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Abstract

High throughput methods in molecular biology have changed the landscape of biomedical
research. In particular, advances in massively parallel DNA sequencing and synthesis
technologies are defining our genomes and the products they encode. In the first part of this
thesis, we have constructed a rationally designed antibody library and analysis platform
optimized for use with deep sequencing technologies. Libraries of fully defined oligonucleotides
encode three complementarity determining regions (CDRs; L3 from the light chain, H2 and H3
from the heavy chain), and were combinatorially cloned into a synthetic single chain variable
fragment (scFv) framework for molecular display. Our novel CDR sequence design utilized a
hidden Markov model (HMM) that was trained on all antibody-antigen co-crystal complexes
present in the Protein Data Bank. The resultant ~112 member library has been produced in
ribosome display format, and was comprehensively analyzed over four rounds of antigen
selections by multiplex paired-end Illumina sequencing. The HMM library generated multiple
antibodies against an emerging cancer antigen and is the basis of a next generation antibody
production platform.

In a second application of these technologies, we have created a synthetic representation of the
complete human proteome, which has been engineered for display on bacteriophage. We use
this library together with deep DNA sequencing methods to profile the autoantibody repertoires
of individuals with autoimmune disease in a procedure called phage immunoprecipitation
sequencing (PhIP-Seq). In a proof-of-concept study, this method identified both known and
novel autoantibodies contained in the spinal fluid of a control patient with paraneoplastic
neurological syndrome. The study was then expanded to include a large scale automated
screen of 289 independent antibody repertoires, including those from a large number of healthy
donors, multiple sclerosis patients, rheumatoid arthritis patients, and type 1 diabetics. Our data
describes each individual's unique "autoantibodyome", and defines a small set of recurrently
targeted peptides in health and disease.

Thesis Supervisor: Stephen J. Elledge, Ph.D.

Title: Gregor Mendel Professor of Genetics, Harvard Medical School
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1. Introduction

1.1 Background and motivation

Technologies that enable the high throughput analysis of biomolecules have changed

the landscape of biomedical research. Certainly, one of humankind's most

consequential triumphs has been the determination of our own genetic code, a feat

made possible by technical innovations in the field of DNA sequencing. Continuing

advances are fueling efforts to sequence the genomes of thousands more human

individuals in health and disease,' 2 as well as a plethora of nonhuman organisms 3 and

the microbial communities that populate our bodies.4 "Next generation" and "third

generation" (or "single molecule") DNA sequencing technologies work by separating

and analyzing single molecules of fragmented DNA. Next generation sequencing

achieves analysis by distributing single DNA fragments onto a surface or beads, where

it can be locally and clonally amplified as a polymerase colony ("polony").5 These

micron-sized DNA clusters can then be sequenced by cycles of base addition or

ligation. Third generation technologies bypass the polony formation, and directly

sequence single molecules of DNA.6 Both next and third generation DNA sequencing

strategies are often referred to as "massively parallel" or "deep" sequencing

technologies, since they are capable of generating a very large number of short

sequencing "reads" at the same time. One can imagine that as single molecule

technologies mature, we will witness another sea change in biomolecular research: the

emergence of whole genome DNA sequencing as routine and inexpensive as a PCR

reaction (Figure 1.1).

While these advances in DNA sequencing technologies are incredibly important, alone

they do little to further our functional understanding of the genetically encoded proteins.

Knowledge of a protein's function comes from observing phenotypic responses to a

change in its abundance or localization, or by determining its set of interaction partners
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and/or enzymatic activities. Standard techniques can now be used to label, knock out,
knock down, mutate, or overexpress a protein under investigation, either in tissue

culture or in an animal. Recent advances in throughput have been made possible by

construction of RNA interference (RNAi) libraries7 and the cloning of a large fraction of

our genome's expressed sequences (the "ORFeome").8 With regard to the

determination of protein-protein interactions, major advances have come with the

development of mass spectrometry and high throughput expression cloning

technologies. The latter, which utilize methods of linking libraries of genetic fragments to

the polypeptides they encode (also known as "molecular display"), have enabled, for

example, the rapid discovery of therapeutic drug targets, viral epitopes important for

immunity, and the elucidation of highly interconnected protein-protein interaction

networks. Importantly, these approaches can be used to test otherwise unattainable

numbers of interactions, and so are inherently less biased than candidate, hypothesis-

driven experiments. This thesis seeks to improve upon current methods in molecular

display, by incorporating recent advances in both high throughput oligonucleotide

synthesis and deep sequencing of DNA libraries.

The availability of complex libraries of high quality, relatively long oligonucleotides has

only recently become a reality (Figure 1.1). Currently, the most important methods for

producing sequence defined, custom oligonucleotide libraries include inkjet printing

(Agilent Technologies), digital micromirror device (DMD) based photolithography (Roche

Nimblegen, LC Sciences, Mycroarray.com), and microelectrochemical array synthesis

(Combimatrix). These techniques share a common strategy in that the oligos are first

synthesized in the form of a DNA microarray, before being chemically released into

solution and shipped to the customer. The range of ways in which these synthetic

oligonucleotide libraries can be exploited is only beginning to emerge. For example,

libraries of DNA oligos derived from microarrays have recently been utilized in the

context of pooled RNAi screening,7 and for the parallel assembly of synthetic genes.9

9
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from Carr & Church, Nat Biotech, 2009.10

The application of massively parallel DNA sequencing and oligonucleotide synthesis to

molecular display technologies is particularly interesting in the context of immunology.

The adaptive immune systems of vertebrate animals are essentially an extraordinarily

elaborate, yet elegant, molecular display platform. Lymphocytes undergo complex

genetic processes (e.g. recombination, untemplated nucleotide insertions and

hypermutation) to create libraries of unique cell surface receptors which are then

selected for their ability to recognize potentially important molecular shapes. Analyses of

lymphocyte receptor repertoires had been almost impossible prior to the development of

deep sequencing technologies, which are now becoming an increasingly popular

method for characterizing them. 1 -1 3 A population-scale characterization of lymphocyte
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receptor recognition specificities, however, is only now becoming feasible with

sophisticated proteomic methods (Chapter 1.1 .1).

A second way in which molecular display technology harmonizes with the immune

system is by emulating it. One of the most extensively utilized type of display libraries is

based on the antigen binding domain of antibodies.14 In addition to their role as

important laboratory reagents, antibodies have become an extremely successful

pharmaceutical molecule, and so it is not surprising that protein engineers have sought

to harness the power of molecular display for the production of antibodies with well-

defined properties. One property of particular interest is that the antibody be as close to

a human polypeptide sequence as possible, so as to minimize the likelihood of a patient

developing inhibitor antibodies that inactivate the therapeutic. Antibodies against self

proteins are not typically retrievable directly from human donors, thus a number of

techniques have been developed to "humanize" animal immune systems,15 or to display

and evolve naive human antibody repertoires in vitro. Indeed, efforts of the latter sort led

to the development of the first fully human antibody to be approved by the FDA,

adalimumab (Humira, targets TNF-a), which in 2009 produced over $5 billion in annual

sales. Finally, fully synthetic human repertoires have also been constructed and used to

generate high affinity antibodies (Chapter 1.1.2).16'17 In the context of synthetic antibody

libraries, massively parallel DNA sequencing and synthesis technologies promise to

dramatically expand the potential of in vitro antibody display techniques, and is the

focus of Chapter 2.
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1.1.1 Screening immune receptor repertoires

The adaptive immune system is charged with the task of generating enough receptor

diversity to recognize virtually any molecular shape, while at the same time removing or

inactivating those receptors that happen to recognize molecular shapes present in the

healthy host organism. Failure in the first case permits establishment of infection, while

failure in the second case can result in chronic inflammation and/or autoimmune

disease. Immune receptors that recognize self molecules and trigger immune responses

can do harm to the host organism in several ways. Systemic lupus erythematosis is

thought to develop largely due to a failure of programmed B cell death, resulting in

populations of autoreactive B cells that damage the body's tissues via multiple distinct

mechanisms (e.g. lupus nephritis due to immune complex deposition and complement

activation in the renal glomeruli, secondary antiphospholipid syndrome due to antibodies

that bind components of the cell membrane and result in hypercoagulability, etc.). At the

other end of the spectrum is development of pathogenic receptors that target a very

specific self epitope, such as the activating antibodies against the receptor for thyroid-

stimulating hormone that occur in Grave's disease.18 Between these extremes lie a

large number of autoimmune processes with more complex, and often mysterious

etiologies. For example, Wegener's granulomatosis (part of a larger group of vasculitic

syndromes) is characterized by granuloma formation on top of a nonspecific

inflammatory background and is associated with characteristic anti-neutrophil

cytoplasmic antibodies (ANCAs) that are now believed to be pathogenic. 19

As autoantigen discovery technologies continue to mature, we are sure to elucidate a

myriad of disease pathogeneses that have eluded our understanding for decades. With

the high resolution definition of eliciting epitopes will come an insight into disease

triggering events, such as those involving viral infection and molecular mimicry that can

lead to viral-self epitope spreading. One can imagine that in the future, individuals with

risk-conferring HLA haplotypes will be immunized against those viral pathogens with a

propensity for triggering loss of tolerance. In the few cases where autoantigens are well

12



defined, there is now ongoing effort to develop antigen-targeted therapies to alleviate

the immune attack. For example, pathogenic antibodies against the acetylcholine

receptor (AChR) have been temporarily removed from a patient with myasthenia gravis

by immunoadsorption on immobilized recombinant AChR domains.20 Antigen

immunization strategies seeking to skew the Thl/Th2 balance have been explored in

type 1 diabetes, but have so far met mostly with disappointing results.2 1'22 In a number

of animal studies, introducing autoantigens within a tolerogenic context can reverse or

alleviate disease, thus prompting the initiation of clinical trials in humans.' 2 Finally,

efforts to increase the abundance and/or activity of tolerogenic, CD4+Foxp3+ regulatory

T cells are also ongoing.25 In addition to these highly anticipated antigen-specific

therapies of the future, disease-associated autoantibodies are today invaluable

biomarkers that are routinely used for clinical diagnosis.

A variety of methods have been successfully utilized to identify important autoantigens.

For example, LOdemann et al. used autoantibody affinity purification followed by protein

sequencing to identify proteinase 3 as the target autoantigen in Wegener's

granulomatosis.26 Szabo et al. and Buckanovich et al. both used X ZAP phage libraries

of neuronal cDNAs to identify the Hu and NOVA paraneoplastic neurological disorder

autoantigens, respectively.27, 28 Using tissue expression patterns and candidate-based

approaches, Wenzlau et al. identified the zinc transporter ZnT8 as a major autoantigen

in diabetes, 29 and Lennon et al. found aquaporin 4 to be targeted by autoantibodies in

neuromyelitis optica.30 The method we describe in Chapter 3 is thus an additional tool

that can be used to identify targeted self antigens in autoimmune disease by profiling

secreted antibody specificities.
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1.1.2 Synthetic immune systems

The converse of using molecular display libraries for the discovery of disease-

associated autoantigens is their use in the production of desirable autoantibodies

targeting a disease-associated antigen. Human(ized) monoclonal antibodies against

endogenous proteins are now the fastest growing segment of the pharmaceutical

industry.31 TNF agents, B cell depletion therapies, and inactivating growth factor

receptor antibodies (HER2, EGFR) are among the most successful examples, and we

are sure to witness the rate of antibody FDA approvals to continue accelerating for the

foreseeable future. In addition to self antigens, a great deal of effort has been directed

at the production of monoclonal antibodies against dangerous toxins 32 or viral epitopes.

Of particular interest, broadly neutralizing influenza and HIV antibodies are in

development,33-35 and will be useful in providing passive immunity to high-risk

individuals.

Protein engineers have devised molecular display technologies based on minimal

antibody fragments from the antigen combining site of the molecule (Figure 1.2). The

multiplicity of display formats and their inherent strengths and weaknesses have been

reviewed extensively.36 -38 A significant barrier to the success of antibody display

involves the analysis of enriched libraries. Experiments typically involve many rounds of

enrichment, which are followed by the sequencing of "representative" clones. In addition

to experimentally confounding variables such as clonal growth advantage, valuable

information about population dynamics is never captured with these methods. Deep

sequencing of the libraries is the obvious solution to this problem, but challenges

associated with sample preparation, as well as candidate antibody rescue have largely

prohibited its adoption. These problems are further discussed and addressed in Chapter

2.
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Figure 1.2: Engineered monoclonal antibodies

Types of monoclonal antibodies with other structures than naturally occurring antibodies. Top row:

monospecific antibodies (fragment antigen-binding, F(ab')2 fragment, Fab' fragment, single-chain variable

fragment, di-scFv, single domain antibody). Bottom row: bispecific antibodies (trifunctional antibody,

chemically linked F(ab')2, bi-specific T-cell engager). Heavy chains have a darker shade, light chains a

lighter one. Parts of antibodies with different targets are colored differently. Constant regions are shown

as regular round-edged boxes, variable regions as boxes with an irregularly shaped end. Artificial links

between fragments are colored red. This figure is from Wikimedia Commons.
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1.2 Objectives and findings of this dissertation

This dissertation presents novel approaches in the use of synthetic, defined

oligonucleotide libraries in molecular display platforms, as well as their analysis by

massively parallel DNA sequencing. The work described herein has been divided into

two parts reflecting the above discussion: 1) The development of a rationally designed

antibody library compatible with deep sequencing analysis, and 2) The identification of

candidate self antigens by profiling autoantibody binding specificities with a synthetic

human peptidome.

1.2.1 Antibody library engineering

Chapter 2 of this thesis approaches a set of important problems faced by the antibody

engineering community. Adapting deep sequencing technologies to naive human

repertoires is problematic for two main reasons. The first challenge has to do with

analysis of enriched repertoires. Illumina sequencing routinely obtains -108 "short"

(currently up to 100 nt, soon to be up to 200 nt) reads and this level of complexity is well

suited to the analysis of highly diverse antibody libraries. However, sample preparation

and sequencing analysis is made complicated by the diversity of naturally occurring

variable domain genes, since amplification and sequencing requires a complex set of

primers. The second challenge to be overcome is the recovery of desirable clones

identified by sequencing. Recovering a unique clone from a mixture of complex variable

domains can only be accomplished by complete synthesis (expensive), hybridization

capture (technically challenging), or by PCR rescue and variable domain re-assembly

strategies (complicated). Both of these challenges can be circumvented by using a

single variable domain ("single framework") antibody library, which is the focus of

Chapter 2. The limitation of single framework libraries is their generally inconsistent

performance due to lack of framework diversity. We therefore set out to design a set of

optimized CDR sequences to maximize the functionality of a single framework antibody

library.
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We developed the concept that sequence biases inherent to high affinity, antigen

binding hypervariable loops can be captured by a contact/noncontact two state hidden

Markov model (HMM). Indeed, this model not only recapitulated much of what was

already known about the structure-function of CDRs, but is also a source of novel

predictions. In addition, we report a method that can be utilized to mimic junctional

diversity using type llS restriction enzymes and shuffling ligation. Such combinatorial

techniques are important in the context of fully defined oligo libraries, as their

complexities tend to be on the order of 104 - 105 sequences.

The HMM scFv library was subjected to four rounds of enrichment on the PVRL4 cancer

antigen, and the library population dynamics were monitored by deep sequencing using

a highly streamlined protocol. Analysis of the sequencing data allowed us to identify

candidate scFvs that could be PCR-rescued for clonal expression in a scalable, two

step procedure. The HMM scFv platform described in Chapter 2 can serve as a

template for further improvements in the integration of designed, synthetic oligo libraries

and deep sequencing-assisted antibody production.

17



1.2.2 Antibody profiling

In a separate set of studies, we applied massively parallel DNA synthesis and

sequencing to the interrogation of individual human antibody repertoire binding

specificities. Chapter 3 describes our proof-of-principle work using programmable

microarray-derived oligonucleotides to encode an unbiased collection of phage-

displayed 36 amino acid peptides that together span the entire open reading frame of

the human genome ("T7-Pep"). This is a valuable, and renewable resource that we

have shared with the community. We optimized protocols to enable single-round

autoantigen enrichments that were detectable via deep sequencing analysis of the

phage library ("PhIP-Seq").

T7-Pep compared favorably to alternative cDNA-based libraries. Whereas typical cDNA

libraries are dominated by sequences not normally expressed, we found 83% of T7-Pep

library members to express full-length peptides in the correct reading frame. As a

uniform representation of the proteome (78% of the library within 10 fold abundance),

the library can be used to screen any autoimmune disease cohort (regardless of target

tissue specificity) and inter-experiment data is immediately comparable. Our pilot study

analyzed the autoantibody repertoire found in the cerebrospinal fluid of patients

suffering from paraneoplastic neurological disorder. PhIP-Seq with T7-Pep rediscovered

a control patient's known autoantigen (NOVA1) with very high confidence, in addition to

several novel autoantigens, including a putative cancer-testis antigen, TGIF2LX. We

also detected GAD65 autoantibodies that were not capable of recognizing the fully

denatured antigen, revealing that the library of 36-mer peptides retains an important

degree of conformational information.

The technology was further developed in Chapter 4 to enable the first high throughput,

low cost screen of a large number of individual patients with different autoimmune

diseases for comparison to each other and to their healthy counterparts. By adapting

automation and 96-plex DNA barcoding to the PhIP-Seq protocol, we performed a
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proteomic-scale assessment of autoreactivities found within a collection of 289

individual antibody repertoires. Several important autoimmune diseases were

represented in this collection, and we were thus able to search for novel disease-

associated autoantigens in type 1 diabetes (T1D), rheumatoid arthritis (RA), and

multiple sclerosis (MS). The T1 D patients we screened had previously been evaluated

for their autoantibody status, which allowed us to determine that PhIP-Seq has a

relatively high false negative discovery rate. Despite this finding, however, we were able

to rediscover the important islet-specific antigen and biomarker, PTPRN (IA-2), in

addition to potentially novel autoantigens, which are now undergoing further evaluation

via radioimmunoassay. Our collection of MS patients' CSF and sera also provided rich

data, allowing the rediscovery of reported epitope motifs and the generation of new

candidate autoantigens. Interestingly, the screen data from the healthy controls

revealed the existence of recurrent, likely benign, autoantibodies present in a large

fraction of the population. In addition to shared autoantibodies, the dataset

demonstrates that each individual possesses a unique autoantibody repertoire and the

extent to which it shapes our phenotype will only come to light with continued screening.
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2.1 Abstract

Antibody discovery platforms have become an important source of both therapeutic

biomolecules and general purpose affinity reagents. Massively parallel DNA sequencing

can be used to assist antibody selection, thereby greatly expanding the potential of

these systems. We have constructed a rationally designed scFv library and analysis

platform, which is optimized for use with short read deep sequencing technologies.

Libraries of fully defined oligos encoding three complementarity determining regions

(CDRs; L3 from the light chain, H2 and H3 from the heavy chain) were combinatorially

cloned into a single, synthetic scFv framework for molecular display. Our novel CDR

sequence design utilized a hidden Markov model (HMM) that was trained on all

antibody-antigen co-crystal complexes present in the Protein Data Bank. The resultant

~1012 member library has been produced in ribosome display format, and was

comprehensively analyzed over four rounds of antigen selections by multiplex paired-

end Illumina sequencing. The HMM library generated multiple antibodies against an

emerging cancer antigen and is the basis of a next generation antibody production

platform.
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2.2 Introduction

Antibodies are useful for their ability to bind molecular surfaces with incredible

specificity. The genetic basis for their structural diversity is partially found in the

germline, and partially the result of stochastic genetic events, including chromosomal

rearrangements, non-templated nucleotide insertions, and hypermutation. The vast

majority of this diversity is localized to the Complementarity Determining Regions

(CDRs), which are the six peptide chains that protrude from the variable domain

framework to form the antigen binding surface of the antibody molecule. Three CDR

loops are contributed by the heavy chain (H1, H2, and H3) and three by the light chain

(L1, L2, and L3), all six of which come together to form the antigen combining surface.

CDRs 1 and 2 are encoded in the germline, and thus more constrained in their diversity.

L3 is characterized by "junctional diversity," formed during the recombination of two

gene segments (V and J). Finally, H3 is formed by two consecutive genetic

rearrangements (first between D and J, and then between V and DJ), and is

accompanied by the addition of non-templated "N" nucleotides, making this CDR the

source of most naturally occurring antibody diversity.

Our goal was to develop an antibody production platform that could be seamlessly

integrated with massively parallel DNA sequencing analysis. We reasoned that for this

to be the case, neither library amplification nor sequencing reactions should depend

upon the complex mixture of primers necessary for amplification and analysis of the

naturally occurring heavy and light chain variable domains. Importantly, however, the

natural diversity of variable domain framework regions contributes significantly to the

"shape space" of a natural antibody repertoire, despite that fact that CDRs are

considered the major determinant of antigen combining site topology.39 Indeed, single

framework libraries have generally not performed consistently when tested on a diverse

set of antigens.4 We therefore focused our attention on maximizing the functional

diversity in our library's CDR repertoire.

22



Our first step was to identify a suitable framework into which we could combinatorially

insert libraries of rationally designed CDRs. Lloyd et al. screened a very large pre-

immune human scFv library against a panel of 28 different antigens, and after

sequencing >5,000 post-selection clones, they found a strong enrichment for a small

subset of heavy and light chain variable domains.4 1 Among them, the most highly

enriched were VH1-69 and the lambda VL1-44. They attributed these framework

enrichments to increased expression and optimal folding within the periplasm of the E.

coli host cells. These findings were further corroborated by the work of Glanville et al.42

who found that of the subset of VH chains tested, VH1 -69 was the most successful in

generating binders against a panel of 16 different antigens. We therefore housed our

CDR libraries within a VH1-69, VL1 -44 framework.

As a source of inspiration for CDR design features, we turned to IMGT's annotated

database ("IMGT/3Dstructure-DB") of all antibody-antigen co-crystal structures present

within PDB as of May, 2009.4% 4 A similar database was constructed by Schlessinger et

al. in 2006.45 Amino acid residues within CDRs can contribute to antigen binding via two

distinct mechanisms. The first is direct, via contribution of a side group that contacts the

antigen (Figure 2.1). The second role is indirect, affecting the conformation of the

peptide backbone in a way that permits the direct interaction of neighboring amino acid

side groups. This behavior of CDR amino acid sequences can be captured in a two

state hidden Markov model (HMM). The "contact" state should be enriched for amino

acids capable of sharing/exchanging electrons or of helping to bury hydrophobic

surfaces, whereas the "noncontact" state should be enriched for amino acids capable of

appropriately constraining or relaxing the CDR polypeptide backbone. One feature of all

HMMs is that the state of each position depends upon its nearest neighbor. It is thus

important to note that traditional approaches to synthetic scFv library construction utilize

degenerate nucleotides or codons, and so can at best control only the composition of

one amino acid position at a time. We took a novel approach, which was to encode

complete HMM-generated CDR sequences as releasable ssDNA, which were

synthesized on a silicon wafer. An additional advantage of specifying complete
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sequences is the ability to filter out deleterious properties, such as restriction sites and

unwanted peptide motifs (e.g. glycosylation, immunogenic, etc). These HMM CDR

libraries were subsequently combinatorially cloned into the single VH1-69, VL1 -44

framework.

The transformation efficiency of bacterial cells with plasmid DNA is a significant barrier

to constructing molecular libraries of a complexity greater than ~101. Since the utility of

an scFv library scales with its diversity, we took advantage of the in vitro ribosome

display technique which has been used to generate antibodies with picomolar

affinities.46 In this approach, mRNA molecules are tethered to the proteins they encode

via noncovalent interactions with a ribosome. The mRNA is made to lack the stop codon

necessary for transcript release, and so a population of ternary complexes composed of

mRNA, encoded scFvs, and ribosomes are thus formed. The libraries can be subjected

to repeated rounds of selection and (optionally mutagenic) re-amplification to enrich for

scFvs that bind to a target antigen (Figure 2.2A).

After characterizing the quality of the HMM scFv library, we tested our system by

sequencing the library as it evolved over multiple rounds of selection on a protein

antigen. We also developed robust methods to specifically rescue desirable clones for

expression and analysis in a simple two-step process. Our platform successfully

produced antibodies against the emerging cancer antigen PVRL4, and sets the stage

for a new paradigm in sequencing-assisted selection of rationally designed human

antibodies.
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2.3 Results

2.3.1 Library design, assembly and characterization

We set out to diversify the three CDR loops most relevant to antigen binding. By

examining the IMGT/3Dstructure-DB, we determined the average number of contacts

per structure contributed by each CDR. Of contacts reported in this database, 76% were

contributed by residues contained in the CDRs. As expected, L3 and H3 contributed the

most contacts, with H2 providing the third most. In sum, 71% of all CDR contacts were

made by amino acids in these three CDRs (Figure 2.1A).

To estimate the HMM-defining parameters for L3 and H3, we identified 236 unique L3

and 241 unique H3 sequences, each residue of which was classified as either making

contact or not with the protein antigen. In the IMGT nomenclature, L3 and H3

sequences from position 105 to 117 were used to train the model. Finally, since position

118 frequently contributes contacts, but is outside the defined hypervariable domain,

this residue was randomly assigned according to its frequency of occurrence in the

database, regardless of its contact status.

The resulting HMM state transition rates and amino acid emission probabilities for L3

and H3 are illustrated in Figure 2.2B and 2.2C. Notable features of these models are: 1)

enrichment for the noncontact state at positions closer to the framework (i.e. probability

of S (start) --> N (noncontact) and N --> E (end) transitions are greater than S --> C

(contact) and C --> E, respectively); 2) in H3, a tendency for blocks of

contact/noncontact states (i.e. probability of staying in the same state is higher than

transitioning between states); 3) a strong enrichment in both L3 and H3 for contacts

consisting of tyrosine and tryptophan (reported by Ofran et al.47), and 4) L3/H3-specific

enrichments for certain amino acids in each state (e.g. noncontact proline in L3, and

contact glutamic acid in H3).
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Figure 2.1: CDR contact distribution and H2 contact profile.

A. Contacts reported in the IMGT/3Dstructure-DB database. Contact assignment is based on IMGT

definition of CDR positions. Data was obtained from 241 antibody-antigen co-crystal structures.

B. Position-dependent contact distribution in H2. Valleys represent amino acids more likely to play a role

in framework stability.
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Figure 2.2: HMM antibody library design and synthesis
A. Strategy for design and assembly of the rationally designed scFv library for display on ribosomes. After

enrichment for antigen binding clones, library recovery and/or analysis by paired end sequencing can be

performed.

B. Model defining parameters for the H3 HMM. Probability of emission for each amino acid corresponding

to the two possible states. State transition probabilities are inset: "S" denotes start of a chain, "C" denotes

the contact state, "N" denotes the noncontact state, "E" denotes the end of the chain.

C. Model defining parameters for the L3 HMM. Definitions are the same as for B.

D. Overview of the scFv display vector and library assembly strategy. "VL" and "VH" are the light and

heavy variable domains, respectively. "T7 prom" is the T7 promoter, and the crossed stop sign denotes

lack of a stop codon. L3, H2 and H3 are the CDR libraries designed to replace the "SI" suicide inserts.

H3L and H3R sublibraries are brought together by shuffling ligation to create H3. Similarly, the L3-H2

fragment is brought together with the H3 fragment in a shuffling ligation.

E. Clonal Sanger sequencing analysis of 93 HMM scFv library members.
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We used our HMM to generate >10,000 unique sequences for each of L3 and H3.4

Whereas the length of L3 sequences was fixed at 13 residues, 1,000 H3 sequences

were randomly chosen for each length from 9 to 21 amino acids long. As an analog to

VJ recombination, we further expanded the diversity of H3 by separating each sequence

into two halves: "H3L" and "H3R", for subsequent combinatorial ligation to form full

length H3 sequences (Figure 2.2.D). This was accomplished by placing a type llS

restriction site downstream of H3L and upstream of H3R on their encoding oligos. After

PCR, restriction digest and purification, fragments with a 3 nt 5' overhang were brought

together for ligation. The reading frame, as determined by H3L, would therefore always

remain intact.

The germline-encoded H2 CDR is characterized by structural features not present in L3

or H3 chains, and this is reflected in its heterogeneous contact profile (Figure 2.1B). It

has been suggested that H2 contributes to the stability of the variable domain of the

heavy chain through interactions among its hydrophobic residues.4 9'50 In order to avoid

disrupting stability, we created a first order Markov chain to generate framework-

compatible H2 sequences based on the 176 H2-unique IMGT chains. This model was

used to generate >10,000 H2 sequences.

