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Abstract

In this paper we focus on the problem of estimating a bounded density using
a finite combination of densities from a given class. We consider the Maximum
Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron
[6, 7]. Approximation and estimation bounds are given for the above methods. We
extend and improve upon the estimation results of Li and Barron, and in particular
prove an O( 1√

n
) bound on the estimation error which does not depend on the number

of densities in the estimated combination.
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1 Introduction

In the density estimation problem, we are given n i.i.d. samples S = {x1, ..., xn} drawn from an
unknown density f . The goal is to estimate this density from the given data. We consider the
Maximum Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron [6,
7] and prove estimation bounds for these procedures. Rates of convergence for density estimation
were studied in [3, 10, 11, 13]. For neural networks and projection pursuit, approximation and
estimation bounds can be found in [1, 2, 4, 9].
To evaluate the accuracy of the density estimate we need a notion of distance. Kullback-Leibler
(KL) divergence and Hellinger distance are the most commonly used. Li and Barron [6, 7]
give final bounds in terms of KL-divergence, and since our paper extends and improves upon
their results, we will be using this notion of distance as well. The KL-divergence between two
distributions is defined as

D(f‖g) =

∫
f(x) log

f(x)

g(x)
dx = IE log

f

g
.

The expectation here is assumed to be with respect to x, which comes from a distribution with
the density f(x).
Consider a parametric family of probability density functions H = {φθ(x) : θ ∈ Θ ⊂ IRd}. The
class of k-component mixtures fk is defined as

fk ∈ Ck = convk(H) =

{
f : f(x) =

k∑
i=1

λiφθi
(x),

k∑
i=1

λi = 1, θi ∈ Θ

}
.

Approximation results will depend on the following class of continuous convex combinations
(with respect to all measures P on Θ)

C = conv(H) =

{
f : f(x) =

∫
Θ

φθ(x)P (dθ)

}
.

The approximation bound of Li and Barron [6, 7] states that for any f , there exists an fk ∈ Ck,
such that

D(f‖fk) ≤ D(f‖C) +
c2
f,P γ

k
, (1)

where cf,P and γ are constants and D(f‖C) = infg∈C D(f‖g). Furthermore, γ upperbounds the
log-ratio of any two functions φθ(x), φθ′(x) for all θ, θ′, x and therefore

sup
θ,θ′,x

log
φθ(x)

φθ′(x)
< ∞ (2)

is a condition on the class H.
Li and Barron prove that k-mixture approximations satisfying (1) can be constructed by the
following greedy procedure: Initialize f1 = φθ to minimize D(f‖f1) and at step k construct fk

from fk−1 by finding α and θ such that

D(f‖fk) ≤ min
α,θ

D(f‖(1 − α)fk−1(x) + αφθ(x)).
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Furthermore, a connection between KL-divergence and Maximum Likelihood suggests the fol-
lowing method to compute the estimate f̂k from the data by greedily choosing φθ at step k so
that

n∑
i=1

log f̂k(xi) ≥ max
α,θ

n∑
i=1

log[(1 − α)f̂k−1(xi) + αφθ(xi)] (3)

Li and Barron proved the following theorem:

Theorem 1.1. Let f̂k(x) be either the maximizer of the likelihood over k-component mixtures or
more generally any sequence of density estimates satisfying (3). Assume additionally that Θ is
a d-dimensional cube with side-length A, and that

sup
x∈X

| log φθ(x) − log φθ′(x)| ≤ B
d∑
j

|θj − θ′j| (4)

for any θ, θ′ ∈ Θ. Then

IES

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+

c2k

n
log(nc3), (5)

where c1, c2, c3 are constants (dependent on A,B, d).

Here IES denotes the expectation with respect to a draw of n independent points according to the
unknown distribution f . The above bound combines the approximation and estimation results.
Note that the first term decreases with the number of components k, while the second term

increases. The rate of convergence for the optimal k is therefore O(
√

log n
n

).

2 Main Results

Instead of condition (2), we assume that class H consists of functions bounded above and below
by a and b, respectively. See the discussion section for the comparison of these two assumptions.
We prove the following results:

Theorem 2.1. For any target density f such that a ≤ f ≤ b and f̂k(x) either the maximizer
of the likelihood over k-component mixtures or more generally any sequence of density estimates
satisfying (3),

IES

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+ IES

[
c2√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
.

where c1, c2 are constants (dependent on a, b) and D(H, ε, dx) is the covering number of H at
scale ε with respect to empirical distance dx.

