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Abstract

The growth of renewables in power systems has reinvigorated research and regulatory
interest in reliability analysis algorithms such as the Baleriaux/Booth convolution-
based probabilistic production cost (PPC) model. However, while these traditional
PPC algorithms can reasonably represent thermal plant availabilities, they do not
accurately represent limited energy plants because of their generic treatment of time.
In particular, in systems with limited energy plants, convolution-based PPC mod-
els tend to underestimate the loss-of-load probability and expected nonserved energy.
This thesis illustrates the chronological challenges of the traditional convolution-based
PPC, proposes a modification that improves the representation of chronological el-
ements, explores the reliability contribution of LEPs using the new algorithm, and
demonstrates two regulatory applications by calculating a capacity payment for an
LEP and the expected-load-carrying-capability metric for any generator. To the best
knowledge of the author, the introduction of multiple hydro plants with different ca-
pacity constraints and the calculations for marginal probabilities, prices, and revenues
to a chronological PPC model are novel.
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Chapter 1

Introduction

1.1 A brief overview of electricity markets

With exception to popular historical anecdotes such as Thomas Edison's light bulb,

history books today contain few electricity-related events or catastrophes. Modern so-

cieties view access to low-cost and dependable electricity as a right, and until the early

1990s, vertically integrated utilities delivered reliable electricity to their consumers in

a remarkably steady but otherwise unremarkable fashion.

Vertically integrated utilities

Before the early 1990s, vertically integrated utilities operated electric power networks

as regulated monopolies. These monolithic entities owned all of the generation and

transmission assets within their networks. They made short-term decisions about how

to operate their power plants on a day-to-day basis, as well as long-term decisions

about future network and generation investments. Because they operated under cost-

of-service (and therefore recouped all of their investment costs), vertically integrated

utilities also tended to overinvest in their network and generation assets to ensure

against the physical, political, and social impacts of system failures.

Despite the greater protection that overinvestment afforded against system fail-

ures, it also decreased economic efficiency and raised the average cost of electricity for

consumers. To address these inefficiencies, in the early 1990s, power systems around

13



the world began transitioning to electricity markets. These transitions, often referred

to as market "liberalization," "deregulation," or "restructuring," separated monolithic,

vertically integrated utilities into four main businesses: generation, transmission, dis-

tribution, and retail. Because of the economies of scale associated with transmission

and distribution networks (for example, a high-capacity line loses less power than

two lines that sum to the same capacity), network operations remained regulated

monopolies. The most notable change for systems that liberalized occurred at the

generator level with the creation of new power and reserve markets: individual gen-

erators and generation companies could now compete against each other for the right

to sell electricity, and new entrants could enter the market with any technology of

their choosing. 1

Liberalization challenges

However, liberalization also eliminated the central planning role of the vertically

integrated utility, leaving only individual agents to make both short- and long-term

decisions about plant operations and investments in their own best economic interests.

Although economic theory dictates that under perfect competition and information

markets will drive individual agents to make economically optimal choices, in reality

the individual actor (for example, an investor) does not have perfect information.

Unable to forecast demand and future prices with certainty, investors in power systems

with markets will likely underinvest in new power plants because they face greater

'Electricity markets, as with other markets, operate on the economic principle that perfect com-
petition will produce efficient outcomes. With enough ("perfect") information about electricity prices,
load trends, generation technologies, and other pertinent aspects of the power system, private enti-
ties should be able to make prudent investment and operation decisions that lead to an economically
efficient generation mix and electricity supply.

Concretely, in the United States, integrated system operators (ISOs) encourage competition by
running auctions for the many electricity products that they need. Largely, these products are either
energy- or reserve-related. Marginal prices for all products emerge from the auctions. To participate
in these auctions, generators must submit bids consisting of quantity and price pairs that they
are willing to sell electricity at. Additionally, because ISOs in the United States utilize complex
bids, generators must also submit information about their plants' physical constraints (for example,
their ramping, start-up, and shut-down capabilities). An ISO will take all bids and constraints into
account to determine the economic merit order, which ranks plants from least to highest cost. Then,
the ISO awards bids starting with the least expensive plants until all demand is met. In each hour,
the last bid that the ISO accepts sets the marginal system price. This is the marginal system price
that signals to investors the potential value of investing in new capacity.

14



risks associated with recovering their costs and fewer direct consequences from failure

events-directly in contradiction to the expected behavior of vertically integrated

utilities.

Because private entities are free to make their own investment decisions, and be-

cause they are likely to underinvest in capacity given their risk aversion, the electricity

industry by and large concedes (implicitly and explicitly) that regulators still hold the

responsibility for ensuring the availability of adequate capacity to prevent system fail-

ures. More generally, when designing market rules, regulators have the responsibility

of internalizing important political and social concerns (e.g., CO 2 prices and climate

change) that consumers cannot explicitly express preferences for because electric-

ity markets remain immature. As explained in [15, Rodilla 2010], most demand-side

consumers have not learned how to, or cannot, respond to electricity spot prices. Con-

sumers typically also do not how to, or cannot, express their preferences for products

such as supply security because historically, the vertically integrated utilities man-

aged these types of concerns. Although economic theory dictates that consumers, if

left to market forces, would adapt and eventually learn how to express preferences

for these products after enough black- and brown-outs, electricity failures impose

great burdens on a society. The public at large, politicians, and governments find

these failures untenable (for example, consider the Californian government's response

to its 2001 blackouts) and are unlikely to allow enough time for markets to mature

on their own. Consequently, because consumers are unable to directly express their

preferences, regulators intervene in electricity markets to address a variety of market

failures, including the problem of an inadequate security of supply.

Regulatory tools for reliability

To design market incentives and rules that guide electricity markets toward publicly

desirable and economically efficient outcomes, regulators use a wide range of support

tools (such as mathematical optimizations and simulations) to analyze the physical

and market operations of power systems. Among the types of questions that regu-

lators ask, questions about system reliability frequently surface. For example, how

15



reliable is a power system? What is the contribution of a particular plant to sys-

tem reliability? What percentage of a plant's capacity should the regulator consider

"firm?"2 With the prevalence of public subsidies for various generation technologies,

questions about the intermittency challenges that renewables present, and concerns

about climate change, these types of reliability questions and the tools that can be

used to analyze them have once again piqued the interest of power systems researchers

and regulators.

This thesis focuses on limited energy plants (LEPs)3 as a source of system re-

liability for power systems and the convolution-based probabilistic production cost

(PPC) algorithms that regulators have used to evaluate the contributions of various

generators (and in particular, LEPs) to reliability. Countries such as Panama, Spain,

and Ireland have used PPC models in the past to determine the contribution of ther-

mal and hydro generators to the reliability of their power systems. For example, in

Panama, the system regulator used to calculate the reliability contribution of individ-

ual generators by first, benchmarking the its entire system's loss-of-load probability

(LOLP) using the PPC model; second, removing individual plants and rerunning the

PPC model; and third, crediting the removed plant for reducing the probability of

failure based on the net change in LOLP between the first and second steps. Although

the traditional convolution-based PPC models (hereafter referred to as "traditional

PPC models") that countries such as Panama have used for their reliability analy-

ses can model thermal availability well, they have difficulty accurately representing

limited energy plants. This thesis proposes a modification to the traditional PPC

algorithm that better. addresses the representation of chronological elements. Given

the recent renewed interest in regulatory instruments to encourage investments and

2Although many definitions for "firm" capacity exist, for the purposes of this thesis, a plant's
"firm" capacity refers to the fraction of its nameplate capacity that the regulator considers reliable.
For example, a combined-cycle-gas-turbine plant with a nameplate capacity of 400 MW and a forced

outage rate of 5% might have a firm capacity of 380 MW. Many definitions exist for firm capacity

(and as many metrics for evaluating a generator's firm capacity; Chapter 4 explores one such metric).
Broadly speaking, a generator that has a firm capacity close to its nameplate capacity should be
more reliable than a generator with the same nameplate capacity, but a lower firm capacity.

3 LEPs are generators that store a limited amount of energy/fuel; for instance, a reservoir-based
hydro generator is a well known example of an LEP.
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behaviors that increase system reliability, the results from this thesis can make an

immediate impact on discussions about the reliability contribution of LEPs and the

firm capacity of various generation technologies.

1.2 Reliability in electric power systems

As noted by [14, Rodilla 2010], the physical task of delivering electricity to end

consumers consists of a complex set of coordinated actions between multiple actors.

At every time instant, physical laws require balance between generation and demand.

Supplying electricity without interruption resembles an intricate dance between large,

synchronous machines that are connected across thousands of miles and constantly

converting mechanical energy into electrical energy (and vice versa). The success of

this complex machine requires decisions that span multiple timescales, from building

generation plants and transmission networks (processes that may take multiple years)

to physically operating individual generators on a minute-by-minute and second-by-

second basis. [14, Rodilla 2010] describes in detail the different temporal scales that

the reliability problem can be broken down into.

