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Figure 1: To compute single scattering in scenes with occluders (left) we compute a depth image from the camera, and a shadow map from
the light. After epipolar rectification, each row of the shadow map is a 1D heightfield. We optimize the computation of the scattering integral
by using an efficient data structure (a 1D min-max mipmap, center) over this heightfield. This data structure helps compute the scattering
integral for all camera rays in parallel. Our method can render complex high-quality scenes with textured lights (right) in real-time (55 FPS).

Abstract

Light scattering in a participating medium is responsible for several
important effects we see in the natural world. In the presence of
occluders, computing single scattering requires integrating the illu-
mination scattered towards the eye along the camera ray, modulated
by the visibility towards the light at each point. Unfortunately, in-
corporating volumetric shadows into this integral, while maintain-
ing real-time performance, remains challenging.

In this paper we present a new real-time algorithm for computing
volumetric shadows in single-scattering media on the GPU. This
computation requires evaluating the scattering integral over the in-
tersections of camera rays with the shadow map, expressed as a 2D
height field. We observe that by applying epipolar rectification to
the shadow map, each camera ray only travels through a single row
of the shadow map (an epipolar slice), which allows us to find the
visible segments by considering only 1D height fields. At the core
of our algorithm is the use of an acceleration structure (a 1D min-
max mipmap) which allows us to quickly find the lit segments for
all pixels in an epipolar slice in parallel. The simplicity of this data
structure and its traversal allows for efficient implementation using
only pixel shaders on the GPU.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shadowing

Keywords: volumetric scattering, global illumination

1 Introduction

In real world scenes, moisture or dust in the air often results in visi-
ble volumetric shadows and beams of light (Figure 1, right) known
as “god rays” or “crepuscular rays.” Rendering these light scat-
tering effects is often essential for producing compelling virtual
scenes. Simulating all scattering events is prohibitively expensive,
especially for real-time applications, and approximations are used
instead. The “single-scattering” model [Blinn 1982] greatly simpli-
fies rendering, while still producing realistic effects. In this model,
a light ray travels from a source, and may get scattered into the eye
at any point in the participating medium, while attenuating along
the path. This simplification has allowed participating media with
shadows to make its way into modern computer games. Like a lot
of previous work, we further assume that the scattering medium
is homogeneously distributed through the scene. This assumption
could be relaxed somewhat, as discussed in Section 4.3.

The simplest method for rendering single scattering is ray march-
ing. A ray is cast from the camera eye through each pixel and the
scattering integral is approximated by marching along that ray and
checking if each sample is lit or shadowed using a shadow map. To
generate high-quality images, however, many samples are needed
and several methods for accelerating this process have been pub-
lished in the last couple of years. Our key insight is that we can
apply a simple acceleration structure to intersect camera rays with
the shadow map, which we treat as a height field. Furthermore, we
use epipolar rectification of the shadow map to transform the 2D
height field into a collection of independent 1D height fields, one
for each epipolar slice. We also use singular value decomposition to
approximate the smoothly varying terms of the scattering integral,
avoiding an analytical solution and allowing us to support textured
lights. Our main contribution is using a simple but fast acceleration
structure (a 1D min-max mipmap, Figure 1, middle) to find the lit
segments for all pixels in the image in parallel. This procedure is
similar to the work by Baran et al. [2010]; however, our actual scat-
tering integral computation, which is the key step of the algorithm,
is both much simpler to implement and faster on a GPU.



2 Related Work

There have been several papers written on solving the single-
scattering integral (semi)-analytically [Sun et al. 2005; Pegoraro
and Parker 2009; Pegoraro et al. 2010], but they necessarily ignore
shadowing, which is often required for realism and is the effect on
which we concentrate. Other methods, such as volumetric photon
mapping [Jensen and Christensen 1998; Jarosz et al. 2008] and line
space gathering [Sun et al. 2010] compute solutions to more dif-
ficult scattering problems, such as volumetric caustics or multiple
scattering, but even with GPU acceleration they are far from real-
time on complex scenes.

