at a sector are determined externally to the model since

they simply result from the jobs the shop receives. Such releases are

incorporated into the TPM by simply placing the mean of their distribution in

the vector p1. The rebuild side of the ECM line operates in this job-shop-like

manner since the arrival of a unit for rebuild generates a release. On the new-

build side, in contrast, releases are based on a forecast of demand in future

periods, and it was essential that a model of this process be incorporated into the

TPM.

Chapter 2 discusses development of the release rule to accomplish this end.

The release rule model, documented in section B of Chapter 2, was developed by

Graves. The author is responsible for developing the analysis, documented in

section C, for calculating exit probabilities which are required to implement the

control rule.

The second issue which arose is the question of what impact, if any, the

choice of lead times might have on the ability of the ECM line to meet demand.

It was clear that increasing the lead times would increase the correlation

between the finished goods output of successive periods, so that if output were

low in one period, the likelihood of low output in the following period was

increased. Increasing the lead times might generate increased probabilities of

longer runs of low output. Thus it was conceivable that by increasing lead times
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to reduce production variances, management might actually harm performance

as measured by response to demand.

It was thus obvious that an extension to the TPM which gives measures of

the service provided by the system and the response of this service to the control

parameter would be useful. In Chapter 3 we propose and develop service

measures and then provide an integrated discussion of the impact of control

parameter choice on the many aspects of system performance.

The third question which arose was about dynamic behavior of the system.

The TPM solves for the equilibrium levels of E(Pt), E(Qt), Var(Pt) and Var(Qt)

based on the assumption that demand is reasonably constant over a period long

enough for the system to adjust to its level. The ECM line, however, like many

other production lines, is subject to many substantial short and long-term

variations in demand. In this dynamic environment it is natural to ask whether

the ECM line will ever adjust to the equilibrium solution produced by the TPM,

how rapidly it will approach a new equilibrium in response to a change in

demand, and whether the path of adjustment to a new equilibrium will be

monotonic and asymptotic or whether there will be oscillations and overshoot

which may require temporary sectoral capacities in excess of those implied by

the new equilibrium levels.

Chapter 4 contains the development of a model of the TPM's transient

behavior in response to several types of demand changes, including a cyclical

pattern which may be used to model response to seasonal demand cycles.
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Chapter 2

Production Release Rule

A. The Need for a Release Rule

In applying the TPM to the ECM line, it was necessary to develop a model of

the decision-making process which determines the number of new items to be

started into the production line during each period. In terms of the model

presentation in Chapter 1, we are looking for a way to characterize the arrivals

to sector 1, alt, as seen in equation (1.4). The original specification of the TPM

assumed that the requirement for releasing items into the line is independent of

the shop status and is a result of new orders that arrive randomly to the shop. In

the model in Chapter 1, these releases are modeled by setting Nit to the number

of items (or hours of work, depending on the units used) started in sector i

(equation (1.5)).

A production line which produces for inventory in response to forecasts of

sales, rather than to specific orders, will determine its releases in a different

fashion. Demand must be forecast and production must be started in relation to

that forecast. The demand forecasts must be for a time horizon which is at least

as long as the system's total lead time, which we denote by L, since an item will

take that long to progress through the system. In determining today's releases

from the demand forecast, the current WIP must be netted out from projected

requirements since WIP consists of items which will be completed during the

next L periods and are thus available to fill demand over the planning horizon.

The excess of WIP over projected demand for these L periods is items that will be

available, based on what is currently in the system, to meet demand in the Lth

period in the future. Thus the release process should start into the line today
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only enough items to fill the shortfall between total demand forecast over the

next L periods and current WIP in the line.

The above is a simplified description of the required release process. In the

case of the ECM line, and most production systems, the decision-making process

(and any model of it) is complicated by uncertainties in the demand forecasts

and in the lead times which will be experienced by items in the current WIP and

by those which are to be released. Uncertainty in lead times can arise from two

major sources, only one of which is applicable in the TPM. First, the lead time

for each sector may be a stochastic quantity. Since the TPM prescribes use of

sectoral lead times as control variables, it is anticipated that management

would place great emphasis on realizing planned lead times, and thus sectoral

lead times would not vary greatly. Second, even in a system managed using the

TPM's control rule, variability in total lead time may exist due to the presence of

many alternate paths through the system. This source of uncertainty is present

in the ECM line, and its essential nature is illustrated in Figure 2.1, which is a

simplification of Figure 1.1. New-build items are released into sector 1. If they

successfully pass the test in sector 2 (the probability is 0.2) they flow on to sector

3 and out of the line with a total lead time of four periods (n1 + n 2 + n 3 ). If the test

is failed (the probability is 0.8), they move to the rework sector 5 and, if they

pass the test on return to sector 2, they exit the line with a lead time of seven

periods (n1 + n2 + n5 + n2 + n 3). Some proportion (the same 80%), of course, may

fail the test a second time and be sent back to sector 5 for additional rework,

thus increasing those items' lead times. So, for an item currently located in WIP

at sectors 1, 2, 4 and 5, its remaining lead time until exit is a random variable

whose distribution depends upon the coefficients which describe the work flow

from one sector to another.
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Figure 2.1

Schematic of Flows in a Manufacturing Line

New-Build
Releases

Sector 1

ni =1

Sector 2

Testing

n2=1

0.2

Rebuild
Releases

n42Sector 4

n4=2

0.8
_____ _____ ____ Sector 5

Final Production

Another feature of the ECM line which must be taken into account is the

difference between new-build and rebuild lead times and the impact of this

difference on calculating WIP which will exit during the planning horizon. How

this affects computation of releases is illustrated by the rebuild releases in

Figure 2.1. It was decided to model rebuild releases as job-shop-type releases.

That is, units are returned to the line for rebuilding according to a random

process and are immediately released into the line. A rebuild item which passes
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the sector 2 test the first time has a total lead time of seven periods, whereas a

new-build release which passes the test has a total lead time of four periods.

Because the rebuild item has a longer total lead time, today's rebuild releases

cannot be included in the WIP which is expected to meet demand over the

immediate planning horizon of four periods. Of course, some of the WIP in the

rebuild side can be expected to exit the line within the four period new-build

lead time. For example, some fraction of the WIP at sector 5 will probably exit

within this time and can thus be subtracted from demand forecast for the next

four periods to determine today's new-build releases.

B. The Release Rule Model

With this general description of the release rule problem, let us now turn to

development of the model. We build upon the equations of the TPM from

Chapter 1. Our problem is to use the philosophy of computing new-build

releases discussed above to characterize ait, the arrivals to sector 1 at time t, in

accordance with the equations of the TPM. Specifically, we want to be able to

write alt as (from equation (1.4)),

(2.1) a = P1  + 
it a j j, t -1 it,

j= 1

where m is the number of sectors in the line. Let m be the final sector from

which finished items exit the line. We need to define 4 j, and we assume the

random variables {eit } form a time series with i.i.d. elements.

We now define Rt(u,u) as the forecast, made at time t, of requirements which

must be met during periods u, u+1, ..., v. The change in forecast from period t-1

to t for the same interval u, u+1, ..., v is (t (u,v); that is,

(2.2) Rt(u,v) = R, 1 (u,v) + (uv,).
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We assume that (t (u, v) is a random variable, and the elements of the time

series {{t (u, v)} are i.i.d., with mean zero. Let It be an inventory of finished

goods which is governed by the inventory balance equation

(2.3) 1 t = It-i + pm, t-1 - R,_,(t-1),

where pm, t-1 is the output of finished goods and Rt-1 (t-1) is actual demand, both

during period t-1.

Following the philosophy of release computation discussed in section A

above, we see that releases to sector 1, alt, need to be calculated so that the WIP

(including alt) which will exit within the planning horizon plus the inventory of

final goods available at time t will meet the requirements over the horizon. The

planning horizon at time t consists of periods t, t+ 1, ..., t+LN, where LN is the

total lead time of all sectors in the shortest path through the new-build side.

Note that period t is the period between time points t and t+ 1. A release into

sector 1 at time t has a positive probability of exiting the line at time t + LN and

thus of being available to satisfy demand during period t+LN. Demand during

period t can only be filled from the existing final goods inventory It. Demand

during periods t+ 1, t+2, ..., t+LN can only be satisfied by the balance of It plus

items which are currently in WIP and within LN periods of exiting from the

system.

Using the notation defined above, we see that Rt(t, t+LN) is the forecast at

time t of demand in periods t, t+ 1, ..., t+LN. Note that this includes the forecast

for demand in period t, Rt(t), which we assume to be known with certainty. We

let Oi denote the probability that an item in WIP at sector i will yield a usable

final product within LN periods (i.e. by time t+LN). Thus Oiqit is the expected

number of items currently in WIP at sector i which will exit during the planning

horizon, and the total number of finished items expected to be available over the

horizon is the current It plus the sum over all sectors of Oiqit. That is, we must
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set releases, which are part of qit, so that this relationship is satisfied:

m

I, + 10 1 q
i= 1

= Rt(t,t+ LN)

We rewrite this and the similar expression for t-i as:

m

0 q i
i=1

0;1 q
i=1

Subtracting the second from the first gives:

10 1(qt - q I_,)
i=1

We recall the following:

= R (tt+LN) - Rt- 1 (t-1,t+LNl) -
t + It- '

= a it (from (1.2)),

= R + (t±LN) + 4t (t,t+LN t---1 (t-1),

- P'~mt-1 (from (2.3)).