Finally, all CDR sequences were passed through a series of three filters in order to

maintain their utility. First, all restriction sites to be used during library construction were

eliminated by introducing silent codon changes. Second, we sought to minimize the

potential immunogenicity of the scFvs by discarding peptides with a high potential for

loading onto MHC class 11 molecules during antigen presentation. We used the ProPred

online server to filter our CDR sequences against the four most common HLA-DRB1

alleles (101, 301, 701, and 1501) with a stringency of 45% of the best substrate. 51 This

resulted in replacement of about 18% of all H3 sequences by theoretically less

immunogenic peptides. The third filter replaced sequences with the potential to interfere

with industrial scale production (e.g. methionine oxidation, asparagine

deamidation/cyclization), as well as glycosylation motifs.
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The final set of 43,803 CDR sequences (L3, H2, H3L, H3R) were flanked by the

appropriate restriction sites, as well as sublibrary-specific PCR primer binding

sequences, and then synthesized as releasable oligonucleotides on a silicon wafer

(Agilent Technologies). The oligo libraries were PCR amplified and cloned into the VH1-

69 and VL1-44 human heavy and light chain variable fragments and assembled as

shown in Figure 2.D (described further in the detailed Methods). In vitro transcription

was then performed to create the mRNA template for ribsome display and library

selection.

We characterized the HMM scFv library in two ways. First, we cloned a small sample of

the library mRNA. This allowed us to perform Sanger sequencing on individual colonies,

and thereby estimate the overall fraction of the library expected to contain functional, full

length scFvs with no frameshift or nonsense mutations (57% functional, n=93; Figure

2.2E). None of the colonies examined had retained their CDR "suicide insert", and none

had multiple CDR insertions. Second, we used our Illumina sequencing data to

characterize the length distribution of the H3 loop (Supplementary Figure 2.1). Satisfied

that our library was true to its design, we next performed selections against an emerging

cancer antigen, PVRL4,5 2 , 3 and used Illumina sequencing to track the library during

selection.

2.3.2 Affinity selections on a protein antigen

We utilized a positive control scFv and bait pair to develop a robust ribosome display

selection protocol. These could each be diluted into negative control, nonspecific scFv

and nonspecific bait so that enrichment could be monitored while experimental selection

parameters were varied. Pluckthun et al. have used ribosome display to affinity mature

an scFv (4c1 1L34Ser, "Pluck-scFv") to high affinity binding (Kd = 40 pM) to a peptide

derived from the yeast GCN4 protein (RMKQLEPKVEELLPKNYHLENEVARLKK-

LVGER, epitope in bold).54 Our eventual goal was to perform selections on GST-fusion
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proteins, and so we synthesized DNA to encode the GCN4 peptide, and recombined

this into the pDEST15 vector for inducible expression of GST-GCN4 in BL21 E. coli

cells. As a negative control scFv, a random clone ("rand-scFv") was picked from a naive

human repertoire55 and expressed in the same ribosome display vector backbone. A

negative control peptide, "GST-pep" in the same pDEST15 vector backbone, was used

as nonspecific bait. A series of protocol refinement experiments were undertaken to

maximize the degree of both enrichment and recovery of the Pluck-scFv that we could

attain. For most experiments, Pluck-scFv was diluted 1,000 fold into a background of

rand-scFv, while GST-GCN4 was diluted 1,000 fold into a background of GST-pep.

Using a Pluck-scFv specific TaqMan probe, enrichments of several hundred fold were

routinely obtained. Despite protocol optimization, however, Pluck-scFv recovery

efficiency tended to be -0.2% when GST-GCN4 was present at 100%, most likely

reflecting a limitation inherent to ribosome display technology.

In addition to the optimized ribosome display selection protocol, we incorporated a

system of quality control measures to ensure that each round of selection was a

success. First, we spiked Pluck-scFv into our HMM scFv library and GST-GCN4 into our

selection bait, GST-PVRL4, both at a dilution of 1:1,000. In this way, the efficiency of

enrichment and recovery for each selection could thus be monitored using TaqMan

qPCR probes specific to either Pluck-scFv or to the HMM scFv library. If these

measures were below a threshold, then the selection was considered a failure and

repeated. Second, degradation of mRNA transcripts is a concern with ribosome diplay,

and so we utilized two distinct TaqMan probes targeting either the 3' or 5' ends of the

transcript. In the absence of degradation, these two signals arise with equal strength.

The 5' signal is differentially diminished by degradation, and so the ratio of the two

signals can be used as a proxy for the degree of degradation that occurred during the

selection. If the 5':3' signal ratio was below our threshold, the selection was considered

a failure and repeated.
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2.3.3 Analysis of selected HMM scFv libraries

Four successive rounds of ribosome display selection were performed with the HMM

scFv library on GST-PVRL4. By the fourth round of selection on PVRL4, we noticed an

increased amount of HMM scFv library recovery, presumably due to the accumulation of

binders. To identify non-PVRL4 component binders, the third round selection library was

additionally selected on GST only (no PVRL4) so that we could discriminate between

scFvs that bind to PVRL4 and those that bind to GST or to some other component of

the system.

The minimal region of the HMM scFvs that contains the three diversified CDRs is an

appropriate size for analysis by paired end Illumina sequencing, thus these libraries can

be conveniently prepared by PCR. A small amount of material from each of the selected

libraries, as well as from the starting HMM scFv library were amplified with Illumina

sequencing adapters. These adapters include a 7 nt barcode for library identification,

thus permitting the multiplex analysis of many different libraries. We analyzed the input

and selected libraries after each round of enrichment by pooling these barcode-

containing libraries for multiplex sequencing. Because the complexity of the libraries is

expected to decrease significantly with each round of selection, we divided the

contribution of each library by two for each round of enrichment undergone. For

example, if we added 100 ng of input library product to the multiplex pool, then we

would add 50 ng of round 1 selected library, 25 ng of round 2 selected library, 12.5 ng of

round 3 selected library, and so on.

Our strategy was to perform paired end sequencing in two separate Illumina Hi Seq

2000 flow cell lanes, such that by sequencing L3-H3 pairs in one lane and H2-H3 pairs

in the other lane, we could use the extreme diversity of H3 sequences to unambiguously

match corresponding L3 and H2 sequences, thereby reconstructing each complete scFv

clone (Figure 2.3). We observed a significant degree of PCR chimerism to occur during

PCR amplification, which complicated, but in most cases did not prevent the
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reconstruction of individual scFv clones. Importantly, CDR recombination has been

observed to significantly increase scFv affinity during ribosome display selection.56

B A

A B

HMM scFv clone A

HMM scFv clone B

2--

Figure 2.3: Strategy for sequencing reconstruction of HMM scFv clones

100 nucleotide paired end sequencing is performed on the same library in two independent lanes on an

Illumina HiSeq 2000. In the "L3-H3" lane, the first sequencing primer lands upstream of L3. In the "H2-H3"

lane, the first sequencing primer lands upstream of H2. The H3 sequence is then determined by reading

from a common, second primer. L3 and H2 sequences are then paired using their unique H3 identifier to

fully define the scFv clone.

We next determined the relative abundance of each clone in the library over the course

of four rounds of selection on GST-PVRL4, and compared this to the results of a round

3 PVRL4 selected library that was selected on GST alone (Figure 2.4). The most

abundant clones in the library after four rounds of selection all displayed behavior

indicative of PVRL4 candidate antibodies, and so a subset of these were rescued from

the library for further analysis.
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2.3.4 Binding properties of candidate HMM scFvs

Before characterizing individual scFvs for their ability to bind antigen, they must be

cloned. This can be done either by re-synthesizing the CDRs for cloning back into an

expression framework, or alternatively by PCR-rescuing the clones using forward and

reverse primers specific for L3 and H3, respectively. We chose to recover candidate

scFvs by performing PCR with L3/H3-specific primers, which also contained 5'

homology arms for subsequent isothermal assembly into an epitope-tag expression

vector (Figure 2.5A).

Rescued candidate anti-PVRL4 scFv clones were expressed in vitro as FLAG-tagged

proteins. Three of the 25 tested clones were found to have human mammary epithelial

cell (HMEC)-expressed PVRL4 binding properties by FACS analysis (Figure 2.5B). The

binding affinity of these scFv clones will soon be determined by SPR analysis on a

Biacore 3000 instrument.
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Figure 2.5: HMM scFv rescue strategy and FACS validation

A. Candidate HMM scFv clones are PCR rescued with primers specific for L3 and H3, which also have 5'

homology arms for subsequent isothermal assembly into an expression vector with differing codon usage.

B. Results of FACS experiment to assess binding of candidate scFvs. PVRL4 antigen was overexpressed

on HMECs and then stained with control antibody or HMM scFv.
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2.4 Discussion

The promise of synthetic biology has yet to deliver antibody production platforms that

rival vertebrate immune systems in both product quality and manufacturing

convenience.57 There exist many successful examples of synthetic antibody production

pipelines that meet specific industrial needs, most notably in the production of fully

human IgG molecules, but these boutique solutions are not widely

affordable/accessible.3 1 However, we anticipate that along with the maturation of gene

synthesis technologies and the affordability of DNA deep sequencing, will also come

advances in antibody production pipelines that outperform animal immune systems in all

regards. Our work and others provide early evidence that this potential can eventually

be brought to fruition.

The development of robust single framework scFv libraries is key to their convenient

analysis with massively parallel DNA sequencing, and therefore to the more widespread

adoption of synthetic approaches. One immediate benefit of working with single

framework libraries is that the entire scFv sequence can be reconstructed from two pairs

of short sequencing reads. We found that the hyperdiversity of our H3 CDR library

permitted the near unambiguous pairing of L3 and H2 sequences with their shared H3,

thus completely defining the repertoire at each round of selection. Another important

advantage of single framework libraries is the relative ease with which desirable clones

can be rescued. Our method provides a two-step recovery protocol for clone

amplification and assembly into a common expression vector. In contrast, combinatorial

sets of heavy and light chain frameworks require many more steps for the PCR rescue

and reconstruction of library clones.

Massively parallel analysis of evolving antibody repertoires enables several technical

innovations not possible with traditional clonal analysis techniques. One powerful

application, the discovery of rare binders, was recently demonstrated by two different

groups. Ravn et al. used deep sequencing to discover valuable, low abundance, high

36



affinity scFvs, and they demonstrate that these clones are often lost during purifying

selections.59 Zhang et al. took this one step further and performed selections on

complex bacterial cell surfaces overproducing a target antigen. They report a method to

isolate rare scFvs from the resulting phage populations, which are necessarily

dominated by a large number of off-target binders.60

An exciting, but as yet unproven application of deep sequencing-facilitated selections is

the production of scFv sets targeting multiple antigens in parallel using deconvolution

strategies. In one embodiment, an "array" of antigens can be pooled by rows and

columns, so that scFvs specific to both a particular row and a particular column can be

associated with the single antigen at their intersection. This strategy reduces the

number of selections to the square root of the number of antigens. This can be made

even more efficient by performing initial rounds of selection on the entire antigen

collection in a single pool, prior to selections on the row and column pools. Whereas a

collection of 100 antigens would individually require 400 selections (assuming 4 rounds

are generally sufficient to identify scFvs by deep sequencing), the same could be

accomplished with only 23 selections using pooling strategies (i.e. the first three rounds

are performed on a single super pool, and the last on row/column subpools). Multiplex

sequencing of the 20 post-selection libraries would permit the rapid identification of

antigen-specific scFvs. Future single-pot, massively parallel selections will require the

development of robust library-versus-library deconvolution strategies. Preliminary

progress has recently been reported.61

Another interesting prospect for scFv display technologies in general, which is certainly

not possible with traditional affinity reagents, is their usage in a highly multiplexed

context. For example, one may wish to study expression levels of a set of interleukin

receptors on individual T cells. A defined set of anti-ILR scFv-displaying phage could be

used to probe the cell surfaces, and their relative abundance subsequently measured by

deep sequencing. This example also highlights the utility of DNA-coupled scFv probes,

as they can be PCR amplified from an otherwise undetectable level.
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For these reasons we have produced a novel synthetic scFv library within a single

framework, which was chosen for its proven performance in producing high affinity

antibodies. To compensate for a potential loss of framework-contributed structural

diversity, we invested a great deal of effort in the rational design of CDR sequences.

Our design is based on a mathematical model that captures subtle amino acid

sequence biases that contribute to the formation of good antigen contacts. Many

features inherent to this model have been observed by others, 2 -e whereas additional,

novel features may provide new implications. In terms of combinatorial complexity, we

also developed a method to mimic the junctional diversity of VJ recombination using

type IIS restriction cleavage followed by shuffling ligation. Finally, we have introduced a

strategy for paired end sequencing-based reconstruction of full length scFv populations.

As more sophisticated selection/deconvolution strategies emerge, we anticipate that

rapid, low cost production of high quality synthetic scFvs will finally become a reality.
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2.5 Methods

Construction of the ribosome display vector

PlOckthun and others have optimized vectors capable of reliably accomplishing

ribosome display of scFvs.66'67 We have adapted components of these and other such

vectors to our present purpose. Beginning from the 5' end of the DNA vector, the

following parts were assembled as a synthetic gene product (DNA2.0).

1) T7 promoter for in vitro transcription from the DNA library

(TAATACGACTCACTATAGGGAGACCACAACGGTTTCCC)

2) 5' mRNA stemloop (5'-GGGAGACCACAACGGTTTCCC-3') to improve transcript

stability

3) Ribosome binding site for translation of the library

4) Kozak sequence for potential use in eukaryotic translation systems

5) N-terminal 6xHis tag for detection and potential purification of scFv protein

6) The variable domain of the light chain was encoded N-terminal to the heavy

chain so that PCR recovery of the three diversified CDRs (L3, H2, H3) would

require the shortest amplicon. (Description of the heavy and light chain

sequences are described in the next section.)

7) Between the N-terminal variable light chain (VL) and C-terminal variable heavy

chain (VH) is a "(G4 S)3 " linker with optimized codon usage (5'-

ggtggtggtggtggttctggtggtggtggttctggcggcggcggctccagtggtggtggatcc-3')

8) The C-terminus of VH is fused to a linker segment derived from the ToIA E. coli

protein (accession: NP_415267, position 131-214), which provides a spacer

between the displayed scFv and the ribosomal tunnel.

9) 3' mRNA stemloop (5'-CCGCACACCTTACTGGTGTGCGG-3') to improve

transcript stability
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Notl sites flank the 3' and 5' ends of the construct for isolation of the in vitro transcription

template. Directional Sfil sites flank the minimal scFv for facile movement of clones into

and out of daughter vectors.

HMM scFv library assembly 1: framework

We wished to use the J chains most commonly associated with the VH1-69 and VL1 -44

segments. In a sequenced heavy chain repertoire from an individual, IGHJ4 was the J

chain most often recombined with VH1-69 (Laserson, Church et al. unpublished). We

used work by Schofield et al. to determine that in a large pool of selected phage, IGLJ2

was the J chain that most often recombined with VL1-44.68 These components were

assembled and reverse translated into an E. coli codon preference (Table 2.1).

We introduced silent mutations into the framework regions flanking L3, H2, and H3, for

the purpose of cloning in the CDR libraries. We required that at least one of each of

these pairs be non-palindromic so as to eliminate the possibility of getting multiple CDR

insertions during library cloning. To this end, we introduced a Bbsl site 5' and an Acc651

site 3' of L3, a PfIMI site 5' and an Apol site 3' of H2, an Accl site 5' and a BstEll site 3'

of H3. These pairs of cloning sites flanked replaceable "suicide inserts," which were

designed to contain a stop codon in all reading frames to prevent ribosome display of

clones retaining a suicide insert, as well as a Xhol restriction site that could be used to

destroy clones with a remaining suicide insert.
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Feature AA Sequence Nt Sequence Remark
CAATCTGTGCTGACCCAGCCACCGTCGGCCTCGGGTACTCCGGGTCAGCGTGT W
TACGATCTCCTGCAGCGGTTCTTCCTCTAACATCGGTAGCAACACGGTTAACT (1 E

QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLI GGTATCAACAGCTGCCGGGCACTGCCCCAAAACTGCTGATCTACTCCAACAAC Framework in UPPERCASE,

L3 suicideRnsert CAGCGTCCAAGCGGCGTTCCGGATCGTTTCAGCGGTAGCAAAAGCGGTACTTC suicide insert in lower case Q) C
CGCGTCCCTGGCGATCTCTGGCCTGCAGTCCGAAGACGAAGCGGATTATTATT 3
GCtaataactcgagttaataactagttttaataaggtg
CAAAGCGTTCTGACCCAGCCTCCGTCCGCGAGCGGCACCCCGGGTCAGCGTGT W

QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLI TACCATTTCTTGTAGCGGTAGCAGCAGCAACATTGGTAGCAATACCGTCAATT
GGTATCAGCAACTGCCGGGCACCGCACCGAAACTGTTGATCTACAGCAACAAC Framework in UPPERCASE, C a

VL1 -44-opt YSNNQRPsGVPRFSGSKsGTSAsLAISGLQSELEA3YYC- CAGCGCCCGAGCGGCGTCCCAGACCGTTTTTCGGGCAGCAAATCCGGTACGAG suicide insert in lower case - E
L3-suicidelnsert CGCCAGCTTGGCGATCAGCGGTCTGCAAAGCGAAGACGAGGCCGATTACTACT .

GC taataactcgagttaataactagttttaataaggtg
IGVL-J3 FGGGTKLTVL TTTGGCGGCGGTACCAAACTGACCGTTCTG

IGVL-J3_opt FGGGTKLTVL TTCGGCGGTGGTACCAAGCTGACGGTGCTG

VL-VHLinker GGGGGSGGGGSGGGGSSGGGS GGCGGTGGTGGTGGCTCTGGTGGTGGGGGTTCCGGTGGTGGCGGCAGCTCCGG
CGGTGGTTCC C

VL-VHLinker opt GGGGGSGGGGSGGGGSSGGGS GGCGGTGGTGGTGGCTCCGGTGGCGGTGGTTCCGGTGGTGGCGGTTCGAGCGG 3 0
TGGCGGCAGC 0

CAGGTGCAGCTGGTGCAGTCCGGTGCGGAAGTTAAGAAACCGGGTTCCTCCGT Cl)
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE- AAAAGTCTCTTGCAAGGCGAGCGGTGGTACTTTCTCCTCCTACGCGATTTCTT
H2 suicideInsert- GGGTGCGTCAGGCACCGGGCCAAGGTCTGGAAtgatgactcgagttgatgaga Framework in UPPERCASE, X
YAQKFQGRVTITADEATSTAYMELSSLRSEDTAVYYC- tatcttgatgagTATGCGCAGAAATTTCAGGGCCGCGTAACCATCACTGCCGA suicide inserts in lower case -
H3_suicideInsert TGAGGCGACTTCCACCGCCTACATGGAGCTGTCTAGCCTGCGTTCTGAAGATA ) C

CCGCTGTCTACTACTGCtgataattaattaatgactcgagtttgataagg 6 (
0

CAAGTGCAGCTGGTGCAGAGCGGTGCAGAGGTTAAGAAACCGGGCTCTAGCGT a,
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE- AAAGGTGTCTTGTAAGGCCTCCGGTGGTACGTTCAGCAGCTATGCGATTAGCT E 0

IGHV1-69-opt H2 suicideInsert- GGGTTCGCCAAGCACCGGGCCAAGGCCTGGAAtgatgactcgagttgatgaga Framework in UPPERCASE, 0 '
YAQKFQRVTITADEATSTAYMELSSLRSEDTAVYYC- tatcttgatgagTATGCGCAGAAATTTCAACGTGTCACCATCACCGCTGACGA suicide inserts in lower case I) 0

H3_suicideInsert GGCTACTAGCACGGCGTACATGGAACTGAGCAGCCTGCGTTCTGAGGATACGG 0
CGGTcTACTATTGCtgataattaattaatgactcgagtttgataagg a a

VHJ3 WGQGTMVTVSS TGGGGCCAGGGCACGATGGTGACCGTGAGCAGC c is posito andivaried U C

VHJ3_opt WGQGTMVTVSS TGGGGTCAGGGTACTATGGTGACCGTCAGCAGC accord ng to c131 an varied =t

CAGAAGCAAGCTGAAGAGGCGGCAGCGAAAGCAGCGGCAGATGCGAAAGCTAA "

QKQAEEAAAKAAADAKAKAEADAKAAEEAAKKAAADAKKKAEAEAAKAA GGCCGAAGCAGATGCTAAAGCTGCGGAAGAAGCAGCGAAAAAGGCGGCTGCAG
ToIA ATGCAAAGAAGAAGGCAGAAGCAGAAGCCGCCAAAGCCGCAGCCGAAGCGCAG 0

0 a,AEAKKAAAAALKKEAAAAAEAKKATEAAAAAAGCCGAGGCAGCCGCCGCGGCACTGAAAAAGAAGGCGGAAGCGGCAGA O N
AGCAGCAGCAGCAGAAGCAAGAAAGAAAGCGGCAACTGAA0

TaqCommF gaaagcagaaeg qPCR primer/probe set for ToIA CE
TaqCommProbe aaaagccgaggcagccgc (3) framework C

TaqCommR ttcagttgccgctttctttct ( ) 0
scFv-LL5'-TaqF GGGTCAGCGTGTTACGATCT qPCR primer/probe set for 5'
RDscFv-LL5'-Taq Probe CACTGCCCCAAAACTGCTGATCTACTC part of HMM framework O 0
scFv-LL5'-TaqR GCTTTTGCTACCGCTGAAAC O 0

PluckTaqManPrimer F1 gttctggtggtggtggttct qPCR primer/probe set for
PluckTaqManProbe cggcggctccagtggt Pluck control
PluckTaq ManPrimerR1 ggtcctgactcctgaagctg ,

preTolA Primer GGTttcagttgccgctttctttcttg Hibosome display vector 0 a, -
reverse transcription primer U - C
PCR1 Forward primer for

preT7B2 Primer CAACGGTTTCCCTCTAGAAATAATTTTGTTTAAC remaking the library by PCR. 0 C
Used with preTolA. a,

ToIA Primer CCGCACACCAGTAAGGTGTGCGGTttcagttgccgctttctttct Forward and reverse primers a

ATACGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGA for making IVT template from a
T7B2 Pnmer AATAATTTTG PCR1 U)
LL RTPCR1 F1 GCCCCAAAACTGCTGATCTA PCR primers for rescue of the 0 a)

T- W)-
LL RTPCR R2 gcctcttcagcttgcttctg HMM CDRs . a

IS7_L3FPE ACACTCTTTCCCTACACGACCCTGCAGTCCgaagacga These primers are for 0

IS8 H3RPEMulti GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcaccatcgtgccctggcc amplification ot the CDR - -
IS4 L3F PE AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACCCTGCA sequencing. x's are the 7 nts (o

U)
P7 barcoding primers cAAGCAGAAGACGGcATACGAGATxxxxxxGrGACTGGAGTTCAGACGTGT of barcode (set of 96) ..

0
0

U)_c
0

U)

U)
a,

a)

-0
0.

_0
C



HMM scFv library assembly 1l: combinatorial CDR library cloning

The CDR libraries were released from the microarray as 10 pmol of single-stranded

DNA and resuspended in 200 pi water. For each sublibrary (L3, H2, H3L, H3R), 1 pl

was then used as input for library-specific PCR using 1 pl Taq polymerase (Takara)

according to the manufacturer's instructions (2 pM each primer). The thermal profile

was

1. 95 C 5 m,

2. 94 0C 15 s,

3. 55 *C 30 s,

4. 68 0C 15 s,

5. Go to step 2 24x,

At this point, the reaction was divided in two and primers were replenished.

6. 95 0C 5 m,

7. 94 OC 45 s,

8. 67 0C 7 m,

The H3L library PCR product was first Nhel/BssHll subcloned into the pPAO2 vector.69

About 5x10 6 transformants were obtained and plasmid DNA collected. In parallel, H3R

library PCR product was prepared. From the pPAO2-H3L plasmid pool, -300 bp of

upstream sequence was PCR amplified for subsequent size discrimination of H3L-H3R

ligation product. Both pPAO2-H3L and H3R PCR products were digested with Sapl for

subsequent shuffling ligation of the H3L and H3R libraries by their 5' overhanging

codons. High concentration T4 ligation was carried out at 15C overnight, conditions

which permit mismatched ligation at a relatively high frequency. Indeed, upon

sequencing a large number of H3 clones, we observed many examples of library

members with unmatched codons that were ligated together, and importantly without

disrupting the reading frame. After H3 ligation, the correct size product was gel purified

and PCR amplified. This PCR product and the HMM scFv vector were then digested

with Accl and BstEll, so that the final H3 library could replace the vector's H3 suicide
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insert. If only complementary codons were able to ligate together, the theoretical

diversity of the H3 sublibrary would be 1.2x1 07. However, we frequently observed non-

complementary ligation, thus increasing the expected diversity of H3. During library

construction, about 107 H3 clones were obtained.

The L3 sublibrary was cloned into the scFv vector at the Bbsl and Acc651 sites. After

electrotransformation of DH10B cells, they grew overnight on 15 cm carbenicillin plates.

We harvested >107 transformants by scraping, and purified their plasmid DNA. Starting

with this HMMscFv-L3 library, the same procedure was then employed to replace the

H2 suicide insert with the H2 library PCR product by utilizing the engineered PfIMI and

Apol sites. Again, we obtained >107 transformants (HMMscFv-L3-H2 library) and

purified the plasmid DNA.

In order to bring together HMMscFv-L3-H2 and HMMscFv-H3 in a final ligation (Figure

2.2D), 60 pg of each of library was first digested with AccI and Bbsl and the desired

fragment gel purified. In a high concentration T4 ligation at 37 0C, the two fragments

were concatemerized. Finally, the product was digested with both Notl (to release the

desired in vitro transcription template) and Xhol (to destroy clones retaining a suicide

insert) and gel purified. We recovered 2.44 pg of HMMscFv-L3-H2-H3 library DNA at

the correct size, which corresponds to 3.07 pmol or 1.85x1012 , in theory mostly unique

DNA molecules. This material was used as a template for in vitro transcription

(RiboMAX Large Scale RNA Production System T7, Promega) to produce mRNA, which

was subsequently isolated with TRI reagent (Ambion).

For subsequent rounds of selection, RNA was made from DNA template as above, but

purified on a Qiagen RNeasy column according to the manufacturer's instructions.
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Ribosome display

Buffers were based on "RD Buffer" (1L: 50 mM Tris Acetate (6.07 g), 150 mM NaCl

(8.77 g), pH to 7.5 with acetic acid), which was autoclaved 15 min on liquid cycle and

stored at 4 *C.

Before immobilization of antigen-GST fusion protein, MagneGST beads (Promega) were

washed 3x in lx TBST. 5 pl beads were used per IP, and beads were coated with 100

pl of bacterial lysate containing GST fusion protein mixed 1:1 with TBST. 2 pl of 1 M dTT

were included. Binding to occurred overnight by rotating at 4 *C.

Beads were washed 5x with buffer "RDWB+T" (RD Buffer plus 50 mM Mg Acetate and

0.5% Tween 20) and tubes were changed after every other wash. Beads were blocked

in 50 pl "Selection Buffer" (RDWB+T plus 2.5 mg/ml heparin and 1% BSA and 83.3

pg/ml tRNA) plus 1 pl RNasin (Promega) at 4 0C for 2 h.

6.37 pg RNA (1 x 1013 RNA molecules) per 14 pl translation reaction were used.

Translations were performed using the RTS 100 E. coli Disulfide kit (5 PRIME)

according the manufacturer's instructions, except that the feeding solution was not

used. Translation was allowed to proceed for 13 min 45 s at 30 *C. Each 14 pl reaction

was immediately diluted with 96 pl ice cold Selection Buffer and 3 pl RNasin. Reactions

were centrifuged 14K x g for 5 min in 4 0C centrifuge. Supernatant was then moved to a

new, cold tube. 50 pl bead solution was added to the ribosome displayed scFv library,

and rotated 4 h at 4 C. Beads were washed 6 times with 500 pl ice-cold RDWB+T.

Tubes were changed after every other wash.