Max [1986] described how to compute the single-scattering integral
by finding the lit segments on each ray using shadow volumes inter-
sected with epipolar slices. The integral on each lit segment is com-
puted analytically. Epipolar sampling [Engelhardt and Dachsbacher
2010] speeds up ray marching by computing it only at depth discon-
tinuities along image-space epipolar lines. The scattered radiance at
all other points is interpolated along these lines, but this can cause
temporally-varying artifacts, as discussed in prior work [Baran et al.
2010]. Wyman and Ramsey [2008] use shadow volumes to cull
ray marching in unlit areas. Hu et al. [2010] recently presented
an algorithm for interactive volumetric caustics, using Wyman and
Ramsey’s [2008] method for single scattering. Though this method
works well for simple occluders, it becomes slow in the presence
of complex visibility boundaries. Several methods [Dobashi et al.
2000; Dobashi et al. 2002] compute the scattering integral by con-
structing slices at different depths, rendering the scattering at these
slices, and using alpha-blending to combine them. Imagire and col-
leagues [2007] use a hybrid approach that incorporates both slices
and ray marching.

The algorithm of Billeter et al. [2010] is similar to that of
Max [1986], but generates the shadow volume from the shadow
map and uses the GPU rasterizer to compute the lit segments. This
latter method is exact up to the shadow map resolution. It is very
fast for low-resolution shadow maps, but slows down significantly
as the shadow map resolution approaches 40962 and the number
of vertices in the shadow volume overwhelms the pipeline. Un-
fortunately, the large and complex scenes we target require such
high-resolution shadow maps to avoid aliasing. For high-resolution
shadow maps, Billeter et al. perform online decimation of the
shadow volume, but this is expensive and we did not observe a sig-
nificant performance benefit from this in our experiments. Like
Billeter et al., we also compute the lit segments, but while their
outer loop is over the shadow volume elements, our outer loop is
over pixels. This precludes the need for sending a large number of
vertices to the GPU and allows us to handle high-resolution shadow
maps with ease. Additionally, unlike their method, we support tex-
tured lights, and our method can be combined with epipolar sam-
pling [Engelhardt and Dachsbacher 2010] for further acceleration,
although we have not tested this.

The algorithm of Baran et al. [2010], (which we call “incremental
integration”), uses epipolar rectification to reduce scattering inte-
gration to partial sums on a rectilinear grid and uses a partial sum
tree to accelerate this computation. While this method has good
worst-case upper bounds and is very fast on the CPU, it requires
an incremental traversal of multiple camera rays in a particular or-
der, making it difficult to utilize the full parallelism provided by a
GPU. Implementing their method on a GPU also requires using a
GPGPU API, such as CUDA or OpenCL. Unfortunately, as of this
writing, these are not supported on all graphics cards, such as those
found in current game consoles. In contrast, our method sacrifices
worst-case guarantees, but allows all camera rays to be processed
in parallel using only features found in DirectX 9 pixel shaders. We
also do not require camera rectification, avoiding the need to pro-

cess twice as many camera rays as pixels (due to the non-uniform
sampling in polar coordinates) and reducing aliasing. Overall, we
achieve a significant speedup at slightly better quality, even on high-
complexity scenes, like a forest, which is a worst-case scenario for
our algorithm.

Min-max mipmaps have previously been used for accelerating soft
shadows [Guennebaud et al. 2006], global illumination [Nichols
and Wyman 2009], as well as ray tracing geometry images [Carr
et al. 2006] and height fields [Mastin et al. 1987; Musgrave et al.
1989; Tevs et al. 2008]. In our case, thanks to rectification, we only
need 1D min-max mipmaps, whose traversal is simple and efficient.
Also, unlike the other raytracing applications, we need all intersec-
tions between the height field and the ray, not only the first.