For this thesis, the discussion about a power system's reliability will focus on the

existence of enough installed capacity and its availability to supply demand. Within

this scope, a power system's reliability can be characterized using many different met-

rics. Because regulatory analyses frequently discuss reliability in terms of a system's

LOLP and expected nonserved energy (ENSE), the remaining discussion about relia-

bility will focus on these two metrics. Chapter 2 reviews the formal definition of LOLP

and ENSE. Broadly, LOLP is the expected fraction of hours over the time period of

analysis (for example, one year) in which demand will exceed available generation,

and ENSE is the total expected amount of unmet demand over the time period of

analysis. Using these definitions, systems with lower LOLP and ENSE values are

more reliable than systems with higher LOLPs and ENSEs.
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1.3 Limited energy plants as a reliability resource

Reservoir-hydro resources and storage technologies-more generally, LEPs-can con-

tribute to solving the power system reliability problem. LEPs store energy in one

time period for dispatch in a future time period; for this reason, LEPs face a different

cost of dispatch than thermal plants. For a thermal plant, the value of generation in

one hour is the difference between its operating costs and the marginal system price.

For an LEP, the value of dispatching energy in one hour is the opportunity cost of

not saving that energy for use in a future hour. Deciding how to best dispatch LEP

resources requires a careful treatment of uncertainties that affect thermal plants to a

significantly lesser degree.

Thesis objectives

Using reservoir-hydro (hereafter referred to as hydro) plants as proxies for LEPs,

this thesis examines the PPC algorithms that researchers and regulators have used

to evaluate system reliability. In the past, regulators have used PPCs to analyze

system reliability and the reliability contributions of individual plants because PPC

algorithms require relatively little computational effort and can reasonably approxi-

mate thermal availability. However, these evaluations do not hold as well for LEPs.

Because of their treatment of time, traditional PPCs assume one dispatch behavior

for LEPs for a unit time and then scale this behavior up for the entire simulation

period. Consequently, these models implicitly consider dispatch scenarios for LEPs

that may violate their energy limits. Additionally, because of their treatment of time,

traditional PPCs discard chronological information that may be particularly useful in

the representation of certain types of LEP plants; e.g., hydro resources. To overcome

these two limitations while also preserving the advantages of the convolution-based

methodology, this thesis develops a chronological PPC model that can more accu-

rately represent LEPs. To the best knowledge of the author, the representation of

multiple hydro plants with capacity constraints and the calculation of hourly marginal

probabilities, prices, and revenues in the chronological algorithm are novel contribu-
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tions.

In addition to presenting the proposed chronological algorithm, Chapter 2 exam-

ines how key reliability metrics are computed in both the traditional PPC and the

proposed chronological model. The last section in Chapter 2 illustrates differences

between the two models by applying them to a real-size case study power system. The

results highlight the optimistic nature of traditional PPC models in their treatment of

hydro dispatch and reliability estimates. Chapter 3 explores in depth the calculation

of total system costs, marginal prices, revenues, and reliability metrics under the new

chronological PPC algorithm. Chapter 4 discusses regulatory issues related to the

reliability problem by applying the chronological algorithm to (1) design incentives

for LEPs to improve system reliability and (2) calculate the reliability contribution

of an individual generator. Chapter 5 concludes with suggestions for future research.

1.4 A broader context: renewables in power systems

Academically, the representation of chronology in PPC algorithms poses an interest-

ing challenge because the trade-offs between computational effort and model accuracy

impose real constraints that might have clever-yet-undiscovered workarounds. More

practically, for regulatory and policy purposes, the recent growth in renewable gener-

ation technologies also motivates the study of chronological PPC algorithms because

LEPs can help power systems integrate larger fractions of renewables into their gen-

eration mixes. The remainder of this chapter offers background about the challenges

of integrating renewables to explain the greater motivation behind studying and de-

veloping new algorithms (such as the PPC models presented in this thesis) for power

systems.

Although supporters often cite clean emissions and free fuels as key reasons to pro-

mote the adoption of renewable technologies for electricity generation, the variability

of renewable generation creates new load-balancing challenges for power systems. A

generator's variability depends on the intermittency and predictability of its gener-
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ation.4 The lack of predictability for highly intermittent sources of electricity, such

as wind and solar generators, requires power systems to make frequent supply ad-

justments over shorter timescales to balance load and supply. These frequent supply

adjustments can create reliability problems and impose additional costs onto other

generators in the system. For example, in power systems that allow renewables to dis-

patch first in violation of the economic merit order, the nonrenewable plants hold the

responsibility for balancing generation and demand. Yet, the intermittency of renew-

ables often increases the difference between a system's minimum and maximum net

load5 . Consequently, to accommodate excess wind generation on a low demand night

in the spring, a coal plant might have to ramp or shut down. Ramping and cycling

operations are generally uneconomic because plants incur more physical wear than

usual (but are only paid for their generation), operate under decreased efficiency (con-

sume more fuel per unit of electricity produced), and emit more greenhouse gasses.

The inverse problem also exists: on hot summer days with.peak demand for elec-

tricity, if the wind stops, the power system may not have enough thermal capacity

to cover remaining demand. If the system does not have enough thermal capacity,

who should be held responsible for the resources that are needed to maintain system

reliability? These inversely correlated generation/ demand examples show how the

variability of renewables and supportive policies such as priority dispatch can cre-

ate short-term externalities for nonrenewable generators and consumers, despite the

benefits of renewable electricity.

In the long-term, public subsidies for renewables and priority dispatch rules may

also discourage investment in other technologies that are needed to maintain reliable

4"Intermittency" refers to uncontrolled changes in the output of a generating resource, and "pre-
dictability" refers to the ability to estimate a resource's intermittency.[1] Wind turbines, concen-
trated solar power systems, and photovoltaic solar systems all exhibit high intermittency because
the amount of electricity that they generate changes with the availability of wind and sunlight.
However, the intermittency of these three technologies are not equally predictable. Generally, be-
cause weather forecasters can forecast cloud coverage with greater accuracy over longer periods of
time than they can forecast wind, wind generation tends to be more difficult to predict than solar
generation.

5 The "net load" of a power system refers to its demand after subtracting out generation from
nondispatchable sources such as wind and solar generators. The "net load" is the amount of demand
that dispatchable generators-typically thermal and hydro plants-must provide generation for.
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power systems. As capacity from renewable technologies continues to grow in power

systems, despite the greater generation variability, private investors will have fewer

incentives to invest in new conventional projects (such as flexible combined-cycle-

gas-turbine units) because larger renewable generation mixes reduce the amount of

electricity that thermal plants can sell. Market rules such as reserve capacity pay-

ments can incentivize investment in flexible generation, but ambiguity surrounds the

determination of who should pay for these incentives; additionally, these new market

rules may not lead to the least-cost power system for the consumer. These physical,

economic, and regulatory questions represent the types of integration concerns that

exist for renewables, and the tools required to analyze these problems-for example,

the PPC models presented in this thesis-remain an active area of research in power

systems.
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Chapter 2

A new proposal for evaluating power

system reliability

As described in Chapter 1, regulators have used PPC algorithms to evaluate the

reliability of power systems based on their LOLP and ENSE. This chapter briefly

reviews the history of PPC algorithms, describes the challenge of properly modeling

LEPs with traditional PPC models, and surveys the current body of literature on

chronological PPC models that offer improved representations of LEPs. The end of

this chapter contains a proposal for a new chronological PPC algorithm that divides

every hour into its own reliability problem, as well as a comparison of the LOLP and

ENSE results between the proposed algorithm and a traditional PPC model.

2.1 Past work: production cost models

Historically, the simplest production cost models deterministically approximated ther-

mal plant failures by representing their output levels as fractions of their maximum

capacities. The forced outage rate (FOR) of a plant determined the specific fraction

of its total capacity that counted as firm capacity. Under this representation, thermal

plants could never fail at their FOR-reduced capacities. Deterministic models treated

hydro plants as thermal plants with FORs of zero, and they set hydro output levels to

perfectly consume all available water in a given simulation period. This early genre
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of production models did not take into consideration the fact that when plants fail,

their outputs drop to zero, leading to an underestimation of the need for generation

from more expensive units. [7, Finger]

The probabilistic production cost (PPC) models that followed treated thermal

plant outages more realistically. Primarily developed by [2, Baleriaux] and reintro-

duced in English by [3, Booth], PPCs represented thermal plants using a two-state

model. In the first state, the plant is available to generate electricity at its full ca-

pacity with probability (1 - p). In the second state, the plant is not available to

generate electricity (due to a forced outage) with probability p. By considering these

two potential probabilistic states, Baleriaux/Booth created a new class of production

cost models that were able to more accurately capture the effect of thermal plant

outages.

In the following decades, many authors proposed iterations and refinements to the

Baleriaux/Booth PPC model. Of these refinements, notably [6, Conejo] developed

an approach to incorporate hydrothermal coordination. More generally, the PPC

techniques proposed by Conejo for optimal charging and discharging, as well as to

determine the optimal merit order position to minimize system cost, applied to all

LEPs (e.g., batteries, flywheels, compressed air storage)-not only hydro plants. As

regulatory tools, derivatives of the Baleriaux/Booth PPC model have remained useful

because they require relatively little computational effort, capture the discrete nature

of plant failures, and directly convey a system's reliability in terms of its ENSE and

LOLP metrics.