Corollary 2.1. Under the conditions of Theorem 1.1 (i.e. H satisfying condition (4) and Θ
being a cube with side-length A), the bound of Theorem 2.1 becomes

IES

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+

c2√
n

,

where c1 and c2 are constants (dependent on a, b, A,B, d).
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3 Discussion of the Results

The result of Theorem 2.1 is twofold. The first implication concerns dependence of the bound on
k, the number of components. Our results show that there is an estimation bound of the order
O( 1√

n
) that does not depend on k. Therefore, the number of components is not a trade-off that

has to be made with the approximation part.
The second implication concerns the rate of convergence in terms of n, the number of samples.
The rate of convergence (in the sense of KL-divergence) of the estimated mixture to the true
density is of the order O(1/

√
n). As Corollary 2.1 shows, for the specific class H considered by

Li and Barron, the Dudley integral converges and does not depend on n. Furthermore, the result
of this paper holds for general base classes H with a converging entropy integral, extending and
improving the result of Li and Barron. Note that the bound of Theorem 2.1 is in terms of the
metric entropy of H, as opposed to the metric entropy of C. This is a strong result because the
convex class C can be very large [8] even for small H.
Rates of convergence for the MLE in mixture models were recently studied by Sara van de Geer
[10]. As the author notes, the optimality of the rates depends primarily on the optimality of
the entropy calculations. Unfortunately, in the results of [10], the entropy of the convex class
appears in the bounds, which is undesirable. Moreover, only finite combinations are considered.
Wong and Shen [13] also considered density estimation, giving rates of convergence in Hellinger
distance for a class of bounded Lipschitz densities. In their work, again, a bound on the metric
entropy of the whole class is used and the rates of convergence are slower than those achieved in
this paper.
An advantage of the approach of [10] is the use of Hellinger distance to avoid problems near zero.
Li and Barron address this problem by requiring (2), which is boundedness of the log of the ratio
of two densities. We address this problem by assuming boundedness of the densities directly. The
two conditions are equivalent unless we consider classes consisting only of unbounded functions
or consisting only of functions approaching 0 at the same rate (in which case condition (2) is
weaker). If the boundedness of densities is assumed, as [3] notes, the KL-divergence and the
Hellinger distance do not differ by more than a multiplicative constant.

4 Proofs

Assume 0 < a ≤ φθ ≤ b for all φθ ∈ H. Constants which depend only on a and b we will denote
by c with various subscripts. The values of the constants might change from line to line.

Theorem 4.1. For any fixed f , 0 < a ≤ f ≤ b and S = {x1, ..., xn} drawn i.i.d from f , with
probability at least 1 − e−t,

sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ IES

[
c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
+ c2

√
t

n

where c1 and c2 are constants that depend on a and b.

Proof By Lemma A.3,

sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ IES sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣+ 2
√

2 log
b

a

√
t

n
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with probability at least 1 − e−t and by Lemma A.2,

IES sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ 2IES,ε sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi log
h(xi)

f(xi)

∣∣∣∣∣ .
Combining,

sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ 2IES,ε sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi log
h(xi)

f(xi)

∣∣∣∣∣+ 2
√

2 log
b

a

√
t

n

with probability at least 1 − e−t.
Therefore, instead of bounding the difference between the “empirical” and the “expectation”,
it is enough to bound the above expectation of the Rademacher average. This is a simpler
task, but first we have to deal with the log and the fraction (over f) in the Rademacher sum. To
eliminate these difficulties, we apply Lemma A.1 twice. Once we reduce our problem to bounding
the Rademacher sum supφ∈H

∣∣ 1
n

∑n
i=1 εiφ(xi)

∣∣ of the basis functions, we will be able to use the
entropy of the class H.
Let pi = h(xi)

f(xi)
− 1. and note that a

b
− 1 ≤ pi ≤ b

a
− 1. Consider φ(pi) = log(1 + pi). The largest

derivative of log(1+ p) on the interval p ∈ [a
b
− 1, b

a
− 1] is at p = a/b− 1 and is equal to b/a. So,

a
b
log(p + 1) is 1-Lipschitz. Also, φ(0) = 0. By Lemma A.1 applied to φ(pi) and G being identity

mapping,

2IES,ε sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi log
h(xi)

f(xi)

∣∣∣∣∣ = 2IES,ε sup
h∈C

∣∣∣∣∣ 1n
n∑
1

εiφ(pi)