3 Method

Our technique uses the following high-level per-frame procedure:

1. Render a depth map from the camera and a shadow map from
the light.

2. Perform epipolar rectification on the shadow map (Sec-
tion 3.2).

3. Compute a low-rank approximation to all but the visibility
terms in the scattering integral (Section 3.2).

4. For each row of the rectified shadow map, compute a 1D min-
max mipmap (Section 3.3).

5. For each camera ray, traverse the min-max mipmap to find lit
segments and accumulate the scattering integral.

6. If the epipole is on or near the screen, compute the scattering
near the epipole using brute force ray marching.

This pipeline is similar to that of incremental integration [Baran
et al. 2010]; our technical contribution is to eliminate the dynamic
data structure (partial sum tree) used for integration, replacing it
with a static min-max mipmap, which is simpler, allows all rays to
be processed in parallel, and avoids the need for camera rectifica-
tion.

In the rest of this section we define the problem, briefly describe
the common elements shared with incremental integration, and de-
scribe in detail how we incorporate min-max mipmaps for integra-
tion.

3.1 Single Scattering Formulation

In the single-scattering model, the radiance scattered toward the eye
is integrated along each camera ray, up to the first surface. At every
point on this ray, if the light source is visible from that point, a cer-
tain fraction of that light gets scattered towards the eye. Light also
gets attenuated as it travels from the light source to the scattering
point and to the eye. This leads to the following equation for the ra-
diance L scattered towards the eye (assumed to be the origin) over
a camera ray whose direction is v:

L(v) =

∫ d

0

e−σts V (sv)σs ρ(θ)Lin(sv) ds, (1)

where d is the distance to the first occluder along the ray, σs is the
scattering coefficient, σt = σs + σa is the extinction coefficient,
V (sv) is 1 if the point sv can see the light and 0 if it is in shadow,
Lin(sv) is the radiance incident to point sv assuming no occlusion,
and ρ(θ) is the scattering phase function with θ being the angle be-
tween v and the light direction. For the simplest case of a uniform
directional light source with no extinction along light rays, Lin(sv)
is a constant. For an isotropic point light source at x,

Lin(sv) =
Ie−σtd(sv)

d(sv)2
, d(sv) = ‖x− sv‖, (2)
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Figure 2: Epipolar coordinates within an epipolar slice for a di-
rectional light (top) and a point light (bottom). The α coordinate
determines the slice.

where I is the light intensity. For a textured light source, the inten-
sity I is a function of sv projected to light coordinates.

3.2 Rectification and Low-Rank Approximation

Epipolar rectification is an assignment of coordinates (α, β, γ) to
every world space point p such that camera rays are indexed by
(α, β) and light rays are indexed by (α, γ). The world space is
partitioned into epipolar slices, planes that contain the eye and that
are parallel to the light direction, and the α coordinate specifies
p’s slice. The coordinate β specifies the view ray within the slice.
For directional lights this is the angle to the light direction, and for
point lights this is the angle between the view ray and the direction
from the eye to the light source. The γ coordinate specifies the
light ray within the slice, measured as the distance to the eye for
a directional light source or the angle to the eye for a point light
source. We illustrate this in Figure 2. Each pixel of the shadow map
corresponds to a point in world space. In the rectified shadow map
(Figure 3), rows are indexed by α, columns by γ, and the element
stored at (α, γ) is the β coordinate of the camera ray at which that
light ray terminates. Because we do not need to process the camera
rays in any particular order, we do not rectify the camera depth map.