2.1.1 PPC assumptions

Despite the many advantages of traditional PPC models, their abstraction of time

results in less accurate representations of power system. Most traditional PPC mod-

els represent demand over the time period of interest, T, with a single cumulative

probability distribution function (CDF). Every small t in time period T looks iden-

tical. As such, traditional PPCs calculate results for one generic unit of time and

then extrapolate those results out to longer time scales. The extrapolation holds for
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thermal plants because the dominant characteristics of a thermal plant are its capac-

ity and failure rate. These characteristics do not change much with time. However,

the extrapolation does not hold for LEPs because an LEP's energy constraint (how

much energy it has stored) changes through time and affects its dispatch actions.

Traditional PPCs unrealistically assume that an LEP's dispatch will remain constant

through the simulation period T because they cannot capture how variables change

with t. (A graphical explanation of this follows in section 2.2.2.)

Additionally, traditional PPC models also discard chronological information. As

an example of the importance of chronology, consider hydro plants. In traditional

PPC models, hydro energy targets are only enforced on the average because every t

is identical in the simulation period T. If a hydro plant has 100 MWh of energy, the

PPC will perfectly place every drop of water to use up all 100 MWh over time period

T. However, in reality, due to inherent demand and plant availability uncertainty,

in some hours hydro plants will generate less than what they should (and in others,

more than they should). In the hours when hydro generation is short of the optimum,

thermal plants will make up the difference. Conversely, in the hours when hydro

generation exceeds the optimum, hydro operators will sell electricity that they could

saved for more expensive hours. Both of these scenarios result in higher actual total

system costs than those predicted by traditional PPC models because of the loss of

chronological information.

As noted by [11, Maceira & Pereira 1996], chronology has not always posed a

problem for PPCs. Specifically, in a thermal-dominated power system, PPC models

can reasonably approximate the behavior of thermal plants. However, as the number

of LEPs in a power system increases, the system's total energy constraints from LEPs

take on greater importance and the assumption of a predominately thermal system

breaks down. In nonthermal-dominated systems, chronological elements can cause

material deviations between a PPC models' predictions about system reliability and

the actual metrics for that system.
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2.1.2 Existing literature on chronological PPCs

To address the limited representation of energy constraints and the loss of chronolog-

ical information in traditional PPC models, [11, Maceira & Pereira 1996] proposed an

algorithm that decomposes the Baleriaux/Booth PPC into a series of chronological

reliability problems. The algorithm consists of a power system with multiple thermal

plants and one energy-limited hydro plant. The system always dispatches its hydro

plant last. Production simulations are run for time period T chronologically, hour by

hour. Random variables represent inflow, demand, thermal generation, and turbine

capacity. As the simulation runs, the model can probabilistically track the initial

reservoir level in each hour (storage) and the hourly outflow (demand minus thermal

generation). To calculate hourly reservoir levels, the simulation convolves the hourly

inflow, storage, and outflow variables. Unused water carries over to the next hour, and

hourly water deficits represent ENSE. The chronological algorithm produces marginal

costs and reliability metrics for ENSE and LOLP in each hour. Using these outputs,

[11, Maceira & Pereira 1996] compared a traditional PPC model with their proposed

chronological model and determined that the traditional PPC underestimated costs

for the particular system that they analyzed (as noted in their paper, the comparison

is always system-dependent).

The chronological model in [11, Maceira & Pereira 19961 refined the probabilistic

treatment of LEPs in PPC models by incorporating important chronological param-

eters such as inflows, outflows, and reservoir storage levels. The work in this thesis

builds off these results, as well as the works of other authors that have developed

chronological PPC models to analyze hydro dispatch and other time-dependent ele-

ments in power systems:

9 [4, Borges 2008] uses a chronological Markov chain model to analyze stochas-

tic river inflows and obtain steady state probabilities for the total available

energy of a small hydro power plant. Their approach covers a timescale of

months and tries to improve estimates of total available hydro energy from

small hydro power plants to aid long-term capacity planning. The model sepa-
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rately describes the turbine portion of a hydro plant with a two-state Markov

model and produces reliability metrics for the expected amount of energy avail-

able taking into consideration generator failure. Instead of explicitly treating

demand, Borges presents energy-availability reliability metrics for small hy-

dro power plants. These metrics include a small hydro power plant's installed

energy, expected available energy, expected generated energy, capacity factor

(considering only the energy source), and generation availability factor.

* 18, Gonzalez 2005] describes a water dispatch policy that optimizes economic

benefit, taking into consideration both cost minimization and the reliability ob-

jective described by [13, Nabona 1995]. The algorithm divides a year into equal

subperiods of months and combines all hydro plants into a single, monolithic

hydro plant of equivalent capacity and energy. Demand is represented by a

load duration curve (LDC), and the authors assume that price and demand are

directly correlated. The algorithm splits hydro usage explicitly for peak shaving

and to cover thermal failures. Hydro energy used to cover thermal failures is al-

ways sold in the reserve market. In scenarios that have more water than ENSE

for the entire year, the algorithm decides what the best allocation of water is

for each multiweek subperiod. In each subperiod, an amount of hydro energy

equal to the ENSE is dispatched for reliability. Any remaining hydro energy

is dispatched for peak-shaving. The simulation sets the reservoir level at the

beginning and does not consider inflows.

* [9, Gonzalez 2002] describes a water dispatch policy that minimizes cost, taking

into consideration the stochastic nature of inflows and outflows. The simulation

breaks the total time period of a year into a series of smaller periods, such

as months (the algorithm generalizes well to even shorter time periods). In

each interval, the simulation considers water storage, discharge, pumping, and

spillage. Excess water carries from one interval to the next. Using an LDC to

represent demand, the algorithm randomly samples dispatch scenarios bounded

by hydro balance and feasibility rules and evaluates each scenario based on
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cost. Gonzalez saves "winning" scenarios and evaluates them by simulation to

determine a mean total cost and its probability distribution.

* [10, Gonzalez 2000] describes a hydro dispatch procedure that convolves hy-

dro generation and its unavailability distribution with the LDC to capture the

stochastic elements of hydro generation, based on (Nabona 1995). The simula-

tion time period is one year, subdivided into months. Optimal dispatch values

are found for each subperiod.

* [13, Nabona 1995] proposes a method for optimizing long-term hydrothermal

usage by splitting the amount of hydro available to serve the deterministic

(economic) goal of peak shaving the LDC and the stochastic (reliability) goal

of covering thermal failures.

2.2 A new chronological PPC algorithm

2.2.1 Overview

To capture the chronological information that PPCs discard when they create a single

aggregate LDC for all of time period T, the proposed chronological algorithm decon-

structs each hour in T into its own reliability problem. To the best knowledge of the

author, the introduction of multiple hydro plants with different capacity constraints

and the calculations for marginal probabilities, prices, and revenues to a chronological

PPC model are novel.

Thermal dispatch

In each hour, the algorithm represents demand as a discrete CDF and dispatches

generation plants by convolution. For every thermal plant, the algorithm performs

a single convolution between two demand CDFs. The first CDF represents demand

if the thermal plant fails (i.e., the demand CDF remains unchanged). The second

CDF represents demand after removing a portion of demand equal to the capacity
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of the thermal plant. The FOR of the thermal plant determines the weight for each

CDF (the plant fails with probability p; the plant works with probability 1 - p).

Thermal plant dispatch in this chronological PPC model closely resembles thermal

plant dispatch in the traditional PPC.

Hydro dispatch

Hydro plant dispatch also largely resembles thermal dispatch, with the key distinc-

tion that this algorithm also tracks the energy CDF for each hydro reservoir. In each

hour that the algorithm dispatches a hydro plant, it performs two convolutions. The

first convolution modifies the demand CDF, much like the thermal convolution de-

scribed above. In place of thermal FORs, these demand convolutions substitute the

y-intercept of the hydro reservoir CDF (representing the probability that the reservoir

is empty). The y-intercept of the hydro reservoir CDF is analogous to the FOR of a

thermal plant. The FOR of a hydro plant changes with time, based on the amount

of energy stored in the reservoir-the more energy, the more reliable the hydro plant.

The second convolution modifies the hydro reservoir CDF to reflect the amount

of water released in each hour. In the hydro reservoir convolution, the scenario that

hydro is needed is convolved with the scenario that hydro is not needed. If hydro

is not needed, the reservoir CDF remains unchanged. If hydro is needed, then the

algorithm removes an amount of energy equal to the capacity limit of the hydro plant.

The intermediate LOLP values for demand determine the weights for each scenario

(i.e., the probability that ENSE is strictly positive and that the system requires water

is the current LOLP; the probability that ENSE is zero and that the system does not

require water is the complement of the current LOLP). Modeling hydro reservoirs in

this fashion allows the algorithm to uniquely distinguish water usage and availability

between hours.

Lastly, the algorithm dispatches hydro plants from least to greatest capacity for

maximum system reliability. Sorting hydro plants by their capacity limits acknowl-

edges the fact that aside from energy limitations, large-capacity hydro plants can

supply energy in all of the situations that small-capacity hydro plants can; the re-
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verse is not true. (Although the energy constraint is not unimportant, it falls outside

the scope of this paper). As hydro reservoirs run low on water, their availability/be-

havior resembles the behavior of thermal plants because ENSE from previous hours

reduces the certainty of water availability (i.e., increases the hydro plant's FOR) for

future hours.

