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Asymptotic Analysis of MAP Estimation
via the Replica Method and
Applications to Compressed Sensing

Sundeep Rangan, Alyson K. Fletcher, and Vivek K Goyal

Abstract—The replica method is a non-rigorous but well- given by
known technique from statistical physics used in the asymjgtic
analysis of large, random, nonlinear problems. This paper pplies 1 n
the replica method, under the assumption of replica symmety, XPMEP(y) = arg min FHy — ox|? + Z flz;)|, @

to study estimators that are maximum a posteriori (MAP) unde x€R" =1
a postulated prior distribution. It is shown that with rando m .
linear measurements and Gaussian noise, the replica-symmie ~ Where f(x;) = —logp(z;). Estimators of the forml{2) are

prediction of the asymptotic behavior of the postulated MAP also used with the regularization functigiiz,;) or noise level

estimate of an n-dimensional vector “decouples” asn scalar parameter? not matching the true prior or noise level, either

postulated MAP estimators. The result is based on applying gjnce those quantities are not known or since the optinuigati

a hardening argument to the replica analysis of postulated . - . g

posterior mean estimators of Tanaka and of Guo and Verda. 1" (2) using the true values is too difficult to compute. Intsuc
The replica-symmetric postulated MAP analysis can be ready ~ €ases, the estimatdr] (2) can be interpreted as a MAP estimate

applied to many estimators used in compressed sensing, inding  for a postulateddistribution and noise level, and we will thus

basis pursuit, lasso, linear estimation with thresholding and call estimators of the forniL{2)ostulated MAP estimatars

zero norm-regularized estimation. In the case of lasso estiation Due to their prevalence, characterizing the behavior of

the scalar estimator reduces to a soft-thresholding operat, . . . . .
and for zero norm-regularized estimation it reduces to a had- postulated MAP estimators is of interest in a wide range of

threshold. Among other benefits, the replica method provide a applications. However, for most regularization functigfts),
computationally-tractable method for precisely predicting var- the postulated MAP estimatol](2) is nonlinear and not easy
ious performance metrics including mean-squared error and to analyze. Even if, for the purpose of analysis, one assumes
sparsity pattern recovery probability. separable priors ox and w, the analysis of the postulated
Index Terms—Compressed sensing, Laplace’s method, large MAP estimate may be difficult since the matdxcouples the
deviations. least absolute shrinkage and selection opemt(lasso), n unknown components of with the m measurements in the
nonlinear es_,timation, non-Gat_Jssian estim_ation, randqm miaices, vectory.
sparsity, spin glasses, statistical mechanics, thresheid This paper provides a general analysis of postulated MAP
estimators based on theplica method—a non-rigorous but
widely-used method from statistical physics for analyzing
|. INTRODUCTION large random systems. It is shown that, under a key assumptio
of replica symmetry described below, the replica method
predicts that with certain large rando#n and Gaussianw,
there is anasymptotic decouplingf the vector postulated
MAP estimate[(R) inta: scalar MAP estimators. Specifically,

mxn . the replica method predicts that the joint distribution atle
where® € R represents a knowmeasurement matrand : . L
componentz; of x and its corresponding componefy in

w € R™ represents measurement errors or noise, is a genilc

. : . € estimate vectokP™2P(y) is asymptotically identical to
problem that arises in a range of circumstances. When the . L

. - . : . heé outputs of a simple system whetrgis a postulated MAP
noisew is i.i.d. zero-mean Gaussian with variangé andx

is i.i.d. with components;; having a probability distribution estimate of the scalar random variableobserved in Gaussian

function p(z;), the maximum a posterior{MAP) estimate is noise. Using this scalar equalgntmodel, one E:an therilyead
compute the asymptotic joint distribution ¢f;, ;) for any

componen'g‘.
This material is based upon work supported in part by a Usiier ; ) i : P
of California President's Postdoctoral Fellowship and Metional Science The repllca method’s non rigorous but S|mple prescription

Foundation under CAREER Grant No. 0643836, for computing the asymptotic joint componentwise distribu

S. Rangan (email: srangan@poly.edu) is with the DepartmiRiectrical tions has three key, attractive features:

and Computer Engineering, Polytechnic Institute of NewkYdniversity. - . . .
A. K. Fletcher (email: alyson@eecs.berkeley.edu) is wlith Department ° Sharp predlctlons. Most 'mportaml)" the repllca

Estimating a vectok € R™ from measurements of the form

y =0x+w, (1)

of Electrical Engineering and Computer Sciences, Unitersf California, method provides—under the assumption of the replica

Berkeley. _ , o _ hypotheses—not just bounds, but sharp predictions of
V. K. Goyal (email: vgoyal@mit.edu) is with the DepartmeifitEdectrical h ic behavi f lated MAP .