Using a change of variables, the scattering integral (1) of an untex-
tured light may be written in epipolar coordinates as:

L(α, β) =∫ D(α,β)

0

e−σts(β,γ)V (α, β, γ)σs ρ(β, γ)Lin(β, γ)
ds

dγ
dγ, (3)

where D(α, β) is the γ coordinate of the light ray at which the
camera ray (α, β) is blocked. Except for the visibility component,
the integrand only depends on β and γ, not α. Thus, we may write

L(α, β) =

∫ D(α,β)

0

V (α, β, γ) I(β, γ)dγ, (4)

where I has all of the other terms baked in. We would like to pre-
compute

∫
I(β, γ)dγ, but that would require approximating the

integral once for each β, which would be expensive. Instead, we
note that all terms of I vary smoothly. We can therefore approxi-
mate I(β, γ) as

∑N
i Bi(β)Γi(γ) for a small N . We compute this

approximation by sampling I in a 64-by-64 grid, taking the SVD
(on the CPU, as this needs to be done only once per frame), and
using the singular vectors associated with the topN singular values
(we use N = 4). We then obtain

L(α, β) ≈
N∑
i

(
Bi(β)

∫ D(α,β)

0

V (α, β, γ)Γi(γ)dγ

)
. (5)

Approximating the integral as a Riemann sum, and using the struc-
ture of the visibility function we obtain

L(α, β) ≈
N∑
i

Bi(β)
∑

γ<D(α,β)
S[α,γ]>β

Γi(γ)∆γ

 , (6)

where S[α, γ] is the rectified shadow map. This allows us to com-
pute only N prefix sum tables, instead of one for each β.

3.3 Min-Max Mipmap Construction and Traversal

Up to this point, our algorithm is the same as incremental inte-
gration, except that we do not need to rectify the camera depth
map. The difference is in how the actual integral, i.e., the inner
sum of Equation (6) is evaluated. Incremental integration uses
interdependence between camera rays within a slice, maintaining∑
γ V (β, γ)Γi(γ)∆γ in a partial sum tree for each slice. In con-

trast, we process each ray independently, which enables massive
parallelism. For each ray, we find the segments (γ−, γ+) for which
S[α, γ] > β—in other words, the lit regions of that ray. We then
use a table of prefix sums of Γi to compute the integral over the
segments. Our speed is due to using a 1D min-max mipmap to
accelerate finding the lit segments.

Each row of the rectified shadow map S represents a 1D heightfield
in an epipolar slice and we want to quickly find the intersection of
that heightfield with a camera ray (Figure 4, middle). We compute
a complete binary tree on each row with every node of this tree
storing the minimum and maximum values of S below that node
(Figure 4, top). To compute these trees, we use log2 d ping-pong
passes each of which computes a level from the level below (d is
the number of light rays—the resolution of γ). The two buffers are
then coalesced into a single one with each row laid out level by level
(Ahnentafel indexing), starting with the root at index 1.

γ

α

Shadow Map Rectified Shadow Map

Figure 3: We perform rectification on the shadow map (left). This
turns epipolar slices (radial lines emanating from the epipole, left)
into rows of our rectified shadow map (right). For this directional
light, the radial distance from the epipole is the coordinate γ which
specifies a column within each slice. The value of each pixel in the
rectified shadow map gives the β coordinate of the occluder.
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Figure 4: The min-max mipmap (top) corresponding to a row of
the rectified shadow map in the scene from Figure 1. To compute
the scattering integral for any view ray in this epipolar slice (mid-
dle), we traverse the tree by thresholding the min-max mipmap with
the β value of the view ray (bottom). Nodes entirely in shadow
are colored black, nodes entirely lit are colored white, and nodes
containing visibility boundaries are grey.

After the tree is constructed, for each camera ray we traverse it us-
ing a recursive algorithm (Figure 4, bottom), which we efficiently
implement in a pixel shader without recursion (see pseudocode in
Figure 5). We have a camera ray at “height” β and we start from the
root of the tree. When we process a tree node, if β is less than the
minimum, that node is completely lit and we add the integral over
the range of that node to the output. If β is greater than the maxi-
mum, the node is completely shadowed and we skip it. Otherwise,
we recursively process the two child nodes. To avoid the recursion,
when we are done with a node, instead of popping the call stack,
we move to the next node, which is either the node at the next index
location or its ancestor that is a right child.