2.2.2 Step-by-step illustration

The following section graphically explains the proposed chronological algorithm.

First, create an initial inverted load duration curve (ILDC) that describes a sin-

gle hour of demand with absolute certainty by taking the LDC for a specific hour,

inverting the x- and y-axis, and dividing the time axis by T. The ILDC resembles

a CDF 1 and takes on two probabilities: all demand values less than or equal to the

demand at time t have probability 1, and all other demand values have probability

0. Without any loss of generality, this step can incorporate demand uncertainty by

modifying the cumulative distribution probabilities attached to each discrete demand

value. Figure 2-1 shows the chronological demand for this example, and Figure 2-2

shows the initial ILDC.

3 10,Chronological Demand
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Figure 2-1: Chronological demand

'The ILDC is "CDF-like" because it actually describes P(d > D), not P(d < D).
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Initial inverted load duration curve for hour 8
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Figure 2-2: The initial ILDC for hour 8

After creating the ILDC, the algorithm dispatches thermal plants using the same

convolution as traditional PPCs. As described in the overview above, for each thermal

plant, the convolution combines demand CDFs with and without thermal generation

after weighting each CDF using the FOR (and the FOR's complement) of the thermal

plant. To create the demand CDF with thermal generation, the algorithm removes

an amount of demand equal to the capacity limit of the current thermal plant. Figure

2-3 shows an example thermal convolution.

Dispatching a hydro generator resembles dispatching a thermal generator, but

requires two convolutions: one for the ILDC and one for the hydro reservoir. This

step describes the hydro analogue to the thermal convolution shown in Figures 2-

3 and 2-4. The y-intercept of the hydro reservoir CDF, HCDF(O), represents the

probability that the reservoir has water and functions much like a thermal plant's

FOR. (1 - HCDF(O)) represents the probability that the reservoir is empty. Figure

2-5 shows a sample ILDC convolution for hydro dispatch.

Updating the hydro reservoir CDF (HCDFs) completes the hydro dispatch step.

HCDFs are CDF-like functions that describe P(w > W), where w represents a specific

amount of hydro energy. In every hour, a hydro plant faces two scenarios: either its

water is needed or not. If there is no ENSE after the thermal dispatch step, then the

31



Hour 8, lhermal plant #1: ILDC with thermal dispatch
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Figure 2-3: Use traditional convolution to dispatch thermal plants
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Figure 2-4: Post-thermal-dispatch ILDC for hour 8
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Figure 2-5: Dispatch hydro resources by convolution to cover the remaining ENSE
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system does not need to dispatch any hydro generation. If ENSE is strictly positive

after dispatching all thermal plants, then the hydro plant should be dispatched at

the lesser of (1) its maximum capacity, or (2) the peak system demand. For most

power systems, because hydro capacity is a small fraction of the peak demand and

therefore also the limiting constraint, most hydro plants will be dispatched at their

full capacity. The probability that water is needed is equal to the intermediate LOLP,

ILDC(O). The complement is as expected: the probability that water is not needed

is (1- ILDC(O)). The two hydro scenarios are combined by convolution to obtain the

new HCDF, as in the traditional PPC approach for dispatching thermal plants. As

the algorithm consecutively dispatches hydro plants within the same hour, because

each hydro plant dispatch modifies the ILDC, each successive hydro plant sees a dif-

ferent (and lower) intermediate LOLP. Figure 2-6 illustrates the reservoir convolution

graphically. Figure 2-7 shows the final ILDC for hour 8. In each hour, hydro plants

are dispatched sequentially, from lowest to highest capacity, to maximize reliability.

After completing thermal and hydro dispatch for one hour, the algorithm saves

the final ENSE and LOLP values and iteratively continues onto the next hour in

time period T. Because the algorithm treats every hour as its own individual relia-

bility problem, this approach preserves the advantages of traditional PPCs while also

addressing the chronological problem of representing all hours of demand with one

generic cumulative distribution.
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2.3 Calculating reliability metrics

2.3.1 ENSE and LOLP

Using traditional PPC algorithms, regulators and system operators can evaluate a

power system's reliability by calculating its ENSE and LOLP. ENSE represents the

expected amount of nonserved energy, and LOLP represents the expected fraction

of hours in T that will have a nonzero value for ENSE. The ENSE and LOLP for

traditional PPC algorithms are calculated using the following equations:

m

NSEpc = E ILDC(i) (2.1)
i=O

LOLPpc = ILDC(O) (2.2)

where i represents a point on the demand axis of the ILDC, and m is the peak demand

of the ILDC. Given these equations, for the traditional PPC algorithm, the ENSE is

the area under the ILDC curve, and the LOLP is the y-intercept of the ILDC.

For the proposed chronological algorithm, the calculations for ENSE and LOLP

must take into consideration the individual ILDCs in every hour. Accordingly, the

chronologically equivalent formulas are as follows:

T m

NSEchrono = Z Z ILDC(i) (2.3)
t=O i=O

T ILDCt(0)
LO L Penrno = Et=0 T (24)T

LOLPchrono has a normalizing term, T, that LOLPpc lacks because the PPC algo-

rithm only has one ILDC for T, whereas the chronological algorithm has an ILDC for

each hour in T.

The definitions presented for ENSE and LOLP are valid for all hydro merit order

positions.
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2.3.2 Probability of at least one failure

Lastly, these algorithms can also produce values for the probability of having at least

one hour of failure in time period T. The derivation is as follows. In each hour of the

chronological dispatch model,

ILDCt(0)

is the probability of ENSE exceeding zero in that hour. The complement of this

probability,

1 - ILDCt(0)

is the probability that there is no ENSE in that hour. Taking the product of these

complementary probabilities for all hours in T,

T

J(1 - ILDCt(0))
t=o

gives the probability that no failures occur for time period T. The complement of

this probability, Equation 2.5, is the probability that at least one failure will occur.

T

P(NSET > 0)chrono = 1 - J(ILDCt(0)) (2.5)
t=o

The PPC equivalent simply uses the same LOLP value for every hour:

T

P(NSET > O),c= 1 - 11(1 - LOLPpc) = 1 - (1 - ILDC(0))T (2.6)
t=o

The definitions presented for the probability of at least one failure are only valid for

(1) completely thermal scenarios and (2) the special case of dispatching LEPs after

all thermal plants. Calculating the probability of at least one failure when hydro

plants are not dispatched at the end of the merit order requires determining whether

a drop of water used in hour t, even if it isn't dispatched at the end of the merit

order, contributes to reliability. (In turn, this step requires complicated conditional

probabilities.) Dispatching hydro at the end of the merit order places an upper bound
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on a system's reliability estimates.

2.4 Calculating costs and prices

In the proposed chronological algorithm, the amount of electricity that each generator

produces is probabilistic. Consequently, the costs and profits (or losses) that a plant

owner incurs are also probabilistic, and the comparison of costs and prices for all

algorithms requires calculating expected values.

2.4.1 Calculating the expected generation cost

In every hour t, each plant p produces

m

E[generation]t,, = Z[LDCt,p_1 (i) - ILDCt,p(i)] (2.7)

where (as in Equation 2.1) i represents a point on the demand axis of the ILDC, and

m is the peak demand of the ILDC. ILDCt,, indicates the current ILDC for hour

t after dispatching plant p; ILDCt,o represents the original ILDC for hour t. The

difference on the right-hand side of Equation 2.7 is the difference of the areas under

the ILDC curves, pre- and post-dispatch of plant p. Combining plant p's expected

generation and variable cost, costp, gives the expected cost for plant p in hour t:

E[hourly cost]t,, = E[generation]t,, x cost, (2.8)
m

= Z[LDCt,p_1(i) - ILDCt,,(i)] x cost,
i=0

Summing Equation 2.8 over all hours gives the total expected cost for a single plant

p in time period T:

T m

E[total plant cost) = j[ILDCs,,_1(i) - ILDCt,,(i)] x cost, (2.9)
t=1 .i=0
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And, summing over all plants gives the total expected system cost:

E[total system cost] = E [ [[ILDCt,,_ 1 (i) - ILDCt,,(i)] x cost,
p=1 .t=1 .i=0 . I (2.10)

where P represents the last plant. The total expected system cost, as illustrated in

Equations 2.7 through 2.10, only depends on the evolution of the ILDC after each

thermal plant dispatch in every hour.