Ribosomal complexes were disrupted after the final wash by resuspending beads in 50

pl "EB20" (RD Buffer plus 20 mM EDTA) plus 1 pl RNasin and incubating at 37 0C for

10 min. Released RNA was then cleaned up on Qiagen RNeasy column according to

instructions, and eluted into 33 pl nuclease free H20 at max speed 1 min.
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Superscript Ill kit (Invitrogen) was used to reverse translate the selected RNA library

from the preTolA primer according to manufacturer's instructions. 1 pl (5 U) of E. coli

RNAse H (NEB) was added and incubated at 37 0C for 20 min.

cDNA recovered after selection was first PCR amplified using primers that flank an

insert region containing the CDR's (LLF2 and LLR2). PCR amplification was performed

with the GC-RICH PCR kit (Roche) using the following the conditions: 1X GC-RICH

Buffer, 0.2 mM of dNTP, 0.2 pM LLF2 primer, 0.2 pM of LLR2 primer, 0.5 pM of

Resolution Solution, 1 uL of enzyme per 50 pL reaction. The thermal profile was:

1. 95 0C for 3 min

2. 95 0C for 15 sec

3. 550C for 30 sec

4. 720C for 1 min

5. Go to step 2 39 times

6. 72 0C for 7 min

The resulting PCR product was then double-digested with Bbsl and BamHI (NEB), gel

extracted, and ligated using T4 Ligase into the pRDscFv2 vector digested with BamHI

and BbsI. The ligation product was then PCR amplified using primers specific for the T7

promoter and the ToIA linker (T7B2 and ToIA). PCR amplification was performed with

the GC-RICH PCR kit (Roche) using the following the conditions: 1X GC-RICH Buffer,

0.2 mM of dNTP, 0.2 pM LLF2 primer, 0.2 pM of LLR2 primer, 0.5 pM of Resolution

Solution, 1 pL of enzyme per 50 pL reaction. The thermal profile was:

1. 95 0C for 3 min

2. 95 0C for 15 sec

3. 55 0C for 30 sec

4. 720C for 1 min

5. Go to step 2 39 times

6. 72 0C for 7 min
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The final PCR product was digested with Xhol (NEB) to remove contaminating

undigested pRDscFv2 vector, which contains suicide inserts with Xhol sites. The

digested product was gel extracted and used as the template for the next round of

ribosome display selection. This product can be Illumina sequenced, or it can be used

for a subsequent round of selection after in vitro transcription.

Alternatively, cDNA could be amplified in the following way (to avoid subcloning): PCR1

was performed with preTolA and preT7B2 primers, 30 cycles (GC Rich PCR kit, Roche).

PCR1 was purified, and used as template for PCR2 with T7B2 and ToIA primers (Table

2.1), 10 cycles (GC Rich PCR kit, Roche). 1.2 kb PCR2 product was purified. This

product can be Illumina sequenced, or it can be used for a subsequent round of

selection after in vitro transcription.

Illumina sequencing

Libraries for Illumina Sequencing were prepared by two rounds of PCR amplification to

add on the Illumina adapters and barcode sequences. All libraries except the Round 4

libraries were PCR amplified from the in vitro transcription template DNA using the

TaKaRa EX HS kit. The conditions for the first round of PCR were: 1X TaKaRa EX HS

Buffer, 0.2 mM dNTP, 0.4 pM IS7_L3FPE primer, 0.4 pM IS8_H3RPEMulti primer,

0.5 pL TaKaRa Ex HS enzyme, and 1 pL of template per 50pL reaction. The thermal

profile was:

1. 98 0C for 10 sec

2. 500C for 30 sec

3. 720C for 1 min 30 sec

4. Go to step 1 9 times

5. 72 0C for 7 min

The conditions for the second round of PCR were: 1X TaKaRa EX HS Buffer, 0.2 mM

dNTP, 0.5 pM of IS4_L3FPE primer, 0.5 pM of the barcoding primer, 0.5 pL TaKaRa
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Ex HS enzyme, and 1 pL of the first round PCR product per 50 pL reaction. The thermal

profile was:

1. 98'C for 10 sec

2. 60 *C for 30 sec

3. 720C for 1 min 30 sec

4. Go to step 1 9 times

5. 720C for 7 min

The Round 4 libraries were PCR amplified from the cDNA using the Phusion HF kit

(NEB). The conditions for the first round of PCR were: 1X Phusion High-Fidelity PCR

Master Mix with HF Buffer, 0.5 pM of IS7_L3FPE primer, 0.5 pM of IS8_H3RPE_Multi

primer, and 1 pl of cDNA recovered after library selection per 50 pl reaction. The

thermal profile was:

1. 98 0Cfor30sec

2. 980C for 10 sec

3. 550C for 30 sec

4. 720C for 30 sec

5. Go to step 2 9 times

6. 72 0C for 10 min

The conditions for the second round of PCR were: 1X Phusion High-Fidelity PCR

Master Mix with HF Buffer, 0.5 pM of IS4_L3FPE primer, 0.5 pM of the barcoding

primer, and 1 pL of the first round PCR product per 50 pL reaction. The thermal profile

was:

1. 980C for 30 sec

2. 980C for 10 sec

3. 60 0Cfor30sec

4. 720C for 30 sec

5. Go to step 2 9 times

6. 720C for 10 min
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All of the second round PCR products were gel extracted before sequencing.

Rescue of HMM scFv clones from a selected library

Single HMM scFv clones were rescued from the selected library by PCR with CDR-

specific primers followed by assembly into a protein expression vector. Forward primers

contained the 5' sequence of the target clone's L3 sequence preceded by a 20 bp

adapter sequence for assembly into a protein expression vector. Reverse primers

contained the reverse complement of the target clone's H3 sequence preceded by a 20

bp adapter sequence for assembly into a protein expression vector. Longer primers

were designed for less abundant clones to increase specificity. PCR amplification was

performed with the following conditions: 1X Phusion High-Fidelity PCR Master Mix with

HF Buffer, 0.2 pM each of the forward and reverse primers, 1 pl of cDNA recovered

after library selection per 50 pl reaction. For the more abundant clones, the thermal

profile was:

1. 980C for 30 sec

2. 980C for 10 sec

3. 550C for 30 sec

4. 720C for 1 min

5. Go to step 2 29 times

6. 72 0C for 10 min

For the less abundant clones, the thermal profile was:

1. 980C for 30 sec

2. 98 0C for 10 sec

3. 720C for 1 min

4. Go to step 2 29 times

5. 72 0C for 10 min

PCR products were subsequently gel purified individually and assembled into a protein

expression vector using an isothermal assembly method. The protein expression vector
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contains the RDscFv framework followed by a FLAG tag and two in-frame stop codons

instead of the ToIA linker. The adapter sequences on the forward and reverse rescue

primers are homologous to sequences flanking the L3 and H3 insert regions,

respectively, of the protein expression vector. Vector lacking the L3-H2-H3 insert

regions was prepared by PCR and gel purification. The isothermal assembly reaction

was performed as previously described. 70 Each reaction contained 100 ng of empty

vector DNA and 20 ng of the rescue PCR product, and was incubated at 500C for 1 h. 1

pl of the assembly reaction product was transformed in DH5a cells and colonies were

picked for sequence verification. Plasmids from sequence-verified clones were

expressed using the RTS 100 Disulfide Kit for coupled in vitro transcription and

translation (Fisher). 25 pl of lysate and 1 pl of lysate activator were first incubated on a

rocker at room temperature. 25 pl of the resulting activated lysate was added to 7 pl of

reaction mix, 7 pl of amino acid mix, 1 pl of methionine, and 500 ng of plasmid in 10 pl

of distilled water. The reaction was then incubated at 300C for 3 h and the resulting

product was used directly in subsequent experiments.

Live cell FACS analysis

Telomerase-large T-immortalized human mammary epithelial cells (TL-HMECs) were

transduced with retroviral constructs expressing human PVRL4 or control (empty

vector). For labeling with in vitro-translated scFvs, cells were dissociated from the tissue

culture plate with enzyme-free cell dissociation buffer (Invitrogen), resuspended in Stain

buffer (BD Biosciences) and filtered through a 35 um nylon mesh cell strainer (BD

Biosciences). Cells were incubated with in vitro-translated FLAG-tagged scFvs at a

1:100 dilution or anti-PVRL4 mouse monoclonal antibody (RnD Systems) for 30 min on

ice, washed twice with Stain buffer and incubated with M2 anti-FLAG antibody (Sigma)

at a 1:100 dilution for 30 min on ice. Labeled cells were washed twice and incubated

with Alexa Fluor 488-conjugated goat-anti-mouse secondary antibody (Invitrogen) at

1:500 dilution for 30 min on ice. After a final series of washes, cells were resuspended
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in Stain buffer. Fluorescent signal was measured on LSR II FACS Analyzer (BD

Biosciences) and analyzed with FlowJo software.
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3.1 Abstract

In this study, we improve on current autoantigen discovery approaches by creating a

synthetic representation of the complete human proteome, the T7 "peptidome" phage

display library (T7-Pep), and use it to profile the autoantibody repertoires of individual

patients. We provide methods for 1) designing and cloning large libraries of DNA

microarray-derived oligonucleotides encoding peptides for display on bacteriophage,

and 2) analyzing the peptide libraries using high throughput DNA sequencing. We

applied phage immunoprecipitation sequencing (PhIP-Seq) to identify both known and

novel autoantibodies contained in the spinal fluid of three patients with paraneoplastic

neurological syndromes. We also show how our approach can be used more generally

to identify peptide-protein interactions and point toward ways in which this technology

will be further developed in the future. We envision that PhIP-Seq can become an

important new tool in autoantibody analysis, as well as proteomic research in general.
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3.2 Introduction

Vertebrate immune systems have evolved sophisticated genetic mechanisms to

generate antibody repertoires, which are combinatorial libraries of affinity molecules

capable of distinguishing between self and non-self. Recent data highlight the delicate

balance in higher mammals between energy utilization, robust immune defense against

pathogens, and autoimmunity71 . In humans, loss of tolerance to self-antigens results in

a number of diseases including type I diabetes, multiple sclerosis, and rheumatoid

arthritis. Knowledge of the self antigens involved in autoimmune processes is not only

important for understanding the disease etiology, but can also be used to develop

accurate diagnostic tests. In addition, physicians may someday utilize antigen-specific

therapies to target auto-reactive immune cells for destruction or quiescence.

Traditional approaches to identification of autoantibody targets largely rely on

expression of fragmented cDNA libraries. Important technical limitations of this method

include the small fraction of clones expressing in-frame coding sequences (with a lower

bound of 6%)72, and the highly skewed representation of differentially expressed

cDNAs. Nevertheless, expression cloning has led to the discovery of many important

autoantigens73-75. Strides have been made to improve peptide display systems76 '77, but

there remains an important unmet need for better display libraries and methods to

analyze binding interactions.

Here, we have constructed the first synthetic representation of the complete human

proteome, which we have engineered for display as peptides on the surface of T7

phage. This T7 "peptidome" library (T7-Pep) was extensively characterized and found to

be both faithful to its in silico design and uniform in its representation. We combined our

T7-Pep library with high-throughput DNA sequencing to identify autoantibody-peptide

interactions, a method we call phage immunoprecipitation sequencing (PhIP-Seq). This

approach provides several advantages over traditional methods, including

comprehensive and unbiased proteome representation, peptide enrichment
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quantification, and a streamlined, multiplexed protocol requiring just one round of

enrichment. We have applied PhIP-Seq to interrogate the autoantibody repertoire in the

spinal fluid of patients with neurological autoimmunity and identified both known and

novel autoantigens. We further demonstrate how PhIP-Seq can also be used more

generally to identify peptide-protein interactions.
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3.3 Results

3.3.1 Construction and characterization of the T7-Pep library

We sought to create a synthetic representation of the human proteome. We began by

extracting all open reading frame (ORF) sequences available from build 35.1 of the

human genome (24,239; 23% of which had "predicted" status). When there were

multiple isoforms of the same protein, we randomly selected one representative ORF.

We modified the codon usage by eliminating restriction sites used for cloning and by

substituting very low abundance codons in E. coli with more abundant synonymous

codons. We parsed this database into sequences of 108 nucleotides encoding 36 amino

acid tiles with an overlap of seven residues between consecutive peptides (Figure 3.1a),

the estimated size of a linear epitope. Finally, the stop codon of each ORF was removed

so that all peptides could be cloned in-frame with a C-terminal FLAG tag.
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Figure 3.1: Construction and characterization of T7-Pep and the PhIP-Seq
methodology

(a) The T7-Pep library is made from 413,611 DNA sequences encoding 36 amino acid peptide tiles that

span 24,239 unique ORFs from build 35.1 of the human genome. Each tile overlaps its neighbors by

seven amino acids on each side.

(b) The DNA sequences from (a) were printed as 140-mer oligos on releasable DNA microarrays. (i) After

oligo release, the DNA was PCR-amplified and cloned into a FLAG-expressing derivative of the T7Select

10-3b mid copy phage display system. (ii) The T7-Pep library is mixed with patient samples containing

autoantibodies. (iii) Antibodies and bound phage are captured on magnetic protein A/G coated beads. (iv)

DNA from the immunoprecipitated phage is recovered and (v) library inserts are PCR-amplified with

sequencing adapters. A single nucleotide change (arrow) is introduced for multiplex analysis.

(c) Pie chart showing results of plaque sequencing of 71 phage from T7-Pep Pool 1 and T7-CPep Pool 1.

(d) Histogram plot showing results from lilumina sequencing of T7-Pep. 78% of the total area lies between

the vertical red lines at 10 and 100 reads, demonstrating the relative uniformity of the library.

Representation of each subpool in T7-Pep (inset) compared to expected (horizontal red line).

The final library design includes 413,611 peptides spanning the entire coding region of

the human genome. The peptide-coding sequences were synthesized as 140-mer
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oligonucleotides with primer sequences on releasable DNA microarrays in 19 pools of
22,000 oligos each, PCR-amplified and cloned into a derivative of the T7Select 10-3b
phage display vector (Novagen; Figure 3.1b i and Supplementary Methods). We also
generated two additional libraries comprising the N-terminal and C-terminal peptidomes
(T7-NPep, T7-CPep), which encode only the first and last 24 codons from each ORF.

The extent of vector re-ligation, multiple insertions, mutations, and correct in-frame

phage-displayed peptides was determined by plaque PCR analysis (Supplementary

Table 3.1), clone sequencing (Figure 3.1c), and FLAG expression (Supplementary

Table 3.2) of randomly sampled phage from all subpools. Sequencing revealed that

83% of the inserts lacked frameshifting mutations. These data indicate that a much
greater fraction of in-frame, ORF-derived peptides is expressed by our synthetic

libraries compared to those constructed from cDNA (Table 3.1).

After combining 5 x 108 phage from each subpool and amplifying the final library,
Illumina sequencing was performed at a median depth of 45-fold coverage (Figure 3.1d)
and detected 91.2% of the expected clones. Chaol analysis was performed to estimate

the actual library complexity (assuming infinite sampling), which predicted that >91.8%
of the library was represented (Supplementary Figure 3.1)78. In addition, T7-Pep is
highly uniform, with 78% of the library members within 10-fold abundance (having been
sequenced between 10 and 100 times). These data suggest that our library encodes a
much more complete and uniform representation of the human proteome than can
otherwise be achieved with existing technologies (Table 3.1).

We next optimized a phage immunoprecipitation protocol for detecting antibody-peptide

interactions within complex mixtures (Supplementary Figure 3.2). By combining this

protocol with T7-Pep and deep sequencing DNA analysis, we have developed a new

method to quantitatively profile autoantibody repertoires in patients (Figure 3.1 b).
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Feature Classic cDNA Phage Protein Array T7-Pep + PhIP-Seq

Display
Proteome - Incomplete - Small fraction - Nearly complete
representation - Highly skewed distribution - Uniform distribution - Uniform distribution

Fraction of clones As low as 6% Up to 100% -83%
expressing an
ORF peptide in
frame
Size of displayed Up to full-length proteins Up to full-length proteins 36 amino acid overlapping tiles
peptides
Rounds of Requires multiple selection No selection Single selection, which
selection rounds, which favor more eliminates clone growth bias

abundant and faster growing and population bottleneck
clones79

Analysis Individual clone sequencing: Microarray scanning: Deep sequencing of library:
- Initial abundance unknown - Quantitative - Quantify population before
- Requires population - Statistical analysis of and after a single round of

bottleneck antibody binding selection
- Statistical analysis of

enrichments

Determination of Difficult Not possible Often straightforward for
antibody antigens of known crystal
polyclonality structure

Epitope mapping Difficult Not possible Often straightforward

Effort Labor intensive Minimal Minimal

Sample Low Medium Adaptable to 96 well format

throughput
Multiplexing No No Yes
capability
Cost Low Moderate to high Moderate

Table 3.1: Comparison between T7-Pep + PhIP-Seq and current proteomic
methods for autoantigen discovery
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3.3.2 Analysis of a PND patient with NOVA autoantibodies

Cancers often elicit cellular and humoral immune responses against tumor antigens
which may limit disease progression . In rare cases, tumor immunity can recognize

central nervous system (CNS) antigens, triggering a devastating autoimmune process
called paraneoplastic neurological disorder (PND). Clinical presentations of PND are

heterogeneous and correlate with the CNS autoantigens involved. PND has served as a

model for CNS autoimmunity, and the application of phage display to PND autoantigen

discovery has met with much success73' 8.

To assess the performance of PhIP-Seq for autoantigen discovery, we examined a

sample of cerebrospinal fluid (CSF) from a 63-year-old female (Patient A) with non-

small cell lung cancer (NSCLC) who presented with a PND syndrome and was found to

have anti-NOVA autoantibodies82 . The NOVA autoantigen (neuro-oncological ventral

antigen, or "Ri") is commonly targeted in PND triggered by lung or gynecological

cancers, and results in ataxia with or without opsoclonus/myoclonus. A concentration of

2 tg/ml of CSF antibody was spiked with 2 ng/ml of an antibody specific to SAPK4

(positive control) to monitor enrichment of the targeted peptide on protein A/G beads.

Despite extensive washing, 298,667 unique clones (83% of the input library) were found

in the immunoprecipitate. A significant correlation was observed between the

abundance of input clones and immunoprecipitated clones (Figure 3.2a), likely due to
weak nonspecific interactions with the beads.
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Figure 3.2 Statistical analysis of PhIP-Seq data

(a) Scatter plot comparing sequencing reads from T7-Pep input library and from Patient A

immunoprecipitated (IP) phage (Pearson coefficient = 0.435; P -= 0). Highlighted are all clones with an

input abundance of 50 reads (red), and all clones with an input abundance of 100 reads (blue). The target

of the SAPK4 control antibody is highlighted in green.

(b) Histogram plot of sequencing reads from the data highlighted in (a) with corresponding colors. The

curves are fit with a generalized Poisson (GP) distribution. Pmf is the probability mass function of the

corresponding GP distribution and x is the number of IP sequencing reads.

(c) Plots of lambda and theta for each input abundance, calculated using the method of Consul et a183.

Lambda is regressed to its average value (black dashed line) and theta is linearly regressed (red dashed

curve).
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(d) Scatter plot comparing clone enrichment significances (as -Log1O p-value) from two independent

PhIP-Seq experiments using CSF from Patient A. Red dashed line shows the cutoff for considering a
clone to be significantly enriched, and the SAPK4 control antibody target is highlighted in green.

To approximate the expected distribution of IP'ed clones' abundances, we employed a

two-parameter generalized Poisson (GP) model (as recently demonstrated for RNA-seq

data84) and found that this distribution family fits the data well at various input

abundances (Figure 3.2b). We calculated the GP parameter values for each input

abundance level83 and regressed these parameters to form our null model for the

calculation of enrichment significance (p-values) of each clone (Figure 3.2c and online

methods). Comparing the two PhIP-Seq replicates revealed that the most significantly

enriched clones were the same in both replicas (Figure 3.2d), highlighting the assay's

reproducibility. This contrasts dramatically with a comparison of clones enriched by two

different patients (Supplementary Figure 3.3). Performing PhIP-Seq in the absence of

patient antibodies identified phage capable of binding to the protein A/G beads. We thus

defined Patient A positive clones as those clones with a reproducible Log10 p-value

greater than a cutoff (Figure 3.2d, dashed red line), but not significantly enriched on

beads alone (P < 10~3). Patient A positives included the expected SAPK4-targeted

positive control peptide (P< 10~15), the expected NOVA1 autoantigen (P< 10-15), and six

additional candidate autoantigens (Table 3.2).
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Patient Info P val Protein ties Validation

A: 63 y.o. female 15.38 NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1 (NOVA1) 1 WB+
with non-small cell 14.76 HYPOTHETICAL PROTEIN LOC26080 7 DB+
lung cancer. 14.54 TGFB-INDUCED FACTOR HOMEOBOX 2-LIKE, X-LINKED (TGIF2LX) 1 WB+
Presents with
classic cerebellar 8.00 NEBULIN (NEB) 1 NT
syndrome. CSF 6.49 DEBRANCHING ENZYME HOMOLOG 1 (DBR1) 1 WB-,DB+

positive for anti- 6.20 PROTOCADHERIN 1 (PCDH1) 1 WB-,DB+
NOVA antibodies. 4.29 INSULIN RECEPTOR (INSR) 1 NT

B: 59 y.o. female 15.18 SOLUTE CARRIER FAMILY 25 MEMBER 43 (SLC25A43) 1 NT
with non-small cell 13.06 GLUTAMATE DECARBOXYLASE 2 (GAD65) 2 RIA+,WB-,
lung cancer. 1P+
Presents with 12.96 TESTIS EXPRESSED SEQUENCE 2 (TEX2) 1 DB+
dysarthria, ataxia, 12.11 ATAXIN 7-LIKE 3 ISOFORM B (ATXN7L3) 1 N
head titubation

and muscle lock. 11.93 ETS-RELATED TRANSCRIPTION FACTOR ELF-1 (ELFI) 1 NT
Paraneoplastic 11.91 TGFB-INDUCED FACTOR HOMEOBOX 2-LIKE, X-LINKED (TGIF2LX) 1 WB+
antibody panel is 11.34 INSULIN RECEPTOR SUBSTRATE 4 (IRS4) 1 NT
negative.

6.98 HEPATOMA-DERIVED GROWTH FACTOR-RELATED PROTEIN 2 1 NT

(HDGFRP2)

6.60 TUBULIN, BETA (TUBB) 1 WB-

6.54 CANCER/TESTIS ANTIGEN 2 (CTAG2) 1 WB+

6.30 DENN/MADD DOMAIN CONTAINING 1A (DENDD1A) 1 WB-,DB+

6.09 DOUBLESEX AND MAB-3 RELATED TRANSCRIPTION FACTOR 1 NT
(DMRT2)

5.53 TUDOR AND KH DOMAIN CONTAINING ISOFORM A (TDRKH) 1 NT

C: 59 y.o. female 15.72 TRIPARTITE MOTIF-CONTAINING 67 (TRIM67) 2 WB+
with melanoma. 15.65 TRIPARTITE MOTIF-CONTAINING 9 (TRIM9) 3 WB+
Presents with 12.13 FIBROBLAST GROWTH FACTOR 9 (GLIA-ACTIVATING FACTOR) 1 WB-,DB+
ataxia, dysarthria, (FGF9)

horizontal gaze 10.18 DUAL-SPECIFICITY TYROSINE-(Y)-PHOSPHORYLATION 1 WB-,DB+

palsy. REGULATED KINASE 3 (DYRK3)

Paraneoplastic 6.93 CENTROSOMAL PROTEIN 152KDA (CEP1 52) 1 NT

antibody panel is 6.57 TITIN (TTN) 1 NT

negative. 6.34 NUCLEOPORIN LIKE 2 (NUPL2) 1 NT
However, CSF 5.43 HISTONE DEACETYLASE 1 (HDAC1) 1 WB-,DB+

stained brain and 5.36 MITOCHONDRIAL RIBOSOMAL PROTEIN L39 (MRPL39) 1 WB-,DB+

cerebellar IHC 5.35 CHROMOSOME 10 OPEN READING FRAME 82 (C100RF82) 1 WB-,DB+
slides. 5.15 NLR FAMILY, PYRIN DOMAIN CONTAINING 5 (NLRP5) 1 NT

4.83 TASPASE, THREONINE ASPARTASE, 1 (TASP1) 1 NT
4.70 KIAA0090 1 NT
4.55 SERINE (OR CYSTEINE) PROTEINASE INHIBITOR, CLADE A (ALPHA- 1 NT

1 ANTIPROTEINASE, ANTITRYPSIN), MEMBER 9 (SERPINA9)

4.21 PROTEIN TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 9 1 WB-,DB+
I (PTPN9)
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Table 3.2: Results of PhIP-Seq for 3 Patients

A previously validated autoantigen is shown in italics. Autoantigens confirmed by any secondary assay
are shown in bold. Confirmation of patient antibodies with the full-length protein via western blot is

indicated by red type. Average of replicate -Log1O p-values are shown in column 2. If multiple peptides

from the same ORF are enriched, the average -Log1O p-value of the most significantly enriched peptide is

shown. Secondary validation assay abbreviations: WB = western blot of full-length proteins; IP =
immunoprecipitation of full-length proteins followed by western blotting for the fusion tag; RIA =

radioimmunoassay; DB = dot blot; NT = not tested. Validation assay is followed by "+" or "-" depending on

whether the results were positive or negative.

We tested three of these predictions by expressing full-length TGIF2LX, DBR1 and

PCDH1 in 293T cells and immunoblotting with patient CSF. TGIF2LX (TGFB-Induced

factor homeobox 2-like, X-linked) was confirmed as a novel autoantigen, as we detected

strong immunoreactivity at the expected molecular weight (Figure 3.3a). Full-length

DBR1 and PCDH1, while expressed well in 293T cells (not shown), were not detected

by CSF antibodies. We observed two bands in the untransfected lysate migrating at

approximately 50 and 62 KDa, possibly representing endogenously expressed proteins

that correspond either to untested candidates or to false negatives of the PhIP-Seq

assay.

Strikingly, the hypothetical protein LOC26080 had seven distinct peptides that were

significantly enriched, and they all appeared to share a nine residue repetitive motif. We

used MEME software8 5 to characterize this motif, which represents the likely epitope

recognized by Patient A's autoantibodies (Figure 3.3b).
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Figure 3.3: Validation of full-length PhIP-Seq candidates
(a) Western blot with CSF from Patient A, staining for full-length TGIF2LX-GFP expressed in 293T cells

by transient transfection. Bands corresponding to TGIF2LX-GFP are denoted by an arrow.

(b) ClustalW alignment of the seven significantly enriched hypothetical protein LOC26080 peptides, and

the nine-element MEME-generated recognition motif.

(c) Western blot with CSF from Patient B, staining for indicated full-length proteins expressed in 293T

cells by transient transfection.

(d) Bar graph of -Log1O p-values of enrichment for the indicated TGIF2LX peptides by the three patients.

(e) Immunoprecipitation of the GAD65-GFP from 293T cell transfected lysate by CSF from Patient B (but

not Patient A).
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(f) Western blot with CSF from Patient C, staining for indicated full-length proteinss expressed in 293T
cells by transient transfection.

(g) Phage lysates from candidate T7 clones were spotted directly onto nitrocellulose membranes, which

were subsequently immunoblotted with patient CSF.

3.3.3 Analysis of two PND patients with uncharacterized autoantibodies

Having established that PhIP-Seq could reliably identify known and novel autoantigens,

we examined CSF from two additional patients who had suggestive PND presentations

but tested negative for a panel of commercially available PND autoantigens. Patient B

was a 59-year-old female with NSCLC, who presented with dysarthria, ataxia, head

titubation and muscular rigidity. PhIP-Seq analysis yielded three particularly interesting

candidate autoantigens: TGIF2LX, CTAG2 (cancer/testis antigen 2), and GAD65

(glutamate decarboxylase 2) (Table 3.2). Both TGIF2LX and CTAG2 were confirmed by

immunoblotting (Figure 3.3c). Surprisingly, Patient B, like Patient A, was auto-reactive

against TGIF2LX. The enriched peptide was distinct from, but overlapped the peptide

enriched by Patient A (Figure 3.3d).

CTAG2 is a member of a family of cancer/testis antigen (CTAG) proteins that are

normally germ cell restricted, but frequently expressed in cancers and often elicit anti-

tumor immune responses". Several reports have described both humoral and cellular

immune responses targeted against CTAG287 '88. TGIF2LX is also testis restricted8 9' 90

and may be a new CTAG family member. As a negative control, we found TGIF2LX

reactivity to be absent in the CSF of three patients with non-PND CNS autoimmunity

and oligoclonal Ig bands (Supplementary Figure 3.4). Having confirmed TGIF2LX

autoreactivity in two NSCLC patients, we wondered whether it could be a new biomarker

for this disease. However, the serum of 15 additional NSCLC patients without PND did

not contain TGIF2LX antibodies detectable by immunoblotting (Supplementary Figure

3.5).
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Neither CTAG2 nor TGIF2LX is expressed in the brain, and thus are unlikely to explain

the neurological syndrome experienced by Patient B. GAD65, however, is the rate-

limiting enzyme in the synthesis of the inhibitory neurotransmitter GABA. GAD65 is also

a well-characterized autoantigen targeted in the autoimmune disorder Stiff Person

Syndrome (SPS; OMIM ID 184850). Two non-overlapping GAD65 peptides derived from

the domain known to be targeted by pathogenic autoantibodies in SPS patients91 , 92

were enriched by Patient B's CSF. A commercial radioimmunoassay (RIA 81596; Mayo

Medical Laboratories), confirmed the presence of high titer anti-GAD65 autoantibodies

(5.12 nmol/L; >250 fold above the reference range). Surprisingly, direct immunoblotting

with Patient B's CSF did not demonstrate reactivity (Figure 3.3c), suggesting that

denatured GAD65 epitopes are not recognized by Patient B's antibodies. Successful

immunoprecipitation of GAD65 from the same cell lysate with CSF confirmed this

hypothesis (Figure 3.3e).