3.4 Textured Lights

To simulate an effect like stained-glass windows, it is useful to treat
the light as having a texture. Similarly to the shadow map, we rec-
tify the light texture map, to obtain T (α, γ), which gets multiplied
into the integrand. Because this function may not be smoothly vary-
ing, we do not bake it into I, leaving it as a separate term. Equa-
tion (6) becomes:

L(α, γ) ≈
N∑
i

Bi(β)
∑

γ<D(α,β)
S[α,γ]>β

Γi(γ)T (α, γ)∆γ

 . (7)

proc INTEGRATE-RAY(x, y)
1 float depth = D[x, y]
2 float (α, β, γ1) = TO-EPIPOLAR(x, y, depth)
3 int node = 1 // start at the root
4 int2 (γ−, γ+) = RANGE(node)
5 float4 out = (0,0,0,0)
6 do
7 if min[node, α] ≤ β < max[node, α]
8 node = node ∗ 2 // recurse to left child
9 else // fully lit or fully shadowed
10 if β < min[node, α] // fully lit node
11 out = out + Γsum[min(γ1, γ+)]− Γsum[γ−]
12 end if
13 node = node + 1 // advance to next node
14 while node is even // while node is a left-child
15 node = node / 2 // go to parent
16 end while
17 end if
18 (γ−, γ+) = RANGE(node)
19 while node 6= 1 && γ1 > γ− // while ray extends into node
20 return dot(B[β], out)

Figure 5: Pseudocode for integration using a min-max mipmap.
By the time this function is called, min[node, α] and max[node, α]
contain the min-max mipmap, and Γsum stores the prefix-sums of Γ.
The function RANGE returns the range of γ coordinates that are
below the given tree node.

Instead of precomputing prefix sums of Γi(γ), we need to precom-
pute prefix sums of Γi(γ)T (α, γ), which is a lot more work be-
cause it needs to be done per α. We do this using O(log2 t) ping-
pong passes, where t is the γ-resolution of the rectified light texture.

3.5 Implementation Details

Our implementation includes minor optimizations over the method
presented above. To avoid a potentially expensive while loop in
the shader for going up the tree, we only go up at most one level,
replacing the while on line 14 with an if. This optimization has also
been used for heightfield rendering [Tevs et al. 2008].

Our method often computes the integral over a single lit segment
of a ray using multiple tree nodes. To avoid adding and subtracting
Γsum terms that just cancel out, we delay the update to the integral
(line 11 in the pseudo-code) until the next unlit tree node we en-
counter or the end of the traversal. This optimization is especially
useful for colored textured light sources because we need to access
24 floats (three color channels by four singular vectors for the start
and end) instead of eight.

In our textured light source tests, we use a light texture whose res-
olution is lower than the shadow map (512× 512 in our examples).
To achieve good performance, we do both the rectification and the
prefix sum computation at the lower resolution and access the re-
sulting texture (line 11) using hardware linear interpolation. The
error this introduces is not noticeable.

4 Results and Evaluation

We implemented our method in DirectX 11 although we do not
use features beyond those in DirectX 9. All our tests were done
on an Intel Core i7 960 (3.2 GHz) with an NVIDIA GeForce 480
GTX GPU at 1280 × 960 resolution. We use four scenes for
our tests: a church scene (SIBENIK), a church with a textured
light (SIBENIKTEX), a forest scene (TREES), and an open moun-
tain scene (TERRAIN). The number of epipolar slices used in our
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Figure 6: A comparison of our method to brute force ray marching and incremental integration. The GPU implementation of incremental
integration does not support colored textured light sources and is therefore omitted. The reported times are for the scattering computation
only, excluding the time to render the shadow map, the depth map, and to compute direct lighting.

algorithm and incremental integration is scene-dependent, suffi-
cient to guarantee that each camera ray is within half a pixel of
a slice [Baran et al. 2010]. We used an isotropic phase function
ρ = 1/4π. In timing the scattering computation, we do not in-
clude the time necessary to render the camera depth map or the
unrectified shadow map, as these operations are part of a standard
rendering loop.

