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Abstract—This paper presents a Park transform-based method
for preprocessing stator current data from a motor and trans-
forming it into a form that is useful for fault detection and
diagnostics. The proposed method generates power signatures
that are invariant to the initial electrical angle of the voltage
when the motor is connected to the utility, and can also adapt to
variations in the electrical angle of the supply voltage over time. A
modified nonlinear least squares algorithm identifies and tracks
the parameters of the supply voltage over time, ensuring that
the supply voltage and the argument of the Park transformation
remain synchronized. Experimental results are presented that
illustrate the method’s effectiveness for identifying changes in
the mechanical load on a 3/4 HP refrigeration compressor.

I. INTRODUCTION

As the cost of energy rises and electromechanical systems
perform a growing share of important functions in our soci-
ety, methods that assess the reliability of these systems are
increasing in importance. Such methods may be designed to
enable condition-based or “just-in-time” maintenance. Mon-
itoring systems may assume a range of complexity, from
the installation of a simple sensor that produces an alarm
when a fault condition is manifested, to a system which
monitors and identifies trends in the system state and model
parameters which are indicative of either normal or abnormal
events or operation. Fully automatic monitoring and control
systems may also be used to adjust the system operation by
incorporating such information.
Rotating electric machinery is subject to a wide variety

of faults at both the electrical and the mechanical ports.
Some representative electrical faults include broken rotor bars,
shorted windings, and rotor eccentricity. Mechanical faults
may also occur, including bearing failure, load imbalance, and

other related faults that are associated with the particular load
being driven. One popular strategy for identifying these faults
involves the sole use of electrical measurements to identify a
variety of either electrical or mechanical faults. These methods
are appealing because the lack of mechanical sensors may
reduces both the cost of fault monitoring and the probability
of false alarms due to sensor failures.
Fault diagnosis through electrical monitoring has received a

great deal of attention over the last 20 years [1], [11], [15]–
[17], and has been successfully used to identify many different
electrical and mechanical fault conditions. One particularly
popular approach is referred to as motor current signature
analysis (MCSA) [4], in which the spectra of the monitored
currents are analyzed and coupled with a priori knowledge
to identify a number of different faults. These methods have
also been extended to monitor other mechanical quantities,
such as rotor speed, by only using measurements of the
electrical terminal variables [3], [5]. Methods have also been
developed which can simultaneously identify both electrical
and mechanical parameters of models of the machine, and
which can evaluate the condition of the machine from the
behavior of these parameters [9], [14].
Condition monitoring methods based upon the analysis of

the machine’s time domain behavior, such as non-intrusive
load monitoring [8], [10] can be quite useful, due to the
fact that many different faults evince characteristics that
change with time. Such methods can provide a variety of
information to an equipment operator or facilities manager,
such as power consumption and diagnostic capabilities. Such
electrical monitoring techniques are challenging to implement
in AC systems for at least two reasons. First, the relevant
changes in the stator currents are modulated on top of the
base utility frequency (e.g. 60 Hz), so that the waveform must



effectively be demodulated to facilitate the implementation of
high-accuracy change detection methods. Second, observations
of individual phase currents on multi-phase machines during
the transient startup period of the machine are dependent upon
both the initial conditions of the system (e.g. initial phase of
the utility and the initial position of the rotor and the coupled
mechanical system) and the dynamic behavior of the machine.
Observations of one current thus may not adequately reveal the
possible manifestations of faulty behavior.
The well-known Park or coordinate-frame transformation

for three-phase machinery can provide a useful framework
for these diagnostics. These rotating transformations are com-
monly used for machine design and control, but the simplifi-
cations that result from applying the transformation can also
be useful for condition monitoring [2]. This research exam-
ines the application of the synchronously rotating reference
frame to diagnostic methods for induction machines in HVAC
applications, such as refrigeration compressors.
A principal benefit of this transformation is that the 60 Hz

components of the electrical waveforms can be eliminated by
synchronizing the transform with the electrical angle of the
utility. The resulting transformed waveforms can expose small
changes in the machine behavior [10]. The transformation of
the observed stator currents will also produce identical results
regardless of the starting angle because the initial angle of the
utility is incorporated into the transformation matrix.
In an active control application, the rotating frame transfor-