Patient C, a 59-year-old female with PND secondary to melanoma, had an unusual

presentation that included horizontal gaze palsy. PhIP-Seq analysis of Patient C's CSF

yielded five significantly enriched peptides from two homologous members of the

tripartite motif (TRIM) family, TRIM9 and TRIM67 (Table 3.2). Both candidate

autoantigens were confirmed by immunoblotting lysates from TRIM9- or TRIM67-

overexpressing cells (Figure 3.3f). TRIM67 is expressed in some normal tissues

(including skin) and is often highly expressed in melanoma 90 . TRIM9 has recently

emerged as a brain-specific E3 ubiquitin ligase and has been implicated in

neurodegenerative disease processes93. Based on their high degree of homology, our

data suggest the possibility that tumor immunity targeting TRIM67 might have spread to,

or cross-reacted with TRIM9 in the CNS (Supplementary Figure 3.6). TRIM9 and

TRIM67 autoreactivity was not detected in the CSF of three patients with non-PND CNS

autoimmunity (Supplementary Figure 3.4).

In total, 16 of the candidate autoantigens in Table 3.2 were available to us as full-length

Gateway Entry clones from the ORFeome collection8 . Of these, 10 were not confirmed
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by immunoblotting or immunoprecipitation of the full-length protein. We wondered

whether this reflected a high rate of false positive discovery inherent to PhIP-Seq, or

rather a requirement that the peptides be presented with intact conformation, as was the
case for GAD65. We synthesized 9 of these 10 candidate T7 clones, plus 2 additional

high confidence T7 clones, for validation in a dot blot assay. Each of these clones

exhibited immunoreactivity above background with the appropriate patients' spinal fluid

as predicted by the PhIP-Seq dataset (Figure 3.3g; Supplementary Figure 3.7). This

finding indicates that PhIP-Seq analysis can have a low rate of false positive discovery,
and supports the hypothesis that the 36 amino acid peptides retain a significant amount

of secondary structure during display on the T7 coat.

3.3.4 PhIP-Seq can identify peptide-protein interactions

The utility of T7-Pep is not limited to autoantigen identification. To explore more general

interactions, we have used the library in an in vitro peptide-protein "two-hybrid"

interaction experiment with GST-RPA2 (replication protein A2) as bait for T7-Pep. We

were again able to utilize the generalized Poisson method for determining the

significance of phage clones' enrichment. Whereas GST alone did not significantly

enrich any library clones (P < 10-4; Supplementary Figure 3.8), PhIP-Seq with GST-
RPA2 robustly identified the N-terminal peptide from the known interactor SMARCAL1

(P < 10-14, Figure 3.4), among others (Supplementary Table 3.3). The enriched

SMARCAL1 peptide contains a previously identified motif known to bind RPA294' .

Peptides from four proteins known to contain this motif (UNG2, TIPIN, XPA and RAD52)

were significantly disrupted by the positions of the breaks between peptides (Table 3.3).

One peptide from UNG2 retained most of the motif and that peptide was

correspondingly enriched (P < 10-5), demonstrating the power of this approach to

identify linear interaction motifs.
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Figure 3.4: PhIP-Seq can identify protein-protein interactions
GST-RPA2 was used to precipitate phage from the T7-Pep library on magnetic glutathione beads. -Log1O

p-values of enrichment were calculated using the generalized Poisson method. Clones are arranged in

increasing input abundance from left to right. The experiment identified two of the known RPA2 binding

partners SMARCAL1 (P< 101 ) and UNG2 (P< 10-5), highlighted in red.
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Gene T7-Pep Clone Aligned Peptide -Log10
P Value

SMARCAL1 NP_054859.2_1 MSLPLTEEQRK-KIEENRQK--ALARRAEKLLAEQHQRT 14.6

UNG2 NP_003353.1_2 ...PSSPLSAEQLD-RI-- 0.1

NP_003353.1_3 AEQLD-RI--QRNKAAAL----LRLAARNVPV ... 5.2

TIPIN NP_060328.1_7 .. .LSRSLTEEQQR-RIE--RNKQLA 1.1

NP_060328.1_8 E--RNKQLALERRQAKLLSNSQTL ... 0.4

XPA NP_ 000371.1_1 .. .QPAELPASVRA-SIERKRQRAL 0.3
NP_000371.1_2 RKRQRALML--RQARLAARPYSA ... 0.1

RAD52 NP_002870.2_9 ... SLSSSAVESEATHQRKLRQKQLQQQF 1

NP 002870.2 10 KQLQQQFR-ERMEKQQVRV ... 0.1

Table 3.3: Dependence of peptide-RPA2 interaction on integrity of RPA2 binding

motif

Aligned phage peptides containing the RPA2-binding motif (underlined) are shown next to their -Log1O p-
value of enrichment. Significantly enriched peptides are shown in bold.
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3.4 Discussion

We have developed a new proteomic technology called Phage Immunoprecipitation

Sequencing (PhIP-Seq), which is based on a synthetic phage library (T7-Pep) made to

uniformly express the complete human peptidome on the coat of T7 phage particles.

Combining T7-Pep with high throughput DNA sequencing enables a variety of

innovative proteomic investigations. In addition to applications in autoimmune disease,

PhIP-Seq can be utilized to identify peptide-protein interactions and can be a viable

alternative to two-hybrid analyses. From a methodological perspective, the robust

single-round enrichment signals and the ability to adapt the assay to 96-well format

suggests the feasibility of performing automated PhIP-Seq screens on large sets of

samples.

Antibodies bind protein antigens by a variety of mechanisms and several studies have

uncovered some general themes underlying these interactions. For instance, antibody

combining surfaces on natively folded proteins tend to be dominated by "discontinuous"

epitopes, which are patches of ~4-14 amino acid side chains formed by two or more

noncontiguous peptides brought into proximity during protein folding 96 97. If the protein is

divided into it's constituent peptides, antibody affinity is expected to decrease due to 1)

the loss of contacts contributed by noncontiguous residues, and 2) the increased

entropic costs of binding a free peptide as opposed to the natively constrained peptide.

The degree to which individual peptides are still able to interact with a given antibody is

difficult to predict, and is expected to vary widely. While our study demonstrates the

utility of 36 amino acid tiles, further work will be required to define the true false negative

discovery rate inherent to the use of T7-Pep. Autoantibodies that target normally

inaccessible epitopes have also been reported, such as those that recognize proteolytic

cleavage products98' 99, misfolded proteins or protein aggregates 00' 101. Antigen

discovery with full-length, folded proteins may thus be less sensitive than tiled peptides

in some such circumstances.

71



In our study, performing PhIP-Seq with CSF from a well characterized PND patient

(Patient A), identified a known (NOVA1) and a novel, testis-restricted90 autoantigen

(TGIF2LX). Since we also found anti-TGIF2LX antibodies in the spinal fluid of a second

PND patient with NSCLC, this protein may represent a new cancer-testis antigen family

member, and should be further investigated as a biomarker for PND. PhIP-Seq analysis

of CSF from two PND patients with uncharacterized antibodies (Patients B and C)

uncovered likely neuronal targets of their autoimmune syndromes. In Patient B, high

titer anti-GAD65 antibodies bound two distinct peptides from the region of the protein

associated with Stiff Person Syndrome (SPS). Interestingly, GAD65 targeting in SPS

occurs more often in patients without cancer, raising the possibility that at least part of

this neurological syndrome may have been unrelated to the patient's cancer. This

finding highlights the utility of unbiased antibody profiling to distinguish between

deceptively similar disease states'0 . In Patient C, we identified TRIM9 as a likely

neuronal autoantigen and suggest the possibility of epitope spreading from tumor-

derived TRIM67 as a potential mechanism. It should be noted that demonstration of a

protein's autoreactivity is not evidence for its role in disease pathogenesis, since the

autoantibodies might be incidental in nature, arise due to epitope spreading, or might

simply exhibit non-cognate cross-reactivity.

Several interesting features of the T7-Pep + PhIP-Seq platform emerged during this

proof-of-concept study. We found that patient antibodies targeting GAD65 robustly

recognized two 36 amino acid peptides, but not the corresponding denatured full-length

proteins, indicating that an important degree of conformational information is retained in

the peptide library. Second, for proteins with known crystal structures, using tiled

peptides can facilitate determination of the antibody clonality, as well as the location of

the targeted epitope. Finally, the simultaneous quantification of a large number of

peptide enrichments permits the discovery of epitope motifs. Autoantibodies from

Patient A targeted seven peptides from a repetitive hypothetical protein, and we were

thus able to calculate a motif that most likely represented the antigenic epitope, a task

less easily performed with alternative technologies.
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T7-Pep could be improved in several ways. The generation of longer oligos will

decrease the complexity of the library, thereby increasing the sampling depth and

making it possible to generate domain libraries that capture more protein-folding units.

In addition, PhIP-Seq with libraries of peptides from human pathogens could permit

rapid analysis of antibodies to infectious agents, thus aiding vaccine research and the

diagnosis of infectious diseases.

We have taken a synthetic biological approach to develop a proteomic resource useful

in translational medicine. When combined with high throughput DNA sequencing, our

methodology permits unbiased and quantitative analysis of autoantibody repertoires in

human patients. PhIP-Seq thus complements existing proteomic technologies in the

study of autoimmune processes for which the relevant autoantigens remain unknown.
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3.5 Methods

Design of T7-Pep, T7-CPep and T7-NPep ORF sequences. We first downloaded all

human protein and cDNA sequences available from the RefSeq database at build 35.1

of the human genome. Accession numbers between a protein and its cDNA were

matched, and the paired sequences were used to construct the library. All the ATG start

codons in the cDNAs were compared to the corresponding protein sequences until the

correct ORF sequence was found. Seventy-two nucleotide (nt) fragments were then

separated and overlapped with adjoining sequences by 21 nt (7 amino acids). Each

DNA fragment was then scanned for the eight relatively rare codons in E. coli (CTA,

ATA, CCC, CGA, CGG, AGA, AGG, GGA), and they were replaced by more abundant,

synonymous codons (selected randomly if there was more than one replacement avail-

able). After that, each DNA fragment was rescanned for the four restriction sites (EcoRI,
Xhol, BseRl, Mmel), and they were eliminated by replacement of one codon with a

different, abundant, synonymous codon. Sequences were scanned iteratively to ensure

the final ORF fragments were free of both rare codons and restriction sites. Finally,

common primer sequences were added.

Cloning of T7-Pep. The proteome-wide library (19 pools of 22,000 synthetic oligos per

pool) and N/C-terminal libraries (two pools each of 18,000 synthetic oligos per pool)

were PCR-amplified as 23 independent pools with common primer sequences using the

following conditions: 250 mM dNTPs, 2.5 mM MgCI2, 0.5 pM each primer, 1 pl Taq

polymerase and ~350 ng oligo DNA per 50 pl reaction. The thermal profile was

1. 95 CC 30 s,

2. 94 *C 35 s,

3. 50 *C 35 s,

4. 72 C 30 s,

5. Go to step 2 3x,

6. 72 0C 5 min,

7. 95 CC 30 s,

8. 94 CC 35 s,
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9. 70 0C 35 s,

10. 72 OC 30 s,

11. Go to step 8 29x,

12. 72 OC 5 min

The PCR product was then digested and cloned into the EcoRI/Sall sites of the T7FNS2

vector with an average representation of at least 100 copies of each peptide maintained

during each cloning step. The T7FNS2 vector is a derivative of the T7Select 10-3b

vector (Novagen), which is a lytic, mid-copy phage display system, and displays 5-15

copies as C-terminal fusions with the T7 capsid protein. We modified the T7Select 10-

3b vector to generate T7FNS2 by inserting a sequence encoding a FLAG epitope in the

Notl and Xhol sites to generate an in-frame FLAG C-terminal fusion with the inserted

peptide. Cloning of the synthetic peptide libraries into the T7FNS2 vector results in a C-

terminal fusion of the ORF fragments with the T7 10B capsid protein, followed by a C-

terminal FLAG epitope tag and stop codon (except for those in T7-CPep, which retain

the native stop codons).

Patient samples. Collection and usage of human specimens from consenting patients

were approved by the Brigham and Women's Hospital Institutional Review Board

(protocol no. 2003-P-000655). Cerebrospinal fluid was aliquoted and kept at -80 *C

until used, and freeze-thawing was avoided as much as possible after that. Neurological

evaluations were performed by a board-certified neurologist. Serum samples from

patients with confirmed NSCLC were from Bioserve.

Detailed PhIP-Seq protocol. The following were the multiplex barcode-introducing

forward primers. The common P5 sequence for Illumina sequencing is in bold. The

underlined segment was where the sequencing primer annealed. The 3-nt barcode is in

italics.

HsORF-FL-mmBC1-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCACTGCGC

HsORF-FL-mmBC2-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGCCGCGC

HsORF-FL-mmBC3-F
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AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCCCTGCGC

HsORF-FL-mmBC4-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCC TCTGCGC
HsORF-FL-mmBC5-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGA TGCGC
HsORF-FL-mmBC6-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGGTGCGC

HsORF-FL-mmBC7-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGTTGCGC

HsORF-FL-mmBC8-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGCGGCGC

P7-T7Down (this is the common reverse primer):

CAAGCAGAAGACGGCATACGAC ACTG AACCCCTCAAGACCCGTTTA

mmBC-FL-seq-prim (for sequencing the barcode and the library insert at P5 in forward direction):

AGGTGTGATGCTCGGGGATCCAGGAATTCC

Immunoprecipitation wash buffer consisted of 150 mM NaCl, 50 mM Tris-HCI, 0.1% NP-

40 (pH 7.5).

Procedure: 1.5 ml tubes were blocked (including under cap) with 3% fraction V bovine

serum albumin (BSA) in tris-buffered saline with 0.5% tween-20 (TBST) overnight at 4

0C rotating. Positive control SAPK4 C-19 antibody (Santa Cruz, sc-7585) was added (2

ng/ml final concentration; 1/1,000 of patient antibody) to phage stock (5 x 1010 pfu T7-

Pep/ml final concentration) and mixed before being added to patient antibody (2 pg/ml

final concentration). Each IP reaction was brought to a final volume of 1 ml using M9LB

(Novagen).

Note: replicas were independent after this point (that is, there were two IP reactions as

above for each sample).

Tubes were rotated at 4 0C for 24 h. 40 pl of 1:1 mix of Protein A and Protein G coated

magnetic Dynabeads (Invitrogen, 100.02D and 100.04.D) slurry was added to each

tube. Tubes were rotated for 4 more hours at 4 OC. Beads were washed 6 times in 500
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pli IP wash buffer by pipetting up and down eight times per wash. Tubes were changed

after every second wash. As much wash buffer as possible was removed and beads

were resuspended in 30 pl H20. IP was then heated at 90 0C for 10 min to denature

phage and release DNA. 50 pI PCR reactions were prepared with TaKaRa HS Ex

polymerase (TAKARA BIO), using the entire 30 pl of IP: 9.5 pl H20, 5 pI 10x TaKaRa

buffer, 4 pl dNTP (2.5 mM each), 0.5 pi P7-BC-T7Down (200 pM), 0.5 pl P5-mmBCn-F

(100 pM), 0.5 pl TaKaRa HS Ex enzyme mix, 30 pl phage IP. The thermal profile was

1. 98 0C 10 s,

2. 56 *C 15 s,

3. 72 *C 25 s,

4. Go to step 1 39x,

5. 72 0C 7 min

The number of cycles can optionally be increased to 45.

PCR products were gel purified individually. Concentration was measured and then 500

ng of each barcoded sample was mixed together and Illumina sequencing was then

performed on final material, using mmBC-FL-seq-prim as sequencing primer.

The first seven nt calls arose from the DNA barcode, and were used to parse the data

by sample. Remaining sequence was aligned against the reference file. The reference

sequences were truncated to the length of the reads and alignment was constrained to

the appropriate strand.

RPA2-peptide interaction screen

Full-length, sequence-verified RPA2 was recombined from an available entry vector into

pDEST-15 for inducible expression in E. coli as an N-terminal GST-fusion protein. A

pDEST-15 clone expressing GST alone was used as a negative control. Protein

expression was induced with 0.1 pM IPTG for 5 hours at 300C. Protein lysate from 50 ml

of bacterial culture was prepared in 1.5 ml of lysis buffer (50 mM tris pH 7.5, 500 mM

NaCl, 10% glycerol, 1% triton, 10 mg/ml lysozyme) and sonicated before removing

insoluble material by centrifugation. 40 I1 of MagneGST Glutathione beads (Promega,
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V861 1) were incubated in 1 ml of undiluted bacterial lysate for 2 hours. Beads were then

washed 3 times with PBS. 1 ml of M9LB containing 5x1010 pfu of T7-Pep was then used

to resuspend the beads (now coated with GST or GST-RPA2). The mix was rotated 24

hours at 40C. At this point the beads were washed 6 times in 500 Id IP wash buffer, and

the remaining protocol for PhIP-Seq given above was followed precisely.

Estimation of general Poisson model parameters and regressions

We assessed several distribution families for their ability to appropriately model the

PhIP-Seq enrichment data, and found the two-parameter generalized Poisson

distribution to be the best:

pmf(x) = 0(0 + xA)-le-OA /x!

For each value of input read number that had at least 50 corresponding clones, we used

the following maximum likelihood estimators to calculate the values of lambda (A) and

theta (0) for the corresponding distribution of n IP reads (x). 103

1 (0-x) _-nX=0 where X= and 0=X(1-X)
X+(x,-X)X n

Upon calculation of X across all the input read numbers, we found it to be approximately

constant. For each experiment, we thus regressed this parameter to be equal to the

mean of all calculated 's (Figure 3.2c). Calculation of 0's for all input values revealed

the near linearity of this parameter, and so we linearly regressed this parameter prior to

calculating the p-values.

Western blot validation of candidate autoantigens

We utilized the ORFeome collection of full-length proteins, which was generated by

PCR and Gateway recombinational cloning, 10 4 as a source for testing autoantigen

candidates by immunoblot. Entry vectors were recombined into the appropriate

mammalian expression vector (CMV promoter driving ORF expression with either C-
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terminal GFP fusion or N-terminal FLAG epitope tag) and miniprepped for transient

transfection.

293T cells were plated 24 hours before transfection at a density of 0.8 million cells per

well of a 6-well plate and grown in DMEM containing10% FBS. TranslT-293T

transfection reagent (Mirus, MIR 2700) was mixed with 2 g expression plasmid per

well, and added to the cells. After 24 hours, cells were harvested in 200 [d standard 1x

RIPA-based laemmli/DTT sample buffer with Complete protease inhibitor cocktail

(Roche) and sonicated for 30 seconds. Insoluble material was removed by

centrifugation. 2-20 tl of lysate was run on 4-20 Bis-Tris polyacrylamide gels and

transferred onto nitrocellulose using the iBlot system (Invitrogen). Membranes were

blocked 1 hr in 5% milk and then stained with either patient CSF (1:250 to 1:1,000) or

the appropriate primary anti-GFP (JL-8 monoclonal antibody; Clontech, 632381) or anti-

FLAG (M2 monoclonal antibody; Sigma-Aldrich, F9291) antibody in 2.5% milk, TBST.

Human antibody from CSF was detected with 1:3,000 peroxidase-conjugated goat

affinity purified anti-Human IGG (whole molecule) secondary antibody (MP Biomedicals,

55252) in 2.5% milk, TBST.

For IP-western blotting, cell lysate was harvested in standard RIPA buffer with Complete

protease inhibitor cocktail and sonicated for 30 seconds. Insoluble material was

removed by centrifugation. 150 tl of lysate was mixed with 1 tg of patient antibodies

and rotated overnight at 40C. A 40 R1 slurry of 1:1 mix of Protein A coated magnetic

Dynabeads and Protein G coated magnetic Dynabeads was added to each tube. Tubes

were rotated 4 hours at 4'C. Beads were washed 3 times in 500 tl RIPA buffer, and

then harvested in 25 Il of laemmli/DTT sample buffer. The IP'ed protein and 10% of the

input lysate were subject to SDS-PAGE analysis as above, and protein was detected by

staining for the protein tag (e.g. GFP).
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Dot blot validation of candidate autoantigens

Individual clones were made by synthesizing the peptide-encoding insert as a single,

long DNA oligo (IDT, UltramerTM ) that was PCR amplified and then cloned into T7FNS2

in the same way as described for the library. Clones were sequence verified and titered.

2 Id of each clone, after normalizing for titer, was spotted directly onto a nitrocellulose

membrane and allowed to dry for 30 minutes. Membranes were blocked with 5% milk,
TBST for 1 hour at room temperature, and then stained overnight at 40C with 1 tg/ml of

CSF antibody diluted in a solution containing a 1:1 mix of 5% milk, TBST and T7 10-3b-

FLAG phage lysate. Human antibody from CSF was then detected with 1:3,000

peroxidase-conjugated goat affinity purified anti-Human IGG (whole molecule)

secondary antibody (MP Biomedicals, 55252) in 2.5% milk, TBST. Quantification was

performed by scanning developed films and analyzing the .tiff file with Image J software.
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4.1 Abstract

Autoimmune disease results from a loss of tolerance to self antigens. Understanding

this process requires knowledge of the molecular targets, and so a number of

techniques have been developed to determine immune receptor specificities. We have

discussed in Chapter 3 the construction of a synthetic human peptidome displayed on

T7 phage and a method to analyze its interactions with antibody repertoires using high

throughput DNA sequencing (phage immunoprecipitation sequencing, "PhIP-Seq").

Here we present data from the first large-scale PhIP-Seq screen of 289 independent

antibody repertoires. We screened sera from 72 healthy donors, resulting in an

extensive set of enriched peptides, the majority of which composed each individual's

unique "autoantibodyome", and a small number of which are recurrently enriched in the

general population. Sera from 39 type 1 diabetes (T1D) patients were screened,

revealing an accelerated polyautoreactivity phenotype compared to their matched

controls, together with a set of novel candidate T1D autoantigens. Screening a

collection of cerebrospinal fluids and sera from 56 multiple sclerosis patients uncovered

novel, as well as previously reported specificities. Finally, a screen of synovial fluids and

sera from 60 rhuematoid arthritis patients uncovered recurrent autoantibodies

independent from seropositivity status. In sum, this work demonstrates the utility of

performing PhIP-Seq screens on large numbers of individuals and is a step toward

defining the full complement of autoimmunoreactivities in health and disease.
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4.2 Introduction

Predisposing inherited alleles can conspire with stochastic and environmental events

during development of the immune system and result in a failure of immune tolerance,

often with catastrophic health consequences. Our understanding of autoimmune

diseases has been limited by available technologies, which cannot capture the

molecular complexity of intact immune systems. To address these limitations, we have

recently developed an unbiased proteomic technology, phage immunoprecipitation

sequencing (PhIP-Seq), with the capacity to quantitatively measure interactions

between an individual's antibody repertoire and each of over 400,000 overlapping 36

mer peptides that together span the open reading frame of the human genome.' 05 In

this work, we have improved the PhIP-Seq method in two ways. First, all aspects of

sample processing were made compatible with a 96-well plate format, and we employed

a Biomek FX liquid handling robot to perform the immunoprecipitations. Second, we

capitalized on recent improvements in Illumina sequencing, and developed a method to

perform 96-plex analysis of individual PhIP-Seq libraries. 06 Over 150 million alignable

reads per lane are routinely obtained on the Illumina HiSeq 2000 instrument, and so we

were thus able to use just 2-3 lanes of a flow cell to analyze a complete 96-sample

PhIP-Seq screen. This level of multiplexing reduces the cost to about $25 per sample,

thereby enabling cohort-scale repertoire screening projects, even for smaller budget

labs.

There are several autoimmune diseases of relatively high incidence for which the role of

adaptive humoral autoimmunity is appreciated but not understood. Of these, we

selected type 1 diabetes (T1D), multiple sclerosis (MS) and rheumatoid arthritis (RA) for

autoantibody repertoire analysis by high throughput PhIP-Seq screening. Strong genetic

linkage to class II HLA alleles in each of these diseases supports the view that there is

an important role for antigen presentation and subsequent activation of CD4+ helper T

cells with self-specificity.' 0 7 The role of B cells in these diseases is less clear, but

several observations indicate that analysis of secreted antibodies may provide insight
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into disease pathogenesis. For example, beta islet cell destruction in T1 D is thought to

be largely a consequence of CD8+ T cell activity, yet autoantibodies targeting islet-

associated antigens are routinely used for diagnosis and risk stratification. In MS,

oligoclonal IgG bands of unknown specificity are frequently found in cerebrospinal fluid

(CSF), and secondary lymphoid tissue with germinal center activity often forms in the

meninges of patients with advanced disease.1 08 Patients with RA are classified as

seropositive or seronegative depending on the presence of rheumatoid factor and/or

anti-citrullinated protein antibodies. Beneficial clinical response to CD20+ B cell

depletion therapy in RA has prompted the adoption of rituximab as a second line

therapy for patients with high disease activity and features of a poor prognosis.109' 110 In

the treatment of MS and T1D, several studies have demonstrated efficacy of B cell

depletion, but to a lesser extent, and with more elusive optimal dosing regimens.m1, 112

We have performed high throughput PhIP-Seq screening on 39 sera obtained from

newly diagnosed T1 D patients, 40 synovial fluid samples and 20 sera from RA patients,

27 CSF samples and 35 sera from MS patients (including 6 sets of matching

CSF/serum samples). Additionally, 72 sera from healthy donors, including a set of 41

age/sex-matched controls for the T1 D cohort, were screened. To control for differences

in fluid composition, we screened synovial fluid samples from 19 individuals with gout or

non-rheumatoid osteoarthritis, as well as CSF from 9 patients with non-MS associated

meningitis, subacute sclerosing panencephalitis, or paraneoplastic neurological

disorder. Finally, we had previously screened a collection of 28 sera from patients with

estrogen and progesterone receptor positive breast cancer (BC), and while analysis of

the BC dataset is not presented here, it was included in all antigen-disease specificity

tests. Table 4.1 provides a summary of these samples. A more detailed description can

be found in Supplementary Table 4.1.
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Class Subclass Fluid Total
Type 1 Diabetes serum 39

Multiple Sclerosis (RRMS/SPMS/PPMS) serum 35
CSF 27

Seropositive serum 10

Rheumatoid Arthritis synovial fluid 24

Seronegative serum 10
synovial fluid 16

Healthy Controls serum 72
Non MS CSF Controls SSPE, PND, Meningitis CSF 9
Non RA synovialfluid controls Gout, OA synovialfluid 19
Breast Cancer ER+/PR+ serum 28

Total 289

Table 4.1: Summary of the samples screened by high throughput PhIP-Seq
Control samples are italicized. Many samples were screened in duplicate, but only unique samples are

shown in this summary. RR, relapse remitting MS; SP, secondary progressive MS; PP, primary

progressive MS; SSPE, subacute sclerosing panencephalitis; PND, paraneoplastic neurological disorder;

OA, osteoarthritis; ER+, estrogen receptor positive; PR+, progesterone receptor positive. Six sets of MS

CSF/serum samples are patient matched.
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4.3 Results

4.3.1 Polyautoreactivity and assay sensitivity

We used samples screened in duplicate to perform an analysis of peptide enrichment

reproducibility (see Methods, Supplementary Figure 4.1), which led us to consider

peptides with a -log1O P-value equal to 5 or greater as scoring positively above

background. This threshold was used in all analyses unless otherwise stated. To

exclude peptides that immunoprecipitated nonspecifically, we ignored those that

displayed enrichment with -log1O P-values equal to 3 or greater in two or more out of 8

negative control (no antibody) IPs.