4.1 Performance

Table 1 shows how long various stages of the algorithm take for
our scenes with a 4K×4K shadow map. Figure 6 shows a com-
parison against brute force ray marching at equal time and equal
quality. Markus Billeter and his colleagues kindly provided us with
an implementation of their method [2010], which we slightly sped
up (roughly by 10%) by using a triangle strip instead of individual
triangles to render the light volume. However, this implementa-
tion does not support directional lights and to compare with their
method, we used a far-away spotlight in our scenes, as shown in
Figure 7. Table 2 shows our performance and that of Billeter et
al. as the shadow map resolution varies from 1K to 4K. Our method
is faster (except at 1K shadow-map resolution on TERRAIN) and
scales better to high-resolution shadow maps. Note that for com-
plex scenes, even a 2K shadow map resolution is insufficient and
leads to temporal aliasing, as shown in our video. Our video also

Our Method Billeter et al. 2010
26 ms12.5 ms

Figure 7: Single scattering in SIBENIK using a shadow map res-
olution of 4096 × 4096 rendered using our method (left) and the
method from Billeter et al. [2010].

has a comparison to epipolar sampling [Engelhardt and Dachs-
bacher 2010], demonstrating that our method is significantly faster
for similar quality.

4.2 Complexity Comparison

It is instructive to understand the number of operations our method
performs, compared to recent work. Let s be the number of slices,
p be the number of pixels, and d be the number of depth samples
(the resolution of the γ variable, equal to the shadow map reso-
lution in our experiments). Let l be the number of contiguous lit
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Total Scattering
(Our Method)

Total Scattering
[Baran et al. 2010]

Total Scattering
(Brute Force)

SIBENIK 3.6 1.3 - 2.5 6.8 0.3 11 31 (2.8×) 113 (10×)
SIBENIKTEX 3.7 1.4 1.2 2.5 12.2 0.3 18 - 144 (8×)
TREES 7.3 1.3 - 2.6 19.8 - 24 43 (1.8×) 286 (12×)
TERRAIN 11.2 1.4 - 2.5 2.6 - 7 29 (4.1×) 43 (6×)

Table 1: This table shows the breakdown of the timing of our method among various stages for a single frame, as well as the timing of
incremental integration and brute force ray marching at equal quality. The total times are for scattering only and do not include the time for
rendering the shadow map, the camera depth map, and direct lighting, as these operations are part of the standard pipeline and necessary
for all of the methods. When comparing to incremental integration, we also omit its (roughly 10 ms) CUDA/Direct3D interop overhead in the
numbers above. The shadow map resolution is 4096× 4096. All times are in milliseconds.
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SIBENIK TREES TERRAIN

1K 2K 4K 1K 2K 4K 1K 2K 4K

Our method 5.6 8.6 12.5 19.2 27.2 38.2 5.3 6.7 9.0
[Billeter et al. 2010] 7.2 11.4 26.0 37.2 59.4 93.2 3.7 9.2 28.1

Our speedup 1.3× 1.3× 2.1× 1.9× 2.2× 2.4× 0.7× 1.4× 3.1×

Table 2: Timings for computing scattering using our method and the method of Billeter et al. [2010] on versions of our scenes with a spotlight
instead of a directional light. The timings for each scene are for three shadow map resolutions and are given in milliseconds. For the terrain
scene at 4K resolution, we used the adaptive version of Billeter et al.’s method because it was 1.8ms faster than the non-adaptive version.