∣∣∣∣∣
≤ 2

b

a
IES,ε sup

h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi
h(xi)

f(xi)
− 1

n

n∑
1

εi

∣∣∣∣∣
≤ 2

b

a
IES,ε sup

h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi
h(xi)

f(xi)

∣∣∣∣∣+ 2
b

a
IEε

∣∣∣∣∣ 1n
n∑

i=1

εi

∣∣∣∣∣
≤ 2

b

a
IES,ε sup

h∈C

∣∣∣∣∣ 1n
n∑

i=1

εi
h(xi)

f(xi)

∣∣∣∣∣+ 2
b

a

1√
n

.

The last inequality holds trivially by upperbounding L1 norm by the L2 norm. Now apply A.1
again with contraction φi(hi) = ahi

fi
.

|φi(hi) − φi(gi)| =
a

|fi| |hi − gi| ≤ |hi − gi|

2
b

a
IES,ε sup

fh∈C

∣∣∣∣∣ 1n
n∑

i=1

εi
h(xi)

f(xi)

∣∣∣∣∣ ≤ 2
b

a2
IES,ε sup

h∈C

∣∣∣∣∣ 1n
n∑

i=1

εih(xi)

∣∣∣∣∣ .
Combining the inequalities, with probability at least 1 − e−t

sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ 2b

a2
IES,ε sup

h∈C

∣∣∣∣∣ 1n
n∑

i=1

εih(xi)

∣∣∣∣∣+
√

8 log
b

a

√
t

n
+

2b

a

1√
n

.
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The power of using Rademacher averages to estimate complexity comes from the fact that
the Rademacher averages of a class are equal to those of the convex hull. Indeed, consider
suph∈C

∣∣ 1
n

∑n
i=1 εih(xi)

∣∣ with h(x) =
∫

θ
φθ(x)P (dθ). Since a linear functional of convex combina-

tions achieves its maximum value at the vertices, the above supremum is equal to

sup
θ

∣∣∣∣∣ 1n
n∑

i=1

εiφθ(xi)

∣∣∣∣∣ ,
the corresponding supremum on the basis functions φ. Therefore,

IEε sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

εih(xi)

∣∣∣∣∣ = IEε sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εiφθ(xi)

∣∣∣∣∣ .
Next, we use the following classical result [12],

IEε sup
φ∈H

∣∣∣∣∣ 1n
n∑

i=1

εiφ(xi)

∣∣∣∣∣ ≤ c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε,

where dx is the empirical distance with respect to the set S.
Putting it all together, the following holds with probability at least 1 − e−t:

sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣ ≤ IES

[
c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
+ c2

√
t

n
.

If H is a VC-subgraph with VC dimension V , the Dudley integral above is bounded by c
√

V and
we get 1√

n
convergence. One example of such a class is worked out in the Appendix (Gaussian

densities over a bounded domain and with bounded variance). Another example is the class
considered in [6], and the cover is computed for it in the proof of Corollary 2.1.

We are now ready to prove Theorem 2.1:

Proof

D(f‖f̂k) − D(f‖fk) =

(
IE log

f

f̂k

− 1

n

n∑
i=1

log
f(xi)

f̂k(xi)

)
+

(
1

n

n∑
i=1

log
f(xi)

fk(xi)
− IE log

f

fk

)

+

(
1

n

n∑
i=1

log
f(xi)

f̂k(xi)
− 1

n

n∑
i=1

log
f(xi)

fk(xi)

)

≤ 2 sup
h∈C

∣∣∣∣∣ 1n
n∑

i=1

log
h(xi)

f(xi)
− IE log

h

f

∣∣∣∣∣
+

(
1

n

n∑
i=1

log
f(xi)

f̂k(xi)
− 1

n

n∑
i=1

log
f(xi)

fk(xi)

)

≤ IES

[
c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
+ c2

√
t

n
+

1

n

n∑
i=1

log
fk(xi)

f̂k(xi)
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with probability at least 1 − e−t (by Theorem 4.1). Note that 1
n

∑n
i=1 log fk(xi)

f̂k(xi)
≤ 0 if f̂k is

constructed by maximizing likelihood over k-component mixtures. If it is constructed by a greedy
algoritheorem described in the previous section, f̂k achieves ”almost maximum likelihood” ([7])
in following sense:

∀g ∈ C,
1

n

n∑
i=1

log(f̂k(xi)) ≥ 1

n

n∑
i=1

log(g(xi)) − γ
c2
Fn,P

k
.