We first turned our attention to the data from the 72 healthy donors. In sum, 11,533

unique peptides were enriched. An overwhelming majority (10,122) of these

autoreactivities were "personal" in the sense that they were observed to occur in only

one individual (Figure 4.1A). At the other extreme, we observed a small number of

peptides that were frequently enriched by healthy individuals. For example, we found

that serum from 39% of individuals significantly enriched a single peptide from the

activin receptor type 11B (ACVR2B), and serum from 43% of individuals had reactivity

against a peptide from melanoma antigen family E, 1 (MAGEE1). The reactivities were

not correlated with each other and did not depend on age, suggesting that these

antibodies arise independently and at an early time. As it is not immediately clear

whether these common autoantibodies were "on-target" or rather simply cross-reactive,

we looked for evidence of epitope spreading within the database. Whereas we did find

convincing examples of epitope spreading, likely due to CD4+ T cell help (e.g. CENPC1,

Figure 4.2C), this was not true for ACVR2B and only weakly suggestive for MAGEE1.

We therefore conclude that these recurrent anti-peptide antibodies are most likely cross-

reactive and because they occur frequently in the serum of healthy individuals are

unlikely to have a pathological consequence.

87



10000

1000

1000

4) 100

10 100

.7
cc X U o y Q) zI > C0 oi ( < F

Ii l I z< I 1
0 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Number of healthy individuals with AAb (n=72) Number of healthy individuals with AAb (n=72)

C Samples (n=34 1

CO

Figure 4.1: Enrichment distribution and evidence of T cell help

A. Frequency distribution of the 11,533 unique peptides enriched by greater than -log10 P value of 5 in

healthy individuals. Peptides enriched above a threshold of -log10 P value of 3 or greater in 2 or more

negative controls were considered nonspecific and removed from the analysis. TTN, titin; ACVR2B,

activin receptor type-2B; MAGEE1, melanoma antigen family E, 1; NEB, nebulin.

B. Frequency distribution of the 7619 unique ORFs enriched by greater than -log1 P value of 5 in healthy

individuals.

C. Heat map representation of the CENPC1 peptide enrichment data matrix. Enrichment -log10 P values

greater than 5 are colored black, greater than 3 are colored gray, and less than 3 are white. Three

individuals exhibit distinctive evidence of multi-epitope immune responses.

Patterns of disease-associated autoreactivity may only become apparent in the context

of full-length proteins, since different individuals may produce antibodies that recognize

different epitopes of a shared protein. We therefore collapsed the peptide enrichment

matrix onto an ORF enrichment matrix by taking the most significant value from the set

of peptides corresponding to each ORF. Again, if this -log10 P-value was greater than 5,

the ORF was considered enriched by the individual. Analysis of ORF enrichments by

healthy individuals resulted in a distribution similar to the peptide enrichments, with the

majority of significantly enriched ORFs (62%) arising in just one person (Figure 4.11B).
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This analysis is biased toward larger proteins being commonly enriched, and indeed

significant reactivity against at least one peptide from titin (TTN, the largest ORF in our

library) was observed in 41 of the 72 healthy individuals (Supplementary Discussion).

We screened a collection of serum samples obtained from 39 newly diagnosed type 1

diabetic (T1D) patients. As controls for comparison, we also screened sera from 41

healthy donors that were carefully matched for age and gender. These samples were all

screened in the same automated run, and their positions on the 96-well plate were

interspersed and randomized so as to avoid any technical artifact. Titers of clinically

utilized autoantibody biomarkers (islet cell cytoplasmic antibody, "ICA"; insulin

autoantibody, "IAA"; glutamic acid decarboxylase 2 antibodies, "GADA"; protein tyrosine

phosphatase, receptor type, N antibodies, "PTPRNA" or "IA2A"; zinc transporter,

member 8 antibodies, "ZnT8A") were measured for each of the T1D patients and

controls. In order to determine the false negative discovery rate (sensitivity) inherent to

our high throughput PhIP-Seq method, we compared radioimmunoassay (RIA) titers for

each individual to the PhIP-Seq -log1O P-values of the corresponding ORFs. No PhIP-

Seq enrichment was observed in any of the patients or controls for insulin or ZnT8A,

whereas GAD2 and PTPRN enrichment was observed only in a small fraction of the

T1D patients who had the highest RIA titers for those antigens (1 GAD2 PhIP-Seq

positive out of 32 GAD2 RIA positives and 4 PTPRN PhIP-Seq positives out of 27

PTPRN RIA positives). In addition, one healthy individual was PhlP-Seq positive for

PTPRN, despite having a negative titer by RIA (Figure 4.2A and Supplementary Figure

4.2).

We reasoned that if the amount of antibody-self peptide cross-reactivity in any way

reflected the complexity of the antibody repertoire, then older individuals should IP more

unique peptides compared to their younger counterpart. Comparing ages 12 and under

("young") with those 18 and older ("adult"), we observed a significant difference in the

number of enrichments between young and adult healthy controls (Figure 4.2B).

However, when we performed the same analysis of the T1D cohort, we found young

89



T1 D patients to be significantly precocious in their development of autoreactive

antibodies (P = 0.009; Student's t test, 1 tail). There was no significant difference in the

amount of autoreactivity between healthy and T1 D adults, or between young and adult

T1 D patients.
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Figure 4.2: Analysis of T1D and healthy control sera

A. Sensitivity of PTPRN (IA2) autoantibody detection by PhlP-Seq compared to RIA in T1D patients

(boxes) and healthy controls (x). PhIP-Seq values correspond to the most enriched peptide from the ORF.

A value of >0.5 is considered positive for RIA.

B. Comparison of the total number of unique peptides enriched by individuals of different age groups, and

T1 D disease status. "Young" individuals are 12 years old or younger; "adult" individuals are 18 years old

or older. Statistical comparisons of the means were performed using the Student's t test, with one tail.
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4.3.2 Disease-specific autoantibodies

We next identified peptide and ORF autoreactivities specifically associated with each of

the autoimmune diseases under investigation. For this analysis, each disease group

was compared to all other samples, in the form of a Fisher's exact test to determine the

significance of association. This analysis was performed for each peptide in the library,
and so a distribution of Fisher P values was therefore obtained. To account for multiple

hypothesis testing, we created a null distribution of "expected" Fisher P values by

randomly permuting the sample labels 10,000 times (details can be found in the

Methods section). We compared the distribution of expected significance values to that

which was actually observed, and then set a threshold for 10% false positive discovery.

All autoreactivities that exhibited disease association with this level of confidence are

reported in Table 4.2.
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Gene name associated with peptide or ORF

Summary
39 60 56 72 28 19 7

Cluster T1D RA MS HC BC OA/Gout CSF Ctrl

protein tyrosine phosphatase, receptor type, N 3 0 0 0 0 0 0
chromodomain helicase DNA binding protein 7 3 0 0 0 0 0 0

Ti D arginine decarboxylase 3 0 0 0 0 0 0
oxoeicosanoid (OXE) receptor 1 3 0 0 0 0 0 0
ring finger protein 180 3 0 0 0 0 0 0
BCL-6 interacting corepressor isoform 2 RA1 0 8 0 1 0 1 0
keratin 33B RA2 0 5 0 0 0 0 0

septin 8 RA2 0 5 0 0 0 0 0
ADAM metallopeptidase domain 33 RA2 0 6 0 0 0 0 0
LPS-responsive vesicle trafficking, beach and anchor containing RA2 0 5 0 0 0 1 0

cAMP responsive element binding protein 3-like 1 RA2 0 5 0 0 0 0 0
RA ring finger protein, LIM domain interacting; similar to ring finger protein (C3H2C3 type) 6 RA1 0 5 1 0 0 0 0

ataxin 2 RA2 0 4 0 0 0 0 0

PTK2 protein tyrosine kinase 2 RA2 0 4 0 0 0 0 0

ATPase family, AAA domain containing 5 RA1 0 4 0 0 0 0 0

KIAA0565 0 4 0 0 0 0 0

hornerin 0 6 0 0 1 0 0

NACC family member 2, BEN and BTB (POZ) domain containing 0 7 2 1 0 0 0

keratin 75 MS1 0 0 8 0 0 0 0

triple functional domain (PTPRF interacting) MS1 0 0 8 0 0 0 0

FLJ42289 MS1 0 0 7 0 0 0 0

methyltransferase like 23 MS1 0 0 7 0 0 0 0
DENN/MADD domain containing 4C MS1 0 1 8 0 0 0 0

SRY (sex determining region Y)-box 17 0 1 11 4 1 0 0

MS KIAA1045 MS1 0 0 6 0 0 0 0

integrator complex subunit 1 MS1 0 0 6 0 0 0 0

regulating synaptic membrane exocytosis 2 MS1 0 1 7 0 0 0 0

splicing factor, arginine/serine-rich 16 MS1 0 0 5 0 0 0 0

bromodomain adjacent to zinc finger domain, 2A MS1 0 0 5 0 0 0 0

FERM domain containing 4B MS1 0 0 5 0 0 0 0

protein phosphatase 1, regulatory (inhibitor) subunit 10 1 3 15 9 4 1 0

ubiquitin specific peptidase 11 0 0 6 0 2 0 0

Table 4.2: Peptide/ORF enrichments associated with disease

All disease-associated autoantigens with a false positive discovery rate of 10% are listed. ORF-only

association is shown in italics. If the peptide is among a nonrandomly assorted cluster, the name of that

cluster is provided in the third column. The summary of enrichments provides the total number of

individuals from each group that displayed immunoreactivity against the peptide/ORF. Shown at top are

the total number of individuals from the group.

While there were only 5 T1D associated peptides at an FDR of <10%, we were

encouraged to find the validated T1D autoantigen PTPRN (IA2) in this list. These

immunoreactivities assorted randomly among the patients, and so are unlikely to

depend upon a common epitope. We used additional "circumstantial" data (e.g.

pancreatic-specific gene expression and protein abundance, evidence of epitope

spreading, etc.) to generate a set of candidates for follow up validation from a less

stringent list (Supplementary Tables 4.2 and 4.3). Based on this analysis, and clone

availability in our sequence-verified ORFeome collection, 13 we selected GNAS,
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RNF180, ZNF345, REG1B and BANF2 for follow up RIA studies using the full-length

proteins. These experiments are ongoing.

We next examined peptide/ORF immunoreactivities specifically associated with RA

(Figure 4.3). Of the 12 peptides found to have an FDR of <10%, 10 of them assorted

nonrandomly as two clusters of 3 and 7 peptides. 16 out of the 60 RA patients exhibited

immunoreactivity against at least one peptide from one of these clusters, compared to 4

out of 221 non RA individuals. Whereas the strength of RA2 enrichments were equal

between the synovial fluid and the serum samples, RA1 enrichments were significantly

stronger in the synovial fluid (P = 1.1x10-5; Student's t test, 2 tails). Only one of the 19

synovial fluid control samples had immunopositivity for a peptide from RA1 (compared

to 9 out of 40 RA synovial fluid samples), suggesting that RA1 reactivity is unlikely to be

an artifact of the fluid composition. Interestingly, none of the RA-associated enrichments

appeared to correlate with seropositivity (i.e. reactivity against rheumatoid factor and/or

citrullinated peptide; Figure 4.3.B). Despite attempts to uncover a shared motif among

RA1- and RA2-clustered peptides using blastp and MEME algorithms, none could be

identified.
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Figure 4.3: RA associated peptides and their clusters

A. Permutation analysis of peptide enrichments associated with RA. "Observed" bars indicate the number

of peptides associated with RA at a given P-value by Fisher's exact test. "Expected" bars show the

number of peptides expected to have a -log10 Fisher P-value at least that extreme due to chance alone.

B. Peptide enrichment heat map (as in Figure 4.1) illustrating nonrandom segregation of peptide

enrichments (rows) and RA patients (columns). Peptides are organized by the RA1 and RA2 clusters.

Patients are organized by their seropositivity. -Log10 P-values less than 3 are white, between 3 and 5 are

gray, and greater than 5 are black.

MS patients are frequently found to have oligoclonal immunoglobulin in their CSF, which

is resolvable by isoelectric focusing. As the presence of these oligoclonal IgGs is the

most consistent laboratory abnormality in MS (detectable in about 95% of patients

compared with 10%-15% of controls), it has long been assumed that the specificities of

these intrathecally-produced antibodies harbor clues to the pathogenesis of the disease.
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We therefore screened 27 CSF samples and 35 serum samples from patients with

clinically definite multiple sclerosis. As additional negative controls, we screened 10

CSF samples from individuals with subacute sclerosing panencephalitis (SSPE),

paraneoplastic neurological disorder (PND) and meningitis. At a cutoff of -log1O Fisher

P-value of 3, the false discovery rate is ~10%. We thus examined the set of 14 peptides

with this degree of disease association. After removing two peptides that were enriched

in more than two non-MS samples, we were left with 12 peptides, the enrichments of

which are displayed for each of the 56 MS patients in Figure 4.3B. Eleven of these

peptides assorted non-randomly among a subset of MS patients, and motif discovery

revealed a 7 amino acid sequence contained in all of them. By dot blot with purified

biotinylated peptide, we confirmed the presence of these antibodies in an MS patient

that scored highly in the screen (Supplementary Figure 4.3). Notably, a motif nearly

identical to MS1 was discovered by Cepok et al. in a similar screen of MS CSF

samples, 14 and they reported an alignment with the BRRF2 protein of the Epstein-Barr

virus, a pathogen repeatedly implicated in MS pathogenesis. We therefore performed an

alignment of the MS1 motif against the UniProt database of all proteins from viruses

with human tropism, collapsed onto 90% identity clusters (7,546 UniRef sequences; 656

unique taxa). This search confirmed the best alignment to be with the EBV BRRF2

protein (E value = 1.2; sequence: PAASRSK).
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Figure 4.3: MS associated peptides share a common motif
A. Permutation analysis of peptide enrichments associated with MS. "Observed" bars indicate the number

of peptides associated with MS at a given P-value by Fisher's exact test. "Expected" bars show the

number of peptides expected to have a -log10 Fisher P-value at least that extreme due to chance alone.

B. Peptide enrichment heat map (as in Figure 4.1) illustrating nonrandom segregation of peptide

enrichments (rows) and MS patients (columns). Peptides had a -log10 Fisher P-value >3 and were
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enriched by less than 3 non-MS patients. -Log1O P-values of enrichment less than 3 are white, between 3
and 5 are gray, and greater than 5 are black.

C. Alignment of the co-segregated peptides reveals a shared epitope.

D. MS associated epitope (MS1) motif logo, calculated from the peptides in C (MEME software).

4.3.3 Analysis of matched MS samples

As part of our collection, we obtained six sets of MS CSF/serum pairs. Each of these

samples was screened in duplicate, and we considered only those peptides that were

reproducibly enriched with a -log1O P-value greater than 3 in both replicates. For each

of these MS patient pairs, we plotted the average -log1O P-value for each peptide's

serum enrichment against the average CSF enrichment (Figure 4.4). In all cases we

observed a strong correlation in the enrichment profiles between these two

compartments. An overwhelming majority of the enrichments were found in both

compartments, with a strong trend toward higher significance in the serum, suggesting

that most of the autoreactivity we detected in the CSF could be attributed to antibody

leakage from the serum compartment. In several cases, however, we did find peptides

that were specifically enriched in the CSF compartment. For example, CSF from patient

9292 enriched two highly similar peptides from interferon alpha 5 and 14 much more

significantly than serum from the same patient. Since many MS patients are

administered therapeutic interferon beta, we wondered if this enrichment might reflect

cross-reactivity of inhibitor antibodies. This is unlikely to be the case, however, as the

homologous peptide from interferon beta was not enriched in either compartment.

We then examined all the CSF-specifically enriched peptides (enriched by both CSF

replicas with -logl0 P-value > 3, and neither serum replica with -logl0 P-value > 3) that

were identified in three of the six patients (Table 4.3). Motif discovery was performed for

each set of CSF-specific peptides, and one motif was identified for patient 10894

(Figure 4.4B and Table 4.3). This motif was searched into the database of human

viruses, and a significant alignment was found with the major capsid protein VP1 of the
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JC polyomavirus (JCV; E value = 0.03; sequence: RRVKNP). Similar to EBV, JCV

infection is highly prevalent, infecting 70 to 90 percent of humans. Also of note, JCV can

cross the blood-brain barrier into the central nervous system, where it infects

oligodendrocytes and astrocytes, possibly through the 5-HT2A serotonin receptor. 1 5

Patient 8911 had serum samples drawn on two separate occasions within one year,

which allowed us to examine the correlation of PhIP-Seq autoreactivities over time. The

scatterplot (Figure 4.4D) of these autoreactivities reveals near identity.
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Figure 4.4: Analysis of MS patient CSF/serum pairs.

Scatter plots of matched samples from the same individuals. Each sample was analyzed in duplicate and

the average -log10 P-value is plotted for peptides enriched by more than -log10 P value of 3 in both

duplicates.

A. Patient 9292 enrichments in CSF versus serum, and enrichment of nearly identical peptides from IFN-

a5/14 specifically in the CSF.

B. Patient 10894 peptide enrichments in CSF versus serum, and CSF specific enrichment of the motif

shown.

C. Scatter plot of patient 8911 peptide enrichments in CSF versus serum is characteristic of most pairs -

no CSF specific peptide enrichments, and a general depletion of autoreactivity compared to serum.

D. The serum PhIP-Seq profile in patient 8911 is unchanged over time.
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We were intrigued by the observation that the ACVR2B_15 peptide, which was very

frequently enriched in the sera of healthy individuals (Figure 4.1A), was enriched

specifically in the CSF compartment of MS patient 9358 (-log1O P-value of 17.8 in CSF

compared to 0.8 in serum; Table 4.3). In hopes of identifying an epitope within the

ACVR2B_15 peptide, we searched for peptide enrichments that were highly correlated

with ACVR2B_15. MEME analysis revealed a motif shared by 3 peptides that were only

enriched when ACVR2B was also enriched (12/12, 11/11 and 10/10 enrichments).

Interestingly, the most significant viral peptide alignment was again found within the

proteome of EBV, but this time with the latent membrane protein-1 (LM P-1; E value =

0.03; sequence: LTEEVANK).
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-log10 P-value
Patient CSF Serum Peptide sequence Symbol Gene name

27.0 1.7 HSLsNRRTtJ4IMAOMoRISPFSCLKDRHoFoFPOEE iFNAS interteron, alpha 5
8.9 0.1 IIANALSSEPACLAEIEEDKARRILELSGSSSEDSE PRKDC similar to protein kinase, DNA-activated, catalytic polypeptide
8.8 0.2 RPLTTQKLILRVESLLEVRPGNTRQKKQEDHSSGSL LOC283682 hypothetical protein LOC283682

9292 6.5 0.4 AFDVQASPNEGFVNQNITIFYRDRLGLYPRFDSAGR HYAL2 hyaluronoglucosaminidase 2
5.4 0.0 QFQLLEQEITKPVENDISKWKPSQSLPTTNSGVsAQ NEDD9 neural precursor cell expressed, developmentally down-regulated 9
4.9 0.2 AESLLEAGDMLQFHDVRDAAAEFLEKNLFPSNCLGM KLHL25 kelch-like 25 (Drosophila)
5.2 1.2 MVLGKVKSLTISFDCLNDSNVPVYSSGDTVSGRVNL ARRDC3 arrestin domain containing 3
5.0 1.1 NKVLIAQKLHECARCGKNFSWHSDLILHEQIHSGEK ZNF311 zinc finger protein 311
17.0 0.8 VDEYMLPFEEEIGQHPSLEELQEVVVHKKMRPTIKD ACVR2B activin A receptor, type lB-
10.1 0.6 TDTSLTMDIYFDENMKPLEHLNHDSVWNFHVWNDCW TGM1 transglutaminase 1 (K polypeptide epidermal type 1, protein-glutamine-gamma-glutamyltransferase)
8.9 2.0 QIQVTHGKVDVGKKAEAVATVVAAVDQARVREPREP TTN titin
6.9 0.6 RSQLQKVSGVFSSFMTPEKRMVRRIAELSRDKCTYF RIN2 Ras and Rab interactor 2
6.2 0.1 ALGEFVLVEKDVKISKKGKIYNLNEGNAKYFDRAVT N/A N/A
7.2 1.7 PFPSSPPFPSSPPFPSSPPFPSSPPFPSSPPFPSSP N/A N/A

9358 6.3 0.9 MAELQQLQEFEIPTGREALRGNHSALLRVADYCEDN AB13 ABI family, member 3
6.5 1.4 LVNSLKVWGKKRDRKSAIQDIRISPDNRFLAVGSSE EML6 echinoderm microtubule associated protein like 6
5.8 1.1 IRMPPLRNVGAGGVSGAIRTPRPMGQEASVTTGLGR ELFN1 extracellular leucine-rich repeat and fibronectin type IlIl domain containing 1
6.0 2.1 IRLPSLYHVLGPTAADAGPESEKGDEEVCEPAVSPP POPDC2 popeye domain containing 2
5.0 1.4 KKRSLWDTIKKKKISASTSHNRRVSNIQNVNKTFSv ASPM asp (abnormal spindle) homolog, microcephaly associated (Drosophila)
5.2 1.7 GKDRVVSLSEKNFKQVLKKYDLLCLYYHEPVSSDKV CAS02 calsequestrin 2 (cardiac muscle)
5.3 1.9 VEKDENYDPKTEDGQASQSRYSKRRIWRSVKLKDYK ZBTB24 zinc finger and BTB domain containing 24

RAACYFTMGLYEKALEDSEKALGLDSESIRALFRK ZC3H7B
AEDLEDVRAEGTEDVGTEGTEDVGAEDSEDIRAESS N/A
LRLEAPSPKAIVTRTALRNLSMQKGFNDKFCYGDIT PDZD8
EDGGSEITNYIVDKRETSRPNWAQVSATVPITSCSV TTN
SLLPEGEDTFLSESDSEEERSSSKRRGRGSQKDTRA GTF3C1
KVDEYTDTDLYTGEFLSFADDLLSGLGTSCVAAGRS ASTN2
VSDVSRDSVNLTWTEPASDGGSKITNYIVEKCATTA TTN
RPVPGCVNTTEMDIRKCRRLKNPQKVKKSVYGVTEE RGS6
LLDTQRDGLQNYEALLGLTNLSGRSDKLRQKIFKER UNC45B
RSRSKDEYEKSRSRSRSRSPKENGKGDIKSKSRSRS SFRS6
GEDGSRRFGYCRRLLPGGKGKRLPEVYCIVSRLGCF DENND2A
EQKLKLERLMKNPDKAVPIPEKMSEWAPRPPPEFVR PRKRIP1
LLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPS AGPAT3
PEFEDSEEVRRIWNRAIPLWELPDQEEVQLADTMFG C100RF2
SPGEWQQASAGPLHLSVPEPGRAWKNPERGSKSRWS BCYRN1
QKTCQEQELLKQEDISMTNLGSMACPIMEPLHLENT CCDC168
SVGKQDKSGLLMKLQNLCTRLDQDESFSQRLPLNIE APAF1
DAVYLDSEEERQEYVLTQQGFIYQGSAKFIKNIPwN TGM2
CADMYLENPKEYLTLVOGEENFSEVYGFRLKNPYQC ADAMTS20
AEDPNLNQPVWMKPCRINSSYFRRVKNPNNLDEIKS CEP350

zinc ringer CCOH-type containing 7B
N/A
PDZ domain containing 8
titin

general transcription factor 111C, polypeptide 1, alpha 220kDa
astrotactin 2
titin

regulator of G-protein signaling 6
unc-45 homolog B (C. elegans)
splicing factor, arginine/serine-rich 6; similar to arginine/serine-rich splicing factor 6
DENN/MADD domain containing 2A
PRKR interacting protein 1 (IL11 inducible)
1-acylglycerol-3-phosphate 0-acyltransferase 3
chromosome 10 open reading frame 2
brain cytoplasmic RNA 1 (non-protein coding)
coiled-coil domain containing 168
apoptotic peptidase activating factor 1
transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase)
ADAM metallopeptidase with thrombospondin type 1 motif, 20
centrosomal protein 350kDa

Table 4.3: Peptides specifically enriched in CSF compared to serum

Average -log1O P-value peptide enrichments are reported if they were greater than 3 in both duplicates of

CSF sample and less than 3 in both duplicates of serum sample. The CSF specific motif in patient 10894

is shown in bold.
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25.6
20.6
8.9
9.5
7.8
7.0
6.9
6.4

10894 7.6
6.5
6.7
5.7
5.8
5.6
4.3
4.7
4.2
3.8
3.6

1.0
1.2
0.2
1.6
0.6
0.1
0.2
0.0
1.9
0.7
1.2
0.2
0.5
0.2
0.0
0.7
0.4
0.2
0.1



4.4 Discussion

We report the first large scale PhIP-Seq screen of a population of individuals with

different autoimmune diseases for direct comparison to healthy controls and to each

other. These data provide an unbiased, proteomic-scale assessment of precise

autoreactivities found within 289 independent antibody repertoires. The vast majority of

autoreactivities were individually unique, lending support to the notion that each person

possesses a unique "autoantibodyome", of which the impact on phenotype remains to

be explored. It is interesting to note that as our database of enriched peptides grows, so

will the number of peptides recurrently enriched by a small fraction of the population - a

situation analogous to the ongoing identification of progressively less common alleles in

sequenced genomes. Screening large numbers of genotyped individuals will additionally

reveal correlations between recurrent autoreactivities and HLA haplotypes, antibody

variable domain alleles, and other immunogenetic modifiers. An interesting therapeutic

possibility for the highly recurrent anti-peptide antibodies would be to "repurpose" them

by fusing the antigenic peptide (e.g. ACVR2B_15) to a therapeutic biologic or to a

targeting molecule. Such a strategy could extend serum half-life of a biologic,'16

decrease a molecule's immunogenicity, or redirect antibody dependent cellular

cytotoxicity toward a malignant target.' 17

Our unbiased method revealed a large number of novel peptide autoreactivities, but

when compared to RIA-determined titers of known autoantibodies, appears to suffer

from a relatively high rate of false negative discovery. We detected no anti-insulin

antibodies in the T1 D patients, with the important caveat that we did not acid-extract

insulin from the serum prior to performing PhIP-Seq, which is standard practice for the

RIA assay. It is therefore possible that the anti-insulin antibodies were occupied by

endogenous or injected insulin and therefore not accessible for peptide binding.

Additionally, ZnT8 RIA titers were obtained using a fusion protein consisting of two

allelic variants of the immunodominant epitope, and so the single consensus sequence

in T7-Pep may have contributed to the low sensitivity. The most important source of our
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overall high false negative discovery rate, however, is most likely the limited amount of

conformational structure inherent to 36 amino acid peptide tiles. We know from previous

work that T7-Pep displayed peptides contain significantly more secondary structure than

what is retained after reducing and denaturing polyacrylamide gel electrophoresis of the

same full-length protein. 105 However, the more comprehensive findings presented here

highlight the need for improved display libraries with even more structural integrity.

While we did not observe a large number of recurrent T1 D-associated enrichments

beyond that expected by chance, we did observe a significantly increased degree of

polyreactivity inherent to the younger T1 D patients, as compared to their age matched

controls. To our knowledge, this finding has not been explicitly reported in the literature.

Several possible factors may contribute to this finding. Perhaps most obvious is the role

that HLA haplotype could play, since T1 D genetic risk is tightly linked to MHC class 11

alleles. It would therefore be interesting to explore the effect of risk and protection-

conferring alleles on PhIP-Seq polyreactivity in a sufficiently powered study. Given that

T1 D patients are precocious in their acquisition of polyreactivity, it is somewhat

surprising that adult T1 D patients were essentially equivalent to their matched

counterparts. It is therefore interesting to consider the possible existence of a "risk

window", during which increased polyreactivity provides more opportunities to acquire

pathogenic autoreactivity.

