Reconstruction of ECG Signals in The Presence of Corruption
Gartheeban Ganeshapillai, Jessica F. Liu, and John Guttag

Abstract—We present a novel approach to identifying the corrupted regions in a multi-parameter physiological signal, and reconstructing them using the information available in the correlated signals. The method is specifically designed to preserve the most clinically significant aspects of the signals.

We use template matching to jointly segment the multi-parameter signal, Morphological Dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template.

Experiments carried out on the MIT-BIH Arrhythmia Database, a multi-parameter database with many clinically significant arrhythmias, demonstrate the effectiveness of the method. It improved the classification accuracy of the beat type by more than 700% on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 250%.

I. INTRODUCTION

A modern Intensive Care Unit (ICU) employs several bedside monitors to track the state of patients. They allow continuous monitoring of a patient, and inform medical staff of changes in the status of the patient. Automated analysis systems are typically used to analyze these signals in real-time. These systems critically depend on continuous uninterrupted real-time monitoring of the physiological signals such as Electrocardiogram (ECG), Arterial Blood Pressure (ABP), and the Photo Plethysmogram (PPG). Unfortunately, these signals are often severely corrupted by noise, artifacts, and missing data, which can result in a high incidence of false alarms and missed detections [1], [2], [3].

In this paper, we address the problem of identifying the corrupted regions in a multi-parameter signal, and reconstructing them in a clinically useful way using the information available in the correlated signals.

We consider a multi-parameter signal represented by a matrix $S_{n \times m}$, where each column represents a signal (e.g., ECG) and each row represents a point in time. There are m synchronous single parameter signals in S. Each cell $s_{i,j}$ contains one sample. For simplicity, we assume that all the signals are sampled at the same rate. Our goal is to identify the corrupted regions, and estimate the actual sample values on that region.

We first identify the segment boundaries of the multi-parameter signal in the presence of significant amounts of transient corruption spanning multiple columns and rows of the matrix S.

We use a template, a short multi-parameter signal, and match it with a sliding window of the multi-parameter signal. The template is regularly updated to reflect the time evolution of the signal. The initial template is derived from an archived signal. We continuously extract non-overlapping windows from S, and identify the boundary in the window by finding the prefix of the window that most closely matches the template. The matching is done using Weighted Time Warping (WTW) that minimizes the weighted Morphological Dissimilarity across all the parameters. The warped distance between two signals gives the Morphological Dissimilarity. The weight represents the estimated quality of a single parameter signal in the multi-parameter signal, which is again computed by the Morphological Dissimilarity of the single parameter signal with its counterpart in the template [4]. The signal quality estimated from the Morphological Dissimilarity is used to find the corrupted regions.

For reconstruction, we use a database of templates. Here, a template is a segment of the multi-parameter signal that was chosen from previously seen regions that were believed to be free of signal corruption. When we come across the segments of high signal quality, we add them to the database; thus, we learn new morphologies.

The method is based on finding the closest match (template) to the corrupted segment from the database, time-warping the template to fit the corrupted segment’s interval, and replacing the corrupted segment with the result. The closest match is found using the DTW cost. As a preliminary step, we represent the segments by features. This has the dual advantages of providing a level of abstraction that preserves clinically relevant information and speeding up the matching.

The organization of this paper is as follows. In Section II, we discuss the related work. In Section III, we present our method and provide the mathematical framework of our work. In Section IV, we discuss the measures of performance used to evaluate our method, and present the results of a series of tests in which comparisons are made using each of the performance measures. Finally, in Section V, we summarize our work.

II. RELATED WORK

There have been attempts to exploit the information available in the correlated channels of a multi-parameter physiological signal to assist automated medical systems to produce results that are more reliable. For example, researchers have tried to fuse information from various ECG channels, and other signals to robustly estimate the heart rate [1], [5], [6].
Fusion of multiple signals often requires signal quality estimation, and researchers have developed several measures [7], [8]. ECGSQI [5] provides the Signal Quality Estimates (SQE) of ECG signals, ABPSQI [9], [10], [5] provides the SQE of ABP signals, and Hjorth parameters [11] are used to identify abnormal PPG pulses [6].