Engineering and Computer Science and the Research Labhoddt&lectron- the asymptotic behavior of postulate estimators.

ics, Massachusetts Institute of Technology. From the joint distribution, various further computations
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can be made, to provide precise predictions of quantitiesThrough the limiting analysis via hardening, the postudate
such as the mean-squared error (MSE) and the erMAP results here follow from the postulated MMSE results
probability of any componentwise hypothesis tesh [14]. Thus, the central contribution of this work is to Wwor
computed from a postulated MAP estimate. out these limits to provide a set of equations for a genessiscl

« Computational tractability:Since the scalar equivalentof postulated MAP estimators. In particular, while Tanaks h
model involves only a scalar random variablg scalar derived the equations for replica predictions of MAP estima
Gaussian noise, and scalar postulated MAP estimdte binary and Gaussian priors, the results here providéaiixp
Z;, any quantity derived from the joint distribution carequations for general priors and regularization functions
be computed numerically from one- or two-dimensional
integrals. B. Replica Assumptions

« Generality:The replica analysis can incorporate arbitrary . . .
S ) L : The non-rigorous aspect of the replica method involves a
separable distributions ax and regularization functions

f(). It thus applies to a large class of estimators and tesseft. qf assurpptlo_ns that ,|’nclude a se_lf-averaglng propH_llg,
SCenarios validity of a “replica trick,” and the ability to exchangertain

limits. Importantly, this work is based on an additionabsiy

A. Replica Method and Contributions of this Work assumption ofeplica symmetryAs described in AppendIxIA,
e replica method reduces the calculation of a certain free

. - h
Ehi rg\pllca n[wlethod Wis orzlglnally (_jevlelopeg bY Ed\?vam{%ergy to an optimization problem over covariance matrices
aln n (Xﬁgn y r]] to ts:cu”y t. € statls%tlca tr::ec anics f[)_‘f SP¥he replica symmetric (RS) assumption is that the maxima in
glasses. ough not TUTly rigorous from Ine PErspective Qy,;q optimization satisfy certain symmetry propertiesisTiRS
probgblhty theory, the technique was able to provide eipli assumption is not always valid, and indeed Appeiidix A pro-
solutions for a range of complex problems where many ot ides several examples from other applications of the capli

method§ had prewously falled. Indeeq, the replica met”."’ﬁ 3method where replica symmetry breaking (RSB) solutions are
related ideas from statistical mechanics have found sasdoes known to be needed to provide correct predictions

a number of classic NP-hard probl_gms_ including the tragelin For the analysis of postulated MMSE estimators,| [12]
salesma:p prob_ler_n [2], gra_lph partitionind [#SAT [4] "’_md and [14] derive analytic conditions for the validity of the
others [5]. Statistical physics methods have also beenetpplpg assumption only in some limited cases. Our analysis of

to the study of error correcting codes [€]] [7]. There are no}‘)vostulated MAP estimators depends 6nl[14], and, unfortu-

several general texts on the replica methad [8]-[11]. : :
. . : = tely, h t ded I lytic test for th
The replica method was first applied to the study of nor?—a ey, We have Not provided a generat analytic test for the

. L : validity of the RS assumption in this work. Followirig [14}0
"”e?r MAP gsﬂma‘uon proplems by Ta.nalma [12.]' That wor pproach instead is to compare, where possible, the pi@dsict
applied what is called a replica symmetric analysis to raaé#r

. : . under the RS assumption to numerical simulations of the
detection for large CDMA systems with random Spread'.n;.gﬂostuIated MAP estimator. As we will see in Section VI

sequences. Muller [13] cor?5|d_ered a mathematicallytaimi e RS predictions appear to be accurate, at least for many
problem for MIMO communication systems. In the context o

L . , .., common estimators arising in compressed sensing. Thag bein
the est|mat|ontpr|c|)bler;r]1 confld.er(zd PhereBTﬁna](as e]}ntdr(]al\“/ml\l/ll lgid, the RS analysis can also provide predictions for agtim
papers essentially characterize € behavior of the 5AMSE and zero norm-regularized estimators that cannot be

tehstlma;orl_of a vectax with ""?' b'?‘iﬁ’ c?méonfnts _?r?ser}/e simulated tractably. Extra caution must be applied in agsgm
rough linear measurements of the forg (1) with a arYfie validity of the RS predictions for these estimators.