2.4.2 Calculating the expected revenue for each plant

Marginal probabilities

Calculating a plant's expected revenue requires considering the scenario that the plant

is the marginal unit, as well as all of the scenarios that another plant later in the

merit order is marginal. First, for a given hour t,

P(NSE is the marginal technology) = ILDC(0)t,p = LOLP (2.11)

The probability that a thermal plant is marginal is the complement of Equation 2.11:

P(any generating plant is marginal) = 1 - LOLP

Working backward, the last generating plant, P, has the following probability of being

marginal:

P(the last plant, P, is marginal) = ILDC(0)t,p_1 - LOLP

More generally, the probability that any plant p is marginal in hour t is:

P(plant p is marginal in hour t) = ILDC(0),,_1 - ILDC(0)t,,

ILDC(0), 0 = 1

(2.12)
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Lastly, because either a generating plant or NSE sets the marginal price, these prob-

abilities must sum to 1:

P

Z[ILDC(O)tP-I - ILDC(),,] = 1
p= 1

Marginal prices

The marginal unit probabilities calculated in Equation 2.12 represent the likelihood

that plant p sets the marginal price in hour t. Each plant observes a unique marginal

price because if plant p is generating electricity, then no plant beneath plant p in

the merit order can set the marginal price. Therefore, the expected marginal system

price in each hour for each plant p is:

E[marginal system price]t,p (2.13)

= E[marginal system price | plant p is generating]t

- [(ILDC(O),p_1 - ILDC(O),p) x costp]

ILDC(0)t,,_1 (.4

Expected revenues

Combining the generation for each plant (Equation 2.7) and the expected marginal

system price (Equation 2.13) gives the expected revenue for plant p in hour t:

E[revenue]t,, (2.15)

= E[marginal system price]t,, x E[generation]t,,

- [(ILDC(O)t,_ 1 - ILDC(O)t,p) x costp]

ILDC(O)tp-1  x Z[ILDCt,p_1 (i) - ILDCt,,(i)]
i=O
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Lastly, summing across all hours gives the expected revenue for each plant:

E[total revenue], (2.16)

T

= E[revenue]t,p
t=1
T ^:P [(I LDC(0)t,,_1 - ILDC(0)t,p) x costp]

E P ILDC(0),,1 'x [ILDC,,_1(i) - ILDCt,,(i)]

2.4.3 Calculating expected profits

Trivially, the difference between the revenue and cost equations (Equations 2.16 and

2.9) gives the expected profit (loss) for each plant:

E[total profit], = E[total revenue], - E[total cost], (2.17)

2.5 Comparing reliability estimates between algorithms

This section highlights the differences between the traditional PPC model and the

proposed chronological PPC model by comparing reliability estimates from both for

a case study power system. The case study power system contains 87 thermal plants,

19 hydro plants, and 720 hours of demand data. Figure 2-8 shows the system's LDC

and optimal hydro coverage, assuming no thermal failures. This system has 31888

MW of thermal capacity, 9649 MW of hydro capacity, and a peak demand of 31728

MW.

For this reliability study, both the traditional and chronological PPC algorithms

dispatch all thermal plants first (starting with the least expensive unit), followed by

all hydro plants (starting with the lowest capacity plant). Abstracting hydro plants

to LEPs, a comparison of the pre- and post-LEP dispatch reliability metrics reveals

the contribution of LEPs to system reliability.

Table 2.1 contains the pre-LEP and post-LEP simulation results for ENSE, LOLP,

and probability of at least one failure. Of particular and immediate interest, the

estimates of ENSE and LOLP after only dispatching thermal plants differ between the
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Figure 2-8: Peak-shaving operations on a load duration curve

two algorithms. This discrepancy occurs because the initial ILDCs are not identical.

The chronological algorithm contains T total ILDCs, and each ILDC initially describes

demand in hour t with complete certainty. The PPC algorithm, on the other hand,

contains one ILDC that initially takes on the value of the inverse demand function.

The difference between each algorithm's treatment of demand and time explains why

the two algorithms report different amounts of ENSE-coverage by LEPs in the system,

despite the systems having identical generation plants and capacities.
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PPC Chrono. A(PPC - Chrono.)

Pre-LEP ENSE (MWh) 455680 452360 3320

Post-LEP ENSE (MWh) 1.9534 2.9245 -0.9711

difference (MWh) 455678 452357 -

Pre-LEP LOLP 0.3434 0.3421 0.0013

Post-LEP LOLP 6.376e-6 9.2827e-6 -3e-6

difference .3434 0.3421 -

Pre-LEP P(NSET > 0) 1 1 0

Post-LEP P(NSET > 0) 0.0046 0.0067 -0.0021

difference 0.9954 0.9933 -

Table 2.1: PPC versus chronological dispatch results

The post-LEP dispatch results show that the traditional PPC consistently over-

estimates the power system's reliability (i.e., the traditional PPC consistently un-

derestimates ENSE, LOLP, and the probability of at least one failure) compared

to the chronological algorithm. The rows labeled "difference" show the amounts of

ENSE, LOLP, and probability-of-at-least-one-failure reduction that can be attributed

to LEP generation. Compared to the traditional PPC results, the chronological algo-

rithm predicts that the LEPs will be able to cover 0.9711 MWh less ENSE, that the

system has a 3e-6 greater LOLP, and that the system has a 0.21% greater chance of

experiencing at least one failure for this particular month of demand. In summary,

the traditional PPC simultaneously overestimates total reliability and underestimates

LEP contributions to system reliability relative to the chronological PPC.

Lastly, Figure 2-9 plots the changes to ENSE, LOLP, and the probability of at

least one failure as time progresses for the chronological algorithm. Because the

traditional PPC algorithm treats every hour generically, equivalent graphs for the

PPC algorithm would look like horizontal lines that take on the post-LEP values in

Table 2.1. As expected, as time increases and the hydro reservoirs start to run out of
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water, system reliability declines.
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Figure 2-9: Chronological tracking of reliability metrics

2.6 Implications for traditional PPC algorithms

As illustrated by the traditional PPC equations for ENSE, LOLP, and probability-

of-at-least-one-failure from Section 2.3, traditional PPCs treat every hour generically

and then scale up results for that hour to obtain metrics for a week, month, or year.

For power systems with mostly thermal units, PPCs reasonably approximate system

operations because thermal availability comprises the greatest source of uncertainty,

and the convolution operation adequately captures this source of uncertainty. Con-

sequently, the assumption that all hours are the same in thermal-dominated power

systems is valid to a first approximation. However, as shown by the results in the pre-

vious section, traditional PPCs optimistically overestimate reliability metrics because
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they cannot distinguish one hour from the next. Because every hour in a PPC model

shares the same ILDC, traditional PPC models cannot consider alternative uses for

resources that have chronological dependencies. This chronological challenge reduces

the usefulness of non-chronological PPC models in power systems with LEPs.
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Chapter 3

Exploring LEP costs and

contributions to system reliability

In the reliability case study from the previous chapter, the chronological PPC al-

gorithm dispatched hydro plants as generators-of-last-resort to obtain lower-bound

(best possible) estimates of the power system's ENSE and LOLP. However, dispatch-

ing hydro plants at the end of the merit order1 also greatly increased the total system

cost because the system spilled water that it could have otherwise used to displace

expensive thermal generation. This chapter explores the dynamics between total sys-

tem cost and reliability by varying the merit order position for hydro plants. As

appropriate, comparisons are made to results from the traditional PPC model. With-

out any loss of generality, the conclusions about cost and reliability for hydro plants

should also hold for other LEP technologies.

'The term "merit order" refers to the ranking that a power system follows when deciding which
plants to dispatch first. In systems with electricity markets, market operators determine the merit
order by sorting plants from lowest bid to highest bid. In principle, plants that are dispatched earlier
in the merit order have lower variable costs than plants that are dispatched later in the merit order.
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3.1 LEP dispatch methods

3.1.1 Peak shaving dispatch

Assuming that thermal plants have perfect availability, system operators can mini-

mize total cost by dispatching LEPs when marginal prices are at their highest. In

this "peak-shaving" pattern (shown in Figure 2-8), because LEPs have low variable

costs, each megawatt-hour of electricity from an LEP tends to displace a more ex-

pensive megawatt-hour from another technology. Peak-shaving, however, reflects a

purely economic objective. If the NSE price in a power system were set with perfect

information about demand, thermal plant availability, and the desired level of reliabil-

ity, then the marginal prices that emerge during times of scarcity should adequately

encourage the necessary capacity investments. As most systems do not set the price

of NSE absolutely correctly or do not allow generators to bid the full NSE price (for

many reasons, including (1) calculating the correct NSE price is difficult, and (2) high

electricity prices are politically and socially unpopular), the price signals that emerge

from energy markets do not typically reflect the potential reliability premium that

LEPs could command because of their ability to serve as generators-of-last-resort.

3.1.2 Dual objective economic-reliability dispatch

Given that market distortions such as price caps affect the price signals that LEPs

receive in energy markets, if regulators want to encourage LEPs to contribute to

greater system reliability, they might consider dispatching plants under a dual eco-

nomic/ reliability objective. Under such a scheme-for exampling, minimizing total

cost given an explicit level of ENSE and LOLP-the price signals for LEPs may signif-

icantly change. However, the state-of-the-art for this category of PPC algorithms still

requires significant simplifying assumptions about generation units and chronology.

For example, in [8, Gonzalez et al. 2005], the authors split a year into identical-

length subperiods and use a PPC model to determine the ENSE in each subperiod.

The ENSE in each subperiod directly dictates how much water to allocate for relia-
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bility dispatch. If water in excess of what is required for reliability dispatch exists,

the algorithm optimally chooses the peak-shaving allocation in each subperiod that

minimizes cost. To perform this optimization, the algorithm makes the following

simplifications and assumptions:

1. The algorithm treats demand as a single LDC, discarding potentially useful

chronological information.