segments—so for a scene with no objects, l = p, and for a scene
like TREES, l� p. Let l′ be the number of contiguous lit segments
up to the first blocker (i.e., whose integral is actually relevant)—so
p ≤ l′ ≤ l. Our method performs O(l′ log d) operations, of which
precisely 2l′ are accesses to Γ. The method of Billeter et al. [2010]
performs Θ(l) operations, of which 2l are computations of the ana-
lytic scattering model. They avoid the log d tree overhead, but have
to process segments that do not contribute to the scattering inte-
gral to avoid z-fighting when rendering the light volume. Having to
process invisible segments and large numbers of polygons for high-
resolution shadow maps offsets their advantage from not having to
use trees to find light-shadow transitions. For incremental integra-
tion, the complexity is Θ((p+sd) log d), but while p+sd is almost
always much smaller than l′, that algorithm has a large working set
and relatively poor parallelism. This makes incremental integration
slower on the GPU even on scenes with very large l′, like TREES.

4.3 Discussion and Limitations

Like several other methods for speeding up volumetric shadows, we
assume a homogeneous isotropic medium. The isotropy assump-
tion allows us to compute the SVD only once per frame: for an
anisotropic medium, I becomes a function of α. It is a smooth
function of α, so it may be possible to compute the SVD at a few
values of α and interpolate between the results, but we have not
tested this. A similar method may work for a very smoothly vary-
ing nonhomogeneous medium. Note that an anisotropic medium is
not the same thing as an anisotropic phase function, which is only
a function of β and γ and which our method supports (although we
have not verified this experimentally).

Reducing aliasing, both spatial and temporal, is a challenge for all
methods based on shadow maps. Aliasing in the shadow map leads
to aliasing in the scattering integral. If in the next frame, a poly-
gon edge is rasterized differently, that may cause a sudden jump
in the calculated inscatter that manifests itself as a temporal arti-
fact. Our video demonstrates this problem. Using a high-resolution
shadow map is necessary to keep the aliasing to a minimum. In
addition, our method introduces a little extra aliasing when it rec-
tifies the shadow map and when a camera ray is “quantized” to a
specific epipolar slice. This aliasing is relatively minor, but can be
seen on close examination. The aliasing in incremental integration
is strictly greater than in our method: additional aliasing is intro-
duced by the camera rectification and unrectification. Incremental
integration also supports reducing the rectified shadow map reso-
lution and antialiasing in the spirit of deep shadow maps [Lokovic
and Veach 2000]. Because our method scales much better to higher
resolution shadow maps, we have not had to do this.

Unlike in the method of Billeter et al., our method’s rectified
shadow map depends on the view, and not only on the scene. Their
method is therefore much better suited than ours for a static scene
with a fixed light: it will produce no temporal aliasing because the
shadow map is fixed and the number of triangles in the shadow vol-
ume can be greatly reduced as a precomputation. Using the SVD
and precomputing texture prefix sums can also replace the analytic
formula in Billeter et al.’s method to enable it to support textured
lights. We have not explored the effect this would have on their
performance. Conversely, for an untextured light, instead of using
an SVD, we could use a (semi-)analytical model in our method to
compute the integrals over lit segments of the camera rays.



5 Conclusions

We have presented a real-time algorithm for rendering volumetric
shadows in single-scattering media. Overall, we achieve a signifi-
cant speedup or better quality compared to the state of the art. Our
key insight was to apply a simple acceleration structure to intersect
camera rays with the shadow map, which we treated as a height
field. We furthermore used epipolar rectification of the shadow map
to reduce the problem of intersecting with a 2D height field to inter-
secting with 1D height fields. Our main contribution was using a 1D
min-max mipmap to find the lit segments for all pixels in the image.
This data structure sacrifices the worst-case guarantees provided by
Baran et al. [2010], but its simplicity allows us to better exploit the
parallel processing capabilities of the GPU by processing all cam-
era rays simultaneously. We showed that our technique scales well
to large shadow map resolutions and, due to good use of the GPU,
even to scenarios with highly complex visibility functions. The re-
sulting algorithm is simple to implement and only requires features
available on current game consoles.
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