mation is relatively easy to implement, because the controller
specifies and measures the characteristics of the drive wave-
forms. The transformation is much more difficult to implement
on machines that are connected directly to the electric utility,
however, since the characteristics of the utility voltage must
be modeled and measured accurately to identify the electrical
angle. This becomes especially challenging when the electrical
angle of the drive waveforms is not a simple affine function
of time.
This paper proposes a method for performing condition

monitoring on three-phase electromechanical devices by using
the Park transform to process the voltages and currents mea-
sured at the terminals of the machine. The method described
can track and compensate for non-affine variations in the elec-
trical angle θe(t) of the drive voltage, allowing this condition
monitoring approach to work on machines connected directly
to the electric utility. Both simulations and experimental results
demonstrating the effectiveness of this condition monitoring
method are provided. Section 2 of this paper will describe the
nonidealities of the electric utility that have a direct effect on
the implementation of the Park transformation, as well as the
method that was used to compensate for these nonidealities.
Section 3 will briefly describe the experimental platform which
was used to test this condition monitoring method and then
present results indicating its effectiveness. Section 4 will then
conclude this paper with a review of the method which has
been developed.

II. THE ADAPTIVE PARK TRANSFORM

In general, one of the difficulties inherent in describing
the behavior of most rotating electric machinery is that the
machine inductances are a function of both the electrical and
the mechanical angles of the machine. To simplify this process,
R.H. Park developed a transformation that made the analysis
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Fig. 1. vds and vqs transformed without correction. The sinusoidal variation
in these waveforms is due to the variation in φe(t).

of electric machines more straightforward by transforming
the motor equations into a reference frame that is rotating
synchronously with the fields in the machine [12]. This Park
transformation can be written as⎡
⎣fd
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or, in a more compact form,

fdq0 = T(θ)fabc (2)

where f stands for the variable to be transformed, such
as voltage, current, or magnetic flux. The argument of this
transformation θ = ωt can theoretically be chosen arbitrarily;
one useful choice for induction machines is the electrical angle
of the voltages driving the stator windings. In this case, the
measured variables are transformed into the reference frame
that is rotating synchronously with the driving voltages.
To implement this transformation, the angle of the electric

utility θe must be estimated at all points in time to maintain
synchronization between the transformation matrix and the
observed data. Unfortunately, this angle cannot be modeled
as a simple affine function of time, e.g., θe(t) = ωet + φe,
due to nonidealities present in the system. A more accurate
functional description of the electrical angle of the utility is
θe(t) = ωet + φe(t). This model for the voltage waveform on
the electric utility does not capture its full harmonic content;
for example, the prevalence of switching power supplies
and other loads typically leads to substantial third-harmonic
distortion of the utility voltage. However, the simplicity of
this representation is useful, and this model will therefore be
referred to extensively in this paper because it captures the
effective changes in the electrical angle that occur, as well as
the potential error in the estimate of the electrical frequency
ωe.
While this variation in θe may not be initially expected,

it can be observed in experimentally measured data from
the electric utility, as illustrated in Figure 1. The frequency
of the utility ωe was estimated for this waveform by fitting
the first two line cycles of the data to the model of the



utility voltage V cos(ωet + φe), where both ωe and φe are
constant. This figure illustrates the effect of applying the Park
transformation with θe(t) = ωet + φe and neglecting the
variation in φe(t). Since vds and vqs would be constant if
the electrical frequency was an affine function of time, the
variations apparent in this figure indicate that the estimated
electrical frequency varies with time. Among other sources of
distortion, neighboring load currents can induce voltages in the
utility impedances that periodically distort the zero crossings
or phase of the utility voltage waveform on a relatively short
timescale. This experimental data suggests that this problem
can indeed be formulated as a problem in which the time-
varying parameter θe(t) must be estimated from observations
of the signal V cos(θe(t)).
In general, the problem of identifying the argument θe of