2. A single, monolithic hydro plant represents all of the hydro resources in the

system.

3. The authors' hydro allocation scheme assumes a direct correlation between de-

mand and marginal price for any generation sold into the energy market.

4. The algorithm treats demand and initial reservoir levels deterministically.

5. The algorithm does not consider inflows.

As in the [8, Gonzalez et al. 2005] algorithm, most PPC algorithms make at

least one of the above assumptions in exchange for computational simplicity. How-

ever, because of the chronological challenges described in Chapter 2, each of these

assumptions covers an important aspect of hydro plant/LEP operations that can

materially impact a model's results. The proposed chronological PPC algorithm in

Chapter 2 removes the first three assumptions enumerated above. Additionally, the

chronological PPC directly allows for probabilistic representations of hourly demand,

hourly reservoir levels, and hourly inflows via modification of the cumulative proba-

bility distributions for demand (ILDC) and reservoir levels (HCDF) at every time t.

By improving the representation of chronological information, the chronological PPC

should produce more realistic predictions about the effects of different LEP dispatch

patterns on total system cost, revenues, and reliability.
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3.2 Results

To compare the effects of LEP dispatch on system reliability, this case study calcu-

lates the ENSE, LOLP, total system cost, and hydro revenue for every possible hydro

position in the merit order using both a traditional PPC and the chronological PPC

model. The power system remains the same as the system presented in Section 2.5.

Intuitively, as hydro moves higher in the merit order, a power system's reliability

should increase because more water remains available to serve unmet demand. How-

ever, the increased availability of water occurs at the expense of spilled water and

more thermal generation; consequently, a total system cost minimum should appear

within these explorations. Given that a power system's total cost depends both on its

generation costs and the cost of NSE, the study in this chapter analyzes five different

NSE price scenarios ($0, $150, $300, $1000, and $5000 per MWh). As before, without

loss of generality, the conclusions about how hydro plants affect system reliability and

total cost should also apply for other LEP technologies.

3.2.1 Reliability

Both the traditional PPC and chronological models predict that ENSE and LOLP

monotonically decline (system reliability increases) as the system dispatches hydro

later in the merit order. As expected after the comparison of algorithms in Chapter 2,

the PPC algorithm always produces optimistic estimates of system reliability relative

to the chronological algorithm. Figure 3-1 shows results from both models. Chapter

4 discusses regulatory instruments that regulators could design, based on these relia-

bility metrics and the information about costs and revenues in the following sections,

to motivate hydro/LEP operators to dispatch their plants in a fashion to achieve a

target level of ENSE and LOLP.
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3.2.2 Total system cost

As shown in Figure 3-2, both algorithms predict that total system costs decline as

the system dispatches hydro later in the merit order. The blue trendline represents

pure thermal generation costs because NSE has a price of zero. As thermal plants

do not have any special chronological attributes in either the chronological PPC or

the traditional PPC model, the thermal costs predicted by both algorithms closely

resemble one another.

The remaining trendlines illustrate the combined cost of thermal generation and

ENSE at different NSE prices. Both algorithms predict that a minimum total cost

appears as hydro moves further down the merit order for all but the purely thermal

scenario, indicating that rising thermal costs balance declining ENSE costs for all

scenarios with a nonzero NSE price. Lastly, in both algorithms, total system costs

converge when the system dispatches hydro at the end for all NSE price scenarios

because the system has enough combined thermal and hydro generation to meet

demand if the system uses hydro's limited energy as a last resort.
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Figure 3-2: Total system cost for the PPC (left) and chronological (right) models

However, the chronological algorithm contains an interesting and different result

regarding the position of the optimal hydro position that minimizes total system cost.

In the traditional PPC model, the minimum total system cost appears at hydro merit

order position 71 regardless of the price of NSE. Additionally, the PPC model predicts

that after position 71, the system dispatches enough thermal generation to cover any
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remaining ENSE with its limited hydro resources. As such, in the PPC model, when

the system dispatches hydro after position 71 in the merit order, ENSE costs decline;

thermal costs play a dominant role in the total cost; and the total cost for all NSE

scenarios quickly converges.

In the chronological model, two important distinctions appear for total cost. First,

the chronological model predicts that the system will need to dispatch hydro resources

later in the merit order to minimize total cost as the price of NSE increases-i.e.,

unlike the results from the PPC model, the same hydro merit order position does

not minimize total cost for all NSE price scenarios. Second, in the chronological

model, total costs do not converge as quickly as in the PPC model. This slower

convergence suggests that the amount and cost of ENSE continues to have a nontrivial

impact after the system begins to spill water. Lastly, in agreement with the PPC

model, the chronological model predicts that dispatching hydro as a generator-of-last-

resort allows the system to fully cover its demand with thermal and hydro generation.

Consequently, at the last merit order position, thermal costs play a dominant role and

ENSE costs decline significantly, resulting in convergence for total cost predictions

across all NSE scenarios.

3.2.3 Thermal generation

Because the total cost minimums that appear in Figure 3-2 result from balancing

declining ENSE costs with rising thermal generation costs, this section explains the

effects of moving hydro through the merit order on thermal generators. Although

this section shows results from the chronological algorithm, the same analysis and

conclusions apply to the PPC algorithm.

Figure 3-3 graphically illustrates the total energy from a baseload thermal plant

(left graph) and an intermediate-load thermal plant (right graph) in the system with

each change in the merit order for hydro. The generator on the left is the least

expensive thermal generator in the system, and the generator on the right is 72th

least expensive thermal generator (of 87 thermal plants). The baseload generator

experiences no change in energy output as the system moves hydro through the merit
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order because regardless of the amount of hydro generation, the system has enough

demand for the baseload generator to operate at its full output.
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Figure 3-3: Baseload versus intermediate-load thermal unit generation for the
chronological model

However, hydro plants do affect the total output of non-baseload plants. As

the system moves hydro further in the merit order, the full amount of energy in

the hydro reservoir (constrained by capacity limits for hydro) covers demand that

otherwise would have been supplied by thermal units above the hydro unit. As such,

an intermediate-load unit such as the plant shown on the right in Figure 3-3 will

generate less energy as the system moves hydro further up the merit order until the

hydro plant overtakes the thermal unit. When this happens, the plant's thermal

output returns to depending only on the amount of demand remaining in the system

and the plant's capacity limits.

3.2.4 Hydro generator revenue

Using the marginal probabilities and expected revenue formulas that were developed

in Chapter 2, this section discusses changes in hydro generation and revenue as the

system moves hydro units later in the merit order under both the traditional PPC

and chronological model. The revenue-related graphs in this section contain many

interesting features. First, this section discusses the common peak in revenues around

hydro merit order position 71 for both the PPC and chronological algorithm. Then,
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the remainder of this section analyzes the discrepancies between the two algorithms.
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Figure 3-4: Hydro revenues for the traditional PPC (left) and chronological (right)
models

Revenue peaks when the system begins to spill water

Figure 3-4 contains the expected hydro revenues for both algorithms. Both algorithms

predict that revenues will reach a local maximum around hydro position 71, when

the system begins to spill water. (The spike in revenues at the end of the merit order

will be explained shortly.) The increase in revenues around position 71 refers back

to the discussion about total costs: as the system spills water, it must rely on more

expensive thermal plants to meet remaining demand. As such, marginal prices begin

to rise. Hydro merit order position 71 reflects a balancing point for the case study

power system. To the left of this position, the price of ENSE dominates the expected

marginal system price; to the right of this position, ENSE costs begin to decline as

thermal costs rise. As such, hydro plants tend to earn more money when the system

dispatches as much of their stored energy as possible.

Hydro generation discrepancies

An important discrepancy appears between the hydro generation predictions from

each algorithm. Figure 3-5 plots the expected hydro generation from the traditional

PPC model (left) and the chronological model (right). The PPC model predicts
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Figure 3-5: Hydro generation for the traditional PPC (left) and chronological
(right) models

that hydro generation will remain constant until the system begins to spill water.

The chronological algorithm, however, predicts that hydro generation incrementally

declines with each increase in merit order position. The rate of decline for hydro

generation is initially almost zero over the first 23 positions as hydro displaces baseload

plants, then increases from position 23 to position 71 as hydro displaces intermediate-

load plants, and finally significantly increases from position 72 to the end as the

system spills water. Both algorithms, as shown in the generation charts, predict

that the system will spill water after position 71. However, only the chronological

algorithm predicts that the opportunities for hydro generators to fully use their water

probabilistically declines with each position increment in the merit order.

Figure 3-6 offers a graphical explanation of the chronological algorithm's predic-

tions. The magenta trendline represents hourly hydro generation when the system

dispatches hydro first. The green trendline represents hourly hydro generation when

the system dispatches hydro last. In the former scenario, as a baseload plant, the

hydro plant probabilistically exhausts its entire reservoir approximately 250 hours

into the simulation. In the latter scenario, as the absolute last generator, the hydro

plant never runs out of water. As hydro moves from serving baseload to serving peak

demand, it covers less and less demand. Consequently, with each step further in the

merit order, hydro generation probabilistically declines. In the traditional PPC algo-
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Figure 3-6: Hydro hourly generation, chronological model

rithm, because every hour appears identical, water is available with complete certainty

to perfectly cover demand. Eventually, the system has more water than demand and

must begin to spill water. For this unrealistic reason, the traditional PPC does not

predict the same amount of hydro generation as the chronological algorithm.

