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Abstract 
A fundamental question in visual neuroscience is how to represent image structure. The most 

common representational schemes rely on differential operators that compare adjacent image regions. 
While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, 
each filter’s span is confounded with the size of its sub-fields, making it difficult to compare small regions 
across large distances. We find that such long-distance comparisons are more tolerant to common image 
transformations than purely local ones, suggesting they may provide a useful vocabulary for image 
encoding. . 

We introduce the “Dissociated Dipole,” or “Sticks” operator, for encoding non-local image 
relationships. This operator de-couples filter span from sub-field size, enabling parametric movement 
between edge and region-based representation modes. We report on the perceptual plausibility of the 
operator, and the computational advantages of non-local encoding. Our results suggest that non-local 
encoding may be an effective scheme for representing image structure. 
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The question of how to represent image content for the purposes of recognition is central 

to the study of human and machine vision. The challenge is to determine a vocabulary of 
elementary measurements that are stable across appearance variations caused by transformations 
such as illumination changes, defocus, translation and non-rigid deformations.1,2 One important 
class of representation schemes uses aggregate statistics (such as histograms) about attributes like 
hue, luminance or local orientations. These schemes have proved useful in situations where object 
shape is likely to be highly variable, for instance, when searching for a shirt with distinctive 
colors in a pile of clothes3. However, for many settings, shape is a key determinant of object 
identity. Work from several laboratories4, 5 suggests that for at least some classes of objects, 
surface texture and color cues provide little recognition advantage over line drawings. 
Consequently, much research attention has been directed towards shape-representation schemes6.  

 
A popular shape-representation approach involves encoding images via a collection of 

edge fragments along with their locations. Physiological support for this model of image 
representation dates back to Hubel and Wiesel's work with feline striate cortex, which revealed 
both "simple" and "complex" cells capable of detecting edges and lines7. The receptive field 
properties of these cells are believed to arise through a combination of aligned inputs from the 
LGN and intra-cortical circuitry8-10. Computationally, the receptive fields of these cells are 
commonly modeled as Gabor functions with excitatory and inhibitory lobes11-16. These operators 
may assume different orientations and positions, and also may appear at multiple scales to extract 
both coarse and fine structure from an image17. Such operators have been found to be useful for 
performing basic functions like contour localization18. They have also been used for more 
complex tasks like object detection and recognition19-22. Further support for Gabor wavelet 
operators has been provided by demonstrations that such receptive fields evolve from neural 
networks trained to efficiently, and with high fidelity, encode natural scenes23. 
       

While Gabor-like operators provide a simple means of representing image structure, the 
local image processing they embody limits a recognition system in some significant ways. First, 
edge-based representations may fail to adapt to small changes in an image brought on by changes 
in object geometry or position. This particular weakness stems from more general problems with 
edge-based algorithms, namely that most natural images contain relatively few high-frequency 
(edge-like) components as evidenced in the histogram of local difference values shown in figure 
1. Consequently, edge maps implicitly ignore most of the content of an image, and can suffer 
dramatically from subtle transformations that perturb edge locations while leaving large portions 
of the image untouched. 
 

Furthermore, some simple analyses also strain the capabilities of a Gabor-based 
representation scheme due to the conflation of the size of an operator's lobes with the distance 
spanned by that operator.  In fact, any comparison of small regions across large distances proves 
quite difficult, since an operator large enough to span the relevant distance must trade resolution 
for size. Alternatively, comparing distant regions by propagating information via a chain of small 
sized operators leads to an increased susceptibility to noise contributed by each of the 
intermediate elements. 
 