a sinusoidal function v(t) = cos(θe(t)) is highly nonlinear,
as the residual between a set of observations and the output
of the associated model will have a large number of local
minima. These local minima can be problematic for gradient-
based minimization methods, such as the Gauss-Newton or
Levenberg-Marquardt algorithms, as they can cause them to
converge to a parameter that is far away from the global
minimum. One approach that was found to assist in avoiding
the trap of local minima is described in detail in [13], and is
outlined briefly below.
This solution to the problem is based upon the observa-

tion that many types of system identification problems, such
as those based upon sinusoids or sums of sinusoids, have
residuals that are often nearly linear in the parameters for a
small subset of observations [14]. One technique for solving
these nonlinear least squares problems that incorporates this
observation identifies the number of datapoints for which
the residual is expected to be linear, and then performs the
minimization over this subset of datapoints. By solving a series
of minimization problems in which the size of this subset
of observations is gradually increased, the convergence of
nonlinear least squares is greatly improved.
For example, suppose that one had a set of observations

of a sinusoid generated by yobs = cos(2πtk), and that the
model for this signal is cos(μtk), with the resulting residual
expressed as

rk = ŷ(μ, tk) − yobs(tk). (3)

Since this data is nearly linear for tk < 1/8, the procedure will
first identify the number of samples K for which tk < 1/8.
Once this length K of the subset was identified, the nonlin-
ear least squares problem is solved using only the first K
datapoints of yobs, thus taking advantage of the fact that the
residual of the problem is nearly linear in this region to ensure
that no local minima are present. Once the final parameter
estimate μ(1) for this subproblem is obtained, it is then used
as the initial guess to solve the next subproblem, in which the
first 2K datapoints of yobs are used to find the next parameter
estimate μ(2). This process continues until the number of
datapoints over which the minimization takes place is equal to
the number of datapoints in yobs, and the parameter estimate
μ�(N/K)�, which is calculated for the length of the dataset,
represents the final least-squares estimate for the problem.
The advantages of this method can be seen by considering

the loss function described. The normalized residual r(μ̂)/N

Fig. 2. Loss function showing the effect on r(μ̂) of varying both the initial
guess μ̂ and the number of points K used in forming the residual.

to be minimized in this case is

r(μ̂)

N
=

1

N

N∑
k=1

(sin(μ̂kTs) − sin(μkTs))
2 (4)

where Ts is the sample period for the waveform, k is the
sample index that runs from 1 to N , the true parameter of
the system is μ, and the present estimate of the parameter
is μ̂. Figure 2 illustrates this loss function when the number
of samples of the sine wave is relatively large, so that many
periods of the sine wave are represented in the data. By using
the algorithm described above to find the estimate μ̂ by solving
the series of minimization problems in which the number of
samples of the observed dataset K is slowly increased from a
small number to the length of the dataset N , the susceptibility
of nonlinear least squares to local minima is greatly reduced.
While this approach to solving the nonlinear least squares

problem has proven to be effective, it necessarily takes a long
time to converge if the region over which the problem is linear
is very small in comparison to the size of the dataset. An
additional observation for this problem that points to a means
of improving the method’s performance in this regard is that
one would not expect the estimate of μ to change appreciably
for tk > 1, and the method could presumably move very
quickly through the remainder of the dataset in the absence
of measurement noise. This observation can be integrated into
the method by supposing that a Taylor series exists for the
model, so that the residual can be rewritten

ŷ(μ, tk)

rk =

︷ ︸︸ ︷(
ŷ(μ, 0) +

d

dt
ŷ(μ, 0)tk +

d2

dt2
ŷ(μ, 0)t2k + · · ·

)
−

yobs(tk)︷ ︸︸ ︷(
a + btk + ct2k + · · ·

)
. (5)

Since many problems that can be written in the above form
are dominated by their DC- and first-order coefficients, it
is possible to control the size of the dataset by analyzing
the output of the Taylor series expansion of the residual r.
The method can set the size of the increment on the dataset
by comparing the coefficient of the second-order term to
an established threshold, thereby ensuring that the method
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Fig. 3. D- and Q-axis voltages transformed with phase correction.