The problem of reconstructing a corrupted multi-parameter physiological signal was formally posed in the 11th annual PhysioNet/CinC challenge. The data collected from MIMIC II project was used for the contest [12].

There have been studies [13] on the noise reduction on ECG signals using bandwidth filters. They claim to improve the SNR on the P, Q, and T waves without damaging the QRS complex [13]. Researchers have also attempted to identify the morphological features of ECG signals with added noises and abnormalities [14].

III. Method

Goal: Let $S \in \mathbb{R}^{n \times 2}$ be a multi-parameter time series consisting of two single parameter physiological signals. The goal is to identify the corrupted segments $\{U_i\}$, and reconstruct the samples in those segments.

Procedure: First, we detrend the signal, and remove baseline wander using a low pass filter\(^1\). Then, using the initial template $Z_{d \times 2} = \{Z_j \in \mathbb{R}^d\}_j$, we segment S into a set of quasiperiodic units $U = \{U_i\}$ where $U_i \overset{def}{=} S_{[p_i,p_i+1]}$, where each unit corresponds to a single heart beat [4]. Here, $S_{[p_i,p_j]}$ denotes the window in the target sequence S from time $t = p_i$ to $t = p_j - 1$. We next run the reconstruction algorithm starting at the first segment U_1, continuously evaluating the SQE of each segment to determine whether it needs reconstruction, and then reconstruct those that do. We also add new segments to our database if they are of high signal quality. This process is iterated over each of the segments.

An iteration: We start each iteration with a segment $U_i = S_{[p_i,p_i+1]}$ from S. Using Morphological Dissimilarity, we determine whether the segment is corrupted and requires reconstruction.

If the SQE is below a threshold $q_i < \zeta_{\text{low}}$, we proceed with the reconstruction process. First, we build the feature representation F_i of the segment. The signal S is a 2-parameter signal. Hence, U_i contains two synchronized signals, and F_i is the joint representation of the both. We search the database, using F_i as the key, and find the top 20 matches. We find the best match on this set using the DTW distance (c_{ij}) between the clean channel of the segment U_i and the corresponding channel in the top matches. If the cost of the match is above a threshold $c_{ij} > \kappa$, we abort the reconstruction process on the current segment, and continue to the next segment. Otherwise, we use the best match as a template for reconstructing the corrupted signal. We time-warp the channel V_i^b from the matching template V_j, with the clean channel U_i^b from the segment U_i, to obtain the alignment w. Then, we replace the corrupted channel U_i^b of the current segment U_i with V_i^b, which is obtained from the template V_j by warping V_i^b using the alignment w.

If the signal doesn’t need reconstruction, i.e., if the SQE is above a threshold ($q_i > \zeta_{\text{high}}$), we build the feature representation F_i of the segment, and add the entry $(F_i \Rightarrow U_i)$ to the database. If the length of the database exceeds a given limit, we evict the least recently used entry.

A. Feature Representation

As discussed earlier, by representing segments as feature vectors, we both achieve a level of abstraction that highlights physiologically significant aspects of the segments and greatly speeds up the matching process.

In reconstruction, we search the database for the closest match to the current segment. Since we want to do it in real-time with a growing database, we need to do this quickly. The use of features decrease time complexity of a database lookup from $O(n\ell^2)$ to $O(\ell^2)$, where n is the length of the database, and ℓ is the length of the sample.

Since the segments are usually of different lengths, a direct comparison function, such as the Euclidean distance, is not suitable. On the other hand, variable length metrics such as DTW and LCSS are of quadratic time complexity. Our feature representation represents a segment with a vector of fixed length c, hence two sequences can be compared in $O(c)$ time. The features also help avoid over-fitting.

Every segment U_i contains two correlated synchronized signals, and F_i is the joint representation of the both. Table I lists the set of features in the feature representation $F_i = \{f\}$.