Here c2
Fn,P = (1/n)

∑n
i=1

∫
φ2

θ(xi)P (dθ)

(
∫

φθ(xi)P (dθ))
2 ≤ b2

a2 and γ = 4 log(3
√

e)+4 log b
a
. Hence, with probability

at least 1 − e−t,

D(f‖f̂k) − D(f‖fk) ≤ IES

[
c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
+ c2

√
t

n
+

c3

k
.

We now write the overall error of estimating an unknown density f as the sum of approximation
and estimation errors. The former is bounded by (1) and the latter is bounded as above. Note
again that c2

f,P and γ in the approximation bound (1) are bounded above by constants which
depend only on a and b. Therefore, with probability at least 1 − e−t,

D(f‖f̂k) − D(f‖C) = (D(f‖fk) − D(f‖C)) +
(
D(f‖f̂k) − D(f‖fk)

)
≤ c

k
+ IES

[
c1√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
+ c2

√
t

n
.

Finally, we rewrite the above probabilistic statement as a statement in terms of expectations.

Let ζ = c
k

+ IES

[
c1√
n

∫ b

0
log1/2 D(H, ε, dx)dε

]
and ξ = D(f‖f̂k) − D(f‖C). We have shown that

IP

(
ξ ≥ ζ + c2

√
t

n

)
≤ e−t.

Since ξ ≥ 0,

IES [ξ] =

∫ ∞

0

IP (ξ > u) du =

∫ ζ

0

IP (ξ > u) du +

∫ ∞

ζ

IP(ξ > u)du

≤ ζ +

∫ ∞

0

IP (ξ > u + ζ) du.

Now set u = c2

√
t
n
. Then t = c3nu2 and

ES [ξ] ≤ ζ +

∫ ∞

0

e−c3nu2

du ≤ ζ +
c√
n

.

Hence,

ES

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+ IES

[
c2√
n

∫ b

0

log1/2 D(H, ε, dx)dε

]
.
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Remark 4.1. In the actual proof of the bounds, Li and Barron [7, 6] use a specific sequence of
αi for the finite combinations. The authors take α1 = 1, α2 = 1

2
, and αk = 2

k
for k ≥ 2. It can

be shown that with these weights

fk =
2

k(k − 1)

(
1

2
φ1 +

1

2
φ2 +

k∑
m=3

(m − 1)φm

)
,

so the later choices have more weight.

We now prove Corollary 2.1:

Proof Since we consider bounded densities a ≤ φθ ≤ b, condition (4) implies that

∀x, log

(
φθ(x) − φθ′(x)

b
+ 1

)
≤ B|θ − θ′|L1 .

This allows to bound L∞ distances between functions in H in terms of the L1 distances between
the corresponding parameters. Since Θ is a d-dimensional cube of side-length A, we can cover

Θ by
(

A
δ

)d
”balls” of L1-radius d δ

2
. This cover induces a cover of H. For any fθ there exists an

element of the cover fθ′ , so that the

dx(fθ, fθ′) ≤ |fθ − fθ′ |∞ ≤ beB dδ
2 − b = ε.

Therefore, δ =
2 log( ε

b
+1)

Bd
and the cardinality of the cover is (A

δ
)d =

(
ABd

2 log( ε
b
+1)

)d

. So,

∫ b

0

log1/2 D(H, ε, dx)dε =

∫ b

0

√
d log

ABd

2 log
(

ε
b
+ 1
)dε.

A straightforward calculation shows that the integral above converges.

5 Future Work

The main drawback of the approach described in this paper is the need to lower-bound the
densities. Future work will focus on ways to remove this condition by using, for instance, a
truncation argument.

A Appendix

We will denote fi = f(xi). The following inequality can be found in [5], Theorem 4.12.

Lemma A.1 ([5] Comparison inequality for Rademacher processes). If G : IR → IR con-
vex and non-decreasing and φi : IR → IR (i = 1, .., n) contractions (φi(0) = 0 and |φi(s) − φi(t)| ≤
|s − t|), then

IEεG(sup
f∈F

n∑
i=1

εiφi(fi)) ≤ IEεG(sup
f∈F

n∑
i=1

εifi).
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Lemma A.2 ([12] Symmetrization). Consider the following processes:

Z(x) = sup
f∈F

∣∣∣∣∣IEf − 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ , R(x) = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(xi)

∣∣∣∣∣ .
Then

IEZ(x) ≤ 2IER(x).