will converge. By using the Taylor series expansion of the
residual, the time that the method takes to identify the desired
parameters can be improved markedly without sacrificing the
ability of the method to avoid local minima. Additional details
regarding the development and application of this method can
be found in [13].
To compute this time-varying estimate of θe, it is necessary

to identify the parameters V , ωe and φe(t) for the observed set
of balanced three-phase voltages. As all of the time-varying
components of θe(t) can be incorporated into the term φe(t),
the base frequency ωe and the amplitude V of the waveform
are relatively constant and can be estimated from the first two
line cycles of the data. The previously described parameter
identification method was then used to update the estimate of
θe after every successive cycle, so that the time variations of
φe are represented by differing successive estimates of this
quantity. These updates of the phase could have been made
more frequently, but laboratory experience suggested that this
update frequency adequately tracked the changes in φe(t) over
time. An additional benefit of this method for tracking the
phase angle of the utility is that it does not require large
amounts of data storage, as records of only a few cycles
of observations must be stored at a given point in time. In
addition, while it would have technically been possible to track
θe(t) directly rather than only φe(t), the computational burden
of re-estimating θe at every datapoint has minimal benefit over
updating φe once every cycle.
After these estimates of φe are computed at the beginning

of every line cycle, they are used to calculate θe at each
sample point. These values are then used to implement the
Park transformation from Equation 2 on the measured voltages
and currents. The results obtained from implementing this
transformation on experimentally measured data are discussed
in the following section.

III. EXPERIMENTAL RESULTS

Initial testing of the parameter estimation method was
performed in Matlab for the purposes of evaluating its perfor-
mance by processing the same dataset illustrated in Figure 1.
The efficacy of this method for tracking the variation in θe

can be seen in Figure 3, as the constant nature of these wave-
forms suggests that the transformation was able to adequately
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compensate for the time-varying and unmodeled behavior in
the observed voltage waveform. It is important to note that
the angle between the voltage phases does not vary, but rather
only the phase φe(t = T ) at any instant T in comparison to
the phase at time t = 0.
Two sets of predictions of θe were generated from the

measured set of data used in Figures 1 and 3 to compare the
measured dependence of the electrical angle of the utility with
the expected electrical angle. This data was fit to the nonlinear
model described in Section II, and the resulting fit is referred
to as θe,nonlin. Since the utility is normally modeled by
θe,lin(tk) = ωetk+φe, standard linear least squares techniques
were used to fit this linear model to the vector θe,nonlin(t),
making it possible to obtain non-time-varying estimates of the
parameters ωe and φe. The nonlinear time-varying component
of the angle θe[k] can then be observed by forming the residual
θe,nonlin − θe,lin. This is illustrated in Figure 4.
Figure 5 further illustrates the effects of the time variations

in the model for the utility voltage. Rather than calculate
the frequency of the utility voltage from the first two line
cycles, an FFT was performed on the whole waveform, and



the peak of this FFT was used to estimate the line frequency.
This has the effect of finding the average frequency over the
complete waveform. This estimate of the frequency was used
to fit the measured data to the usual model for the utility
voltage with constant ωe and φe, producing an estimate of
the electrical angle θe,FFT . Figure 5 illustrates the residual
θe,nonlin, obtained from the nonlinear estimation process and
θe,FFT . While the process of using the FFT might be expected
to improve the estimate of ωe, this plot confirms the fact
that the apparent variations in θe should not attributed to a
particular estimate of ωe, but rather to the fact that the phase
φe effectively varies with time.
A number of induction motor simulations were run to

investigate the changes in ids and iqs that occur during the
startup transient with an increased load torque. A standard
fifth-order induction motor model [6] was used to simulate the
behavior of the machine. After transforming the constitutive
relations into the synchronous reference frame, the following
equations describe the machine behavior:

dλqs

dt
= vqs − Rsiqs − ωeλds (6)

dλds

dt
= vds − Rsids + ωeλqs (7)

dλqr

dt
= vqr − Rriqr − (ωe − pωr)λdr (8)

dλdr

dt
= vdr − Rridr + (ωe − pωr)λqr . (9)

where λ denotes the flux linkages with the rotor variables and
parameters reflected to the stator, ωe is the frequency of the
stator excitation (i.e. the frequency of the drive voltage) in
rad/s, ωr is the rotor speed in rad/s, and p is the number
of pole pairs. The voltages vds and vqs represent the driving
voltages in this application, while vdr and vqr are set to zero
due to the fact that the rotor bars are shorted together on a
squirrel-cage machine. The flux linkages and the currents are
related by the following equations:

λqs = Llsiqs + Lm(iqs + iqr) (10)

λds = Llsids + Lm(ids + idr) (11)

λqr = Llriqr + Lm(iqs + iqr) (12)

λds = Llridr + Lm(ids + idr). (13)

The torque of electrical origin produced by the motor is given
by

τe =
3

2
p(λqridr − λdriqr). (14)

This torque τe is related to the mechanical load of the fan by
the usual force balance equation,

dωr

dt
=

1

J
(τe − βω2

r ). (15)

To simulate the change in mechanical load due to the
presence of liquid in the compressor cylinder, the damping
coefficient β was changed between these simulations. The
resulting d-axis current ids from these simulations can be
seen in Figure 6. While there is initially no difference in the
transient behavior of ids, there is a large difference between the
two conditions after approximately 0.17 sec. This effect makes
physical sense, as the load torque βω2

r is minimal while ωr

is small, so that most of the energy is accelerating the inertia
of the rotor. As the rotor accelerates, the torque βωr becomes
much larger, and has a substantial effect on ids.
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Fig. 6. Simulated ids for higher load torque in comparison to lower load
torque.

Further testing of this algorithm was conducted as part
of an experiment designed to study the feasibility of using
this condition monitoring method to detect changes in the
mechanical loading on the pistons of a 3/4 HP refrigeration
compressor due to the presence of liquid in the cylinders. A
set of three LEM LA-55P current transducers and three LEM
LV-25P voltage transducers were installed on the compressor
and used to measure the voltages and currents at the motor
terminals. These sensors were interfaced to an 8 channel
custom data acquisition system that operated at a sampling
rate of 8 kHz/channel, and a Debian Linux-based PC was used
to acquire the data.
Two sets of data were collected with this experimental setup

to verify the behavior that was observed in the simulated
results. The first of these datasets was collected under normal
conditions, while the second set was collected when there was
liquid refrigerant present in the compressor cylinder. Care was
taken during these experiments to ensure that the compressor
started from identical conditions (i.e. piston position and
winding temperature) for each dataset. Figure 7 shows the two
sets of traces corresponding to the compressor starts with and
without the presence of liquid in the compressor cylinder.
These results demonstrate the effectiveness of electrically-

based methods for the identification of liquid refrigerant in
the compressor cylinder. It is particularly notable that there is
considerable qualitative agreement between the shapes of the
simulated ids and the experimentally observed ids in that the
effect of the liquid on ids is manifested predominantly at the
end of the transient. The similarity of the steady state values of
ids can be attributed to the fact that no liquid is present in the
cylinder after it is ejected, causing ids for this case to be iden-
tical to ids when no liquid was ever present in the cylinder. A
condition monitoring method to identify the presence of liquid
could thus be constructed by analyzing the interval between
0.6 and 0.12 sec to distinguish between faulty and non-faulty
behavior. This figure shows very clear differences between
the two sets of traces corresponding to compressor starts
in normal operating conditions and under faulty operating
conditions, suggesting that this condition monitoring method
would be useful for identifying this mechanical fault using



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

5

10

15

20

25

i d
s

(A
)

time (s)

liquid

no liquid

Fig. 7. ids during transient slugging for 2 tests with liquid in the cylinder
in comparison to 2 tests without liquid in the cylinder.

only observations of electrical variables. Additional related
results and development of this condition monitoring method
can be found in [7].

IV. DISCUSSION

This paper described a method for preprocessing observed
three-phase current data from electromechanical systems that
could be used for condition monitoring that is invariant to both
changes in the initial electrical angle and to variations in the
electrical angle with time. This method was demonstrated to
be effective both on a simulation of an induction machine and
also on an experimental refrigeration compressor connected
directly to the utility.
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