\(^{1}\)http://www.mit.edu/~gari/CODE/FILTERS/
TABLE I: Set of features that are used to represent a segment.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_1 - f_6$</td>
<td>Pre, first-half, second-half, and post R-R intervals</td>
</tr>
<tr>
<td>f_7</td>
<td>Square root of the total energy</td>
</tr>
<tr>
<td>$f_8 .. f_{15}$</td>
<td>The fraction of the energy in the k^{th} section</td>
</tr>
<tr>
<td>f_{16}</td>
<td>Kurtosis of the sample values</td>
</tr>
<tr>
<td>f_{17}</td>
<td>DTW distance between the signal in the segment, and the median of the same signal</td>
</tr>
<tr>
<td>$f_{18} .. f_{27}$</td>
<td>DTW of k^{th} subsequence</td>
</tr>
<tr>
<td>f_{28}</td>
<td>Fraction of spectral energy in the QRS complex of the first signal in the segment</td>
</tr>
<tr>
<td>f_{29}</td>
<td>The maximum sample value</td>
</tr>
<tr>
<td>f_{30}</td>
<td>The minimum sample value</td>
</tr>
</tbody>
</table>

First row of the table contains the features related to R-R intervals, followed by the features of the signal in the segment.

B. Reconstruction

We want to reconstruct the corrupted channel U^{b}_i of the current segment U_i with the corresponding channel V_i^a from the replacement candidate V_i.

We first verify the correctness of the match found. We accept the reconstruction only if the cost of the match c_i is less than a threshold. If the cost c_i is greater, we flag the segment U_i so that automated systems could avoid producing false alarms in those regions.

Since the length of the current segment U_i, and the length of the candidate found (template) V_i are typically unequal, we next time-warp the template with the current segment. Time-warping is done by finding the optimal alignment $\phi(k)$ between the clean channel of the current segment U^a_i and the corresponding channel of the template V^a_i (Equations 1-2).

$$\phi(k) = (\phi_1(k), \phi_2(k)), 1 \leq k \leq K$$ \hspace{1cm} (1)

$$C_{\phi}(V^a_i, U^a_i) = \sum_{k=1}^{K} d(V^a_i[\phi_1(k)], U^a_i[\phi_2(k)])$$ \hspace{1cm} (2)

We then replace each sample of the corrupted channel $U^{b}_i[x]$ with the time-warped sample $V_i^b[x^*]$, which is obtained from the median of the samples with which it is aligned.

$$x^* = median(\phi_2(k)), 1 \leq k \leq K \text{ and } \phi_1(k) = x$$ \hspace{1cm} (4)

Each reconstruction takes $O(t^2)$ time.

IV. EXPERIMENTAL RESULTS

In our experiments, we use the multi-parameter ECG data from MIT-BIH Arrhythmia Database at Physionet.org [15]. The database has 48 ECG waveform records; each contains two channels and is 30 minutes long. The recordings were selected to include a variety of clinically significant arrhythmias. This helps us evaluate the robustness of our method. We use the 39 records from this set that are relatively free of significant corruption.

We add synthetic corruption to one channel, and then evaluate our method by quantifying the effectiveness of the reconstruction on this corrupted data.

We use the following criteria for comparison.

1) **Q1 : Similarity**: We measure the similarity between the reconstructed data (S^b*), and the original uncorrupted data (S^b) by measuring the Euclidean residual distance r of the reconstructed data.

$$r = \sqrt{\frac{\sum_{i=1}^{n} (S^b_i[k] - S^b_i[k])^2}{n \times \sigma_S^2}}$$ \hspace{1cm} (5)

We normalize the Euclidean distance to make it comparable across the records.

2) **Q2 : Reproducibility**: Our ultimate goal is to enable the automated analysis systems produce more reliable results. Hence, we test our method’s ability to improve the classification accuracy of a clinically relevant task. We run a widely used Premature Ventricular Contraction (PVC) detector\(^2\) on the original data (S^b), the artificially corrupted data (S^b*), and the reconstructed data (S^b*), and record their agreements. If the PVCs are detected within 150 ms on two signals, we consider it an agreement. We quantify the ability to preserve the clinically relevant events by counting the disagreements. The number of disagreement $n_{\text{disagreement}}$ is evaluated between the original data (S^b), and the artificially corrupted data (S^b*), and between the original data (S^b), and the reconstructed data (S^b*). The disagreement Δ is finally expressed in terms of the fraction between the total number of disagreements $n_{\text{disagreement}}$, and the total number of beats n_{beats} in the region.

$$\Delta = n_{\text{disagreement}}/n_{\text{beats}}$$ \hspace{1cm} (6)

A. Experiment 1 : Effectiveness of Reconstruction

We build our database from the first 80% of each record and corrupt the last 20% of the first channel with the additive white gaussian noise (AWGN) at 0dB SNR.