It is evident that the primary source of the aforementioned shortcomings of the 
conventional differential operators is the confounding of the inter-lobe distance with lobe-size. To 
overcome the shortcomings, therefore, we have to de-couple the lobe-size and inter-lobe distance 
parameters, thus allowing the operator to compare small regions separated by large distances. 
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Figure 1. The distributions in a natural image of gray-level differences between pairs of pixels when only 
immediate neighbors are considered (delta=2) and when comparisons are made betweeen more distant 
neighbors only (delta=8,15,25). Due to the spatial redundancy inherent in natural images, most of the 
comparisons in the first case are uninformative. The resulting sparsity in responses has some advantages 
[Olshausen and Field, 1996], but may also lead to unstable encodings of image structure as discussed in the 
text. 
 

With this motivation, we introduce the "Dissociated Dipole" or "Sticks" operator as a tool 
for performing non-local image comparisons. Like a simple edge-finder, a Stick is a differential 
operator consisting of an excitatory and an inhibitory lobe, and may be used at any orientation or 
scale. However, unlike a conventional edge detector, we allow an arbitrary separation between 
these two lobes, removing the correlation of inter-lobe distance and lobe size. Formally, the basic 
form of a sticks operator comprises a pair of Gaussian lobes, each with standard deviation s and a 
spatial separation of d. The line joining the centers of the two lobes is at angle ? relative to the 
horizontal, with ? ranging from 0 to 2π (figure 2). In the current implementation, we have chosen 
to define stick operators on image luminance values, given the significance of this attribute for 
form perception24. We note that this basic form could be altered to incorporate image attributes 
other than luminance, non-Gaussian lobes, or lobes of different shape and size. 

 
Figure 2. (Left) Conventional multi-scale representations that use Gabor-like units confound the two 
parameters of inter-lobe distance and lobe size. Effectively, they use only the diagonal elements of the 
space defined by these two parameters. The idea behind the dissociated dipoles approach is to de-couple the 
two attributes, in effect using the off-diagonal elements. Note that units below the diagonal have 
overlapping lobes and, after response cancellation, lead to adjacent lobed receptive fields. They are not 
considered further in this paper. We focus on the above diagonal elements which correspond to our 
conceptualization of dissociated dipoles. (Right) A schematic representation of a prototypical dissociated 
dipole. 
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Sticks can thus accomplish sensitive comparisons of small, distant regions while 

remaining agnostic about the intermediate image structure. Sticks also make more efficient use of 
image content than localized filters, as the probability that two distant regions in an image will 
differ is much greater than that of two adjacent regions, given the spatial redundancy typical of 
natural images25 (figure 1,delta>2). It is important to consider why it might be useful to compare 
image regions separated by large distances. Preliminary support for the use of non-local 
measurements, besides the conventional purely local ones, comes from an examination of their 
tolerance to changes in image appearance. Figure 3 shows plots of the influence of a few 
transformations on randomly placed local and non-local differential operators. The abscissa and 
ordinate correspond to the response values of the operators before and after a transformation. A 
perfectly stable representation will lead to all points lying along a line of slope 1 passing through 
the origin. In general, the higher the correlation-coefficient of the scatter plot, the greater the 
stability. As figure 3 shows, non-local sticks-based measurements appear to be more stable 
against a range of common image transformations than purely local ones. 

 

 
Figure 3. Comparisons of the stability of local and non-local measurements to a few image 
transformations. Plots of local (top) vs. non-local measurements (bottom) across changes in (left to right) 
expression, viewpoint and translation. The non-local measurements are more robust to these 
transformations as demonstrated by the values of Pearson’s R obtained for each cluster of points: 
Expression change: local = 0.28, non-local = 0.85; Viewpoint change: local = 0.13, non-local = 0.75. 
Translation: local = -0.12, non-local = 0.88. 
 

In this paper, we investigate the strengths and weaknesses of Sticks operators. We 
hypothesize that non-local processing (as simulated by Sticks operators) may play an important 
role in visual analysis. To support this hypothesis, we present results from our psychophysical 
studies investigating the proficiency of human observers at making non-local comparisons. Next, 
we demonstrate the use of the Sticks operators for complex recognition tasks through the 
implementation of a Sticks-based face-database search system.  We examine performance of the 
Sticks approach across various types of image degradation and compare it with a PCA-based 
approach26 to explore its relative strengths and weaknesses. 
 