In the late 1990's, several investigators attempted to identify the specificities of

oligoclonal bands in the CSF of MS patients. Dybwad et al. screened a single

oligoclonal band with three different libraries and reported the discovery of two motifs

that aligned with collagens, a neurofilament protein, versican, and several viral

proteins." These motifs were contained within several peptides in our library, but none

of them were enriched in our screens. In another study, Cortese et al. used a library of

constrained nonamers to find mimitopes for CSF antibodies in 2 MS patients. One of the

sequences (KPPNP) is contained within several of our library peptides. Of them, one

peptide from XP_499190.1 (SQQWRENPRTQNQSAVERKPPNPEPVSSGEKTPEPR),
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was enriched by 6 MS patients and 9 non-MS patients, and so was weakly associated

with MS (Fisher's P value = 0.05). Perhaps most notable of these studies, Rand et al.

used a small collection of CSF samples from MS patients to screen a phage library of

random hexamers.'" 9 They uncovered a recurrently enriched sequence (RRPFF) in

several individuals, and reported alignment with the heat shock protein aB crystallin and

the Epstein-Barr virus nuclear antigen (EBNA-1). The T7-Pep library contains 4

instances of the RRPFF sequence, and two of these occur in peptides recurrently

enriched by many individuals in our screen, regardless of disease status. The most

robustly and frequently enriched is MAGEEl_25 (RAFAEGWQALPHF-

RRPFFEEAAAEVPSPDSEVSSYS), which is the most commonly enriched peptide by

our healthy controls (31/72; Figure 4.1A). We detected MAGEEl_25 immunoreactivity in

10 of the 27 MS CSF samples and in 1/7 non-MS CSF controls. MAGEEl_25 was

enriched with equal frequency in the serum of MS patients compared to healthy controls

(17/29 MS and 17/29 HC). The other peptide containing the RRPFF sequence is derived

from ZNF335, and was enriched by the same MAGEE1_25-enriching subset of MS and

healthy donors, but to a lesser degree. Of the MS patients for which we had matching

CSF and serum samples, two had MAGEEl_25 antibodies. Both of them exhibited

stronger enrichment in their serum than in their CSF. Taken together, we believe our

PhIP-Seq data are consistent with a scenario in which RRPFF antibodies occur with

equal frequency in the serum of MS and healthy individuals, and suggest that they are

unlikely to be produced specifically within the CNS. Finally, we searched for this

sequence in the database of viral proteins. As reported by Rand et al. it occurs in the

EBNA-1 protein of EBV, but is additionally present in the 65 kDa early nonstructural

protein of human cytomegalovirus.

Similar to MAGEE1_25, the vast majority of autoreactivities observed in MS patient CSF

were also observed in the serum of the same individuals, though usually to a lesser

extent. This result is somewhat surprising, given that the total IgG concentration in CSF

tends to be dominated by intrathecal secretion. The simplest explanation is that the

majority of these intrathecal antibodies do not bind epitopes contained within T7-Pep.
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We did find several non-recurrent CSF-specific autoreactivities (Table 4.3), including

against interferon alpha 5/14. Naturally occurring IgG anti-IFNa autoantibodies have

been reported to occur with high prevalence in patients with acute viral hepatitis (~50%

in both HAV and HBV), 0 and in pharmaceutically prepared human IgG.1 " It is possible

that the serum counterparts of these autoantibodies were saturated with endogenous

interferon in the serum, thereby appearing (falsely) enriched in the CSF. The

significance of the anti-interferon 'alpha, and the other seemingly CSF-specific, non-

recurrent autoantibodies reported here is unknown.

In addition to ACVR2B-15, a recurrently enriched peptide from the protein ZC3H7B was

enriched by the CSF, but not by the serum of patient 10894 (Table 4.3). ZC3H7B, also

known as RoXaN (rotavirus X protein associated with NSP3), is involved in translation

regulation and interacts directly with the rotavirus nonstructural protein NSP3.122

Interestingly, immunohistochemical staining of this protein reveals strong cytoplasmic

positivity in neuropil of the CNS, while remaining tissues stained weakly or not at all. 90

The findings presented here point to the accumulating value of large-scale, low cost

PhIP-Seq screening. As our database grows, so will our ability to detect rare, yet

significantly disease-associated autoantibodies. Quantitative elucidation of disease

associated polyautoreactivities will be essential to a basic understanding of complex,
heterogeneous autoimmune disease pathogenesis. In a background of numerous

"personal" autoreactivities, low frequency signals will only begin to emerge with data

from large numbers of individual patients. An important strength of PhIP-Seq data is its

universality: diverse datasets can be immediately compared, thus dramatically

increasing the power of any single screen. This feature of genome-wide SNP

association data has been instrumental to its success, and we imagine the same will

hold true for PhIP-Seq screening. This study should be considered a prelude of what is

to come, since we have uncovered only a very small fraction of all autoreactivities

associated with health and disease. As DNA sequencing costs continue to decline, and

as the length of synthetic DNA library oligos continues to grow, high throughput PhIP-
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Seq screening will become an increasingly important approach to unraveling the

immense complexity of the immune system.
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4.5 Methods

4.5.1 Patient samples and autoantibody titers

T1 D patient samples and matched controls

Type 1 diabetic patients (n=39, <40 years at diagnosis, male/female ratio = 1.18,

average age 18±2 years, range 3-37 years) were consecutively recruited by a Belgian

network of endocrinologists between May 2004 and January 2006. Blood was sampled

within 7 days from clinical onset/diagnosis by the Belgian Diabetes Registry. Only

diabetic patients with three or more samples during yearly follow-up by the Registry

were included in this study. Age/sex-matched healthy control samples (n=41,

male/female ratio = 1.18, average age 18±2 years, range 4-37 years) were obtained

from patients undergoing elective minor surgery. Controls were verified to be negative

for all known type 1 diabetic autoantibodies. Samples were used with respect for patient

anonymity after approval by the BDR Steering group, and procedures were approved by

the Biomedical Ethical Committee at VUB/University Hospital Brussels.

Insulin, GAD65, PTPRN and ZnT8 Autoantibody Radioimmunoassay

After acid charcoal extraction of the endogenous and/or injected insulin, serum was

incubated with radioactive labeled human recombinant insulin (mono-1 251-tyrosin-Al 4-

insulin) in the presence and absence of an excess of unlabeled insulin. Immune

complexes were precipitated using polyethylene glycol (PEG). After washing (to remove

the unbound 1251-insulin), radioactivity of the PEG precipitate was measured. The IAA

concentration is expressed as specific 1251-insulin binding capacity of the serum (%

tracer bound of the total amount of tracer added). Sera with insulin binding 0.6% were

considered IAA positive.

GAD65, PTPRN (aminoacids 603-980), and ZnT8 (gene SEC30A8 is a chimeric
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construct of two peptides, amino acids 268-369), were produced in-house using in vitro

transcription/translation of pEX9 (cDNA) using the Promega L4600 TnT-Kit. For ZnT8,

the CR variant carries 325Arg while the CW variant carries 325Trp. The chimeric CW-

CR construct contains both CR and CW.123 Precipitations were performed as above.

Islet Cell IgG Cytoplasmic Autoantibodies

Indirect immunofluorescence was performed on non-fixed cryosections of human 0+

donor pancreas, calibrated to a Juvenile Diabetes Foundation (JDF)-standard (assigned

arbitrarily an ICA titer of 200 JDF-units). Pancreas sections were incubated with a serial

dilution of the unknown serum, washed with phosphate buffer, and attached anti-islet

IgG visualized by FITC-labeled rabbit anti-human IgG gamma chain antibody. When

islet immunoreactivity was detected, the exact ICA titer was determined by further serial

dilution (2-fold step), and samples with titers 12 JDF-units are considered ICA+.

MS and encephalitis patient samples

A detailed clinical intake form was collected from outside investigators, summarizing the

patient's neurological history, relapse features, neurological examination, MRI and CSF

findings. For samples collected at the Brigham and Women's Hospital, the same

information was obtained from the MS Center's clinical database. Patients were

diagnosed with relapsing-remitting MS according to the McDonald criteria.

Viral encephalitis serum samples were provided by the New York State Department of

Health. Sera from patients infected with West Nile virus or St. Louis Encephalitis virus

were reactive in ELISA tests and were confirmed by cross species plaque reduction

neutralization tests with paired acute and convalescent sera. Sera from patients with

enteroviral infection were collected on the same day as spinal fluids for which PCR tests

for enteroviruses were positive. Healthy control samples were collected at Brigham and
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Women's Hospital from subjects self-reported to be free of MS or other autoimmune

disease. All serum and CSF samples were stored in aliquots at -80*C.124

Human synovial fluids

Human knee synovial fluids were obtained as discarded material from patients with

various arthritides undergoing diagnostic or therapeutic arthrocentesis. Arthritis

diagnosis was ascertained by an American Board of Internal Medicine certified

Rheumatologist and/or by review of laboratory, radiologic and clinic notes and by

applying ACR classification criteria. All studies received Institutional Review Board

approval.125

Breast cancer patient sera

Breast cancer patient serum samples were obtained from the Dana-Farber/ Harvard

Cancer Center (DF/HCC) Breast SPORE Blood Bank. These samples were originally

collected under Protocol #93-085 at the DF/HCC.

4.5.2 Phage Immunoprecipitation

The T7-Pep library was prepared as described previously' 05 and stored at -80 0C until

used. For all samples, the final amount of Ig added to each 1 ml IP mix was

approximately 2 pg. Serum/plasma samples were assumed to have 10 pg/ul of Ig, and

so were diluted 10x in PBS before addition of 2 pl to the IP mix. If patient samples were

derived from a different fluid compartment, their protein content was measured by

Bradford assay and converted to an Ig concentration in the following way. For CSF the

Ig fraction was assumed to be 29% of the total protein concentration. For synovial fluid,
we used the following conversion: [Ig conc] = 0.154 x [total protein conc]+0.098.

Sample dilutions were performed in a 96 well polystyrene PCR plate that had been
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blocked overnight with 1% fraction V or agarose purified BSA (Invitrogen) in PBS to

minimize the amount of Ig lost to nonspecific binding of the polystyrene plate.

Each 1 ml IP mix contained 5x10Q1 T7-Pep phage particles and 2 ng of Positive control

SAPK4 C-19 antibody (Santa Cruz, sc-7585) diluted in M9LB (for 1 L: 46.7 ml 20X M9

salts, 18.7 ml 20% glucose (filtered), 0.93 ml 1 M MgSO 4 , 934 ml LB) with 100 pg/ml

ampicillin. 1 ml IP mixes were placed in each well of a 96 deep well plate (Cole-Parmer,

EW-07904-04). At this point, each patient sample or control was randomly assigned to a

position on the IP plate and the appropriate volume for 2 pg of Ig was added to each IP.

The plate was then carefully sealed with adhesive optical tape (Applied Biosystems)

and placed on a rotator for 20 hours, mixing at 4 0C.

The plate was briefly centrifuged to collect volume. 40 pl of 1:1 Protein A / Protein G

slurry (Invitrogen, 100-02D, 100-04D) was added to each well. The re-sealed plate was

then placed on rotator for 4 hours at 4 OC.

The plate was briefly centrifuged. At this point the beads were subjected to an

automated IP protocol, which was carried out on a BioMek FX liquid handling robot.

Briefly, IPs were washed in 440 pl IP Wash Buffer (150 mM NaCl, 50 mM Tris-HCL,

0.1% NP-40, pH 7.5) by pipetting up and down 30 times, for a total of 3 washes. Wash

buffer was removed after magnetic separation on a 96 well magnet. Beads were moved

to a new, clean plate after the second wash. After the final wash, IPs were resuspended

in 40 pl of pure water and transferred to a new polystyrene PCR plate. This plate was

heated to 95 0C for 10 minutes and then frozen at -80 0C until next step.

4.5.3 Preparation of immunoprecipitated T7-Pep sequencing libraries

Primers used (underlined sequences anneal with initial template, x's are the index

barcode):

PCR1 forward: "IS7_HsORF5_2"
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ACACTCTTTCCCTACACGACTCCAGTCAGGTGTGATGCTC

PCR1 reverse: "IS8_HsORF3_2"

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCGAGCTTATCGTCGTCATCC

PCR2 forward: "IS4_HsORF5_2"

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACTCCAGT

PCR2 reverse: "index N" (set of 96)

CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTTCAGACGTGT

P5_Primer:

AATGATACGGCGACCACCGA

P7_Primer_2:

CAAGCAGAAGACGGCATACGA

Internal HsORF3' "Taqman" FAM Probe:

GCCGCAAGCTTGTCGAGCGATG (modified with 5' 6-FAM-ZEN-3' Iowa Black FQ)

T7-Pep Library Sequencing Primer "T7-Pep_96_SP":

GCTCGGGGATCCAGGAATTCCGCTGCGC

Standard Illumina Multiplex Index Sequencing Primer "Index SP":

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

We tested the sensitivity of several DNA polymerases to residual NP-40 detergent from

the wash buffer. Some of these enzymes performed poorly in the presence of this

contaminant. We found the Herculase II Fusion DNA Polymerase (Agilent) to perform

the most efficiently under all conditions, and so developed the following PCR protocol to

recover IPed T7-Pep libraries. For each 50 pl PCR1 reaction, the following components

were mixed with 30 pl from each IP: 8.75 pl water, 10 pl 5x Herculase Buffer, 0.5 pl of

100 mM dNTP, 0.125 pl of 100 uM IS7_HsORF5_2 forward primer, 0.125 pl of 100 uM

IS8_HsORF3_2 reverse primer, and 0.5 pl of Herculase II enzyme. The reaction was

then brought to 95 0C for 2 min, and cycled 30 times with the following thermal profile.

1. 95 C, 20s

2. 58 C, 30s

3. 72 C, 30s
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and then subjected to a final extension for 3 min at 72 C.

A set of 96, 7 nucleotide barcode-containing primers for PCR2 were designed using the

method of Meyer et al. 106 to 1) be compatible with standard Illumina multiplex

sequencing, 2) be base-balanced to maximize Illumina cluster definition, and 3) have no

fewer than 3 nucleotide differences between them to minimize misalignment. 106 This set

of oligos was purchased from Invitrogen in 10 pl 25 uM aliquots and then diluted to a

final concentration of 2.5 uM by adding 90 pl of water.

For each 50 pl PCR2 reaction, the following components were mixed with 5 pl of the

appropriate index primer and 1.5 pl of unpurified PCR1 product: 27.9 pl water, 10 pI 5x

Herculase Buffer, 0.5 pl of 100 mM dNTP, 0.125 pl of 100 uM IS4_HsORF5_2 forward

primer, and 0.5 pl of Herculase Il enzyme. The reaction was then brought to 95 0C for 2

min, and then cycled 10 times with the following thermal profile.

1. 95 C, 20s

2. 58 C, 30s

3. 72 C, 30s

and then subjected to a final extension for 3 min at 72 0C.

Unpurified PCR2 product was next quantified using real time quantitative PCR on a

7500 Fast PCR-System (Applied Biosystems). Each PCR2 product was serially diluted

100 fold to a final 10,000x dilution in water. 4 pl of this dilution was added to 16 pl of

master mix composed of: 4 pl water, 10 pl Universal TaqMan 2X PCR Master Mix

(Applied Biosystems, P04475), and 2 pl of a P5/FAM Probe/P7_2 mix (5 uM P5, 5 uM

P7_2, and 2.5 uM FAM Probe). The thermal profile was:

1. 50 C, 2m

2. 95 C,0 Om

3. 95 OC, 15s

4. 60 C, 2m
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and steps 3 and 4 were repeated 35 times. We estimated the DNA concentration (in

ng/ul) by [Conc] = 5000*1OA((Ct-3.0964)/-4.5781). 300 ng of each PCR2 product were

then combined in a single tube, mixed, and run on a 2% agarose gel. The dominant

band at 316 bp was cut out and column purified twice (QIAGEN).

This 96-plex pooled library was sequenced on 2 or 3 lanes of an Illumina HiSeq 2000

using 93+7 single end cycles (93 cycles from the "T7-Pep_96_SP" primer, and 7 cycles

from the "Index SP" primer) to obtain between 300 and 450 million reads.

4.5.4 High throughput PhIP-Seq informatics pipeline

We developed an informatics pipeline for processing the single end, 100 nucleotide

sequencing data generated from high throughput PhIP-Seq experiments. Unless

otherwise noted, scripts were written in python, and are available online for download

from: https://github.com/laserson/phip-stat

This pipeline was implemented on Harvard Medical School's Orchestra Shared

Research Cluster. The pipeline assumes that the initial data set is a single .fastq file (not

"de-multiplexed") and that the barcode is in the header of each read. If reads have been

de-multiplexed one can skip fastq2parts.py and proceed to bowtieparts-withLSF.py.

Note that these commands are for dispatch to the LSF job scheduler.

The count data for each IP was then analyzed one sample at a time by comparison to

the counts obtained by sequencing the un-enriched T7-Pep library. We used our

generalized Poisson significance assignment algorithm1 05 to compute -log10 P-values

for each peptide/sample pair. Briefly, the IP count distribution for each input count was

fitted to a generalized Poisson (GP) distribution. The two GP parameters, k and 0 were

then regressed to form a joint distribution between the IP counts and the GP parameters

such that each IP count could be evaluated for its likelihood of enrichment.
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4.5.5 Analysis of high throughput PhIP-Seq screen data

All computational analysis was performed in MATLAB software (MathWorks).

Reproducibility between each replica pair was assessed as follows. Scatter plots of the

loglO of the -log1O P-values were generated, and a sliding window of width 0.05 was

moved in steps of 0.05 from -2 to 3 across the x-axis. The mean and standard deviation

of the values within this window were calculated at each step and plotted as a function

of -log1 P-values (see Supplementary Figure 4.1.A for example). For all such plots, at

low -log1O P-values the standard deviation is larger than the mean. At high -log1O P-

values, however, the reverse is true. For each pair, we determined the -log10 P-value at

which the mean was equal to the standard deviation (analogous to the "signal" being

equal to the "noise"). A histogram plot of these values are given as Supplementary

Figure 4.1.B. Based on this data, we chose a -log1O P-value of 5 to be our cutoff for

considering a peptide to be significantly enriched. Within each 96-well plate screened,

several samples were run in duplicate so that the reproducibility of each run's

automated IPs could be assessed. We found that occasionally, sequences from random

clones were amplified dramatically only in one of the replicas. The cause of these

potential false positives is under investigation, but they seemed to follow no particular

pattern so did not contribute to disease association of enriched clones. They are unlikely

to be due purely to spurious PCR amplification, as the same clones were amplified from

the same wells with two independent PCR reactions using two different enzymes.

For analyses of peptide/ORF-disease association, we set all -log1O P-values less than 5

equal to 0, and -log10 P-values greater than 5 equal to 1. This allowed us to sum the

"hits" for each peptide/ORF in each disease category and then to compute the P value

for association using Fisher's exact test. To correct for multiple hypothesis testing, we

performed a permutation analysis by randomly permuting the sample names and then

calculating the "null" Fisher P-values for each peptide/ORF. This was repeated 10,000

times and a final histogram of null Fisher P-values was constructed. Finally, an

"expected" Fisher P-value distribution could be calculated for each P-value by summing
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the null distribution from that P-value to infinity. This expected distribution indicates how

many peptide/ORF associations with a P-value at least as extreme, one would expect to

observe by chance alone, given the same dataset with randomly permuted sample

names. We corrected for bias due to differences in the total number of hits between

samples by requiring that the difference in total number of hits after permutation is less

than 1% compared to before permutation.
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5. Conclusions and Future Directions

This chapter provides the outlines of future and ongoing studies involving the HMM scFv

and T7-Pep libraries. In section 5.1 considerations related to optimal display platforms

for the HMM scFv library are discussed, and presented in the context of a recently

developed system for phage assisted continuous evolution (PACE). With improved

methods for performing scFv selection, may come the ability to parallelize selections on

multiple antigens simultaneously. In section 5.2, benefits of this advance are

considered, as well as the library-versus-library technologies that may be utilized for

antibody-antigen deconvolution. Section 5.3 details a new approach to the analysis of

library evolution data. We have posed the problem in terms of Bayesian inference of

library members' fitness. Computationally solving this problem for a complex library is a

difficult algorithmic challenge, and we are in the process of "crowdsourcing" a solution in

collaboration with the Harvard Catalyst. In addition to improving our statistical methods,

we are in the process of creating a new "T7-Pep2 " peptidome library, which is based on

Agilent's latest 300 mer technology (section 5.4). T7-Pep2 will display 90 amino acid

peptide tiles which overlap adjacent tiles by 45 amino acids. The larger folding domains

are certain to improve our detection sensitivity. To complement PhIP-Seq, we have

developed a method to display and then deep sequence full-length ORFs in ribosome

display format. Section 5.5 describes this technology, and provides some preliminary,

proof-of-principle data. Section 5.6 presents ideas about how to combine massively

parallel DNA synthesis and sequencing for the discovery of T cell epitopes. Such

technologies might someday synergize with B cell epitope discovery methods like PhIP-

Seq. Finally, section 5.7 includes a description of the most recent high throughput PhIP-

Seq screen, as well as some considerations for the design of these studies.
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5.1 An alternative display platform for the HMM scFv library

When we set out to construct and display a rationally designed scFv library that could

conveniently integrate with deep sequencing, we examined available molecular display

platforms for their appropriateness. Expecting that our library might suffer from the lack

of framework diversity, we prioritized platforms with the greatest attainable diversity. The

complexity of in vivo systems are limited by their transformation efficiency, making it a

formidable challenge to create libraries with diversities >109, and so we chose to utilize

a purely in vitro technology. Of these, ribosome display, mRNA display,126 in vitro

compartmentalization, 12 7 STABLE,128 CIS, 129 and CAD130 DNA display methods have all

demonstrated feasibility for selecting scFv binders from extremely complex libraries.

Each technology has its own associated strengths and weaknesses, mostly related to

convenience and genotype-phenotype coupling efficiency. We adopted ribosome

display for its proven track record in selecting high affinity scFvs, and its relative

simplicity of implementation.

Most reports of successful ribosome display involve improving upon affinities of either

immune libraries or previously selected binders. Indeed this method resulted in the

affinity maturation of a previously selected anti-bovine insulin scFv to 82 pM. 46 Certainly

affinity maturation applications leverage the strengths of ribosome display: 1) high

complexity scFvs libraries can be rapidly constructed or moved from any display

platform into ribosome display format, and 2) mutagenic library amplification and/or

recombination5 6 is straightforward and so repeated rounds of selection can be

performed in rapid succession. The drawbacks of ribosome display, however, are also

numerous. Since the mRNA must remain intact throughout the entire selection cycle

(normally hours), sensitivity to nuclease contamination is an important concern. For

target antigens produced in bacterial cells (such as the GST-fusion proteins in Chapter

2), this is especially germane. Second, antigenic targets containing DNA/RNA-binding

domains are problematic, as the background binding of the library mRNA may prohibit

successful scFv enrichment. The third, and perhaps most important caveat, however, is
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the efficiency of binder recovery. Indeed we and others can achieve respectable

enrichments with each round of selection (several hundred fold), but the fractional

recovery of positive controls is never more than ~0.2% in our hands. This fact is not

often discussed in the literature, but is probably the main reason why reports of

successful ribosome display selections starting with nonimmune or unenriched synthetic

libraries are relatively uncommon.

Well aware of the first two limitations of ribosome display, we constructed our HMM

scFv library in this format, and produced DNA template with combinatorial CDR diversity

of ~1012. In our standard selection protocol, we begin with an input library of ~1013

molecules of mRNA (~6 pg). Given the low efficiency noted above (~1 03), we are in

actuality only sampling -1010 molecules roughly once on average. To ensure minimal

sampling of each clone, we should like to have ~10 copies of each,3 thereby bringing

the effectively sampled library down to ~10 9. Therefore, our HMM scFv library of 1012

complexity, in reality behaves more like a minimally sampled library of ~10 9. Because

complexity was our primary motivation to adopt a cell free display system, we might

have in turn chosen a suboptimal platform for our purposes.

For ease of subcloning, the synthetic ribosome display vector into which we assembled

the HMM scFv library contains directional, flanking Sfil restriction sites. These sites can

be used to easily move the library into an alternative display format. A particularly

exciting recent development in M13 phage display technology argues that perhaps the

library might best be served in this format. Esvelt et al. have reported the development

of a system that enables the continuous directed evolution of M13 phage-borne

molecules. During phage-assisted continuous evolution ("PACE"), evolving genes are

transferred between host cells during a modified phage life cycle that takes place inside

a chamber subjected to continuous flow. Their approach has an attractive feature that

various rates of mutagenesis can be injected into the system, simulating the

hypermutation phase of antibody affinity maturation. The authors use PACE to evolve

the activity of T7 RNA polymerase in several interesting ways. It is not immediately clear
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how their system might be used to evolve high affinity scFvs, but there is no reason to

believe that this goal should be out of reach. Fusing antigen bait to the F' pilus or

engineering a variant of selectively infectious phage ("SIP") technology are two possible

strategies. One can easily envision how deep sequencing of the HMM scFv library might

combine synergistically with PACE. Sampling the system at defined time points with

multiplex Illumina sequencing would immediately reveal the trajectories of evolving

library subpopulations. It is also interesting to speculate on the possible affinities that

could be achieved with PACE, given the possibility to continuously mutate and select

clones.
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5.2 Library-versus-library scFv selections and deconvolution

As noted in Chapter 2, the marriage of DNA deep sequencing with antibody selection

strategies is certain to become an important source of innovation. Perhaps most exciting

is the prospect of performing massively parallel antigen-specific selections in a single

reaction vessel. From an industrial manufacturing perspective, such an approach might

dramatically reduce the costs of affinity reagent production. One can imagine performing

large, parallel selections and then rescuing or re-synthesizing monoclonal antibodies for

individual customers. However, rather than making single monoclonal antibodies, one

might consider instead using collections of monoclonal scFvs for multiplex assays.

Applications range from parallel analysis of immobilized complex protein mixtures, to

single cell analyses of surface protein expression. The latter example is of particular

relevance, since the PCR amplification of bound scFv-expressing phage allows analysis

of protein expression at levels not normally accessible to affinity reagents. Multiplex

protein analysis with collections of scFvs will most efficiently be performed by deep

sequencing the H3 CDR, which will require a priori knowledge of the antigenic targets

that correspond to each H3 sequence. This means that at some point during scFv

collection development, deconvolution of antibody-antigen pairs is required. Strategies

for "library-versus-library" interaction analysis have been developed in a number of

different systems, and will play an essential role in the deconvolution phase of highly

multiplex selections, if not in the selections themselves.

Perhaps the most widely utilized platform for the discovery of protein-protein interactions

is the yeast two hybrid (Y2H) assay. It was originally developed by splitting the GAL4

transcription factor into two domains - one for binding to DNA, and the other for

transcriptional activation. These protein fragments are fused to bait and prey, rendering

host cells white unless GAL4 is reconstituted by bait-prey binding to drive the

transcription of p-galactosidase, resulting in blue colonies on X-gal.' 1 A number of

variations on this system have been reported, including bacterial two hybrid, 3 yeast
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cytoplasmic13 4 or extracellular interaction systems. 135 , 136 A particularly interesting

innovation utilized a Cre recombinase to physically link the interacting pairs of ORF

DNA, thus paving the way for true library-versus-library Y2H screens that can be

analyzed by high throughput sequencing. 137

Further developments in protein-protein interaction screens utilize enzymatic

complementation strategies that fuse bait and prey to two separately inactive halves of a

split enzyme.1 38 , 139 This type of protein fragment complementation assay (PCA) was

first demonstrated with a split p-lactamase construct that could be used in a colorimetric

assay (either in vitro or in vivo).14 0 An improved in vivo PCA based on murine

dihydrofolate reductase (mDHFR) has proven particularly successful in a number of

studies.14 1 14 3 In this strategy, reconstitution of essential dihydrofolate reductase activity

in the presence of the E. coli DHFR inhibitor, trimethoprim, confers survival to an E. coli

host cell. Importantly, selection of scFvs, as well as cognate antigen-scFv pair matching

has successfully been demonstrated in this system.14 4' 145 A more flexible, life-death

selection system based on complementation of the yeast cytosine deaminase (yCD) has

also been reported.14 6 Several additional, alternative PCA strategies have been

developed and deserve mention. Split luciferases (both firefly and renilla) can be used in

vitro and in vivo to recover interacting proteins. 7,148 As an alternative, reconstitution of

protein splicing activity of DnaE intein enzyme produces a functional transcription factor

which then drives luciferase expression.149 Fluorescence or FRET complementation can

also be used effectively in conjunction with cell sorting1o1

Several variants of phage display have potential for library-versus-library applications.