Substituting these into the difference we have:

= R (t+LN) + (Qt±LN 1) -
Mt- I'

Operating on the left-hand side, we remove O1(at - pi, t-1) from the summation

and substitute from equation (1.4) for ait, i = 2, ..., m:

(O1 ai - 0 p ) +
pit-1 - Pi,t-1 +

Now solving this for ait, we get:

al - R, (t+LN ) t QtLN_) - Pm,t-1 + 0 lpl, t-I

+ Y:0 pit1

i=2

m m

- j't-1
i=2 j=1

Comparing this to (2.1) we can solve for eit and the coefficients <pij in terms of

(2.4)

Rt(t,t+LN )-t

Rt(t, t+LN) - Rt-1 (t-1, t+LN 1)

(2.5)
0i9 (a -- p )

i=

i=2

(2.6)

j=1

Sit 
.

m

~ Oi it
i=2

R t-1 (t- 1, t+ LN_1 I t-1 *

qi, - qi,,t_1

I _I - it - R,_,(t-1)
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the other parameters and variables, as:

(2.7) ci = R (t+LN) + 4 (tt+LN 0
1 i=2

(2.8) $1 - NN . -1,
1 i=2

(2.9) 0 _ 2 - i .1t==

If there are several sectors from which finished items exit the line, as there

indeed may be in a job shop, there will be several sectors m whose $1m is

expressed in the form of (2.9).

The release rule of interest is equation (2.7). This says that releases into

sector 1 need to consist of three components: first, the current forecast of

demand for period t+LN; second the current change in forecast for the current

and future periods t, t+ 1, ..., t+LN-1; third, we subtract the items which will

exit within the planning horizon that may be generated by external injections to

other sectors. Finally, the resulting quantity must be increased to account for

the fact that a proportion (1-O1) of the releases into sector 1 will not complete

processing within the horizon.

In order to use equation (2.7) in implementing the TPM, one will want to

take the expectation in order to determine pi, the first component of the vector P

of equation (1.9). Under the assumptions that E(4t) = 0 and E(eit)= pi (it 1), we

have:

(2.10) E = =- m

1 i=2

where we have assumed also that the requirements process is stationary, so that

E (R,) = R , (t 1, 0, 1,
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C. Calculation of Exit Probabilities

In order to use (2.7), (2.8) and (2.9) in application of the TPM we must

calculate the parameters Oi, the probability that an item in WIP at sector i will

yield a usable finished output within the planning horizon given by the total

lead time, LN-

We calculate O; by first defining a bivariate state (i, t) for an item in WIP,

where the element i identifies the sector in which the item is currently located

and the element t identifies the length of time (in periods) that the item has been

in sector i. For example, suppose sector 3 has a four day lead time. To say that

an item is in state (3,2) means that it is in its second day in sector 3. In other

words, it has, on the average, two more days to spend at sector 3 before moving

on to a subsequent sector.

Employing the Markov assumption in Graves' identification of the

intersectoral flow rates, <pij, we define a Markov transition matrix Q, whose

elements are given by:

1 if i=jands=t+1

W (i,s) (j,t) 0 if i=jand stt+1

X.if ixjandt =n s=1

Here Xij is the probability that an item leaving sector j moves to sector i. Note

that the matrix Q is the transpose of the more conventional transition matrix:

the columns are source states and the rows are destination states. The matrix is

presented in this transposed form simply to be consistant with Graves'

definition of the <D matrix.

The transition probabilities w(i, s) (j, t) have the following meanings. If an

item is in a sector's WIP and has been there less than the sector's planned lead

time, then at the end of a period it makes a transition to the same sector and to a

time slot one period closer to exit from the sector. If an item is currently in the
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last period of a sector's lead time, then its transition is to another sector

according to the flow possibilities identified in the D matrix. It cannot move to

another sector until it has been in the current sector for the planned lead time.

To complete the formation of the matrix Q, we must add one last row and

column with zeros in all elements except a 1 in the southwest element. This

represents a final absorbing state indicating an item has exited from the system.

The Q matrix is now square, of dimension

m

ni + 1.
i=1

Now a is a transition probability matrix for a Markov chain with one absorbing

state (namely exit from the system). By computing powers of u, i.e. 9 -, we can

find the probability of exit from the system from each state for any number of

transitions L.

In applying the model to the ECM line, the probabilities Xij were given

directly by the elements ij of the < matrix, since production was defined in

terms of units of product and the elements of the <D matrix could be interpreted

as probabilities. This correspondence will not be true in general when using the

TPM and the Aij will have to be estimated in some other fashion. This is

because, in a different application, the production of each sector, pit, may be

measured in hours of work, and the 4ij elements will denote the hours of work

generated at subsequent sectors by an hour of work completed in sector j.

The next step in calculating the probabilities Oi is to raise the a matrix to the

power LN. The cells of the last row will accumulate the probabilities that an

item which started in the state of that column will have exited within LN

periods. Finally, 0i is the average of the entries in the cells representing the

different time periods in sector i. The averaging can be accomplished by

postmultiplying the last row of the of Q LN matrix by a
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n +1 x m matrix
i= 1

whose entries are the appropriate averaging elements.

D. Example of Exit Probability Calculations

We illustrate the calculations of Oi using the data from Figure 2.1.

system states are (1,1), (2,1), (3,1), (3,2), (4,1), (4,2), (5,1), (5,2) and Exit. An

item in (3,2), for example, has already spent o

The transition matrix 9, with states in the

0

0

0.2

0

0

0

0.8

0

0

ne period in sector

above order, is

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

Recall that columns represent source states and the rows represent destination

states, so the 0.2 in row 3, column 2 is the 0.2 probability of transition from state

(2,1) to state (3,1), and the 0.8 in column 2 is the 0.8 probability of transition

from state (2,1) to state (5,1).

To calculate Oi, we first raise a to the fourth power since LN= 4.

The

3.
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0 0 0 0 0 0 0 0 0

0.8 0 0 0 1 0 0 0.8 0

0 0.16 0 0 0 0.2 0 0 0

0 0 0 0 0 0 0.2 0 0

U= 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0.64 0 0 0 0.8 0 0 0

0 0 0 0 0 0 0.8 0 0

0.2 0.2 1 1 0 0 0 0.2 1

Now we take the final row of 14 and multiply it by a matrix that averages the

probabilities over the states belonging to each sector

0.2

0.2

1

1

0

0

0

0.2

1

x

1 0 0 0 0

0 1 0 0 0

0 0 0.5 0 0

0 0 0.5 0 0

0 0 0 0.5 0

0 0 0 0.5 0

0 0 0 0 0.5

0 0 0 0 0.5

0 0 0 0 0

= 0 = (0.2, 0.2, 1.0, 0, 0.10)

(The 'on the column vector above indicates the transpose.)
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So we see that the probability that an item currently located in sector i will

exit the line within the next four periods is

E. Conclusion

By following a similar procedure, exit probabilities may be calculated for any

system, and then (2.7) may be used to calculate the required releases into sector

1. Finally, (2.8) and (2.9) can be applied to calculate the elements which must be

inserted in the first row of the <D matrix. Once this has been accomplished

equations (1.9), (1.10), (1.12) and (1.13) may be used to calculate the behavior of

the system.

i Probability of Exit

1 0.2

2 0.2

3 1.0

4 0

5 0.10
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Chapter 3

Service Measures

A. The Need for Service Measures

The Tactical Planning Model gives management insight into the choice of

sector lead times by calculating the impact on two key aspects of line

performance: production variances and size of WIP. These performance

characteristics are of great interest to management since they are indicative of

some of the major costs of running the system, and the TPM gives insight into

the trade-offs available among the associated costs. Management is, of course,

also interested in the service provided by the system as measured by the extent

to which it produces the right quantities of finished goods at the correct times.

The choice of lead times affects this responsiveness to demand in addition to the

cost trade-offs, but the TPM as presented in Chapter 1 provides no insight into

this effect. The purpose of this chapter is to enhance the TPM by adding a model

of the impact of lead time choices on service.

The fact that lead time choices can affect service is easily seen by deriving

from equations (1.1) and (1.2) the relationship between the production levels at

a sector in two successive time periods. Substituting from (1.2) into (1.1),

recognizing that pi, t-1 = i qi, t-1 and that ki = 1/ni, we see that production of two

successive periods is positively correlated, and that the correlation will increase

with ni:

(3.1) pLt = 1- + - a .

If ni is 1, then all arrivals at time t are produced during period t, there is no

smoothing of production, and production in successive periods is uncorrelated. If

ni is very large, only a small portion of periods t's arrivals are produced during
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period t, there is much production smoothing, and the correlation between

production in successive periods approaches perfect positive correlation. Since

these comments apply to any sector, the implication for the system's response to

demand can be seen by considering the final sector m, out of which finished

products flow. Positive correlation among the terms of the time series {pmt}

implies that if output is low during period t, the probability of low output during

period t+ 1 is increased. This implies that increasing nm may have the effect of

creating runs, consisting of several consecutive periods of low output. A run of

low output may generate a run of several periods in which the system fails to

meet the demands.

In a multi-sector system the lead time at other sectors will also affect the

ouput correlation. The matrix equation (1.6) shows that the period-to-period

correlation of production at every sector in the system will be affected to some

degree by the lead times of all sectors. For example, if in the ECM line the lead

time of sector 1 is increased while lead times at all other sectors (including the

output sector, 13) are left at ni= 1, some positive correlation will be introduced

into the output.