Results 
Psychophysical evidence of non-local analysis  
The proposal of using non-local comparisons for analyzing visual scenes is plausible only if 
human observers can, in fact, make such comparisons. Accordingly, we conducted 
psychophysical experiments designed to assess performance on this task. 
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 Subjects performed a simple “one-up, one-down” staircase task27,28 which required them 
to indicate which of two spatially separated probe regions was brighter for a range of 
eccentricities (0, 9.5, 16.5, 23.5 and 30 degrees of visual angle.) Each subject’s chance threshold 
of contrast sensitivity was determined by averaging together the Michelson contrast of the stimuli 
from all occasions on which the subject’s responses reversed from correct to incorrect (and vice 
versa). Four subjects partic ipated in a version of the task that contained only horizontal 
separations between probes. Three of them also participated in a second task wherein the probes 
were separated vertically.  
 In both conditions, we found that subjects’ ability to compare spatially distinct regions 
remained quite stable for large separations. For all participants in both conditions, the threshold of 
contrast sensitivity was located between Michelson contrasts of 0.02 and 0.08, with the steepest 
change in sensitivity accompanied only with the most widely separated probes. Overall, we 
observed that subjects were typically better at performing the task with horizontally separated 
probes. This difference between horizontal and vertical separation is intriguing, but not pursued 
further in this study. Figure 4a shows the relationship between eccentricity and contrast 
sensitivity for each subject, while figure 4b shows the average across all participants.  

 
Figure 4. (a) Plots of contrast threshold v. eccentricity for all subjects in our psychophysical task. In each 
plot, the solid line represents performance on horizontally separated probes, while the solid line with 
triangles represents performance across vertical separations. (b) The average results  across all subjects. 
 

Subjects demonstrate in both tasks that they are capable of accurately performing non-
local comparisons of image regions over significant separations. What might be the nature of 
mechanisms that underlie this ability? We consider a few possibilities.  First, a large Gabor-like 
filter could be used to span the distance between the probes, but results from the large body of 
work on human contrast sensitivity suggest that subjects’ ability to assess luminance differences 
is highly impaired beyond 0.1 cpd29 (effectively a separation of 9.5 degrees in our setup). Given 
that we observe performance significantly above chance at separations beyond this limit (at least 
in the horizontal condition), this explanation seems inadequate. Second, sequential foveation of 
the probes via  eye movements could render our spatial task into a temporal or even an adaptation 
task30 and thereby account for the data. However, the brief presentation time and fixation 
requirement (see Methods) lead us to believe that this is unlikely. Finally, the results may 
potentially be explained by the joint operation of a chain of small operators, passing information 
about the probes to the middle of the chain for comparison. While theoretically possible, this 
scheme is susceptible to an accumulation of errors as the information propagates and also difficult 
to implement in the presence of any response non-linearities in the constituent units. We believe 
that the Sticks operator offers an explanation of these results that is both parsimonious and 
intuitive, compared to explanations that rely on local processing alone. Indeed, past 
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psychophysical studies of the long-range processing of pairs of lines suggest the existence of 
similarly structured “coincidence detectors” which enable non-local comparisons of simple 
stimuli.31-32These detectors could make important contributions to shape representation, as 
demonstrated by Brubeck’s idea of encoding shapes via medial “cores” constructed by integrating 
information across disparate “boundariness” detectors.33 

 
Certainly, in the absence of direct receptive field mapping studies, the proposal of such 

an operator is speculative. Even if future studies reveal that the sticks operator itself does not 
have a physical basis, the computation it embodies - comparison of non-local regions, can still 
guide our attempts for devising an effective image representation strategy. In other words, 
measurements across distant regions may play an important role in visual analysis, irrespective of 
the exact mechanism by which they are extracted. We continue by examining how non-local 
information could contribute to complex visual tasks. We develop our ideas in the context of a 
content-based image retrieval system. 
 
