Nanostructures and Energy Conversion

M. S. Dresselhaus
Massachusetts Institute of Technology

Group members
Yu-Ming Lin,
Steve B. Cronin,
Marcie R. Black,
Oded Rabin
Dr. Gene Dresselhaus

Collaborators
Prof. Gang Chen, MIT, Mech E
Prof. Jackie Y. Ying, MIT, Chem E
Dr. Ted Harman, Lincoln Lab.
Dr. Jos Heremans, Delphi Corp
Prof. Elena Rogacheva, Kharkov State U.
Nanostructures will influence future trends in heat transfer because:

• Fundamental new laws of nature can be explored widening our understanding of important physical phenomena and opening up new research directions.
• New physical phenomena are introduced that can be exploited for practical applications.
• Interfaces play a more important role in nanostructures. Many more types of interesting interfaces are possible.
• Parameters that cannot be controlled independently in bulk systems, can however be controlled at the nanoscale.
Fundamental New Laws
Electrical Conductance Quantization in 1D

- Conductance $G = I/V$
- Conductance quantization $G = n \frac{2e^2}{h}$
- Ballistic transport in 1D systems
- Usually observed in very short contacts
- Pure quantum effect

Last stages of the contact breakage process

Histogram of conductance values built with 18,000 gold contact breakage experiments in air at room temperature, showing conductance peaks at integral values of G_0.

S. Datta, “Electronic Transport in Mesoscopic Systems”
Fundamental New Laws
Quantized Phonon Transport in 1D

(a) Suspended mesoscopic phonon device used to measure ballistic phonon transport. The device consists of an 4x4micron “phonon cavity” (center) connected to four Si$_3$N$_4$ membranes, 60nm thick and less than 200nm wide. The two bright “C” shaped objects on the phonon cavity are thin film heating and sensing Cr/Au resistors, whereas the dark regions are empty space. (b) Log-log plot of the temperature dependence of the thermal conductance of the structure in (a) (Schwab et al., 2001).

Universal quantum of thermal conductance

$$g_0 = \frac{\pi^2}{3} k_B^2 \frac{T}{3h}$$

Ballistic phonon transport
New Physical Phenomena in Nanostructures: Semimetal-Semiconductor Transition in Bi

• Bi
 – Group V element
 – Semimetal in bulk form
 – The conduction band (L-electron) overlaps with the valence band (T-hole) by 38 meV

• Bi nanowire
 – Semimetal-semiconductor transition occurs at a wire diameter about 50 nm due to quantum confinement effects

\[
\text{Brillouin zone of Bi}
\]

\[
\text{Decreasing wire diameter}
\]
New Electronic Phases not Present in Bulk: Predicted Phases of Bi$_{1-x}$Sb$_x$ Nanowires

- New phase is at largest wire diameter to have direct gap semiconductor when 10 carrier pockets are degenerate in energy
Thermoelectric Effect and Applications

- **Seebeck effect**
 - No moving parts
 - Can be integrated with electronic circuits (e.g. CPU)
 - Environmentally friendly
 - Localized cooling with rapid response

- **Thermoelectric cooling**
 - $S = \frac{-\Delta V}{\Delta T}$
 - $S > 0$ for p-type
 - $S < 0$ for n-type

- **Power Generation**
 - Use waste heat to generate electricity

Thermoelectric Generator
Application of Low Dimensionality for enhancing thermoelectric Performance

\[
ZT = \frac{S^2 \sigma T}{\kappa}
\]

\(ZT \sim 3\) for desired goal

Low dimensions give additional control:
- Enhanced density of states due to quantum confinement effects
 \(\Rightarrow\) Increase \(S\) without reducing \(\sigma\)
- Boundary scattering at interfaces reduces \(\kappa\) more than \(\sigma\)
- Possibility of carrier pocket engineering to get thermoelectric contribution in both quantum well and barrier regions

Difficulties in increasing \(ZT\) in bulk materials:

\[S \uparrow \iff \sigma \downarrow\]
\[\sigma \uparrow \iff S \downarrow \text{ and } \kappa \uparrow\]