Hydro revenue discrepancies

The two algorithms also disagree about the expected revenues that hydro generators

will receive. In the traditional PPC algorithm, although hydro generation stays con-

stant when the system dispatches hydro between merit order positions 1 and 71, the

expected revenues from this generation decline because the average expected marginal

price declines. Figure 3-4 shows the expected hydro revenues as predicted by the tra-

ditional PPC algorithm (on the left) and the chronological algorithm (on the right).

Because the traditional PPC algorithm does not distinguish between individual hours,

each possible dispatch position for hydro has only one average expected marginal sys-

tem price for hydro generation. In the chronological model, hourly marginal system

prices exist for each possible dispatch position. Figure 3-7 shows that a direct cor-

relation exists between the amount of ENSE at any given hour and the expected

marginal system price for hydro in that hour-the larger the ENSE, the greater the
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expected marginal system price. These differences between how the two models treat

expected marginal system prices explain why the traditional PPC algorithm predicts

relatively higher revenues earlier in the merit order, as well as relatively lower hydro

revenues later in the merit order, compared to hydro revenue predictions from the

chronological algorithm.
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Figure 3-7: Hourly ENSE and hydro marginal system price, chronological model

Revenue peaks at the end of the merit order

Another interesting result deserves greater explanation in the hydro revenue plots of

Figure 3-4. Because hydro operators can bid the price of NSE, because the possible

NSE prices are at least one order of magnitude greater than the most expensive

thermal plant, and because thermal generation alone cannot cover all hours of demand

in this system, the expected marginal price for hydro can dramatically increase when

the system dispatches hydro last. Referring back to Equation 2.13, at the end of the

merit order, the calculation of the expected price only considers the NSE price with

probability 1. The magnitude of the expected revenue increase depends on the price of

NSE. Figure 3-4 plots the expected hydro revenues from both models for NSE prices

of $62, $150, and $300 per MWh. In both models, the most expensive thermal unit

has a variable cost of $61.60/MWh. The scenarios with an NSE price of $62/MWh

serves as an intuition check for the explanation about why the last expected revenue
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figure can spike, but does not necessarily have to. Not surprisingly, when the price

of NSE is large, both models predict that hydro generators earn the greatest profits

when the system dispatches hydro generation at the end of the merit order.

However, realistically, due to competition between hydro operators, operator risk

aversion, and demand response from large consumers, marginal prices for electricity

in any hour are unlikely to exhibit dramatic increases that would result in the revenue

spikes shown in Figure 3-4. Most hydro operators, out of the concern that the few

hours of high-priced NSE may not occur exactly as predicted each year (both in

quantity and time), will not willingly spill water in hopes of capturing those high

prices. Because these hours of NSE represent rare tail events, if hydro operators

withheld water in hopes of capturing these prices, and the amount of NSE in a

particular year happened to not meet their predictions, they would lose money. As

most hydro operators are risk averse to this type of business model, they will manage

their reservoirs such that they can reasonably expect to sell electricity and capture

most of the highest marginal system prices throughout the year. For the case study

power system hydro operators, this risk-balancing, profit-maximizing behavior results

in most hydro operators preferring to dispatch at the local optimum (position 71) and

not at the end of the merit order.

3.3 Summary

The case study in this chapter demonstrates the proposed chronological PPC algo-

rithm as a tool for evaluating the contribution of LEPs to power system reliability.

As expected, reliability and the dispatch position for hydro are directly correlated,

and dispatching hydro resources later in the merit order reduces a system's ENSE

and LOLP. However, the relationship between total system cost/hydro operator rev-

enue and system reliability is not linear. Because total system cost depends on both

generation and ENSE, an NSE-price-dependent optimal hydro merit order position

exists that minimizes total system cost. Consequently, by default, hydro operators

will provide some level of reliability as a normal part of their profit-maximizing behav-
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ior. To target lower levels of ENSE and LOLP than these profit-maximizing defaults

using hydro resources, regulators will need to provide hydro operators with additional

economic incentives.
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Chapter 4

Regulatory tools for reliability

The case study in the previous chapter demonstrated that a power system can increase

its reliability by saving its hydro resources (and, more generally, any limited energy

resources) for dispatch later in the merit order. However, in power systems with

electricity markets, this type of dispatch behavior rarely maximizes profits. Owners

of LEP technologies are unlikely to dispatch their plants to explicitly improve system

reliability without additional economic incentives. As described in Chapter 1, the re-

sponsibility of securing the supply of electricity usually belongs to regulators because

risk-averse market agents, due to market failures such as demand uncertainty and

the inability to fully and properly price NSE, will most likely underinvest in capac-

ity. If regulators want LEP owners to act as reliability resources, they will need to

compensate LEP owners for their lost revenues.

This chapter updates two common regulatory tools used to address the secu-

rity of supply problem based on the results from Chapter 3 and the chronological

PPC model. The first tool calculates the size of the capacity payment required to

compensate LEPs for deviating from their profit-maximizing behavior. The second

tool estimates a generator's expected load carrying capability (ELCC), a metric that

regulators and policymakers frequently use to determine how much load a specific

generator can serve without affecting its overall reliability. These two applications

demonstrate the cost and operational insights that the chronological PPC model

can contribute to current policy discussions about renewable generation technologies,
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portfolio standards, public subsidies, and the impacts of different generation mixes

on power systems.

4.1 Capacity payments

To motivate LEP operators to serve as generators-of-last-resort for hours when a

power system is most likely to experience its highest ENSE and LOLP, regulators

can offer capacity payments as compensation for the operators' lost revenues. Al-

though capacity payments can take many forms, broadly, they represent stable rev-

enue streams to plant operators in exchange for the operators' guarantees that a

fraction of their capacity will remain available to generate electricity as needed. The

stability of a capacity payment eliminates some of the demand and price risks inherent

to selling electricity. If LEP operators believe that they can earn more money from

the combined revenue of capacity payments and proceeds from the energy market,

then they will willingly take the capacity payment and hold their limited energy for

times of failure.

Regulators can use the chronological PPC algorithm to calculate the minimum

threshold capacity payment required to encourage LEP operators to serve as generators-

of-last-resort. Continuing with the case study power system, the capacity payment

threshold is equal to the difference in revenues that hydro operators earn under their

(1) profit-maximizing behavior and (2) reliability-dispatch behavior. To illustrate the

dynamics between hydro revenues and reliability, Figure 4-1 stacks the chronological

estimates from Chapter 3 for ENSE (left), LOLP (right), and expected hydro rev-

enues on top of each other. The two graphs closely resemble one another because

ENSE and LOLP are correlated. As the system dispatches its hydro resources later

in the merit order, it has more stored energy to handle potential thermal plant fail-

ures. Consequently, both ENSE and LOLP monotonically decline with incremental

increases in hydro's dispatch position.

By default, LEP operators will "supply" the system with an amount of reliability

equal to the values of ENSE and LOLP at their profit-maximizing merit order position
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Figure 4-1: Calculating capacity payments based on ENSE, LOLP, and expected
hydro revenues

for "free." In this case study, the hydro operator earns the most revenue when it

dispatches its plants at merit order position 71. If the regulator decides to target a

lower ENSE or LOLP value by modifying the dispatch order of its hydro plants, then

it must dispatch its hydro resources after position 71.

However, because hydro revenues begin to decline after position 71, operators will

unlikely dispatch their plants at later positions without additional incentives. Figure

4-2 shows the relationship between the case study system's ENSE and LOLP values

versus lost hydro revenues as cost-reliability frontiers. The last point on each trendline

(at hydro dispatch position 88) represents the default level of ENSE and LOLP that

the algorithm predicts for the system under the hydro operator's profit-maximizing

behavior. Moving from right to left on the trendlines, system reliability increases

because ENSE and LOLP (tracked on the x-axes) decline. The y-axes show how

much revenue hydro operators lose with each reliability improvement due to their

later dispatch in the merit order. The revenue differences were directly calculated

from the hydro revenue data shown in Figure 4-1. To motivate hydro operators to

help reduce system ENSE or LOLP (i.e., to move toward the origin in either graphs),

regulators will have to pay hydro owners the revenue differences as indicated on the

y-axes.
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Figure 4-2: ENSE and LOLP cost-reliability frontiers

4.2 Calculating a generator's ELCC

To evaluate the individual contribution of a generator to system reliability, regulators

can estimate that generator's ELCC. As explained in detail by [12, Milligan 2008],

the ELCC metric "measure[s] the additional load that [a] system can supply with the

particular generator of interest, with no net change in reliability."

Generally, calculating a generator's ELCC requires several iterative steps. First,

the ELCC model removes the generator of interest and adjusts the system's load

to achieve a desired baseline reliability metric (for example, a target LOLP value).