The rest of this chapter is organized into six sections. In section B we give a

conceptual definition of the service level of a system. In C, we pose a simplified

model of a manufacturing system which will be used to develop the service

measures. Sections D, E, F and G contain the development of the service level

measures, some numerical examples and some numerical indications which can

be generalized to other manufacturing facilities. Finally, in section H we

discuss the implications for management of a shop, taking into account effect of

lead time choices on the many aspects of system behavior.
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B. Definition of Service Level

There are many facets to the concept of service provided by a facility and

many different causes of good or bad performance in each of these areas. In this

section we clarify and limit the definition of service level to the two measures

with which we will be concerned.

The most obvious basic measure of service is the probability with which the

system will meet the requirements during a period from the total of that period's

production and the available inventory of finished goods. We will use this

measure and call it the "shipping level",

(3.2) S = Pr {demand is met in a random period].

If S =75%, then the probability that the total number of units required to be

shipped on a random day are available is 75%. The other 25% of the time, less

than the full number of required units are available and, presumably, a partial

shipment is made. We do not attempt to capture in S (or any other measure), the

extent to which the system falls short of meeting requirements in those periods

in which shortfalls occur.

Secondly, recognizing the fact that there will be positive correlation in the

output time series, we wish to have some measure of failure run length, where a

"failure run" refers to several successive periods during which the system fails

to meet demand. Management will have a keen interest in failure run lengths

since they will usually be interested in assuring that the line will fall behind

schedule for no more than a specified number of periods. A facility which

provides adequate service as measured by the shipping level S may still

occasionally run behind schedule for an unacceptably long time. Management

will want to avoid choosing lead times which might cause this behavior.

We define the random variable Ft as the length of a failure run whose first

period is t. We would like to be able to determine the distribution of failure run
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lengths, given by

(3.3) Pr{F, = i), i=0,1 2.

The impact of output correlation on system service is seen directly when we

consider how we might compute the distribution of run lengths. If successive

period's outputs are independent random variables, and S is the probability that

demand is met, then Ft has the geometric distribution, given by

(3.4) Pr {Ft= i = (1-SYS, i=1,2,...

Because the output is correlated rather than independent, however, the

conditional probability,

Pr {Demand is met in period t I demand was not met in periods t-1, t-2, ...}

is not the same as the unconditional probability S, and (3.4) is not a correct

statement for the failure run distribution. If each probability S in the product

(3.4) were replaced by a conditional probability, each conditioned upon the

entire past history of the system, and if (3.4) were calculated over every possible

past state of the system, then a failure run length distribution could be

generated. Performing this calculation requires knowledge of an infinite

number of conditional probabilities and calculation of products (3.4) over an

infinite number of possible paths of the system. Clearly this is an intractable

problem. Thus the existence of output correlation first introduces a new concern

by creating the possibility of nonrandom failure runs and then confounds the

situation by preventing us from calculating a distribution of run lengths.

Even though we cannot develop a complete distribution of failure run

lengths, we will discover that we can derive the expected value of run lengths.

We will do this in sections E and F.

We must comment on one other source of discrepancy between production

and demand which is encountered in a manufacturing system. In a system in

which production decisions are based on forecasts of demand quantity and
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timing, incorrect forecasts will result in lower service levels than would perfect

forecasts. In our treatment, we wish to focus attention only on the discrepancies

which may be imparted by the structure of the system and the correlation

generated within it, so we assume perfect demand forecasts. The effect of this

assumption is that production, on the average, equals the average demand, and

that the discrepancies which appear are ones of timing of output in relation to

demand and are not created by incorrect forecasts.

C. Simplified Model of a Manufacturing System

It is convenient to work with a simple model of a one sector system rather

than the multi-sector TPM. It is possible to use equations (1.6), (1.7) and (1.8) of

the TPM to solve for the covariance of pint over time as a function of all sector

lead times, but the resulting equations are extremely cumbersome and hard to

interpret. The following one sector model captures the essential nature of

output correlation which occurs in the full multi-sector TPM, but is much easier

to interpret. Thus we believe this step is a reasonable modeling simplification.

We represent a manufacturing system as one sector and an inventory of

finished goods, as diagrammed in Figure 3.1. New work consisting of at items

are released into the system each period and then go directly into the work-in-

process inventory qt. Production control is established using the TPM control

Figure 3.1

The One Sector System

at Pt .. Rt
qt
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rule, and 1/n of the items in qt are produced each period, where n is

management's choice of lead time. Finished goods are placed in an inventory, It,

from which items are drawn to meet the period's demand. The equations

describing the flow of production and inventory balances are:

1
(3.5) p, -=P q,n

(3.6) q = q,_1 + a - p,_

(3.7) It = It_1 + p_, - Rt

where Rt is the demand or requirements for the period.

We assume that each period's demand is a random variable, independent of

demands in other periods, and that it is normally distributed with mean 1 and

standard deviation oR. As discussed above, we assume that releases into the

system are governed by a perfect forecast of demand, so that at = Rt, and at has

the same distribution as Rt. It might seem more natural to assume releases are

a forecast of future demand, at = R t(t + h), where R t(t + h) is the forecast made at

time t of demand in period (t+ h). This refinement can be included in the model,

but it simply complicates the analysis with no essential effect on the outcome, so

we do not employ it.

We now substitute (3.6) into (3.5) and use the facts that pt-1 = (1/n) (qt-1) and

at = Rt to write Pt as a function of pt-1:

(3.8) p = 1--)p,_ + R
n ~n

Here we can see the essential nature of the inter-period correlation we discussed

above.

By repeated substitution of (3.8) into itself and by assuming an infinite

history of the system, we write pt as a weighted sum of all past requirements:

(3.9) Pt

s=0
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Since the Rt (t= ... -1, 0, 1, ...) are independent normally distributed random

variables, the pt will also be normally distributed with expectation and variance

(3.10) E(p,) = E(Rt) = R.

(3.11) Var(p ) = 2n )-1

In (3.9), we see again confirmation of the fact that the pt are not independent

random variables since each is a weighted sum of all past demands.

In order to answer questions about the system's service level, we focus on the

final goods inventory, It, and its distribution. If It<0, then the requirements in

period t were not met and some of period t's demand is backlogged. If It<0 for a

sequence of periods, then we have a failure run. We can now quantify the

service measures we discussed in generalities in section B in terms of the

probability distribution of It:

(3.12) S = Pr{demandismetinarandomperiod} = Pr {I,20} ,

(3.13) Pr {Ft =i} = Prf{I,_ 0, 1<0, It+1<0' '' It+<i -1<01 it+ i0}.

We now can express the moments of It and its covariance as functions of the

moments of the Rt distribution. Note that the total inventory in the system,

qt+It, is constant for all t. This can clearly be seen by adding (3.6) and (3.7) and

using the fact that at = Rt, which gives

(3.14) qt + It = t-1 + I,_ = K.

We denote this constant inventory level by K and call it the ""base stock".

It will be useful to call the components of base stock, qt and It, the "in-process

stock" and "safety stock" respectively. The size of qt is related directly to the

production process and the smoothing requirement dictated by management's

choice of n, as can be seen from (3.5). The size of It is related, as we shall see
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later, to management's choice of S, the probability that demand is met. We can

now express It as a function of n and the requirements by substituting for qt in

It=K-qt, using (3.5) and (3.9):

(3.15) It = K -- ( R
s=0

Since It is a linear combination of the independent normally distributed random

variables Rt, It is itself normally distributed with expectation and variance

given by

(3.16) E(I,) = K - n R,

2
(3.17) Var(I) = n 2 a 2

t \2n-1 ) R I

As is true for pt, successive values of It are not independent but are correlated

with

(3.18) Cov(I I ) n-1)h012

With this information about It and its distribution, we can now turn our

attention to describing how the shipping level S and failure run lengths are

affected by n.

D. Shipping Level

Our first measure of system service is the shipping level

S = Pr {demand is met in a random period],

defined by (3.12).

Management can adjust system performance to any desired level S simply by

selecting a value of base stock K to satisfy
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(3.19) K = nR + I (S) of

2

= nR + q- I(S) n

S2n-1
where 'P(-) is the cumulative standard normal distribution.

The first part of (3.19), nR, is the in-process stock and is determined entirely

by n. The second term, the safety stock, is that which is influenced by a choice of

S. The safety stock is the amount of finished goods kept in inventory to protect

against period-to-period fluctuations in demand. For example, at S=50%,

V''(S)=0, thus requiring no safety stock. With no safety stock, K=nR so

E(It)=O and, since It is distributed normally, Pr{It<0} = Pr{It 0} = 0.5,

verifying the choice of S =50%. To establish the shipping level higher than 50%,

(3.19) simply says that the safety stock needed is some multiple of the standard

deviation of I, where the multiple is a function of S.

E. Failure Runs and Expected Crossings

The shipping level S is certainly an important measure of system

performance but, as we have seen above, S does not address the problem of

positive correlation in pt and It. Even when S is set at a high level, since the

conditional probability Pr (It70|GIt.1<O)<S, the system may generate failure

runs of greater length than desired by management.

Previously we pointed out that we cannot develop a distribution of run

lengths. However we can derive an expression for expected run lengths by

focusing on the associated level-crossing problem. The random variable It

describes a sample path through time and occasionally crosses the level It= 0.

As long as It remains below It=0, a failure run is in process, while a success run

is in process when It7 0 for several successive periods. Figure 3.2 shows a
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possible sample path. In this figure we see that It20 for t = 1 through t =9 and

for t= 17 through t= 23. These periods are success runs of various lengths. A

failure run occurs from t= 10 through t= 16. Note that the number of times the

path of It crosses the zero level during the interval shown is related to the

average run length. We will exploit this property to derive expected run

lengths.

it Figure 3.2

success run success run
t=1-9 t 17-23

failure run
t=10-16

Two facts about the stochastic process formed by the sequence of random

variables It (t=..., -1, 0, 1, ... ) are important. First we note that it is a covariance

stationary (or weakly stationary) stochastic process as it satisfies the three

requirements for such a process: (1) finite second moment, (2) constant mean,

and (3) a covariance function which depends on the lag between two elements

but not on the actual value of the time index [Cramer and Leadbetter, pg. 121].