Non-local information benefits recognition systems  
The choice of an image representation scheme greatly influences the performance of subsequent 
stages of visual analysis. To examine the usefulness of Sticks-based encoding to high-level vision 
tasks, we have implemented a system to recognize faces based on image comparisons across a 
range of distances (local and non-local.)  

 
In this system, an image is represented via a “constellation” of Sticks operators. To 

provide a physical analogy, this is akin to dropping a number of real sticks onto an image and 
having them land at arbitrary or ientations and positions. The difference between two small 
regions centered at a stick's endpoints constitutes one component of a feature vector. This feature 
vector then serves as the representation of a given image. To assess the similarity between two 
images, we simply apply the same constellation of sticks to each image, and compare the two 
feature vectors by a conventional distance metric, such as the L2 norm.  

 
We used this general algorithm to assess the relevance of non-local information to 

recognit ion by conducting a series of simulations with a face database publicly available from 
AT&T Laboratories in Cambridge. The database contains multiple images corresponding to each 
of 40 individuals. The various images of an individual differ in lighting, expression and artifacts 
such as glasses. The simulations involved partitioning the database into mutually exclusive 
training and test sets. Sticks constellations were used to classify the test images. Performance was 
determined as a function of maximum allowable stick length. 

 
Classification was performed in two different ways. In the first set of simulations, an L2 

norm defined on the sticks feature vector was used as the measure of similarity between two 
images. New images were classified according to which training image they were “closest” to, 
and the percent of images correctly classified was obtained for any given stick constellation. In a 
second set of simulations, sticks feature vectors were used as the raw data for a support vector 
machine classifier34 (see Methods for details.) For each of the forty individuals, the area under the 
ROC curve corresponding to the classification of the rest of the database was calculated. In both 
cases, to remove the effects of particular configurations, multiple constellations were used. 

 
In both cases, a clear advantage for constellations of Sticks that included non-local 

measurements was found. A one-way ANOVA run on the SVM data showed the existence of a 
strong beneficial effect of including non-local information (p=0.0005) Examining figure 5a, it is 
apparent that the largest increases in performance were associated with an intermediate value for 
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the upper bound of stick length. This is not surprising, as extremely long sticks can only assume a 
limited range of orientations and positions in an image, rendering them ineffective.  

 
Figure 5. The results of adding non-local information to L2 (left)  and SVM (right) classifications. In both 
cases, a clear increase in accuracy is apparent with the inclusion of non-local information. In the case of L2 
classification, percent correct is used as the measure of recognition performance, while A’ is used to assess 
our SVM simulations. The red line marked off in asterices in the L2 graph represents the performance of a 
“qualitative” STICKS operator that only retains the direction of  polarity between two regions, instead of 
the precise difference magnitude. 
 

In the interests of aligning our computational results with our psychophysical findings, 
we include in Figure 5a a graph representing the performance of a ‘qualitative’ sticks algorithm 
commensurate with the abilities of human observers outlined previously. In this scenario, we 
imagine that our observer is only capable of detecting differences in contrast above a certain 
threshold, and only reports the contrast polarity between two locations. Even under these 
circumstances, we see a clear increase in performance as maximum stick length increases. From 
all these results, we conclude that the inclusion of non-local image structure can substantially 
benefit recognition performance. 
 