Lemma A.3 (Application of McDiarmid inequality). For

Z(x1, ..., xn) = sup
h∈F

∣∣∣∣∣IE log
h

f
− 1

n

n∑
i=1

log
h(xi)

f(xi)

∣∣∣∣∣
the following holds with probability at least 1 − e−t:

Z − IEZ ≤ c

√
t

n
,

where a and b are the lower and upper bounds for f and h, and c = 2
√

2 log b
a
.

Proof Let ti = log h(xi)
f(xi)

and t′i = log
h(x′

i)

f(x′
i)
. The bound on the martingale difference follows:

|Z(x1, ..., x
′
i, ..., xn) − Z(x1, ..., xi, ..., xn)| =∣∣∣∣sup

h∈F

∣∣∣∣IE log
h

f
− 1

n
(t1 + ... + ti + ... + tn)

∣∣∣∣− sup
h∈F

∣∣∣∣IE log
h

f
− 1

n
(t1 + ... + t′i + ... + tn)

∣∣∣∣
∣∣∣∣ ≤

≤ sup
h∈F

1

n

∣∣∣∣log
h(x′

i)

f(x′
i)
− log

h(xi)

f(xi)

∣∣∣∣ ≤ 1

n

(
log

b

a
− log

a

b

)
=

1

n
2 log

b

a
= ci.

The above chain of inequalities holds because of triangle inequality and properties of sup. Ap-
plying McDiarmid’s inequality,

IP (Z − IEZ > u) ≤ exp

(
− u2

2
∑

c2
i

)
= exp

(
− nu2

8 log2 b
a

)
.

Equivalently,

IP

(
Z − IEZ > c

√
t

n

)
≤ e−t,

for constant c = 2
√

2 log b
a
.

B Example of Gaussian Densities

Let F = {fµ,σ : fµ,σ = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
, |µ| ≤ M,σmin ≤ σ ≤ σmax} be a set of Gaussian

densities defined over a bounded set X = [−M,M ] with bounded variance. Here we show that
F has a finite cover D(F , ε, dx) = K

ε2
, for some constant K.

9



Define
Fµ = {fµ,σ : fµ,σ ∈ F , µ ∈ {−M + kεµ : k = 0, ..., 2M/εµ}}

and
Fµ,σ = {fµ,σ : fµ,σ ∈ Fµ, σ ∈ {σmin + kεσ : k = 0, ..., (σmax − σmin)/εσ}}.

Thus, Fµ,σ ⊂ Fµ ⊂ F . We claim that Fµ,σ is finite ε-cover for F with respect to the dx norm
(on the data). For any fµ,σ ∈ F , first choose a function fµ′,σ ∈ Fµ so that |µ − µ′| ≤ εµ.
Note that functions f ∈ F are all Lipschitz because σ is bounded. In fact, largest derivative of

f = 1
σ
√

2π
exp

(
− x2

2σ2

)
is at −σ and is equal to 1√

2πeσ2 . Then

|fµ,σ(x) − fµ′,σ(x)| ≤ 1√
2πeσ2

|µ − µ′| ≤ εµ√
2πeσ2

min

.

Furthermore, any fµ′,σ ∈ Fµ can be approximated by fµ′,σ′ ∈ Fµ,σ such that |σ − σ′| ≤ εσ. Then

∀x ∈ X |fµ′,σ(x) − fµ′,σ′(x)| ≤ 1√
2π

∣∣∣∣ 1σ − 1

σ′

∣∣∣∣ ≤ 1√
2π

εσ

σ2
min

.

Combining the two steps, any function in F can be approximated by a function in F with an
error at most (εµ + εσ) 1

σ2
min

√
2π

. The empirical distance

dx(fµ,σ, fµ′,σ′) =

(
1

n

n∑
i=1

(fµ,σ(x) − fµ′,σ′(x))2)

) 1
2

≤ sup
x

|fµ,σ(x) − fµ′,σ′(x)|

≤ (εµ + εσ)
1

σ2
min

√
2π

= ε.

Choosing εµ = εσ = ε
σ2

min

√
π√

2
we get the size of the cover to be

D(F , ε, dx) = card(Fµ,ε) =
2M

εµ

(σmax − σmin)

εσ

=
4M(σmax − σmin)

πσ4
min

1

ε2
=

K

ε2
.
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