Then, in a second iteration, the model adds the generator of interest back into the

generation mix and calculates a new (and lower) LOLP. Afterward, the model removes

the generator and iteratively adds in a benchmark generator-for example, a peaker

plant with a 5% failure rate-until the system LOLP returns to the second iteration

LOLP. The total capacity of the inserted benchmark units determines the ELCC of

the removed generator. Critics of this technique have expressed concerns about the

assumptions required for the benchmark unit; however, as long as all generators in

the same system are compared against the same benchmark unit, a fair evaluation of

each generator's relative capacity credit should be possible. 112, Milligan 2008]

As ELCC remains a popular and useful (albeit not perfect) metric to evaluate firm

capacity, this section explains how regulators can estimate a generator's ELCC using

the chronological PPC algorithm. The specific estimation presented here, for sim-
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plicity, makes two adjustments to the approach described above: instead of initially

adjusting the load to target a specific reliability metric and assuming a benchmark

unit, this calculation simply compares two final ILDCs from the chronological PPC

algorithm. In the first scenario, the case study power system has all of its generators.

In the second scenario, the case study power system has removed a generator of in-

terest. This example demonstrates the ELCC calculation for a single hydro plant in

the case-study power system.

X 10-4 Estimating the ELCC of a hydro plant dispatched at position 88
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Figure 4-3: ELCC estimate using the chronological PPC model

Figure 4-3 graphs a portion of the two final ILDCs. The blue line represents the full

system's final ILDC; the green line represents the system's final ILDC without the

hydro unit. Intuitively, removing a generator increases the system's LOLP because

it has one less generator to cover demand. Therefore, as expected, the green ILDC

(which represents the system with one less hydro plant) is greater than the blue

ILDC at every demand point. As before, the y-intercepts of the ILDCs represent

their systems' LOLPs. The difference in LOLPs between the two ILDCs represents

the change in reliability that the system can attribute to the removed hydro plant.

Linking this change in LOLPs to capacity, the demand level at which the without-

hydro system achieves the same LOLP value as the full system represents the ELCC of

the removed hydro unit. This technique assigns the hydro plant, which has a capacity
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limit of 391 MW and 4364.3 MWh of reservoir energy, an ELCC of 163 MW if the

system dispatches this plant at the end of the merit order. Figure 4-3 graphically

shows the relationship between LOLP and ELCC in red. As the availability of hydro

plants in this model depends only on their reservoir energy, the plant's ELCC of 163

MW relative to its total capacity of 391 MW suggests that the plant does not have

much energy to serve later hours of ENSE.

As noted by [12, Milligan 2008], many methods exist for calculating a generator's

ELCC. The chronological PPC-based method presented in this section provides a

quick probabilistic estimate with a more accurate representation of limited energy

plants compared to traditional PPC methods.

4.3 Summary

The tools developed in this chapter demonstrate regulatory applications of the chrono-

logical PPC model that allow regulators to place a value on system reliability, as well

as to determine how to appropriately compensate LEP operators for their contribu-

tions to system reliability. The chronological PPC extends naturally to support the

calculation of ENSE/LOLP-based metrics, such as a generator's ELCC, because the

final ILDC from the chronological algorithm is a cumulative distribution function

that looks identical to the final ILDC from other traditional PPC models. As such,

the outputs of the chronological PPC model should generalize well as inputs for other

PPC-based models while removing the former assumption about identical and generic

units of time. As regulators and policymakers continue to focus on the integration

of renewable resources that exhibit strong chronological behaviors in power systems,

tools such as the chronological PPC model can contribute meaningful information

about the impacts of different generation mixes and policies to the discussion.
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Chapter 5

Summary & Conclusions

Before electricity markets, vertically integrated utilities controlled all of the oper-

ations and investments within electric power systems. These monolithic units ran

regulated monopolistic businesses. They ensured the security of electricity supply by

often erring on the side of overinvestment to avoid the political and social repercus-

sions of electricity failures. When power systems began developing electricity markets

to encourage greater economic efficiency, power systems lost the vertically integrated

utility as a central planner. Risk-averse market agents, faced with market failures such

as a lack of perfect information about demand, tended to err on the side of underin-

vestment to ensure the viability of their businesses. Consequently, in the transition

to electricity markets, because electricity failures still have political and social con-

sequences, most regulators found themselves responsible for developing market rules

that promote competition and ensure the security of electricity supply.

Traditional convolution-based PPC models

To address the reliability problem, regulators use many analytical tools to understand

the physical and economic operations of power systems and markets. The traditional

PPC models described in Chapter 2 allowed regulators to estimate the reliability of a

power system. Historically, convolution-based PPC models reasonably approximated

systems with thermal-dominated generation mixes and demand-driven uncertainty.

However, these methods do not sufficiently represent nonthermal generation sources
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such as hydro or LEPs because of their generic representation of time. The traditional

PPC model treats every hour generically and scales the hourly result to obtain weekly,

monthly, or annual metrics. This implicitly requires certain plants, such as LEPs, to

take on unrealistic dispatch behaviors.

To address these challenges, the proposed chronological PPC model in Chapter 2

breaks the traditional reliability problem into individual, hourly reliability problems.

For the case study power system with 87 thermal units, 19 hydro units, 31888 MW

of thermal capacity, 9649 MW of hydro capacity, 720 hours of demand data, and a

peak demand of 31728 MW, the chronological algorithm estimated that the ENSE

should be 0.9711 MWh higher than the traditional PPC model's estimate; that the

LOLP should be 3e-6 higher; and that the probability of at least one failure should be

0.0021 higher. Compared to the chronological algorithm, the traditional PPC model

consistently overestimates system reliability (i.e., underestimate a power system's

ENSE and LOLP).

The reliability contribution of LEPs

LEPs can serve as generators-of-last-resort to improve system reliability. However,

dispatching LEPs at the end of the merit order also greatly increases a power system's

total cost. In Chapter 3, the exploration of hydro dispatch position in the economic

merit order revealed that (as expected) reliability and dispatch position are directly

correlated. The calculation of marginal unit probabilities, prices, and revenues in

the chronological PPC model are, to the author's best knowledge, novel research

contributions.

Interpreting the reliability and cost results, hydro operators will provide a default

level of reliability as a normal part of their profit-maximizing behavior. However, the

relationship between hydro operator revenues and system reliability is not linear. As

the system begins to dispatch hydro further in the merit order, its hydro plants begin

to spill water (i.e., at some point, the system operator dispatches so many thermal

plants before relying on its hydro resources that the hydro plants cannot possibly use

up all of their water by the end of the simulation period). Hydro operators begin
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to lose money as they spill water. Consequently, to target lower levels of ENSE

and LOLP than the profit-maximizing defaults offered by hydro plants, regulators

will need to provide additional economic incentives to encourage hydro operators to

dispatch later in the merit order.

The chronological PPC model also extends easily to help design these economic

incentives. Chapter 4 demonstrated the calculation of capacity payments for LEPs

as cost-reliability frontiers based on the hydro operator's revenues and system EN-

SE/LOLP, as well as how to estimate a generator's firm capacity (for any generation

technology, not just hydro/LEPs) using the well-known ELCC metric.

Future work

As investment in renewables continues to grow and regulatory and political discussions

about electricity shift toward integration concerns and climate change, the chrono-

logical PPC developed in this thesis can offer useful insights about the costs and

operational impacts of different generation mixes. Because the chronological model

produces outputs in the same form as other traditional PPC models (ENSE in units

of energy, LOLP values as proper probabilities, and ILDCs as CDF-like functions),

other models that build metrics off of PPC outputs such as ENSE and LOLP (for

example, the ELCC metric) can also directly benefit from the chronological model's

treatment of time. Tools such as the chronological PPC can improve regulatory and

political discussions about electricity and renewables by providing decision makers

with a greater understanding of the economic and operational impacts of their deci-

sions.

The analyses conducted in Chapters 3 and 4 only represent a few of the questions

that the chronological model can explore. Building on the case study from those

chapters, the following list details a few additional ideas for future research.

1. The current study of different merit order positions for hydro dispatched all

hydro plants at the same position at every hour. This limit constrained the

model to only test 88 dispatch positions. In reality, the optimal hydro dispatch

69



position may be different for each hour. A dynamic programming algorithm

could explore different dispatch positions and their effects on reliability.

2. The analysis of the effects of hydro merit order dispatch position on reliability

assumed a single, constant price for NSE. Varying the cost of NSE and introduc-

ing demand-response into the total cost calculation allows the model to consider

other sources of generation and reliability, such as load-shedding.

3. Chapters 3 and 4 touched on the topic of maximum NSE prices and reliability

targets. The chronological model can also directly explore the dynamics between

price caps for bids and ENSE/LOLP, as well as the dynamics between price

caps for bids and targets for ENSE/LOLP, by imposing price constraints at the

dispatch level and then evaluating the resulting cost-reliability frontiers.
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Appendix A

Acronyms

CDF: cumulative distribution function

ENSE: expected nonserved energy

FOR: forced outage rate

HCDF: hydro cumulative distribution function

ILDC: inverted load duration curve

LDC: load duration curve

LEP: limited energy plant

LOLP: loss-of-load probability

NSE: nonserved energy

PPC: probabilistic production cost
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