Sticks performance subject to degradation 

Images in the real world are often degraded due to factors such as blur and occlusion. The 
ability of recognition systems to cope with noisy or incomplete images is of substantial ecological 
significance, and human observers are capable of performing recognition tasks despite profoundly 
deteriorated images35-37. To assess how well sticks-based encoding can handle reductions in 
image quality, we conducted simulations of the kind described above with inputs subjected to 
different degrees of degradation. Furthermore, to help contextualize the results, we compared the 
results with those obtained using an eigenface-based system26. We chose eigenfaces as a standard 
for comparison because it is a popular approach for face recognition, and also because it does not 
require the user to locate any particular features of the image prior to classification. It is important 
to note that the two approaches are not mutually exclusive and a hybrid system may attain even 
higher performance than either one alone. Both systems could be further tailored to develop and 
exploit models of intra- and inter-personal variance38, but those refinements will not be 
considered here. 
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Figure 6. The performance of the sticks algorithm and the eigenfaces system subject to blurring, occlusion, 
and binarization. 

 
As shown in Figure 6, the sticks approach exhibits significant robustness to degradations 

with very gradual fall-off of performance with increasing blur and occlusion. Performance 
decrement with binarization is more steep because at very high or very low thresholds, the image 
loses much of its structure (becoming mostly white or black). Furthermore, for most of the 
degraded images tested, performance of the sticks approach is comparable to that obtained with 
the eigenfaces system. However, with high degrees of occlusion and binarization, the latter yields 
better performance possibly due to a better ability to fit fragmentary image information with a 
holistic model. Overall, the sticks approach appears to provide robust recognition performance for 
a significant range of degradations. Considering the approach's simplicity and the fact that the 
current implementation embodies no refinements (such as better placements of sticks), we find 
these results very encouraging. 
 
Discussion 
Our results suggest that non-local measurements provide a useful vocabulary for encoding image 
structure that may facilitate recognition tasks. Moreover, our psychophysical data indicate that 
observers are able to make non-local comparisons in images. As for the mechanism that may 
underlie this ability, the sticks operator is a potential candidate. 

 
Our proposal of such an operator does not, so far, have direct physiological support. 

While contextual influences on neural responses have been found in early visual areas39-41 the 
form of the mapped receptive fields does not appear to correspond to a sticks operator. This is 
interesting given that cells with dissociated receptive field zones have been found in other sensory 
systems such as audition42 and somato-sensation43. Some place cells in the hippocampus too 
exhibit multiple spatially separated ‘hot spots’. This suggests that a sticks-like operator is 
neurally plausible . 
 

We have presented psychophysical evidence in support of the plausibility of non-local 
image measurements and computational simulations that highlight their significance for robust 
image representation. However, these results do not allow us to comment directly on the 
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possibility that neural systems in the mammalian visual pathway execute non-local comparisons. 
Previous physiological studies of early visual cortex have not yielded any cells with a receptive 
field structure analogous to the Sticks operator. However, we suggest that non-local processing 
may be accomplished by the visual system in other ways. Specifically, it has been well known for 
some time that long-range horizontal connections exist between cells in V1 of similar orientation 
tuning44-46. These connections bind several cells into a complex network of operators whose 
effective receptive field spans a region of space much larger than the constituent classical ones. 
This arrangement of cells in early visual cortex into a complex network may be one means by 
which operators in V1 combine to extract non-local relationships from an image. 

 
The structure of this network would resemble an "extended Gabor" filter rather than a 

pure Sticks operator, yet changes across the network in the synaptic strength of component cells' 
connections could approximate variations on non-local analysis. A sub-network composed of 
oriented V1 cells would also permit dynamic tuning of the overall response to a gradually 
changing stimulus. Real-world experience is not static and unchanging, and non-local integration 
of cellular responses might allow for a corresponding fluidity of activation in visual cortex. Given 
that the functional significance of sub-networks in V1 remains unexplored, future explorations 
with the Sticks operator may involve examining the utility of non-local comparisons on images 
filtered with dynamically modifiable extended Gabor operators. More complex operators tailored 
to mimic the resultant filters generated by horizontal connections in V1 could also be applied to 
natural images as a means of determining what benefits these structures confer on recognition 
performance. We hope that by providing some psychophysical evidence and computational 
motivation for these units, this work may initiate systematic physiological investigation into the 
existence of such cells. 