These properties can be verified from (3.16), (3.17) and (3.18). Second, since the

elements It are normally distributed we can state the stronger result, that It is a

strictly stationary process [Cramer and Leadbetter, pg. 123].
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We define a new stochastic process by the random variable C(s, t], which is

the number of times It crosses the level zero in the half-closed interval (s, t]. In

the next section we will prove that C(s, t] is a stationary point process and we

will find an expression for the expected number of crossings in a unit interval,

E[C(t, t + 1] ], which we denote as E(C) for simplicity.

Associated with the It process are three processes of runs, which we define by

the random variables Wt = length of a run beginning at time t, Vt = length of a

success (think Victory) run beginning at time t, and Ft = length of a failure run

beginning at time t.

Since C(t, t+ h] is a stationary point process, as h -+ - the average run length

will approach the inverse of the average number of crossings which occur during

h periods [Cox and Miller, pgs. 356-358]. So we will use E(C) to find E(W) by

(3.20) E (W) 1 .
E (C)

Once we have E(C) and E(W), we will be able to find expressions for the

expected failure run length E(F) and the expected success run length E(V), as

follows. Since as h -> - the numbers of success runs and failure runs are equal,

1
(3.21) E(W) - [ E(V) + E(F) 1.

2

Also, the probability, S, of a successful period will equal the proportion of time

the system is experiencing success,

(3.22) S E(V)
E(F) + E(V)

From (3.20), (3.21) and (3.22) we can solve for E(F) and E(V):

2S
(3.23) E(V) - S

E(C)

2(1-S)
(3.24) E(F) = E(C)
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F. Formula for Expected Number of Crossings

The literature on stationary processes contains an expression for the

expected number of crossings of a level for a continuous process with a

covariance function that has a finite second derivative at h =0 [Cramer and

Leadbetter, pg. 194; Karlin and Taylor, pg. 522]. Unfortunately, this expression

does not work for the It process since it is a discrete process and its covariance

function does not satisfy this property.

Although the formula itself does not apply, we can adapt the process used by

Cramer and Leadbetter to develop the formula to produce an expression which

does apply to the It process. The following development is most closely patterned

after Karlin and Taylor's report of the derivation [Karlin and Taylor, pgs.

510-522].

Let It be a discrete time stochastic process as defined above with expectation,

variance and covariance function given by (3.16), (3.17) and (3.18). Let

Rt(t=...-1, 0, 1, ...) be distributed normally with mean R, variance 0 2R and

Cov(Rt, Rt+ h) =0. Let C(s, t] be an integer-valued random variable equaling the

number of times It crosses the level zero in the interval (s, t]. In particular, we

will denote C(t, t+ 1] (crossings in a unit interval) by C alone.

First we prove that C(s, t] is a stationary point process:

Theorem 1: Under the above assumptions C(s, t] is a stationary point process.

That is, the k-dimensional vector

{C(s1 , t1], ..., C(sk, tk]}

has the same joint distribution as the vector

{ C(s,+h, t,+h], ... ,C(sk+ h, tk+h]}

for every set of intervals (si, ti], ..., (sk, tk], for every positive integer k, and every

integer h.
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Proof: We prove this by assuming the It process is generated by sampling from

a continuous time Gaussian process, whose counting process is known to be a

stationary point process. The elements of the C(s, t] process are then shown to be

equivalent to the elements of this stationary point process, proving the desired

result.

Assume Z(t) is a continuous time Gaussian process having continuous

sample functions. We sample the process only at discrete times, t=0, 1, 2,

yielding the derived discrete time Gaussian process It. Define N(s,t] = the

number of times the trajectory of Z(t) crosses the level Z(t) = 0 in the interval

(s, t].

Z(t)

Example 1 0 7 - N(s, t]= 4

S t

Example 2 0 N(s, t]=5

S t

Let C(s, t] = the number of times the process It crosses It= 0 in the interval

(s,t], where a crossing occurs whenever Is>O>It or Is<O<It. Note that if

C(s,t] = 1, then N(s, t]2 1 and is odd. If C(s, t] = 0, then N(s, t] = 0 or N(s, t] >0 and

is even. The relationship between N(s, t] and C(s, t] is shown in these examples:
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Z proess Iprocess

Example 1 0 - 0 -

S t S t

N(s, t] = 3 C(s, t]=

Example 2 0 - - 0 -

S t S t

N(s, t] =4 C(s, t] =0

Since Z(t) is a Gaussian process, it is a stationary process, and N(s, t] is then a

stationary point process [Karlin and Taylor, pg. 516]. Now the event {C(s, t] = 1}

in the It process occurs if and only if the event {N(s, t]=2i+1, i=0, 1, 2, ...}

occurs in the Z(t) process. From this one-to-one equivalence of events and from

the fact that N(s, t] is a stationary point process, it follows that C(s, t] is one also.

This completes the proof.

Now we are ready to prove the main theorem which defines the expression

for E(C):

Theorem 2: Under the assumptions stated for Theorem 1, the expected number

of crossings of the level zero in a unit interval by the It proccess is

(3.25) E (C) = /2n -1 1nF-1 2/(2n 1))

+ W(X -wS 
2 / )
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Proof: Define events A = { 0<0<I} and B = {I>0>I, }. A crossing occurs if

either A or B occurs.

Define a new random variable Y as the increment in It from one period to the

next:

(3.26) Y Ii - I-

Since It is normally distributed, Y is also normally distributed with

(3.27) E(Y) = 0,

(3.28) Va r (Y) = a ,
n 2n-1 R

(3.29) Co dY s 2n -1)R

The statements for variance and covariance are developed as follows:

Var (Y) = Var (I) + Var(I) - 2Cov(I, I)

= 2o - 2 Cov (I, I)

Cov (Y,1I) = Cov ( 1-Io, 10 )

Cov (i, Io) - G

Substituting for y2, and Cov(I, 10) from (3.17) and (3.18) gives (3.28) and (3.29).

The pair (I0, Y) has a bivariate normal distribution with means (K-nJ?, 0) and

covariance matrix:

(3.30) n2 n

2n-1 2n-1

r =G 2 R
n 2n

2n-1 2n-1

The correlation coefficent between Y and 10 is
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(3.31) Cov (10 , Y) 1
Corr (I 0 , Y ) V Var (I)VVar 

- V(Y)

The joint normal probability density function for (IO, Y) is

1(3.32) fT 7(I y) -

09
2 n12 nrR 2-n-

2n 
1

2in-_ 1 2in

exp 2  
+

1 - nR 2 -1

2 (I-Ify

2 n2 2n

R 2n-1 2n-1 JJ

In order to use this joint density function to calculate E(C), we transform the

events A and B, defined above, into the (I, Y) sample space by substituting

A = {I0<0<1} = {0>IO>-Y}, and

B = {IO>O>I1} = {0<IO<-Y}.

Remembering that a crossing occurs if either A or B happens, we see that

Pr{C(O, 1] = 1} = Pr{A}+Pr{B} and thus E(C) = Pr{A}+Pr{B}, since the random

variable C(O, 1] takes only values 0 or 1. Now Pr{A} and Pr{B} may be calculated

by integrating (3.32) over the appropriate regions of the (I0, Y) sample space.

Since the bivariate normal distribution is symmetric around the origin and any

line I= bY (b any scalar), Pr{A} = Pr{B} so we need to integrate over one region

only. Integrating over event A, we have

(3.33) E(C) = 2Pr{A} = 2ff f (I, y) dI dy.
0 -y 0

Now, if we insert the density function (3.32) into the integral , use the fact (from

(3.16) and (3.19)) that I = IF-I(S) YR Vn2/2n-1), and make a change of variables
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by letting x = ORI and w=Go, we develop (3.25). This completes the proof of

Theorem 2.

The integral in (3.25) gives the expected number of crossings in a unit

interval (0, 1]. From the fact that C(s, t] is a stationary point process, it follows

that the expected number of crossings in any interval (t, t+ 1] is E(C). It also

follows that the expected number of crossings in a larger interval (t, t+ h], is

simply the interval size h multiplied by E(C).

G. Evaluation of Expected Number of Crossings and Inferences About

Run Lengths

We now use (3.25) to compute E(C) and expected run lengths and to evaluate

the impact of lead time choices on service.

First we remark on the surprising fact that 0
R does not appear in (3.25). Our

intuitive expectation is that E(C) would vary directly with R . That it does not

is due to the fact that 0
R has two opposing effects on E(C): first 0

R affects G,

which moves directly with E(C), and second 0
R affects Cov(It, It+ ), which moves

inversely with E(C). Apparently the contributions of oR to these effects exactly

offset one another. Since 0
R does cancel out, E(C) depends only on n and S and

not any parameters particular to a facility. Thus the following discussion and

numerical results have general applicability to all manufacturing shops run in

accordance with the TPM's control rule.