Selectively infectious phage (SIP) utilizes dependence of M13 infectivity on the

reconstitution of a split pill protein, part of which is expressed by the bacterial host

cell.'54' 155 Some novel variation on SIP might be well suited for use with the type of

continuous evolution system described by Esvelt et al. 156 Others have reported mating

libraries of scFv-expressing M13 phage with yeast or T7-expressing antigen libraries.157'
158
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Finally, fully cell free systems have been described, which may be suitable for high

throughput library-versus-library selections. McGregor et al. have developed a platform

they termed interaction-dependent PCR (IDPCR), which could in theory be adapted to

the analysis of interacting protein pairs displayed in one of the DNA display formats (see

5.1).159 Other cell free systems rely on emulsion methods to link the genes of interacting

proteins for subsequent analysis after breaking the emulsions. 160

For multiple reasons, the library-versus-library platforms described above are better

suited to the deconvolution of existing antibody-antigen pairs, than they are to the

production of high affinity antibodies. One can thus envision a two-step production

process to create complex sets of scFvs. In the first step, selections are performed on a

mixture of antigens, and since each target antigen is relatively dilute compared to

components they might share (e.g. GST, linkers, common domains, etc), great care

must be taken to avoid the preferential expansion of scFvs that bind these "off target"

components. Negative selections and decoy strategies will thus be critical to the

success of parallel selections. In a second phase of production, the selected scFvs and

antigens would be introduced into an appropriate library-versus-library platform for the

deconvolution of binding partners. A particularly promising platform is the mDHFR

system described above, as it has been optimized by Mossner et al, to identify cognate

scFv-antigen pairs at an extremely high level of signal to noise (~107 .45 One caveat of

the in vivo systems is the transformation barrier to library complexity >109. Looking

forward to truly proteomic scale scFv selections, one can imagine ~10 4 antigens being

used to select a set of at least 105 scFvs (at a minimum to ensure maximal coverage).

The set of pairwise combinations (109) will therefore be largely undersampled with a

transformation-limited library of -10 9. One possibility would be to prepare a library of E.

coli expressing the antigen-mDHFR(N) on one plasmid, and then using a library of

lambda phage to bring in the scFv-mDHFR(C). By expressing Cre recombinase in the

bacteria, engineered plasmids could be linked together137 and if successful

complementation occurs, host cells will survive treatment with trimethoprim. The linked
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DNA can then be rescued and undergo paired end sequencing for deconvolution of the

antibody-antigen pairs.
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5.3 Algorithmic developments and the TopCoder competition

As demonstrated in this thesis, large libraries of DNA molecules can now be routinely

analyzed using next generation DNA sequencing. If the total number of sequencing

reads is sufficiently large, one can estimate each member's relative abundance within

the library population. Specific sequences become preferentially enriched or depleted in

the presence of a selective pressure, depending on their "fitness" relative to the rest of

the population. In addition, sequence abundance can change due to stochastic

fluctuation, and uncertainty is compounded by imprecision in the measurements.

Current approaches to estimating fitness rely on modeling the underlying process, and

then fitting the data to a distribution. The weakness of this approach is that the true

underlying distribution is only very rarely known, and so the goodness of fit becomes a

subjective, "good enough" assessment. In this case of PhIP-Seq data (Chapters 3 and

4), count data was fit with a generalized Poisson distribution, and required a

computationally intensive algorithm.

We have initiated a project with the "crowdsourcing" company TopCoder, Inc.

(Glastonbury, CT; www.topcoder.com) to run a public algorithmic development contest.

This approach leverages algorithm and software developers from around the world to

compete to solve problems for prize money. The Harvard Catalyst has chosen to

sponsor our project as a proof-of-principle that such crowdsourced algorithms can bring

value to the biomedical community.

We are hopeful that the outcome of this contest will be improved statistical methods for

analyzing count data that describes an evolving population. The competition requires

representative and appropriate test data, and so we have developed a general Bayesian

model to describe changes in clonal abundance due to an underlying fitness distribution.

The population is then sampled to some depth, resulting in a distribution of counts that

reflects relative clonal abundance. Competitors will be given input counts (Z) and output
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counts (X) that were generated using the Bayesian model below, and asked to infer the

fitness values (w).

Zw

X

Figure 5.3.1: Bayesian inference model of clonal fitness

Model parameters are defined as follows:

Zi are the observed pre-enrichment input counts

Xi are the observed post-enrichment output counts

X ~ Multinomial(theta)

Theta ~ Dirichlet(Zi,wi)

Theta integrates the pre-enrichment clone i abundance Zi and "fitness" wi to produce post-enrichment

abundance Xi.

Alpha can be used to inject noise into the post-enrichment counts.

The distribution of wi reflects the composition of the population, as well as the type and

strength of selective pressure which has been applied to it. Approximating wi is the goal

of the exercise, as this determines which clones to prioritize for follow up analysis.

Simulation data can easily be generated from the model, and will serve as test data for

the competition. Some subset of the overall test data will be provided to the competitors

to help them understand it, while the rest of the test data will be held back and used for

final evaluation purposes.
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We used a Markov chain Monte Carlo Gibbs sampling method to simulate a

competitor's potential solution. Figure 5.3.2 is the result of several simulations at each

value of total input reads (ni) and total output reads (no). The simulated challenge

consisted of 1,000 rows of data, and reads per row ranged from 1 to 10,000. The score

of the solution is calculated as the mean of the Spearman and Pearson correlation

coefficient between the top and bottom 2% of the inferred wi's compared to the true wi's.

The Markov chain was iterated 5,000 times.
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Figure 5.3.2: Simulated TopCoder challenge solution and scoring

Mean of Spearman and Pearson correlation for solutions after Gibbs sampling 1,000 rows of model data

with 5,000 iterations

To our knowledge, the type of problem described here has not been adequately

addressed in the scientific literature. The recent availability of both massively parallel

DNA sequencing and high throughput DNA synthesis ensures the proliferation of the

types of library-based selection screens described in this thesis. Our lab in particular

has an urgent need for robust analysis of these screening datasets, which range from

autoantigen discovery screens to screens for drug targets in breast and prostate cancer.
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5.4 T7-Pep2 and beyond

Our T7-Pep library is the first synthetic representation of a normalized, complete human

peptidome. It is composed of 36 amino acid peptide tiles, each of which overlaps its

neighbors by 7 amino acids. Many (but not most) autoantibodies recognize short, linear

motifs, and so the library peptides are sufficient for their detection even at peptide

junctions (Chapter 3). We also discovered that the 36 amino acid peptides retain a

significant degree of conformational information, since we could robustly detect GAD65

autoantibodies that did not recognize the fully reduced and denatured protein by PAGE

and western blot analysis. However, when we examined the overall sensitivity of T7-Pep

to detect a set of previously measured autoantibodies in a collection of T1 D patients, the

false negative discovery rate was found to be quite high (Chapter 4). This latter finding

should not be a surprise, though, given that antibody combining surfaces on natively

folded proteins tend to be dominated by "discontinuous" epitopes, which are patches of

~4-14 amino acid side chains formed by two or more noncontiguous peptides brought

into proximity during protein folding96'97. When the protein is artificially split up into its

constituent 36 amino acid peptides, relative antibody affinity is expected to decrease

due to 1) the loss of contacts contributed by noncontiguous residues, and 2) the

increased entropic costs of binding a free peptide as opposed to the natively

constrained surface.

In the six years that have elapsed since the production of the first T7-Pep oligo libraries,

inkjet printing of DNA has significantly advanced in terms of coupling chemistry and spot

density, thereby allowing the production of even longer, higher quality oligo libraries of

increased complexity.161 In a recent collaboration, we have designed and obtained a

300 mer peptidome library (Figure 5.4.1). This library, "T7-Pep2 ", provides a number of

display advantages, and significantly reduces the sequencing depth required for

analysis of the library.
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PCR amplification of 300 mer

300 bp

250 bp

200 bpM

150 bp _

100 bp A
75 bp W .

50 bp .

Figure 5.4.1: Results from PCR amplification of a 300 mer oligo library
(image courtesy of supplier)

T7-Pep2 oligos encode 90 amino acid peptide tiles that overlap each neighbor by 45

amino acids. The increase in protein-protein interaction detection sensitivity should be

substantial. If one considers our attempt to identify interactors of the DNA damage

protein RPA2, where we identified only 2 of 5 known binding partners due to disruption

of the interaction motif in the 3 that were missed, the benefits can be immediately

appreciated. In this example, because the T7-Pep2 overlaps (45 aa) are larger than the

RPA interaction motif, in principle none of the binding partners would be missed. In

addition, the increased degree of structural information inherent to 90 amino acid

peptides suggests that discontinuous epitopes will often be present in the library.

In addition to the conformational benefits expected in T7-Pep2 , we have incorporated

sequence design improvements. At the protein level, the new library is based on the

latest build of the consensus RefSeq database (as of June, 2011), and so is composed

of peptides far more likely to be expressed. We have also included all splice junctions
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and exon products not initially included in the library's selected full length isoforms. The

full complexity of the T7-Pep2 library is -250,000. At the nucleotide level, in addition to

removing rare codons and restriction sites for library cloning, we have randomized the

codon usage in T7-Pep2 for two reasons. First, homologous proteins often contain

stretches of highly similar sequences, and so short read sequencing may not completely

resolve two homologous peptides. In the case that the codons are randomized,

however, sequencing just a short distance into the library insert will resolve even

proteins sharing identical stretches of peptide sequence. Whereas we sequenced T7-

Pep with 100 nt reads, we expect to be able to sequence T7-Pep2 with a maximum of

50 nt reads or less. The second reason we've utilized randomized codons is because it

is expected to improve our success rate during an oligo assembly process that links

together adjacent 300 mer oligos into a library of 570 mers. This strategy is described

below.

The aim of our assembly strategy is to perform massively parallel splinted ligation of

adjacent 300 mer tiles. We have therefore encoded the peptidome on 2 sublibraries - an

"A" sublibrary and a "B" sublibrary - such that the B sublibrary can serve as the "guide"

strand for splinted ligation of adjacent A tiles. A and B sublibraries have different primer

sequences so that they can be separately amplified. Preparation of the DNA libraries for

assembly requires the mixture of essentially three engineered sublibraries (Figure

5.4.2):

The A sublibrary is prepared as two different subpools, "Al" and "A2" (these begin as

simply two aliquots from the PCR amplified A library). Al is PCR amplified with a

reverse primer that includes a Sap restriction (type IIS) site. Digestion with Sap

removes the reverse primer sequence, and leaves behind a 5' phosphate on the

"bottom" strand of the Al sublibrary. Treatment with Exol exonuclease digests away the

reverse strand, leaving behind the Al forward strand minus the reverse (3') primer

sequence. Al is now ready for assembly. The A2 sublibrary is amplified with a forward

primer that contains a U base (instead of a T) at the terminal 3' position, and a reverse

primer that is 5' phospohorylated. Once again digesting with Exol removes the bottom
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strand, and treatment with uracil DNA glycosylase releases the forward primer

sequence containing the U. The product of these reactions is the A2 sublibrary, which is

again the top strand of sublibrary A, but this time minus the forward (5') primer

sequence.

Finally, the B sublibrary is prepared by simply PCR amplification with a 5'

phosphorylated forward primer and then digestion with Exol. The result is a "B3"

sublibrary composed of the bottom strand, and with forward and reverse primer

sequences intact on both the 5' and 3' ends.

These three prepared sublibraries (Al, A2, and B3) can then be mixed together in

equimolar amounts. They should be heated to 95 C for several minutes and then

allowed to anneal at an extremely slow rate (perhaps 1 C per hour) down to about 60 C,

and then held for some time. At this point, E. coli DNA ligase can be introduced to the

system so that the correctly assembled tri-oligo complexes will enable ligation between

adjacent Al and A2 sublibrary members. It is crucial that the ligation takes place under

conditions which foster the maximal amount of specificity. After the ligation is complete,

the product may be separated by agarose gel electrophoresis, and the correct size band

(570 nt single stranded DNA) isolated. PCR amplification with the same A library PCR

primers can then be used to prepare dsDNA for subsequent cloning. The final library

should be analyzed by paired end sequencing in order to assess both the specificity of

pairing and the fraction of the library which was successfully assembled. The properly

assembled A library ("AA") will be composed of 540 nt of coding sequence for 180

amino acid peptide tiles. These will be offset from each other by 90 amino acids (since

each A library member is prepared for both 3' and 5' ligation as Al and A2,

respectively), and therefore overlap each neighbor by 90 amino acids. The assembled

"BB" library can be prepared in essentially the exact same way as the AA library, by

forming tri-oligo complexes between B1, B2 and A3, prior to ligation. A notable feature

of our novel assembly strategy is that it is recursive, meaning that adjacent 570 mer tiles

can be further brought together to form a 1,110 nt long oligo encoding a 360 amino acid

polypeptide. Given the fact that the average full length human protein is about this size,

this possibility is extremely exciting.
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Figure 5.4.2: Assembly strategy for T7-Pep2

A and B sublibraries are shown after independent amplification. The top strands are colored darker and

the bottom strands are colored lighter. Process i involves Sapl and Exol treatment. Process ii involves

Exol and glycosylase treatment. Process iii involves Exol treatment. Al, A2 and B3 are shown after

annealing and before ligation.

After amplifying and cloning T7-Pep2 , we sequenced 36 clones, and found about 2/3 of

the sequences to be perfectly true to their design (suggesting a chemical coupling

efficiency of ~99.9%). Several sequences were difficult to map, as they had large

deletions or were likely the result of chimeric crossover PCR. Several sequences had

frameshifting indels, but certainly the majority of sequenced clones were functional. This

relatively low error rate in the synthesis indeed bodes well for the eventual quality of T7-

Pep2 , as well as for the possibility of massively parallel assembly.

In addition to the human peptidome, we plan to encode a novel library of peptides that

tile the proteomes of all viral species with human tropism. Whereas a large number of

human cDNA phage display libraries have been prepared in the past, analogous

collections of viral libraries have been lacking. With the advent of the complex, high

quality, synthetic oligonucleotide libraries now available, it is finally possible to address
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this need. Applications range from vaccine development to the unbiased diagnosis of

infectious disease and even to the study of host-viral protein interaction networks. Our

database of viruses with human tropism was taken from UniProt, and after collapse onto

90% identity clusters, contains 7,546 UniRef protein sequences from 656 unique taxa.

This project is the result of a collaboration with Qikai Xu, Ph.D. and Mamie Li, Ph.D.

Qikai wrote the scripts to generate oligo sequences from given protein sequences.

Mamie cloned the T7-Pep2 library. The assembly strategy was inspired by discussions

with Sriram Kosuri, Ph.D.
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5.5 Full Length Immunoprecipitation Sequencing (FLIP-Seq)

The T7-Pep synthetic peptidome offers a complete representation all human proteins,

but it is certainly not without limitation. As mentioned above, it is well known that most

autoantibodies bind to discontinuous epitopes which cannot be represented by the 36

amino acid peptides in T7-Pep. To address this issue, we initiated a project to take

advantage of an established collection of full-length cloned genes (the "ORFeome"). In

an effort to make high quality clones for the complete set of human open reading frames

(ORFs), Vidal and others have used high-throughput PCR and subcloning technologies

to generate a collection of 15,483 full length protein-coding expression vectors.8 Our lab

has a copy of this collection in-house, as well as extensive experience working with the

ORFeome both as individual clones, and in a pooled format. 162

Ribosome display has been used extensively to successfully screen antibody libraries

against protein antigens to make high affinity binders (Chapter 2). To complement the

PhIP-Seq technology, we have assembled a ribosome display Gateway destination

vector ("pDEST-RD"), and recombined the pooled ORFeome into this vector. Prior to in

vitro translation, the library is PCR amplified to produce linear DNA template. The

ribosome display protocol of Chapter 2 is then implemented, using patient

autoantibodies as bait. ORF enrichment is subsequently amenable to high-throughput

analysis by performing RT-PCR on the selected mRNA, followed by deep sequencing of

the 3' ORF ends. This region of the transcripts remain bound to the ribosomes even

after the considerable amount of degradation that might occur during the enrichment.

Pilot experiments with the PND patients' CSF (Chapter 3) have allowed us to track the

enrichments of expected targets. Indeed by qPCR we observe robust enrichment of the

target cDNAs (Figure 5.5.1), and this enrichment persists in the Illumina sequencing

libraries.
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Figure 5.5.1: Full-length immunoprecipitation sequencing (FLIP-Seq).

A. The human ORFeome collection is pooled and recombined into the ribosome display vector. After in

vitro expression, patient antibodies are used to immunoprecipitate targeted full-length proteins. Library

rescue is then performed followed by massively-parallel DNA sequencing.

B. SYBR green qPCR analysis of cDNA from ribosome displayed ORFeome immunoprecipitated on PND

patients' antibodies. Three known target genes for these patients are shown.
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In 2011, we received a $160K Helmsley Pilot Grant through the Harvard Catalyst to

develop this technology in the context of T1 D. Many of the limitations associated with

the PhIP-Seq approach (small epitopes, library complexity, etc) are theoretically

overcome with FLIP-Seq. We have recently completed the protocol development phase

and performed the first panel of FLIP-Seq experiments. These are composed mostly of

control samples, and if successful will allow us to proceed to the screening of patient

autoantibodies. With an appropriate model of the expected background, we will be able

to calculate the P-value for autoantibody-associated enrichment for each ORF in the

library.

This project is the result of a collaboration with Jian Zhu Ph.D., who has performed most

of the experimental work.
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5.6 Ongoing and future PhIP-Seq screens

In the time that has elapsed since construction and analysis of the large PhIP-Seq

screening database described in Chapter 4, we have formed several more

collaborations and screened additional patient samples from different autoimmune

diseases.

In collaboration with Professor Angela Christiano Ph.D. of Columbia University, New

York, we have screened a collection of plasma samples taken from patients with

alopecia areata ("AA").16 3 This autoimmune destruction of the hair follicle results in

localized balding on the scalp. In 1-2% of cases, the condition can spread to the entire

scalp (alopecia totalis, "AT") or to the entire epidermis (alopecia universalis, "AU"). We

have screened 10 plasma samples: 4 are from patients with transient AA, 2 are from

patients with patchy, persistent AA, 2 are from patients with alopecia totalis, and 2 are

from patients with alopecia universalis. These samples were not run in duplicate, as we

will be looking for shared antigen involvement among the patients. It will be interesting

to compare candidate autoantigen associations with gene expression patterns within the

follicle.

In collaboration with Kai Wucherpfennig M.D., Stephen Hodi Ph.D., and Glen Dranoff

M.D., we have screened a collection of serum samples from melanoma patients both

before and after successful immunotherapy with the anti-CTLA4 antibody lpilimumab

(trade name Yervoy) in combination with the VEGF antibody Bevacizumab (trade name

Avastin).164 In Chapter 4, we compared MS patient sera drawn at two different time

points (Figure 4.4D) and found essentially no time-dependent difference in the

autoreactivity profile. This finding suggests that the autoreactive repertoire is relatively

stable and perturbations will be readily detectable. Five patients' serum samples were

obtained before and after cancer immunotherapy treatment (separated by 14 weeks),

and each of these was screened in duplicate (for a total of 20 IPs). Analysis of this

dataset will be aimed at detection of newly arising antibodies in the patients' post
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treatment repertoire, with particular attention paid to evidence of epitope spreading on

these candidate autoantigens. In the case that we observe such evidence of T cell help,

we may decide to sequence the corresponding tumor cDNAs to identify missense

mutations and thus potential T cell neoepitopes.

Vasculitis refers to a heterogeneous group of disorders characterized by inflammatory

destruction of blood vessels. They are classified according to the size and location of

the vessel they afflict. For example, Takayasu's arteritis, polyarteritis nodosa and giant

cell arteritis mainly involve arteries, and can be differentiated by their anatomical

predilection. Churg-Strauss syndrome involves destruction of the small and medium

vessels of the lung, and is frequently accompanied by anti-neutrophil cytoplasmic

antibodies (ANCA) of the p-ANCA (perinuclear staining) variety. Wegener's

granulomatosis results in destruction of the blood vessels of the nose, lungs and

kidneys, and is characterized by the presence of c-ANCA (cytoplasmic staining)

antibodies, frequently targeting proteinase 3 (PRTN3). In collaboration with Paul

Monach, M.D., Ph.D.,165 we have screened 5 sera from patients with Churg-Strauss

syndrome, 8 sera from patients with giant cell arteritis, 9 sera from patients with

Wegener's granulomatosis, 7 sera from patients with polyarteritis nodosa, and 6 sera

from patients with Takayasu's arteritis. Our analysis strategy will seek to uncover

common autoantigens among patients in these subcategories of autoimmune vasculitis.

Vaccines to elicit anti-HIV immunity have proven to be a challenge for reasons that are

not entirely clear. A number of broadly protective natural antibodies have been reported

that protect against infection,35 but these are not produced commonly in the infected

population. A number of studies have suggested that self-reactivity of at least some of

these idiotypes prevent them from arising. In collaboration with Roland Strong Ph.D., we

have screened scFv versions of two well known anti-HIV monoclonals, B12 and 4E10,

for their ability to bind peptides present in T7-Pep for comparison with a negative control

scFv, IC6. The lineage of the 4E10 antibody, which is a highly matured (mutated) clone,

has been traced back to one of two germline "ancestral" sequences. Both of these
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scFvs have been also been screened for autoreactivity that might explain their absence

from the repertoire of most infected individuals. The scFvs were coupled to epoxy

coated magnetic Dynabeads (Invitrogen) with ammonium sulfate to enhance coupling

efficiency. The beads were added directly to the T7-Pep library for overnight complex

formation and then washed in parallel with the rest of the screening plate. These

samples were run in duplicate, and so after identification of reproducibly enriched

peptides, we will compare the candidates to each other and to the IC6 control.

Understanding the spectrum of autoreactivity inherent to these antibodies may provide

insight into improved vaccination strategies.

Inclusion body myositis (IBM) is an inflammatory degenerative disease of the

musculature, most significantly afflicting the arms and legs. The etiology of sporadic IBM

is currently unknown, but the possibilities include (1) a primary T-cell mediated

autoimmune response causing muscle damage, (2) a primary degenerative process

involving abnormal protein processing leading to a secondary inflammatory response,

and (3) separate and independent immune and degenerative processes caused by an

external trigger.166' 167 We have collaborated with Stephen Greenberg M.D., who has

recently identified a 43 kDa protein, which is recognized by autoantibodies of ~50% of

IBM patients in a western blot analysis of pooled healthy muscle cell lysates.168 That

these antibodies recognize a fully denatured antigen is especially promising from the

perspective of detection by PhIP-Seq. We have therefore screened a set of six IBM

patients' sera (not in duplicate) and will search the candidate list for shared antigens

that might have protein isoforms expected to migrate at around 43 kDa by PAGE

analysis.

In addition to these disease cohort studies, we extended our previous studies of T1D,

MS and PND. Within our collection of sera from T1D patients (Chapter 4), were three

patients with antibodies that stained islet cells (ICA positivity) but who were classified as

antibody negative for all other known T1D autoantibodies. These sera were therefore

screened in duplicate, so as to identify with high confidence, all T7-Pep reactivities in
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these three unusual T1D cases. Philip L. De Jager M.D., Ph.D. has kindly provided us

with serum from an MS patient who had an unusual presentation that was accompanied

by choreoathetosis. Autoantibodies associated with post-streptococcal neuropsychiatric

disease have reported, 169' 170 but the identity of their cognate autoantigens have yet to

be identified. This patient's serum was analyzed in duplicate by PhIP-Seq and the

results will be compared to those from the collection of 29 previously screened MS sera.

Finally, CSF from a patient with PND and a clinical presentation similar to that of Patient

C in Chapter 3 has been obtained in a collaboration with Henrikas Vaitkevicius, M.D.

The studies described in this section have all been performed in a single 96 well plate,

automated PhIP-Seq run, for analysis in just 2 lanes of an Illumina HiSeq 2000, at a

cost of -$25 per sample. Between receipt of samples and submission of the pooled

sequencing libraries, about 4 days of work were required. Indeed no other antibody

profiling technology can offer the throughput, the cost, or the comprehensiveness of

PhIP-Seq technology. It should also be noted that the studies described in this section

are enabled by our "universal" reference database (established in Chapter 4), to which

new experiments can immediately and directly be compared.

Looking to the future, several lines of investigation are deemed important to pursue.

There are so many mysterious autoimmune diseases for which the target antigen is

unknown. For example, we have begun a collaboration with Daniel Brown, M.D., Ph.D.

(from the lab of Arlene Sharp M.D., Ph.D.) to screen a collection of serum samples from

children with juvenile idiopathic arthritis (JIA), a devastating joint disease suspected to

be triggered by viral infection. The list of important autoimmune diseases that stand to

benefit from cohort PhIP-Seq screening is very long, and argues in favor of setting up

some centralized core facility. It is a technology that, given its price point, should be

accessible to all researchers who can benefit from it. A centralized PhIP-Seq database

and informatics resource center (analogous to the dbGaP database of human genetic

variation) will also be essential to the realization of.the technology's full potential. As

such resources become available, continued screening of healthy control donors will
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expand our understanding of the "natural" autoantibody repertoire. It will be interesting

to compare these natural repertoires with those that spontaneously develop in the

context of a lowered threshold for autoantibody production (such as systemic lupus

erythematosus, transplant rejection, and graft-versus-host disease). Combining these

studies with expanded analyses of complex, heterogeneous diseases like T1 D, RA, and

MS will further our understanding of the processes that lead up to loss of tolerance.
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Appendix 1: Supplementary Materials for Chapter 2

Supplementary Figure 2.1: Length distribution of the H3 CDR library
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Supplementary Figure 2.1: Length distribution of the H3 CDR library
Target H3 length distribution is based on the high throughput sequencing of an individual's heavy chain

repertoire. Expected distribution is the calculated fraction of each length based on random ligation of all

H3L sequences with all H3R sequences. The observed distribution is based on the analysis of the

Illumina sequencing data from the unselected HMM scFv library.
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Appendix 2: Supplementary Materials for Chapter 3

Supplementary Figure 3.1

450000

393,053 ------------- - --- --400000

350000

E 300000

1 250000

) 200000 -

E
L" 150000

0
.~100000

50000 -

0 -

1000 10000 100000 1000000

Number of Reads

10000000 100000000

Supplementary

complexity

Figure 3.1: The effect of sequencing depth on estimated library

Chaol estimates of library complexity given by
2

Sehao, =- Sob,,+ n,
2n2

are shown as a function of simulated T7-Pep library sampling. SChao1 is the estimated complexity, where

Sobs is the observed library complexity, ni is the number of library members observed once, and n2 is the

number of library members observed twice. For the data points shown, Sobs, ny, and n2 were simulated by

randomly sampling the actual sequencing data "Number of Reads" times without replacement. SChaol was

then calculated as above. The sequencing depth actually achieved, ~20 million reads, appears to be near

saturating with respect to Chaol estimate of the library complexity, at 361,070 library members (or

-91.8% of the 393,053 resolvable clones).
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Supplementary Figure 3.2
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Supplementary Figure 3.2: Optimization of PhIP-Seq target enrichment
A. A FLAG-expressing T7 phage (depicted with red peptide) was diluted at 1:1,000 into native, non-

FLAG-expressing T7 phage to mimic a target peptide within the T7-Pep library. An anti-FLAG monoclonal

antibody (M2, Sigma-Aldrich; shown with red variable region) was diluted 1:1,000 into human serum

antibodies (shown with black variable region) to mimic a rare autoantibody within a patient's antibody

repertoire. After performing the IP, plaque lift analysis for FLAG expression was performed to determine

enrichment using the equation shown (E = enrichment; D = dilution factor = 1,000; F = fraction of FLAG

expressing clones on plaque lift). Enrichment was optimized with respect to type of beads, number of

washes, order of antibody-phage/antibody-bead complex formation, and relative concentrations of phage

and antibody.
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B. Enrichment factor was found to depend on the relative concentrations of phage and antibody during

complex formation. We thus varied these parameters independently and found an optimum at about

5x1010 pfu/ml phage and 2 mg/ml total antibody.
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Supplementary Figure 3.3
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Supplementary Figure 3.3: Comparison of PhIP-Seq experiments on different

patients
Scatter plot as in Figure 2d from text, but comparing clone enrichment p-values from two different

patients: Patient A (y-axis) versus Patient C (x-axis). Both experiments included the SAPK4 spike-in

antibody. X'ed circles were enriched by beads and SAPK4 antibody alone (no patient antibody in IP).