 
Our ongoing computational work regarding the sticks operator focuses on two questions. 

First, since we know the sticks algorithm does not completely encode the original image, we are 
currently exploring the fidelity of the sticks representation through attempts to reconstruct target 
images from sticks feature vectors. Previous results show that highly recognizable images can be 
recovered from incomplete representation schemes47, suggesting that high fidelity may be a non-
critical requirement of an image representation algorithm. Second, we are exploring whether 
sticks-like receptive fields emerge automatically in simulations such as those used by Olshausen 
and Field23, when the criterion of performance is not the quality of reconstruction but stability to 
transformations. Preliminary results (Figure 7) suggest that a range of operators, local and non-
local, emerge naturally given these constraints. These results also indicate that it might be 
imprudent to set up a forced dichotomy between representations based exclusively on local 
operators and those based on non-local ones. A scheme that combines both kinds of analyses 
might yield better results than either one alone.    
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Figure 7.  A family of receptive fields found by optimizing the locations of two Gaussians for the purposes 
of distinguishing between two individuals. Both local and non-local operators are evident in this series of 
plots. 

 
Methods 
Psychophysics  
 The authors (BB and PS) and two naïve subjects participated in this task.  Subjects had 
normal or corrected to normal acuity. In all experiments, we used a chin mount to stabilize 
subjects' heads and facilitate consistent central fixation. Subjects viewed the stimuli monocularly 
with the open eye centered with respect to the screen (where the fixation mark appeared), and 
responded to each trial via keyboard presses. Experimental sessions were conducted individually 
for each subject. 
  

Our stimuli comprised pairs of simultaneously presented small image patches (probes), 
wherein each probe could be assigned an arbitrary luminance. Each probe was a square 
subtending approximately 2 degrees of visual angle. Subjects’ task was to determine which of the 
probes was lighter on any given trial while maintaining fixation on a centrally presented small red 
dot. The probes were placed symmetrically relative to the fixation mark and the distance between 
the probes could be 0, 9.5, 16.5, 23.5, or 30 degrees of visual angle on any given trial. We 
experimented with both horizontal and vertical placements of the probes. The stimulus 
eccentricity used on a given trial was selected randomly from the set of five possibilities. This 
was to discourage subjects from making predictive eye-movements or allocating attention to 
specific locations. The position of the lighter probe (left/right, top/bottom) also varied randomly. 
Stimulus presentation time was limited to 200 ms to further ensure that subjects were not able to 
make alternating eye movements to the two probes perform the task. Since the display during the 
inter-stimulus period comprised just the fixation dot on a blank field, we were concerned that 
subjects may begin losing sensitivity to peripheral field due to image stabilization. To address this 
problem, we followed each stimulus presentation by two wide-field noise masks, each displayed 
for 200 ms. A new trial was initiated after the subject had responded to the previous one. Subjects 
were shown 40 trials for each separation magnitude, for a grand total of 200 trials per subject in 
each of the horizontal and vertical conditions. 

 
We employed a simple staircase procedure (one-up, one-down) to locate the contrast 

level at which subjects were performing at the level of chance (50% for this 2AFC task). With 
each correct answer, the intensity of the dark probe was increased by 0.5 cd/m2 and the light 
probe’s intensity was decreased by the same amount. Incorrect answers led to a change in probe 
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intensity of the same magnitude, but opposite sign (thus increasing the luminance difference).  
The light and dark probes were initially presented to the subject with intensities of 46 cd/m2 and 
26 cd/m^2 respectively, against a white (120 cd/m2) background. At the lowest possible level of 
contrast, the probe intensities were 37 and 36 cd/m2. The task was self-paced, although subjects 
were encouraged to respond as quickly and accurately as possible. All four subjects participated 
in the horizontal probe condition and three of them (one male, two females) also participated in 
the vertical probe condition.  
 