We computed values of E(C) and expected run, success run and failure run

lengths for S =50%, 75%, 90% and 95% and for values of n from 1 to 10. Table

3.1 displays the results, Figure 3.3 is a graph of expected failure runs versus n,

and Figure 3.4 is a graph of expected success runs versus n.
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Table 3.1

Expected Run Lengths

S=50% S=75%

Lead - - - - - - - - - - - - - - - - - - - - -

Time Expected Expected Expected Expected Expected Expected
n Run Success Failure Run Success Failure

Length Run Run Length Run Run

1 2.00 2.00 2.00 2.67 4.01 1.34

2 3.00 3.00 3.00 3.88 5.82 1.94

3 3.74 3.74 3.74 4.77 7.16 2.39

4 4.35 4.35 4.35 5.55 8.32 2.77

5 4.88 4.88 4.88 6.20 9.31 3.10

6 5.36 5.36 5.36 6.81 10.22 3.41

7 5.81 5.81 5.81 7.36 11.05 3.68

8 6.22 6.22 6.22 7.86 11.79 3.93

9 6.60 6.60 6.60 8.37 12.55 4.18

10 6.96 6.96 6.96 8.80 13.20 j 4.40]

S=90% S=95%

Lead
Time Expected Expected Expected Expected Expected Expected

n Run Success Failure Run Success Failure

Length Run Run Length Run Run

1 5.52 9.94 1.10 10.52 19.98 1.05

2 7.38 13.28 1.48 13.00 24.71 1.30

3 8.96 16.13 1.79 15.55 29.55 1.56

4 10.21 18.39 2.04 17.67 33.57 1.77

5 11.40 20.52 2.28 19.65 37.33 1.96

6 12.42 22.36 2.48 21.41 40.69 2.14

7 13.48 24.26 2.70 23.15 43.98 2.31

8 14.37 25.86 2.87 24.57 46.68 2.46

9 15.17 27.31 3.03 25.97 49.35 2.60

10 16.00 28.80 3.20 27.47 52.20 2.75
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As we anticipated, we see that increasing n leads to increased failure run

lengths. Success run lengths increase also, and at higher S levels the increase

in success runs is much more dramatic than the increase in failure run length.

For example, at S =90%, increasing n from 1 to 10 increases the average failure

run by 2.20 from 1.10 to 3.20 periods, but the average success run is increased by

18.86 periods to 28.80. We also see that an increase in shipping level reduces

failure run length and that the sensitivity of failure run length to changes in n

is greater at lower levels of S.

Figure 3.3

Expected Failure Run Length
Response to Lead Time

Expected
Failure

Run Length

10 -.-

S=50%

5..........................................S =5%

5=5
.......... S =90%

S =95%

0

1 2 3 4 5 6 7 8 9 10

Lead Time n
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Figure 3.4

Expected Success Run Length
Response to Lead Time

Expected
Success

Run Length
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55-

5 0 .- .--- .-.- . -.--.-.-.-.--.--.-.-. ----.-. -. --. -

4 5 -.. -..--..-..--..-..-..--..-..--..-..---...-. .-. .-.-.. ---... --.. -.. -

4 0 - - - -.-.-.-.---- -.-.--.--.-.-- .-- .-- .-

3 5 - - - - - -- - - - - - - -- - - -

30 - -.-.-.-.----.--.--.-.-- I-.-.-.--.--.-- .--- .-.-

0

Lead Time n

S=95%

S=90%
- - -.. . ..

S=50%

1 2 3 4 5 6 7 8 9 10
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We can understand the interaction of n and S in determining failure run

length by looking at Figures 3.5, 3.6, and 3.7, which depict a hypothetical

randomly chosen sample path of the It process. First, we look at the effect of n in

a system with no safety stock. This situation is depicted in Figure 3.5 and

corresponds to the S=50% curve in Figures 3.3 and 3.4. Here the zero level

corresponds with the mean of the It distribution, about which It is symmetric.

Because of this symmetry, average run length is the same on either side of It =0.

An increase in n will increase Var (I), causing the extremes of the path on both

sides of the mean to move farther out. The increase in n also increases

Cov(It, It+ h), which will cause a lengthening of average runs on both sides of the

mean. Due to the symmetry, the increase in average run length will be the

same on both sides, which is the effect we see in Table 3.1.

Next we look at the impact on failure run length of increasing S. The effect

of increasing S by adding safety stock is seen by comparing Figure 3.5 to Figure

3.6, where we have now centered the It sample path around a positive level of

safety stock, causing the zero level to be moved towards a tail of the distribution.

As a result, the average length of failure runs will decrease while the average

length of success runs increases, exactly the effect we see in Figures 3.3 and 3.4.

So, increasing S while holding n constant causes improved service by two

effects: first, directly through the increase of S = Pr{It 0}, and second by

simultaneously reducing failure and increasing success run average lengths.

Finally, we consider a system with a positive level of safety stock and

examine the effect of a change in n while holding the stock constant at A.

Compare Figures 3.6 and 3.7. The resulting increase in variance and covariance

increase the height of peaks and valleys and stretch out the path horizontally.

Here we see the important relationship between S and the response of failure
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run lengths to n, which flattens out at higher levels of S in Figure 3.3. The

higher the level of S, the farther the zero level is pushed into the tail of the It

distribution. As the zero level moves farther out, failures become rarer, failure

runs become shorter and the impact of n on failure runs becomes much smaller.

Conversely, success runs are positively affected as n increases since more of the

It distribution is in the success area. This accounts for the increasing sensitivity

of average success run to n as S increases, as seen in Figure 3.4.
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Figure 3.5
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Figure 3.7
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H. Management Implications: Achieving Balance Between Production

Smoothing and Desired Service Levels

In Chapter 1, we saw that the TPM shows how to smooth production levels by

increasing production lead times. Smoother production has the benefits of

reduced required production capacity and reduced costs associated with

managing the response to large fluctuations in production requirements. It was

clear from the TPM results in Chapter 1 that these benefits are achieved at the

expense of increasing the work-in-process stock.

Now, with the results of the previous section, we can assess the impact of

lead time choices on the system service level as well. In this section we provide

an integrated discussion of the impact of management decisions on all the

performance measures of the system and provide some insights into under-

standing the trade-offs among competing measures.

We consider the performance measures to be expected production levels

E(Pt), variance of production levels Var(P,), the size of base stock K (consisting

of in-process plus safety stock), expected failure run length E(F), and the

shipping level S. The management control parameters, upon which these

performance measures depend, are the lead times n and the safety stock level,

which we will denote by 1*. The performance measures also depend upon the

mean and variance of the demand distribution, k and 02R, which we will assume

to be beyond management's control in our discussion. The following general

equations indicate the dependence of each of the performance measures on the

management control parameters (we have also included the demand

distribution parameters for information only). The number or numbers

following each equation is the reference to the full expressions elsewhere in this

thesis.
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(3.34) - (1.9)
E(P,) = f, (R )

(3.35) Var(P) = u2 (1.10)

(3.36) K 2 (3.19)
K = f3 (n I*, S, R , oy )

(3.37) E(F) = f4 (n, I*,S) (3.24) and (3.25)

(3.38) S f. (n, * (3.19)

Note that choices of n and I* affect K and E(F) both directly and indirectly via

their effect on S, as we shall discuss below.

To illustrate the discussion, we present in Tables 3.2, 3.3, 3.4, and 3.5 in-

process stock and safety stock for four hypothetical combinations of i and 0
R

(R =300 and 150, G =90 and 45) for four different choices of S. In Figures 3.8

and 3.9, we present graphically the relationship between lead time and safety

stock for the two different values of 0
R . In Figures 3.10 and 3.11 we present

graphically the relationship between safety stock and expected failure run

length for given levels of S and various choices of n. Figure 3.10 contains these

relationships for GR =90, and Figure 3.11 for G =45.

Now let us see what happens to the performance measures as management

increases n, holding the safety stock I* constant. Of course smoothing occurs as

Var(Pt) falls. Also the in-process stock nR increases, as noted above. From

(3.38) and the equations underlying it, we see that the increase in n causes 1
2

R to

rise, and thus S will fall. See also Figure 3.8 for an example: suppose I = 200,

n =3 and S =95%. If n is increased to 6 with no change in I*, we move off the

S=95% curve and to another S curve where S<90%. Since 1* is held constant,

the effect of the n and S changes on base stock K in (3.36) is restricted to the

effect of n on in-process stock, as above. The combined changes of n and S will

cause E(F) in (3.37) to increase. This complex effect is most easily seen by
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examining Figure 3.10. Assuming again we start with I*=200, n=3 and

S =95%, we increase n to 6 while holding I* constant. We wind up moving to an

S curve (not shown) somewhere to the right of the S =90% curve, and the

expected failure run length has increased from 1.6 to more than 2.5 periods. In

summary, as we increased n and held I* constant, S fell and E(F) increased.

Because of the complex interaction of n, 1*, S and E(F) it is not possible in

these numerical examples to vary both n and I* to maintain the same level of

both S and E(F). If management desires to maintain a fixed S as n increases, I*

must be increased and a higher E(F) must be accepted. If, as n increases, it is

desired to maintain the same E(F), I* must be increased, which will also

increase S. These results can be seen by working through several examples

using Figures 3.10 and 3.11.

In conclusion, we see that increasing n to smooth production does have a

negative impact on service as measured by both shipping level and expected

failure run length. In order to prevent an increase in E(F), a substantial

increase in safety stock must be made (large enough that S actually increases).