\(\Rightarrow\) A limit to \(Z\) is rapidly obtained in conventional materials

\(\Rightarrow\) So far, best bulk material (Bi\(_{0.5}\)Sb\(_{1.5}\)Te\(_3\)) has \(ZT \sim 1\) at 300 K
Carrier Pocket Engineering Approach to Enhance Z_{3DT}

Application of Carrier Pocket Engineering Concept in GaAs/AlAs quantum well superlattice systems

- Optimization of well and barrier widths
- Determination of lattice growth orientation
- Enhancement in ZT from various carrier pockets other than Γ point pockets

- Concept successfully applied to GaAs/AlAs and Si/Si$_{1-x}$Ge$_x$ superlattices.
1D Nanostructures and Thermoelectricity

- Electronic properties may be dramatically modified due to the electron confinement in nanostructures which exhibit low-dimensional behaviors.

- Thermal conductivity can be significantly reduced by the scattering of unwanted heat flow at the interfaces.
STATE-OF-THE-ART

DIMENSIONLESS FIGURE OF MERIT ZT

TEMPERATURE (K)

0 200 400 600 800 1000 1200 1400

A graph showing the dimensionless figure of merit ZT as a function of temperature (K) for various materials. The materials include:

- Bi$_2$Te$_3$/Se$_2$Te$_3$ Superlattices
- PbTeSeTe/PbTe Quantum Dots Superlattices
- Bi$_2$Te$_3$ Alloy
- CoSb$_3$
- PbTe Alloy
- CeFe$_{3.5}$Co$_{0.5}$Sb$_{12}$
- Zn$_4$Sb$_3$ Alloy
- Zn$_4$Sb$_3$
- Si$_{0.8}$Ge$_{0.2}$ Alloy
- CsBi$_{4.6}$Te$_6$

The graph compares the performance of these materials across different temperatures, highlighting their potential for thermoelectric applications.
WINNING STRUCTURES

PbTe/PbTeSe Quantum Dot Superlattices

Ternary: ZT=1.3-1.6
Quaternary: ZT=2
ΔT=43.7 K, Bulk ΔT=30.8 K
T.C. Harman, Science, 2002
ΔT=32.2 K, ZT ~2-2.4

<table>
<thead>
<tr>
<th>PbTe/PbSeTe</th>
<th>Nanostructure</th>
<th>Bulk</th>
<th>Bi$_2$Te$_3$/Sb$_2$Te$_3$</th>
<th>Superlattice</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Factor (µW/cmK2)</td>
<td>32</td>
<td>28</td>
<td>40</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>Conductivity (W/mK)</td>
<td>0.6</td>
<td>2.5</td>
<td>0.5</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>
Superlattice Nanowire for Thermoelectrics

- Advantages
 - Benefit from both the superlattice and the nanowire structures
 - Enhanced thermopower due to sharper density of states than ordinary 1D nanowires (enhance S)
 - Reduction of the lattice thermal conductivity by increasing the phonon scattering at the segment interfaces (decrease κ)

$$ZT = \frac{S^2 \sigma}{\kappa} T$$
Size Effect in 1D Thermal Conductivity

PHONON RADIATION + DEBYE MODEL

- **Gray Radiation Approximation**: Neglects confinement, tunneling, coherence, spectral nature.
- **Debye**: Retain only acoustic modes. A single group velocity characterizes each material.
- **Bulk Scattering**: Incorporated at end of calculation via Matthiessen's Rule.

- Compare \(k(T) \) with pure Si nanowires [5]
 - No known data for segmented wires
- Qualitative agreement is good for all but smallest wire.
 - Model \(k \) is higher by \(\sim 50-150\% \)
- Possible sources of error:
 - Finer grains than bulk - segmented Si?
 - Gray assumption.
 - Choice of \(\omega_D \):

Experiment, courtesy of D. Li [Huxtable et al 2002]

Model

D = 115 nm

Dames and Chen (2002)
Nanostructures will influence future trends in heat transfer because:

- Fundamental new laws of nature can be explored widening our understanding of important physical phenomena and opening up new research directions.
- New physical phenomena are introduced that can be exploited for practical applications.
- Interfaces play a more important role in nanostructures. Many more types of interesting interfaces are possible.
- Parameters that cannot be controlled independently in bulk systems, can however be controlled at the nanoscale.