Image Set 
The images used throughout this paper are taken from the ORL face database, which contains ten 
grayscale images each of forty individuals. The images are 112x92 pixels in size, and vary in face 
position, expression, and some amount of depth rotation. All images were preprocessed to have 
zero mean and unit variance. 
 
The Basic Sticks Algorithm 
Sticks are “dropped” onto an image by first choosing one image point at random for each 
operator. A second point for each operator is located by moving +/- X units away from the first 
point horizontally, and +/- Y units away vertically. X and Y are each taken from independent and 
uniform distributions between 0 and an upper bound specified by the user. Unless otherwise 
specified, the upper bound on X and Y in all of our simulations was 50 pixels, yielding a range of 
stick lengths between 0 and ~70 pixels. 
  

A square “lobe” is built around each point of a sticks operator by averaging the intensity 
values within a window of R units above, below, left and right of each sticks point, where R may 
be specified by the user.  (Unless otherwise specified, we use a value of 2 pixels for R in all 
cases.) The difference between the value of the first lobe and the second lobe is the operator’s 
output. “Noisy” perception may be modeled by incorporating a difference threshold that limits 
the ability of the sticks algorithm to perceive contrast between its end points. If the absolute 
difference between lobes exceeds this threshold, the value of that stick is either 1 or –1, 
depending on the direction of contrast. Otherwise, the value of that operator is 0. We used a 
difference threshold of 30 gray levels (0-255 scale) for our “non-metric” simulations. 

 
Finally, a feature vector is created by combining the output of all sticks operators in a 

constellation into one list. This feature vector is the final output of the sticks algorithm for a 
particular image, and the image encoding that we use for classification.  
 
 
Classification Methods  
We chose to use L2 norms and SVM tools to classify sticks feature vectors obtained from the 
ORL database. For all L2 simulations, the first image of each individual in the ORL database was 
used for training, with one constellation of 150 sticks used to extract feature vectors for each 
image. Subsequent images were transformed into feature vectors via the same constellation, and 
classified according to the minimum Euclidean distance to one of the training images. 
Classification was deemed successful if the training image selected depicted the same individual 
as the input.  
  

SVM classification was carried out with the LS-SVM package. In this case, only 50 
sticks were used to create each feature vector, and the first 5 images of each individual were used 
as training data. The remainder of the database was used as a test set, where the task was to 
classify all new images as either new views of one particular individual or of another person. For 
each constellation, this task was performed for each of the 40 individuals in the database, and the 
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area under the ROC curve was used as a measure of performance. The average performance per 
individual achieved across 20 different sticks constellations was used to wash out the effects of 
particular constellations, and an RBF kernel (gamma=10, sigma=3) was chosen for classification. 
  

Finally, to classify images via eigenfaces, the images used as a training set for L2 sticks 
classification served to provide a basis for Principal Components Analysis via Matlab’s SVD 
function. Each training image was then projected onto that basis, with new images classified 
according to the minimum L2 distance to a training image in the new “face space.”  
 
Image Degradations  
We carried out blurring by convolving a Gaussian filter of increasing variance with the input 
image. Increasing numbers of 3x3 pixel medium-gray squares were randomly placed on the 
image to approximate scattered occluders, and binarization was achieved by thresholding the 
image at varying gray-levels.  
 
Emergent Operators for Recognition 
To determine what operators are best for recognition purposes, a set of 20 images from the ORL 
database (2 individuals, 10 images each) were cropped to exclude external features, and used as 
the basis for exploring the properties of two-lobed RFs. Two Gaussians (st. dev. = 2) were placed 
at the same point in an image, and were allowed to independently roam away from that starting 
point to locations that maximized the variance of their difference between images of different 
individuals, but not within different images of the same individual. ANOVA was used to 
determine the strength of each configuration of the two lobes, with low p-values for the effect of 
“different individual” being sought after as long as the p-values associated with “different image” 
were greater than 0.4. 
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