The existing level of S can be maintained with a smaller increase in I* if

management is willing to accept an increase in E(F). The actual magnitude of

these effects can be investigated for a specific facility by developing graphs like

Figures 3.8 and 3.10, using the facility's actual R and 02R *
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Table 3.2

In-process and Safety Stock Response to

S and n forR = 300, aR =90

S=50% S=75% S=90% S=95%

n F
Safety Total Safety Total Safety Total Safety Total
Stock Stock Stock Stock Stock Stock Stock Stock

1 300 0 300 61 361 115 415 148 448

2 600 0 600 71 671 133 733 170 770

3 900 0 900 82 982 155 1055 198 1098

4 1200 0 1200 93 1293 174 1374 223 1423

5 1500 0 1500 102 1602 192 1692 246 1746

6 1800 0 1800 111 1911 208 2008 267 2067

7 2100 0 2100 119 2219 224 2324 287 2387

8 2400 0 2400 126 2526 238 2638 305 2705

9 2700 0 2700 134 2834 251 2951 322 3022

10 3000 0 3000 140 3140 264 3264 339 3339
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Table 3.3

In-process and Safety Stock Response to

S and n for R=150, OR =90

S=50% S=75% S=90% S=95%

nL nR __

Safety Total Safety Total Safety Total Safety Total
Stock Stock Stock Stock Stock Stock Stock Stock

1 150 0 150 61 211 115 265 148 298

2 300 0 300 71 371 133 433 170 470

3 450 0 450 82 532 155 605 198 648

4 600 0 600 93 693 174 774 223 823

5 750 0 750 102 852 192 942 246 996

6 900 0 900 111 1011 208 1108 267 1167

7 1050 0 1050 119 1169 224 1274 287 1337

8 1200 0 1200 126 1326 238 1438 305 1505

9 1350 0 1350 134 1484 251 1601 322 1672

10 1500 0 1500 140 1640 264 1764 339 1839
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Table 3.4

In-process and Safety Stock Response to

S and n for R =300, YR =45

S=50% S=75% S=90% S=95%

Safety Total Safety Total Safety Total Safety Total
Stock Stock Stock Stock Stock Stock Stock Stock

1 300 0 300 31 331 58 358 74 374

2 600 0 600 35 635 67 667 85 685

3 900 0 900 41 941 77 977 99 999

4 1200 0 1200 46 1246 87 1287 112 1312

5 1500 0 1500 51 1551 96 1596 123 1623

6 1800 0 1800 55 1855 104 1904 134 1934

7 2100 0 2100 59 2159 112 2212 143 2243

8 2400 0 2400 63 2463 119 2519 152 2552

9 2700 0 2700 67 2767 126 2826 161 2861

10 3000 0 3000 70 3070 132 3132 169 3169
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Table 3.5

In-process and Safety Stock Response to

S and n for R=150, R = 45

S=50% S=75% S=90% S=95%

n nik
Safety Total Safety Total Safety Total Safety Total
Stock Stock Stock Stock Stock Stock Stock Stock

1 150 0 150 31 181 58 208 74 224

2 300 0 300 35 335 67 367 85 385

3 450 0 450 41 491 77 527 99 549

4 600 0 600 46 646 87 687 112 712

5 750 0 750 51 801 96 846 123 873

6 900 0 900 55 955 104 1004 134 1034

7 1050 0 1050 59 1109 112 1162 143 1193

8 1200 0 1200 63 1263 119 1319 152 1352

9 1350 0 1350 67 1417 126 1476 161 1511

10 1500 0 1500 70 1570 132 1632 169 1669
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Figure 3.8

Safety Stock vs. Lead Time for the ECM Line

For oR =90, from Table 3.4
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Figure 3.9

Safety Stock vs. Lead Time for the ECM Line

For YR =45, from Table 3.4
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Figure 3.10

Safety Stock vs. Expected Failure Run Lengths

For aR =90, from Tables 3.1 and 3.2
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Figure 3.11

Safety Stock vs. Expected Failure Run Lengths

For YR =45, from Tables 3.1 and 3.4
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Chapter 4

Transient Behavior

A. The Need for Models of Transient Behavior

In "A Tactical Planning Model . . .", Graves solves for the equilibrium values

of the production levels, Pt, work-in-process inventory levels, Qt, their

expectations, and their variance-covariance matrices, Var(Pt) and Var(Qt)

(equations 1.7 through 1.13 in Chapter 1). It is highly unusual, of course, for a

production system to operate for long periods of time in an equilibrium

environment. Most manufacturing systems are affected by environmental

changes such as seasonal demand cycles, long term growth or decline of demand,

and shorter term changes which affect the required production rate. If these

changes are large or occur frequently, we might expect that the system would

regularly be in transition from one equilibrium to another and would rarely

have settled in at such a level. Thus the system's transient behavior may be of

more relevance than the equilibrium level.

In this chapter we model the transient paths of E(P,) and E(Qt) to determine

their characteristics and we focus attention on two aspects of transient behavior.

The first is the speed of adjustment to a new equilibrium level. The second

characteristic of interest is the shape of the paths Pt and Qt take as the system

adjusts to a new level. These paths might approach asymptotically, they might

substantially overshoot the new levels before settling in, or they might oscillate

in either a damped or explosive fashion around the new levels. The nature of the

path behavior will, of course, have significant implications for management.

The equilibrium values are developed in the TPM by assuming that the

terms of each time series of random variables {rit}, (t=..., -1, 0, 1, ... ) are i.i.d. It

may be recalled that the Eit represent new arrivals to sector i from outside the
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system plus random fluctuations in the flow of work to sector i from other

sectors. We will occasionally refer to these cit or the vector P, as "innovations".

Equilibrium is imparted because, even though the value f it will vary from

period to period, the random variable is always drawn from the same

distribution and thus has the same mean and variance in all periods.

Equilibrium occurs when the eit have been drawn from their distributions for a

long enough time that E(Pt), as given by (1.9), is a good description of average

system behavior. (Note that cit is i.i.d. for each sector i, but that it is perfectly

acceptable to have the distribution of eit differ from that of ejt.)

We will define transient behavior as the behavior of Pt, Qt and their

expectations in response to a change in the probability distributions from which

the elements of the e, vector of equation (1.6) are drawn. Given the

distributions, equilibrium expected production levels are a function of the vector

of means of the distributions, y, as in equation (1.9) If we change the

distributions from which Pit are drawn, then (1.9) can be used to identify the new

equilibrium expected production levels as a function of the vector of means of

the new distributions, p*. The system may take several periods to adjust to the

new distributions of innovations, that is until E(Pt) and E(Qt), both as functions

of p*, are an adequate description of system performance. The behavior during

this period of adjustment is the focus of our study of transients.

We model transient behavior by changing the distributions of innovations

and then tracking system behavior. We will consider only changes to the means

of the distributions and not to their variances, so we will focus only on changes

in E(Pt) and E(Qt). The equilibrium levels of Var(Pt) and Var (Qt) will remain

unchanged. We will consider four different types of changes to the distributions

of innovations. The first is a one-period change with immediate return to

drawing the cit from the original distribution. This corresponds to an unusual,
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one-time occurrence in the manufacturing process: for example, receipt of an

unusually large order. The second type of change is an increase in the means to

a new level, at which they remain. Acquisition of a new distributor and the

consequent addition of a new market territory might cause this sort of change.

The third change considered is one of linear growth, in which the mean

innovations increases with time. The final change is to introduce cycles in

which the mean will rise to a new level for a number of periods, return to the

original level for another series of periods, and then repeat the pattern. This, of

course, corresponds to seasonal cycles of orders.

We define the innovations at each sector as

(4.1) t = C t + 8 (t),

where eit are the random variables defined previously and 8(t) is a nonnegative

deterministic quantity, which may be different for each sector i. We continue to

assume that each time series { eit } is i.i.d. with mean pi and variance Var (e).

In vector form, we have the expectation vector and variance-covariance matrix

as
(4.2) E() = P

(4.3) Var(,) =

The different types of change can be implemented by defining in different ways

the nature of the functional dependence of 8 i on t. The appropriate definition of

8i (t), and thus the distribution of Ait, will be developed in each of the following

sections.

In sections C, D, E and F, we develop expressions for the expected value of

the vector Pt following the introduction of the change, the value of the new

equilibrium level of Pt, the vector p1 , and the difference at every value of t

between the vector p, and E(Pt), which will be called the "transient", T,(0, where
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the superscript i is an index which will be explained later. In sections G and H

we will discuss the nature of the transients in all cases and in section I we will

apply the results to the example of the ECM line. In the following section we

establish some results which will be used in the subsequent development.

B. Preliminary Results

There are several algebraic results and points from matrix theory regarding

the matrix B = (I - D + DD) which will be used in the following sections. It is

convenient to establish these in advance. The first four results will be used in

sections C, D, E and F to derive expressions for the transients and the last two

results will be used in sections G and H to evaluate the transient paths. First,

we note that:

(4.4) B" = (I-B)-'.
s=0

For (4.4) to be valid, the spectral radius of B must be less than 1. Graves shows

that this is true if and only if the spectral radius of <D is less than 1 and further

that it is reasonable to expect this condition to be satisfied by a workflow matrix

<P. Therefore the sequence {BS} converges, and (4.4) is valid.

Second, it is true that:

t- 1
(4.5) 1 B = (I-B)~1 (I-B').

s=0

This result is developed by first writing

B = I+B+B 2 + ... + B-.
s=0

Then, pre-multiplying by B, gives:

t-1

BYBt = B + B 2 + ... + B.
s=0
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Now subtract the second expression from the first, pre-multiply by (I -B)-1, and

the result is (4.5).

Notice that the order of multiplication of the two terms on the right hand

side of (4.5) can be reversed. This is true since we could have post-multiplied by

B and then post-multiplied by (I-BY1 in the derivation. As a result, we see that

(I-BY' commutes with Bt:

(4.6) B' _IB) 1 (I -B)- 1 B', t= 0, 1,2.