TABLE II: Experiment 1 : Summary

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>c_r</td>
<td>c_r</td>
</tr>
<tr>
<td>Median</td>
<td>47.64</td>
<td>1.01</td>
</tr>
<tr>
<td>Average</td>
<td>47.64</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table II summarizes the results. It shows that our method reduces the residual distance (Q_1) by 250% for a signal corrupted at SNR 0dB. Further, on average, it was able to improve the classification accuracy (Q_2) by more than seven fold. As an example, Figure 1(b), shows the reconstruction on Record 200.

B. Experiment 2 : Different SNR levels

Again, we build our database from the first 80% of each record. We corrupt the last 20% of the first channel with AWGN at SNR levels of 10 dB, 0 dB, and −10 dB.

Table III summarizes the average disagreement (Δ), and the residual distance (r) for the reconstructed signal (S^b*).

\(^2\)http://www.eplimited.com/software.htm
Somewhat surprisingly, we get the worst performance at the highest signal to noise ratio. In addition, at low SNR levels, the performance does not deteriorate with decreasing signal quality. The relatively poor performance at a SNR of 10 dB can be attributed to the fact that the signal is only mildly corrupted, and therefore our algorithm chooses to not attempt to reconstruct it.

Nevertheless, our method improves the classification accuracy by 500% – 700%, and the similarity by 200 – 250% at all three noise levels.

TABLE III: Experiment 2

<table>
<thead>
<tr>
<th>Similarity : r_{gb}</th>
<th>Disagreement : Δ_{gb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.410</td>
</tr>
<tr>
<td>0</td>
<td>0.031</td>
</tr>
<tr>
<td>-10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

C. Experiment 3: Simulated real-world corruptions

We alter the first 20% of the first channel with the following types of corruptions at SNR = 10 dB: Additive White Gaussian Noise (AWGN), Electromagnetic Interference (EM), Muscle Artifact (MA), and Baseline Wander (BW). We use MIT-BIH Noise Stress Test Database\(^3\) and nstdbgen\(^4\) to generate the non-Gaussian noise.

TABLE IV: Performance against different types of real-world corruptions

<table>
<thead>
<tr>
<th>Corruptions</th>
<th>Similarity : r_{gb}</th>
<th>Disagreement : Δ_{gb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWGN</td>
<td>0.410</td>
<td>0.031</td>
</tr>
<tr>
<td>EM</td>
<td>0.36</td>
<td>0.023</td>
</tr>
<tr>
<td>MA</td>
<td>0.19</td>
<td>0.003</td>
</tr>
<tr>
<td>BW</td>
<td>0.05</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table IV summarizes the average disagreement (\(\Delta\)), and the residual distance (\(r\)) for the reconstructed signal (\(S^*\)). We achieve the best performance for Baseline Wander. In preprocessing, we remove baseline wander using a low-pass filter. The baseline wander removal algorithm was effective at 10 dB SNR, and was able to cancel the noise itself. The worst performance was observed for AWGN, and EM noise.

V. Summary

We presented a method for reconstructing a corrupted signal in a multi-parameter physiological signal using the information available in a correlated signal.

Using the data from the MIT-BIH Arrhythmia Database, we conducted a series of experiments to test the effectiveness of our method. We added synthetic corruption to the data, and used this artificially corrupted data to evaluate our method. We quantify the effectiveness of the reconstruction by comparing the reconstructed data, and the corrupted data with the original data. Our evaluation criteria were normalized residual distance and classification accuracy.

For AWGN, our method improved the classification accuracy by more than 700%, and increased the similarity to the original signal, as measured by the normalized residual distance by 250%.

While we have tested our method only on ECG data, we believe that it should be useful in other multi-signal settings in which one or more signals are corrupted and at least one correlated signals is transiently uncorrupted [16], [17].

Going forward, we plan to test our algorithm on a database containing simultaneous recordings of ECG, ABP, PPG, and CVP.

References

\(^3\)http://www.physionet.org/physiobank/database/nstdb

\(^4\)http://www.physionet.org/physiotools/wag/nst-1.htm