Filled purple and orange circles are the Patient A- and Patient C-specific positives given in Table 2 from

the text.
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Supplementary Figure 3.4
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Supplementary Figure 3.4: TGIF2LX, TRIM9 and TRIM67 autoreactivity is not

present nonspecifically in CSF
Western blotting with CSF from Patients A and C, as well as three patients with non-PND related CNS

autoimmune syndromes. In each blot, lanes 1, 2, and 3 were loaded with lysate from 293T cells

overexpressing either TGIF2LX-GFP, FLAG-TRIM9, or FLAG-TRIM67, respectively.
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Supplementary Figure 3.5
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Supplementary Figure 3.5: Immunoblots for TGIF2LX and CTAG2 reactivity in the

serum of NSCLC patients without PND

Sera from fifteen non-small cell lung cancer (NSCLC) patients were used to blot SDS-PAGE separated

293T cell lysate overexpressing either TGIF2LX (left lane) or CTAG2 (right lane), fused with C-terminal

GFP. Staining for GFP (left blot) demonstrates overexpression of TGIF2LX and CTAG2 at the expected

weights. Only patient 2 was found to have anti-CTAG2 serum antibodies (marked by *). No patients were

found to have anti-TGIF2LX serum antibodies.
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Supplementary Figure 3.6
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Supplementary Figure 3.6: Alignment among enriched peptides from TRIM9 and

TRIM67

Significantly enriched peptides (in red) from TRIM9 and TRIM67 shown with corresponding ClustalW-

aligned peptides from the homologous protein (in black). Boundaries of phage-displayed peptides are

denoted with brackets. Peptides are shown next to their -Log10 p-value of enrichment.
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Supplementary Figure 3.7
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Supplementary Figure 3.7: Quantification of T7 Candidate Dot Blots

The dot blots in Figure 3.3g were analyzed to determine the signal-to-noise ratio arising from each T7

candidate clone immunoblotted with each of the patients' spinal fluid. The data from the candidates

expected to react with a given patient's antibodies are shown in red, whereas that data from the

candidates that are expected not to react with a given patient's antibodies are shown in black.
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Supplementary Figure 3.8
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Supplementary Figure 3.8: PhIP-Seq -Log1O p-values for T7-Pep enrichment by

GST alone

GST coated glutathione magnetic beads were used to precipitate phage from the T7-Pep library. Illumina

sequencing data was analyzed using the generalized Poisson method. No library members were

significantly enriched by GST alone (P< 10~4).
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Supplementary Table 3.1

Plaques
with Plaques

Plaques multiple 0/0 Multiple with vector /b Vector
Pool analyzed inserts inserts religation Religation

T7-Pep pool 1 45 1 2.2 1 2.2
T7-Pep pool 2 39 3 7.7 0 0.0
T7-Pep pool 3 39 1 2.6 0 0.0
T7-Pep pool 4 38 3 7.9 0 0.0
T7-Pep pool 5 38 2 5.3 0 0.0
T7-Pep pool 6 39 0 0.0 0 0.0
T7-Pep pool 7 31 1 3.2 0 0.0
T7-Pep pool 8 62 3 4.8 1 1.6
T7-Pep pool 9 54 0 0.0 0 0.0
T7-Pep pool 10 31 1 3.2 0 0.0
T7-Pep pool 11 62 3 4.8 1 1.6
T7-Pep pool 12 69 1 1.4 4 5.8
T7-Pep pool 13 31 0 0.0 0 0.0
T7-Pep pool 14 31 1 3.2 0 0.0
T7-Pep pool 15 31 1 3.2 1 3.2
T7-Pep pool 16 31 0 0.0 1 3.2
T7-Pep pool 17 30 1 3.3 0 0.0
T7-Pep pool 18 30 1 3.3 0 0.0
T7-Pep pool 19 31 1 3.2 0 0.0
T7-NPep pool 1 46 3 6.5 1 2.2
T7-CPep pool 1 47 2 4.3 0 0.0
T7-NPep pool 2 48 0 0.0 3 6.3
T7-CPep pool 2 44 1 2.3 1 2.3

Total 947 30 3.2 14 1.5

Supplementary Table 3.1: Subpool analysis of multiple insertions and vector re-

ligation after cloning of the T7-Pep, T7-NPep, and T7-CPep libraries

Phage plaques from each subpool were randomly selected and PCR analyzed to examine the frequency

of multiple insertions and vector religations present within each pool.
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Supplementary Table 3.2

Pool FLAG-positive plaques T7 tail fiber positive plaques % in-frame phage
T7-Pep pool 2 44 69 64%
T7-Pep pool 3 61 94 65%
T7-Pep pool 4 43 64 67%
T7-Pep pool 5 48 70 69%

Total 196 297 66%

Supplementary Table 3.2: Subpool analysis of FLAG expression after cloning of

T7-Pep

Plaque lifts from four subpools were analyzed by immunoblotting using FLAG and T7 tail fiber antibodies

to measure in-frame and total plaques, respectively. Plaques staining positive were counted and a

percentage of in-frame, FLAG-expressing phage was determined. The vast majority of frameshifting

mutations present in the phage inserts is due to errors in DNA chemical synthesis on the releasable DNA

microarrays. In parallel oligonucleotide synthesis, sequence integrity can be compromised by

depurination side reactions, inefficient nucleoside coupling, and reversible 5'-hydroxyl deprotection

reactions, leading to mutations of the desired oligonucleotide.
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Supplementary Table 3.3

Rank T7-Pep Clone Peptide Log P GST Log P Gene Symbol
GST-RPA2

NP_054859.2_1
NP_055877.3_31

NP_006360.3_18

NP_060903.2_28

XP_372311.2_13
NP_060876.2_13

XP_372592.2_4
NP_057131.1_2

NP_003353.1_3

NP_443728.2_10

NP_004981.2_2

NP_078997.2_120

NP_004697.2_27

NP_003425.2_23

NP_996882.1_34

NP_783324.1_3

NP_000341.1_5

NP_689896.1_1

XP_095991.7_15

NP_741996.1_43

NP_997191.1_49

NP_775902.2_9

XP_496363.1_6

NP_001026.1_92

NP_006359.3_11

NP_002146.2_6

NP_065987.1_4

NP_079279.2_13

NP_055987.1_47

NP_005712.1_2

NP_079165.3_2

NP_006609.2_26

NP_149163.2_41

NP_001004750.1_11

MSLPLTEEQRKKIEENRQKALARRAEKLLAEQHQRT

TPPSMSAALPFPAGGLGMPPSLPPPPLQPPSLPLSM

TLSYNGLGSNIFRLLDSLRALSGQAGCRLRALHLSD

AVLQQNPSVLEPAAVGGEAASKPAGSMKPACPASTS

LTLYDGPNVSSPSYGPYCRGDTSIAPFVASSNQVFI

LTPVTTSTVLSSPSGFNPSGTVSQETFPSGETTISS

AALIHVPPLSRGLPASLLGRALRVIIQEMLEEVGKP

ITAEEMYDIFGKYGPIRQIRVGNTPETRGTAYVVYE

AEQLDRIQRNKAAALLRLAARNVPVGFGESWKKHLS

IRPMDDDLLKLLLPLMLQYSDEFVQSAYLSRRLAYF

ISTVGPEDCVVPFLTRPKVPVLQLDSGNYLFSTSAI

TTSTSQSAASSNNTYPHLSCFSMKSWPNILFQASAR

ITETAGSLKVPAPASRPKPRPSPSSTREPLLSSSEN

SHLSRHRKTTSVHHRLPVQPDPEPCAGQPSDSLYSL

LDRFKNRLKDYPQYCQHLASISHFMQFPHHLQEYIE

PHPSALSSVPIQANALDVSELPTQPVYSSPRRLNCA

PESQHLGRIWTELHILSQFMDTLRTHPERIAGRGIR

MNRKWEAKLKQIEERASHYERKPLSSVYRPRLSKPE

IKTRDICNQLQQPGFPVTVTVESPSSSEVEEVDDSS

ITNGLAMKNNEISVIQNGGIPQLPVSLGGSALPPLG

SVYGWATLVSERSKNGMQRILIPFIPAFYINQSELV

IHSGERPYECSECGKLFMWSSTLITHQRVHTGKRPY

PVRRGYWGNKIGKPHTVPCKVTGRCGSALVHLIPVP

LSRKLFWGIFDALSQKKYEQELFKLALPCLSAVAGA

THQWLDGSDCVLQAPGNTSCLLHYMPQAPSAEPPLE

ITVPAYFNDSQRQATKDAGAIAGLNVLRIINEPTAA

ITPTRELAIQIDEVLSHFTKHFPEFSQILWIGGRNP

SHHDTAVLITRYDICSSKEKCNMLGLSYLGTICDPL

PKGEPTRRGRGGTFRRGGRDPGGRPSRPSTLRRPAY

IIPSCIAIKESAKVGDQAQRRVMKGVDDLDFFIGDE

SPPSQLFSSVTSWKKRFFILSKAGEKSFSLSYYKDH

PPYKYKLRYRYTLDDLYPMMNALKLRAESYNEWALN

INLTIRGHEVVGIVGRTGSGKSSLGMALFRLVEPMA

IHFLFPPFMNPFIYSIKTKQIQSGILRLFSLPHSRA

Supplementary Table 3.3: Candidate RPA2 interacting proteins

PhIP-Seq was performed using GST-RPA2 as bait, and enrichment scores (-LoglO p-values estimated

by the generalized Poisson method) were compared to enrichment on GST alone.
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Appendix 3: Supplementary materials for Chapter 4

Supplementary Table 4.1

Experiment 1
Class Subclass Male Female Age Fluid Total
Breast Cancer ER+/PR+ 0 28 52.3 (7.0) serum 28
Multiple Sclerosis 19 RR, 5 SP, 2 PP, 4 ? 0 29 52.8 (6.7) serum 29
Healthy Controls 0 29 48.1 (9.5) serum 29

Experiment 2
Class Subclass Male Female Age Fluid Total
Multiple Sclerosis

RR 0 6 39.9 (7.6) serum 6
RR 5 11 45.2 (8.9) CSF 16

SPMS 10 1 44.4 (7.6) CSF 11
Controls

Meningitis 4 0 50 (6) CSF 3
PND 0 2 61(2) CSF 2

SSPE 3 1 17.5 (2.6) CSF 4

Experiment 3
Class Subclass Male Female Age Fluid Total

Type 1 Diabetes 21 18 17.4 (9.4) serum 39
Healthy Controls 21 20 20.1 (10.4) serum 41

Experiment 4
Class Subclass Male Female Age Fluid Total

Rheumatoid Arthritis
Seropositive serum 10
Seronegative serum 10
Seropositive 4 20 60.7 (18.3) synovial 24
Seronegative 8 8 54.3 (16.6) synovial 16

Controls
Gout 8 2 55.2 (14.3) synovial 10
Osteoarthritis 2 7 65.4 (11.1) synovial 9

Supplementary Table 4.1: Detailed composition of patient cohorts

Each experiment represents a different 96 well plate of samples, whose positions were randomized

across the plate. ER+, estrogen receptor positive; PR+, progesterone receptor positive; RR, relapse

remitting MS; SP, secondary progressive MS; PP, primary progressive MS; ?, unknown status; PND,

paraneoplastic neurological disorder; SSPE, subacute sclerosing panencephalitis.
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Supplementary Table 4.2

Gene Name
NP 002837.1_22
NP 683765.1_15
NP 4437241_1
NP 848627.1 13
NP_060250.2_52
NP 002560.1 4
NP_000029.2 36
NP_003627.1 11
NP_005451.1 23
NP_001930.1 22
NP_056139.13
NP 597681.1_278
NP_848572.11 1
NP 065871.2 34
NP 000029.2 67
NP 115821.1.29
XP 379774.1 53
NP_061831.1 3
NP 689824.1 15
NP 000048.1 49
NP 001012410.1_18
XP 376567.1_53
NP_055605.2_2
NP 733750.26
NP 004386.28
NP 036546.213
NP_694573.1_6
XP_496548.1_24
NP 054762.2 3
NP 001442.1 11
XP 293354.6 13
NP 068765.2 34
NP 542166.1 16
NP 775106.2 1
NP_954629.1_5
NP_078849.1_14
NP_003165.1 34
NP_061027.1_33
NP 060509.2_8
NP 849154.15
NP 002841.2_2
NP 055595.2_39
NP 002408.2 19
NP 005406.312
XP 496720.1 3
NP 660330.1_5
NP 997336.1 7
XP 496855.1_1

XP 499266.1 1

NP 000820.1 12

NP_005954.2 14

NP_597681.1_641
NP 056386.1_39
NP_056988.216
NP 006531.1 27
NP 004534.1 69
NP 940922.1 5
NP 005482.1 16
XP_497470.1 44
XP_294311.1 3
XP 380057.1 3
NP_000255.1_47
XP 372194.2 15
XP_499164.1_20
NP_002430.1 24

0.002 22.09 3.25
0.002 19.77 3.34
0.002 18.55 4.56
0.002 12.7 4.31
0.002 8.19 3.2
0.008 21.7 39.48
0.008 18.73 22.36
0.018 87.4 1.51
0.018 43.86 4.2
0.018 29.24 2.35
0.018 24.13 4.43
0.018 22.06 4.35
0.018 18.55 3.54
0.018 18.07 3.15
0.018 15.93 4.53
0.018 13.99 1.36
0.018 12.01 2.41
0.018 11.34 2.59
0.018 10.87 2.72
0.018 10.69 3.05
0.018 9.38 3.81
0.018 9.35 3.8
0.018 9.2 4.15
0.018 9.08 1.31
0.018 8.72 2.23
0.018 8.72 3.6
0.018 8.68 3.19
0.018 8.65 3.83
0.018 8.51 3.31
0.018 7.96 3.64
0.018 7.45 3.08
0.018 7.21 4.91
0.018 7.03 3.69
0.018 6.81 3.08
0.018 6.71 4.85
0.018 6.41 3.33
0.018 6.03 3.08
0.018 5.55 3.91
0.018 5.5 3.97
0.019 35.85 12.76
0.035 11.31 39.61
0.049 263.48 6.14
0.049 46.99 10.33
0.049 43.34 88.72
0.049 26.21 6.75
0.049 21.21 11.05
0.049 17.46 19.12
0.049 16.93 6.33

0.049 16.9 5.77

0.049 12.3 6

0.049 9.45 41.05

0.049 8.41 12.03
0.049 7.81 9.19
0.049 7.11 10.04
0.090 17.6 3788
0.090 17.22 24.35
0.090 8.12 52.83
0.090 7.37 18.35
0.090 7.09 5.97
0.090 6.08 8.55
0.090 5.63 8
0.138 35.59 118.26
0.138 18.02 79.15
0.138 9.04 49.86
0.138 7.77 40.61

#N/A

GRIA4 glutamate receptor, ionotrophic, AMPA 4

MYH1 myosin, heavy chain 1, skeletal muscle, adult

TTN titin
SENP6 SUMO1/sentrin specific peptidase 6
EIF5B eukaryotic translation initiation factor 5B
NCOA2 nuclear receptor coactivator 2
NEB nebulin
C120RF63 chromosome 12 open reading frame 63
MAMLD1 mastermind-like domain containing 1

#N/A #N/A
#N/A #N/A

#N/A
PTCH1 patched homolog 1 (Drosophila)
C1ORF170 #N/A

#N/A #N/A
MSH3 mutS homolog 3

PROTEIN ATLAS GNF Expression
EXOCRINE ISLET Specificity Confidence Pancreas Islet

PTPRN protein tyrosine phosphatase, receptor type, N
OXER1 oxoeicosanod (OXE) receptor 1
ADC arginine decarboxylase
RNF180 ring finger protein 180
CHD7 chromodomain helicase DNA binding protein 7
FURIN furin (paired basic amino acid cleaving enzyme)
APC adenomatous polyposis col
KCNAB2 potassium voltage-gated channel, shaker-related subfamily, I
SNCAIP synuclein, alpha interacting protein
DRP2 dystrophin related protein 2
RRP8 ribosomal RNA processing 8, methyltransferase, homolog (y
TTN titin
BANF2 barrier to autointegration factor 2
PREX1 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac excl
APC adenomatous polyposis coli
MEGF11 multiple EGF-like-domains 11
TNRC18 trinucleotide repeat containing 18
C150RF2 chromosome 15 open reading frame 2
LRRN4 leucine rich repeat neuronal 4
BLM Bloom syndrome, RecO helicase-like
SGOL1 shugoshin-like 1 (S
TNRC18 trinucleotide repeat containing 18
JAKMIP2 Janus kinase and microtubule interacting protein 2
INADL InaD-like
DBN1 drebrin 1
RAB3GAP2 RAB3 GTPase activating protein subunit 2 (non-catalytic)
ZNF75A zinc finger protein 75a
CAPN14 calpain 14
CHMP2B chromatin modifying protein 2B
FOXF1 forkhead box F1
DCAF8L2 DDB1 and CUL4 associated factor 8-like 2
BCORL1 BCL6 co-repressor-like 1
UPF2 UPF2 regulator of nonsense transcripts homolog (yeast)
LIN9 lin-9 homolog (C
LHX6 LIM homeobox 6
C60RF211 chromosome 6 open reading frame 211
SVIL supervillin
LRP1B low density lipoprotein-related protein 1B (deleted in tumors)
KDM4D lysine (K)-specific demethylase 4D
MORN4 MORN repeat containing 4
PTPRS protein tyrosine phosphatase, receptor type, S
CUL7 cullin 7
MK167 antigen identified by monoclonal antibody Ki-67
SLC20A1 solute carrier family 20 (phosphate transporter), member 1

#N/A #N/A
ZNF519 zinc finger protein 519

#N/A #N/A
#N/A #N/A

Supplementary Table 4.2: T1D candidate peptides

Candidates were enriched by at least 2 T1 D patients (n=39), and by not more than 3 non-T1 D samples

(n=248). Peptides reaching global dataset significance by permutation analysis are italicized (FDR =

10%). Epitope spreading is defined as having at least 2 peptides enriched from the same ORF in at least

one T1 D individual. Protein expression data is from the Protein Atlas database. 17 0, not expressed; 1, low

expression; 2, medium expression; 3, high expression. Confidence refers to confidence in the quality of

the antibody used. Specificity refers to the number of tissues with positive expression out of the number of

tissues examined. GNF transcript expression90 ratio is given as whole pancreas value divided by the
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T1D NonT1D Max P value Epitope
Peptide (n=39) (n=248) Fisher T1D NonT1D Spreading Symbol

o 3 10/66 Supportive 0.87
NE

2 1 46/66 Low NE
1 1 50165 UncertaIn NE

NE
3 1 41/66 Uncertain NE
2 1 65/65 Medium NE
0 0 23/66 Medium NE
1 1 60/64 Uncertain NE
2 0 10/63 Uncertain NE
2 2 57/64 Uncertain NE
0 0 34/66 Medium NE
3 51/63 Uncertain NE
2 1 47/64 Supportive NE
2 1 65/65 Medium NE

NE
NE
NE

3 1 45/65 Uncertain NE
3 2 61/62 Supportive NE
3 1 64/64 Supportive NE

NE
NE
NE

1 1 24/66 Uncertain NE
2 2 66/66 Medium NE
1 1 63/66 Uncertain NE

NE
1 0 21/66 Uncertain 1.08
0 0 27/65 Uncertain NE

NE
2 2 51/65 Low NE

NE
1 0 42/64 Uncertain NE

NE
2 2 57/66 Medium NE
2 1 66/66 Low NE

NE
NE
NE
NE

2 1 66/66 Medium NE
2 0 42/66 High NE
3 2 65/66 Supportive NE

NE
3 0 20/66 Uncertain NE

NE
NE

NE

NE

0 0 2/66 High NE

0 0 34/66 Medium NE
1 0 47/66 Supportive NE
3 2 65/66 Uncertain 2.53

NE
0 0 5/65 Supportive NE
2 2 64/64 Medium NE
0 0 27/65 Uncertain NE

NE
NE
NE

2 2 63/64 Supportive NE
NE
NE

0 0 5/66 Medium NE

#N/A

10.25
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE

4.18
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE

NE

NE

NE

NE
NE

3.56
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE



median of non pancreas tissues ("Pancreas"), and as pancreatic islet value divided by the median of non

pancreas tissues ("Islet"). NE, not enriched. Bold candidates were selected for follow up study as full

length proteins in a RIA assay.
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Supplementary Table 4.3

T1D NonT1D Max P value Epitope
ORF (n=39) (n=248) Fisher TiD NonT1D Spreading Symbol

NP_443724
NP_001442
NP_683765
NP_000618
NP_689760
NP_060656
NP_002477
NP_061982
NP_003410
NP_848572
NP_006498
NP_079020
NP_054762
NP_078849
NP_849154
XP_496548
XP_496855
XP_499266
NP 006605
NP_536350
XP_499224
XP_496720
NP_997336
NP_653313
NP_115821

XP_496255

NP_078791

NP_061831

NP_001012410

NP_004938
NP_937797

NP_057422
XP_373076

XP_496294

NP_004013

NP_000811

NP_060082

NP_005453

NP_004396

XP_290527
NP_005263

NP_003893

XP_294311

XP_380057

XP_380018

NP_640339

NP_112220

NP_116274

NP_057407

Gene Name
PROTEIN ATLAS GNF Expression

EXOCRINE ISLET Specificity Confidence Pancreas Islet
0 0.002 18.55 4.56
0 0.002 7.96 4.04
1 0.008 19.77 5.29
1 0.008 11.44 132.24
0 0.018 30.6 3.43
0 0.018 30.24 4.79
0 0.018 28.98 4.76
0 0.018 20.72 3.96
0 0.018 18.75 4.86
0 0.018 18.55 3.54
0 0.018 11.86 3.17
0 0.018 11.22 4.43
0 0.018 8.51 4.12
0 0.018 6.41 4.29
2 0.019 35.85 12.76
2 0.019 21.16 7.69
2 0.019 16.93 8.51
2 0.019 16.9 7.93
2 0.019 6.86 123.79
3 0.035 35.7 19.08
3 0.035 12.6 706.24
1 0.049 26.21 6.75
1 0.049 17.46 19.12
1 0.049 15.16 7.12
1 0.049 13.99 5.22
1 0.049 12.85 67.33
1 0.049 12.31 5.12
1 0.049 11.34 34.43
1 0.049 9.38 5.12
1 0.049 7.02 7.33
1 0.049 6.93 5.07
1 0.049 6.52 135.85
1 0.049 5.91 107.01
1 0.049 5.17 15.78
2 0.090 78.53 24.75
2 0.090 50.14 9.82
2 0.090 19.19 13.94
2 0.090 13.41 14.01
2 0.090 8.72 5.6
2 0.090 8.62 18.67
2 0.090 8.05 10.68
2 0.090 7.49 14.42
2 0.090 6.08 8.55
2 0.090 5.63 8
3 0.138 23.72 59.89
3 0.138 11.25 8.9
3 0.138 9.95 28.04
3 0.138 6.42 11.84
3 0.138 5.95 345.24

Supplementary Table 4.3: T1 D candidate ORFs

Candidates were enriched by at least 2 T1 D patients (n=39), and by not more than 3 non-T1 D samples

(n=248). Nomenclature is the same as for Supplementary Table 4.2.
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ADC arginine decarboxylase
FOXF1 forkhead box Fl
OXER1 oxoeicosanoid (OXE) receptor 1
LTBP1 latent transforming growth factor beta binding protein
BTNL9 butyrophilin-like 9
C10RF112 chromosome 1 open reading frame 112
NCBP1 nuclear cap binding protein subunit 1, 8OkDa
ALG1 asparagine-linked glycosylation 1, beta- 1,4-mannosyltr
ZNF345 zinc finger protein 345
BANF2 barrier to autointegration factor 2
REG1B regenerating islet-derived 1 beta
AL52CR8 amyotrophic lateral sclerosis 2 (juvenile) chromosome 1
CHMP2B chromatin modifying protein 2B
C60RF211 chromosome 6 open reading frame 211
MORN4 MORN repeat containing 4

#N/A #N/A
#N/A #N/A
#N/A #N/A

CHL1 cell adhesion molecule with homology to L1CAM (close
GNAS GNAS complex locus

#N/A #N/A
#N/A #N/A
#N/A #N/A

5LC23A3 solute carrier family 23 (nucleobase transporters), merr
MEGF11 multiple EGF-like-domains 11

#N/A #N/A
WDR25 WD repeat domain 25
C150RF2 chromosome 15 open reading frame 2
SGOL1 shugoshin-like 1(5
DOCK3 dedicator of cytokinesis 3
TMEM95 transmembrane protein 95
POll importin 11

LOC391747 similar to hCG1807616; similar to TBP-associated factor
#N/A #N/A

DMD dystrophin
GAS6 similar to growth arrest-specific 6; growth arrest-specif
ZCCHC8 zinc finger, CCHC domain containing 8
MAGEC1 melanoma antigen family C, 1
DBN1 drebrin 1

#N/A #N/A
GNAT2 guanine nucleotide binding protein (G protein), alpha tr
FUBP1 far upstream element (FUSE) binding protein 1

#N/A #N/A
#N/A #N/A
#N/A #N/A

TSTD2 chromosome 9 open reading frame 97
SLCO5A1 solute carrier organic anion transporter family, membe
ATG4D ATG4 autophagy related 4 homolog D (5
HERC5 hect domain and RLD 5

1 46/66 Low NE NE
0 27/65 Uncertain NE NE

NE NE
0 25/66 Low NE NE

52/64 Uncertain NE NE
2 44/66 Low NE NE

NE NE
NE NE
NE NE

51/63 Uncertain NE NE
1439.63 4000.71

2 63/65 Uncertain NE NE
0 21/66 Uncertain 1.08 4.18
2 57/66 Medium NE NE

NE NE
NE NE
NE NE
NE NE

1 47/66 Medium NE NE
3 6/66 Low 1.07 175.51

NE NE
NE NE
NE NE

1 43/65 Uncertain NE NE
NE NE
NE NE

3 62/64 Uncertain NE NE
NE NE

1 64/64 Supportive NE NE
3 57/66 Very low NE NE

NE NE
NE NE
NE NE
NE NE

0 2/66 High NE NE
32/63 Uncertain NE NE

3 65/65 High NE NE
0 1/65 High NE NE
1 24/66 Uncertain NE NE

NE NE
2 51/65 Uncertain NE NE
3 63/63 Supportive NE NE

NE NE
NE NE
NE NE

2 52/66 Low NE NE
1 39/64 Uncertain NE NE

NE NE
0 12/64 Supportive NE NE



Supplementary Figure 4.1
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Supplementary Figure 4.1: Dataset reproducibility threshold
P value threshold for reproducibility was established using the data from each sample duplicate pair.
Scatter plots of duplicate 1 versus duplicate 2 were used to generate signal to noise analyses.

A. Typical behavior of a duplicate scatterplot. As -log1 P values increase, the average mean (signal)
increases while the standard deviation (noise) decreases. The point at which they cross is considered the

reproducibility threshold.

B. Histogram plot showing where signal to noise thresholds were achieved for all duplicates in the screen.

Based on this analysis, we chose -log1 0 P value = 5 as the cutoff for reproducibility.
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Supplementary Figure 4.2
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Supplementary Figure 4.2: False negative PhIP-Seq detection rate of GAD65

autoantibodies

Sensitivity of GAD65 autoantibody detection by PhlP-Seq compared to RIA in T1 D patients and healthy

controls. PhIP-Seq values correspond to the most enriched peptide from the ORF.
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Supplementary Figure 4.3

Patient
4875

NP_009049.2_81
b-SGGPSSCGGAPSTSRSRPSRIPQPVRH HPPVLVSSA

NP_004684.1_1
b-MSRQSSITFQSGSRRGFSTTSAITPAAGRSRFSSVS

scrambled motif
b-AGRGGGASGGRGGGTPRGSGRSPGS

MS specific motif
b-GGGGGPAAGRSRGGGGGPSTSRSRG

Supplementary Figure 4.3: Dot blot confirmation of MS-specific peptide motif
Synthetic, biotinylated peptide (NeoBioSci) dotted onto a streptavidin-soaked nitrocellulose membrane

and then probed with CSF from MS patient 4875. In the PhIP-Seq assay, this patient enriched both

peptides NP_009049.2_81 and NP_004684.1_1. We interpret the results to mean that the 7 amino acid

motif is not sufficient for antibody binding. In addition, steric hindrance likely prevented antibody binding to

the NP_009049.2_81 motif.
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Supplementary Discussion

Titin autoantibodies have long been investigated in association with myasthenia gravis

(MG), since they occur in 20-30% of patients with this autoimmune disease.172 , 173 The

main immunogenic region of titin was mapped to a 30 KDa fragment spanning amino

acids 7025-7311 of the novex-2 isoform (NP_597681.3).m A second, recently

discovered, MG-associated immunodominant region was mapped to amino acids

10,319-10,532.175 Within our dataset, three individuals (one healthy, one MS patient,

and one BC patient), demonstrated reactivity against a single peptide from the first

region (7,193-7,228), and one BC patient from our study had antibodies targeting a

peptide within the second region (10,441-10,476). It would be interesting to determine

whether these peptides are in fact the minimal epitopes of the MG-associated titin

antibodies. Strikingly, one titin peptide (8,179-8,214), which is not derived from either

MG-associated region, was enriched by 85 individuals, making it the third most

commonly enriched peptide by healthy controls (Figure 4.1A). To our knowledge,

autoreactivity toward this peptide has not been previously described, but due to its

prevalence in healthy controls, is unlikely to have pathological consequences.
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