Our fourth result is that

t -1

(47 s Bs = (I-B)~1 (I-B') (I-B)~1 - (I- 1[I+(t- 1) B].

s=0

This is derived by writing:

t-1

sBs = B + 2B + 3B +...+(t-1) Bt-1.

s=0

Now form a second series by pre-multiplying by B, subtract the second series

from the first, and then add (t-I)B' to both sides, giving:

s Bs - B s Bs + (t-1)B' B + B2 + ... + B~1

S =0 s=0

t-1

= Bs - I.
s=O

From (4.5), we see that the right-hand side is (I-B) (I-BY' - I. Subtracting

(t-1) B' from both sides and then pre-multiplying by (I-B)-', we have (4.7).

The next two results will be used in sections G and H to evaluate the

transient paths. First, (I-B)- is a nonegative matrix. This follows from the fact

that the spectral radius of B is less than 1 and that B is nonnegative. With these

two features, a theorem in the theory of nonegative matrices [Lancaster and

Tismenetsky, pg. 531, Theorem 2] guarantees that (I-B)-1' 0. We can also state

that (I-BY # 0 by virtue of the definition of B.
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Second, B has a real, positive eigenvalue equal to its spectral radius. This

conclusion comes from a result in the Frobenius theory for reducible

nonnegative matrices [Gantmacher, Vol. II, pg. 66, Theorem 3].

C. One-Period Change

Suppose the system is in an equilibrium state since the innovations e, have

been drawn from the same distributions long enough for the effects of any prior

innovation distributions to have dissipated. Then suppose that, at time t =1, C,

is drawn from the same distributions, and that a vector 6 is added to it. At time

t =2 and all subsequent times, the innovation vectors are et from the original

distribution without the addition of 6.

We specify this experiment with the following equations. The inital state of

the system is P., which can be written as (from 1.7 and 1.8):

(4.8) P = B*D -
0 -- 0- s

s=0

(4.9) P0  E(P) = BsDp
s=0

At time t= 1, we replace the arrival vector el with

(4.10) A = + 6,

where 6 is deterministic. The mean of A1 is p + 6 and its variance-covariance

matrix is 2. At time t=2 and later the innovation vectors are C2' c3, .. ., all

drawn from the original distributions.

By applying equation (1.6) successively, we have
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P1  = BP 0 + DA 1

P 2  = B2 PO + BDA 1 + D e 2

P 3  = B3 P + B 2 DAI + BD e 2 + D P3

Continuing the iteration, and using (4.10) to substitue for the AI's, we can write

for any future time t,

t-1

P = B P + DBset- + Bt-DB.
s=O

By using the expression (4.8) for Po in the first term, the first two terms can be

combined, and the general expressions for Pt and its expectation become:

(4.11) P = $ B"De, + B'1 D6.
s=0

(4.12) 0
E (P) = BDy + Bt-1 D F.

s=O

The first term of (4.12) is simply the original equilibrium level of E(Pt), p., and

the second term is the transient of the response:

(4.13) = (1> = B-1D.

where the superscript 1 denotes the first case, the one-period change.

D. Step Change

Next we consider a step increase in which we let

(4.14) At = e, + 6.

where 6 is a constant vector, for time t = 1 and subsequently.
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Starting from Po, as defined in (4.8) and (4.9), we inject Al at t= 1, A2 at t=2,

etc. Proceeding by iterative substitution, as we did in section C, we see that

P = BPO + DA 1

P 2 = B2 P0 + BDAI + DA 2

P3 = 3P + B 2 DA + BDA 2 + DA3

t- 1

P = BtPO +L BsDA .
s=0

Since At- =r eS + 6, this can be rewritten as

t-1 t-1

P B P + /BSD e + B"D6.
s0 s=0

As in the case of the one-period change, the first two terms can be combined into

Bs De .A-~ t -S
s=0

Using (4.5) to rewrite the third term we find that the general expression for Pt

and its expectation is:

(4.15) P = Bs DB , + (I-Bt)(I-B)-i D6
t A/- t-s

s=0

(4.16) E(P,) B D + (I- Bt)(I- B)- D 6.

s=0

Pt approaches a new equilibrium level, conditioned on the new innovations

vector, which is given by

p= B" D (p+) =(I- CD)- (p+8) .
(4.17) 1 '--

s=0

We define the difference between the new equilibrium level and the expected

value of Pt as the transient component of the response. Subtracting (4.16) from

(4.17), and using (4.4) and (4.6), we find the expression for the transient is:
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It" = p 1 - E(P) = Bt(I-B)~ D6.

E. Linear Growth

Now we consider linear growth in the innovations vector and let

At t + t

for t= 1, 2, ..., where 6 is a constant. Starting from P0 as defined in (4.8) and

substituting iteratively as we did in sections C and D, we find

t-1

P, =EB P 0+ IB8 D e ,_
=~~~ =t 0BS~

The first two terms combine to give

s=O

t-1

+ (t-s) B" D .
s=0

The first part of the third term is expanded by using (4.5):

t-1

tBDli
s=O

Using (4.6), the second part is:

= t (I- Bt)(I- B) 1 D 8.

t- 1

- sB"DS
s=0

= - [(I- B)-'(1-Bt)- I- (t-1)Bt] (I-B)~1 D 8.

Combining these two parts we see that the third term is:

= {(t+1) I - (I-B)~ - Bt [I - (I- B)- 1]}(I- B)- 1 D .(t-s)BsD
S=0

Putting all the parts together and taking the expectation, the entire expression

for E(Pt) is

E(P,) = I BsDy + {(t+1)I - (I-B) 1

s=0

- Bt[I-(I-B)~1]} (I-B) 1 DS.

E(Pt) will grow according to (4.20) and will eventually approach its long-run

equilibrium growth path as the size of the term -B t [I-(I-B) '] dies out. That this

(4.18)

(4.20)
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term does die out is guaranteed by the fact that the spectral radius of B is less

than 1 (we will say more on this later). The long-run equilibrium growth path is

thus (4.20) without that term:

(4.21) E(P,)(Long-run) = B"Dy + [(t+1)I-(I-B)- 1](I-B)~'DS
s=O

The transient component in the growth path can be defined as the difference

between the long-run equilibrium path, as given by (4.21) and the E(Pt) at time

t, as given by (4.20), and is:

(4.22) T = [I - (I-B)~1 Bt(I-B)- D .

F. Cyclical Pattern

Last, we consider a cyclical pattern of changes in which the vector of

innovations takes on a new level for c periods, returns to the original

equilibrium level for another c periods, and then repeats the cycle. This

procedure generates a square wave cycle pattern of innovations, as depicted in

Figure 4.1. The innovations vectors which generate the cycle are

Figure 4.1

Cyclical Pattern of At

P1
I I I I

t=1 t=c+1 t=2c+1 t=3c+1

(4.23) At= C,

A = e +
t t

t< 1, t= (2i+1)c+ 1,...,(2i+1)c+c fori= 0,1,2,...

6, t=2ic + 1,..., 2ic+c fori=0,1,2,...
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We will examine Pt and its transient components for the three periods t = 1 to

t=c, t=c+l to t=2c, and t=2c+1 to 3c, as the nature of all subsequent

transients can be seen from these.

In the first period, t= 1 to t=c, the system responds as to a step change, as

described in section D. That is, E(Pt) is given by (4.16), the equilibrium level p,

by (4.17), and the transient extent to which p1 has not been reached by (4.18). In

particular, at t = c, just before the return to the lower arrival rate, the transient

is

(4.24) T = Bc (I- B)~ I D6

During the first down-cycle, t = c + 1 to t = 2c, the system responds as

follows. At t= c, Pc is, from (4.15)

P = BsD + (I-Bc) (I-
s=O

Beginning at t = c +1, the innovations vector isAt =e,

Pc+1 = BPc + Dc+1

c+2 = 2+PC+2 BPC + eC+1+

B)iD6.

so we have

ec+2

j- 1

PC+ = BJ P + B' BsDec+J-s, wherej sc.
s=O

Substituting for Pc, expanding the sum and simplifying gives

(4.25) E(P) =(I- B c ) (I- B)- D8, where c+1 5 t 2c

S=0

The equilibrium level is, of course, the old equilibrium level

po= B D P,
s0

so the transient component is:
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(4.26) T 4) = B'~' (I - Bc) (I- B) D 6, w here c+1 ! t ! 2c.

We start the next up-cycle from P 2c which is (from (4.25), after the

expectation is undone):

P 2c = BsDec + Bc (I-Bc)(I-B)-iD 6
s=O

Injecting At = et + 8, starting at t = 2c + 1, and following the same iterative

process as previously, we derive

j-1 j-1

P2c+j = BJP 2 c + BD 2c+j -s + BSDS,

s=0 s=0

which simplifies to

(4.27) E(P,) = B"Dp + [B Bc(I-Bc) + (I-B t-2c) (I-B)~YD 6,
s=0

where 2c +1 t5 3c. The transient component is the difference between the

equilibrium level p, from (4.17) and E(Pt) in (4.27), and is

(4.28) T(4) B t - 2c - B t-2c Bc (I-Bc) (I-B) 1 D6. where2c+1 t 3c.

G. Transient Behavior of Production Levels

To evaluate the system's response during the period of adjustment to the new

equilibrium, we use the expressions for the transients to investigate the length

of the adjustment and the nature of the path. We first rewrite equations (4.13),

(4.18), (4.22), (4.26) and (4.28), using the fact that (I-B)-' = (I-<-1 D-1, and thus

(I-B)-1D= (I-<0)-1- :

For the one-period increase:
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(4.13') T(,) = Bt-1 D 8

For the step change:

(4.18') T -2) Bt (I-I)~ 6
t

For linear growth:

(4.22') T(3) = Bt [I (I B)-] (I-@)-1 6

For cyclical changes:

(4.18') t Bt (I- I)- 16, for 1 ts c,

(4.26') T = Bt~c(-)-1 6 - Bt-c Bc(I-< )~16, forc+1 : ts2c

(4.28') T4 = Bt-2c 16 - Bt-2c B(I-Bc)(I-q)-1S, for2c+1st 3.

All of these have the same form in that they consist of a power of the matrix

B multiplied by a constant vector. The exponent of B is a function of the number

of periods elapsed since the change was injected into the sytem.

The rate and nature of decay of these transients is thus governed only by the

powers of B through its eigenvalues. In section B above we pointed out that the

maximal eigenvalue is real, positive and less than one. As a result, we can say

conclusively that the transients decay asymptotically to zero, and that the

expected production levels for each sector asymptotically approach their new

equilibrium levels. If any other eigenvalues of B are negative or complex and

have absolute value or modulus close to the maximal eigenvalue, then the

adjustment paths may follow a damped oscillatory pattern. For a negative

eigenvalue, the oscillation will be period-by-period, whereas the oscillation

generated from a complex eigenvalue will be sinusoidal. We emphasize that the

response paths will be determined primarily by the dominant eigenvalue, which

is real and positive [Luenberger, pgs. 154-170].
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The rapidity of decay depends, of course, on the magnitude of the dominant

eigenvalue. For example, the number of periods required for the transient effect

to decay to 1% of the original injected change for several possible eigenvalues

are:

Eigenvalue A Periods n for An to decay to 0.01k

.50 8

.60 10

.70 14

.80 22

.90 45

.95 90

The transient response path is also affected by the signs of the elements in

the constant vectors. We have assumed that 0. The following observations

should be modified if it is desired to consider a 6 0. Recall from section B that

(I-B)'0 and (I-B)1#0. As a result, (I-<D)'620 and #0. By definition D 0

and *0.

Using this information we see that the transients for the one-period increase

and the step change are straightforward as each consists of a constant term

which is a nonnegative matrix and the exponentially decaying power of B, so

each decays to zero in a simple fashion. The transient for linear growth is more

complicated since the matrix [I-(I-B)'] will probably contain positive and

negative terms. Clearly, however, the magnitude of the transient dies out

according to the exponential multipler Bt.

The most complex transients, of course, occur for the cyclical input since we

now have lingering influences from previous cycles. During the first up-cycle,

the transient, given by (4.18'), behaves like the step-change. At the beginning of

the first down-cycle at time t=c+ 1, the remaining up-transient is BC(I-<D) 6. If
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the cycle is long enough, this will be essentially zero, but might be of significant

size if the cycle is short. During the first down-cycle, equation (4.26') shows the

lingering effects of this component. Equation (4.28') shows that the transient

during the second up-cycle is composed of a component due to the second cycle,

Bt. 2c(I-<D)46, and whatever lingering effects are carried forward from the

previous cycle, -Bt- 2cBc(I-Bc)(I-4D)41 . If the cycles are long enough in relation to

the maximal eigenvalue, this term will be essentially zero. For example, if the

maximal eigenvalue of B is 0.80, the time unit is a day, and if we are examining

an annual cycle (2c = 365 days, c = 182 days, or less if c is measured in work

days), the largest entry in the matrix B will have shrunk to 0.01% of its original

level during the first 40 days of the first up-cycle. By the time the first down-

cycle starts at t = 183 days, there will be no detectable effect remaining from the

first cycle.

H. Transient Behavior of Work-In-Process Inventories

The transient behavior of the work-in-process inventories Qt and their

expectations E(Qt) is also described by the above discussion since Qt= D- Pt and

E(Qt) = D E(Pt), for all t. Thus the expected WIP levels and the WIP transients,

TQ,, are:

For the one-period increase:

(4.29) E(Q,) = D- (I-D)- 1 + D-i Bt- D

(4.30) T =
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For the step increase:

(4.31) E(Q,) =D (I-4) 1 y + D~l(I1-B)(I1-()~ 6

(4.32) T = D~Bt(I-<) 6.

For linear growth:

(4.33) E(Q,) = D-(I- CD)ji + D~ [(t+1)I-Bt - (I-Bt)(I-B~](I-4)~l6

(4.34)

For the

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

T(3  = D~ 1 [I -(I-B)- I Bt(I- - 6

cyclical pattern;

E(Q,) = D- 1 (I- 1 p + D-1(I-BI)(I-D)- 6

T = D (I- )~ 6 for 1 ! ts c;

E(Q,) = D~ 1 (I- )-iy + D~B'~c (I-Bc)(I-b)-14 6

T = D- Bt -c (I-Bc)(I-~ 16, forc+1 5ts2c; and

E(Q,) = D~' (I-(D)~p + D~LBt-2c Bc (I-Bc)(I-(I_ -16

+ D~l(I-B' 2c)(I _-- 16,

(4.40) T (4)TQ = D- 1 Bt -2c U _ - 1 8

- D~ 1 Bt~2cB(I-Bc)(I-4) I6, for2c+1 t 53c.

I. Appplication to the ECM Line

In applying Grave's Tactical Planning Model to the ECM line, three different

scenarios of lead times for the thirteen sectors were tried in order to generate

what seemed to be adequate smoothing of production levels. These three

different sets of lead times are shown in Table 4.1 along with the eigenvalues
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from the resulting B matrices. The vectors of lead times at the top of the table

list the lead times in numerical order according to the sector numbers in Figure

1.1. The eigenvalues are listed in order of decreasing modulus or absolute value.

In Scenario 1, the spectral radius is 0.6696 and the decay is rather rapid

since within 8 periods, the Bt matrix will have decayed to approximately 5% of

its original value. The behavior will be complex and include oscillations since

the first four eigenvalues are equal in modulus and include complex numbers

and negative values.

In Scenario 2, the spectral radius is larger, reflecting the increase in lead

times. Decay of the transient will still be fairly rapid since within 14 periods

the Bt matrix will have decayed to approximately 5% of its original value.

Non-oscillatory decay will dominate, since the largest two eigenvalues are

positive. The next two complex values have a modulus of 0.5362, so there will be

some minor sinusoidal oscillations for a few periods.

As some lead times are increased further to create Scenario 3, the spectral

radius increases to 0.8333. This lengthens the decay period: it will take

approximately 17 periods for Bt to decay to 5% of its original level.

In conclusion, then, we can see that the ECM Line is a system which

responds rapidly to changes in innovations under choices of lead times which

were considered relevant to acceptable system behavior. Increasing some of the

sectoral lead times does cause the time of adjustment to become longer, but

within the range of lead times used in Table 4.1 the adjustment times still seem

reasonable.
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Table 4.1

Lead Times and Eigenvalues for Three Scenarios

in the ECM Line

Scenario 1 Lead Times (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1)

Scenario 2 Lead Times (1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 5)

Scenario 3 Lead Times (1, 3, 1,3, 3, 1, 1, 2, 1, 2, 1, 2, 6)

Scenario 1 Scenario 2 Scenario 3
Eigenvalues Eigenvalues Eigenvalues

0.6696 0.8000 0.8333

-0.6696 0.7440 0.7440

-0.0000+0.6696i 0.1129+0.5242i 0.6667

-0.0000 - 0.6696i 0.1129 - 0.5242i 0.6667 +0.0000i

Remaining 0.5000 0.6667 - 0.0000i

eigenvalues are 0.5000 0.1129 +0.5242i

essentially zero 0.5000 +0.0000i 0.1129 - 0.5242i

0.5000 - 0.0000i 0.5000

-0.4697 0.5000

Remaining -0.4697

eigenvalues are Remaining

essentially zero eigenvalues are

essentially zero
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Chapter 5

Summary and Suggestions for Additional Research

We would now like to briefly summarize what has been presented in the last

three chapters and make two suggestions for additional research.

In Chapter 2 we extended the usefulness of the TPM by developing a model

for determining releases from demand forecasts and the present state of a

system's work-in-process inventories. As first developed by Graves, the TPM

was appropriate only to model a job shop in which releases are determined by

orders in hand. This extension permits it to be employed to model a facility

which produces in response to demand forecasts and in which releases must be

made based on the forecasts, in advance of actual demand.

In Chapter 3, we developed two measures of service provided by a facility and

showed how these are affected by management's choice of lead times. We

discussed how management might proceed in evaluating the trade offs among

the four behavior characteristics affected by lead times: probability that

demand is met, average failure run length, production smoothing, and size of

inventories (in-process plus safety stock).

Finally, in Chapter 4 we developed a model of the dynamic behavior of the

sytem as it adjusts from one equilibrium level to another in response to changes

in demand.

We can suggest two areas in which this work might be extended to further

enhance the usefulness of the TPM. First, it would be advantageous to have

more information about the distribution of failure run lengths since we have

determined only the mean. The literature on stationary processes contains

expressions for the variance of run lengths for a continuous time process
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[Cramer and Leadbetter, pgs. 202-215]. With some work, this could probably be

adapted to the discrete time process contained in the TPM.

Second, the responsiveness of the various transient paths of Chapter 4 to

changes in lead time has not been fully investigated in this thesis. A useful

extension would be an evaluation of the way transient behavior would respond

as lead times are varied. A full understanding of this would improve

management decision making by clarifying the impact of lead time choices.

Further research in this direction would require analysis of changes in

eigenvalues of B in response to perturbations to elements of B created by lead

time changes.

In closing, we express our hope that the extensions provided in this thesis will

contribute to the usefulness of the TPM as a management planning tool.
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