raq':ai:lz’z?:sel?sussé?ghen eneralized in a remarkable pa o emphasize our dependence on these unproven
uits w 9 1zedin P ggsumptions—notably replica symmetry—we will refer
by Guo and Verdul[[14] to vectors with arbitrary separable e .
s - . to the general MMSE analysis in Guo and Verd(’'s wark! [14]
distributions. Guo and Verdu’s result was also able tolipoe ; . .
. as thereplica symmetric postulated MMSE decoupling
rate a large class of postulated minimum mean squared error . . .
. X roperty. Our main result will be called thereplica
(MMSE) estimators, where the estimator may assume a PrOr - metric postulated MAP decounling prooert
that is different from the actual prior. Replica analyseseha y P pling property.
also been applied to related communication problems such as ) ) )
lattice precoding for the Gaussian broadcast charinel 5).C- Connections to Belief Propagation
brief review of the replica method analysis by Tanaka [12] an Although not explored in this work, it is important to point
Guo and Verd([[14] is provided in AppendiX A. out that the results of the replica analysis of postulatedSEM
The result in this paper is derived from Guo and Verdd [14nd MAP estimation are similar to those derived for belief
by a standard hardening argument. Specifically, the pdstllapropagation (BP) estimation. Specifically, there is nowrgda
MAP estimator [(R) is first expressed as a limit of the postirody of work analyzing BP and approximate BP algorithms for
lated MMSE estimators analyzed in [14]. Then, the behaviestimation of vectors observed through linear measurements
of the postulated MAP estimator can be derived by takingf the form [1) with large randon®. For both certain large
appropriate limits of the results in_[14] on postulated MMSEparse random matrice§ [16]-[22], and more recently for
estimators. This hardening technique is well-known and c®rtain large dense random matrices [23]+-[26], severalltses
used in Tanaka'’s original work [12] in the analysis of MARow show that BP estimates exhibit an asymptotic decoupling
estimators with binary and Gaussian priors. property similar to RS predictions for postulated MMSE and
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MAP estimators. Graphical model arguments have also bdamge random measurement matrices. Compressed sensing has
used to establish a decoupling property under a very genembvided many sufficient conditions that are easier to fsatis
random sparse observation modell[27]. than the initial coherence-based conditions. Howevempitkes

The effective noise level in the scalar equivalent model fdinis progress, the exact performance of most sparse estnat
BP and approximate BP methods can be predicted by certanstill not known precisely, even in the asymptotic case of
state evolution equations similar to density evolutionlgsia large random measurement matrices. Most results destigbe t
of BP decoding of LDPC code5 [R8], [29]. It turns out that irestimation performance via bounds, and the tightness skthe
several cases, the fixed point equations for state evolatien bounds is generally not known.

identical to the equations for the effective noise Ievebl|i1_m3d There are, of course, notable exceptions including [44]
by the RS analysis of postqlated_MMSE and MAP estimatorgng [45], which provide matching necessary and sufficient
In particular, the equations i [23], [24] agree exactlyhwthe  qngitions for recovery of strictly sparse vectors with ibas

RS predictions for LASSO estimation given in this work. 5 ,rqit and lasso. However, even these results only canside
These connections are significant in several regardsiy,:wsgxact recovery and are limited to measurements that are-nois

the state evolution analysis of BP algorithms can be mag@es or measurements with a signal-to-noise ratio (SNR) tha
fully rigorous under suitable assumptions and thus pravate ¢cgjes to infinity.

independent, rigorous justification for some of the RS ctaim

Secondly, the replica method provides only amalysisof
estimators, but no method to actually compute those esti
tors. In contrast, the BP and approximate BP algorithms p
vide a possible tractable method for achieving the perfocaa
predicted by the replica method.

Finally, the BP analysis provides an algorithmic intuitio
as to why decoupling may occur (and hence when repli
symmetry may be valid): As described in_[30], BP an
approximate BP algorithms can be seen as iterative proesd ) .
where the vector estimation problem is reduced to a seque e the asymptohc _behawor. 'T“ the _context of compressed
of “decoupled” scalar estimation problems. This deco@”nsensmg, this analysis can predict various performanceicaet

is based essentially on the principle that, in each itematioSUCh as MSE or fraction of support recovery. The expressions

when estimating one componeni, the uncertainty in the can apply tp arbitrary rat_lok/n, ”/T_”’ and SNR. Due to
other componentézy, k # j} can be aggregated as Gaussiatrl?e generality of the replica analysis, the methodology can

noise. Based on the state evolution analysis of BP algosilhrﬁllso incorporate arbitrary distributions anincluding several

we know that this Central Limit Theorem-based approxirrnattiosmrs'ty models, such as Laplacian, generalized Gaugsian,

is asymptotically valid when the components of the mixinlé’au.s‘Sian mixture priors. Discrete distributions can also b
matrix & are sufficiently dense and independent. Thus, t éUd'ed'
validity of RS is possibly connected to validity of this Gaizs It should be pointed out that this work is not the first to use
approximation. ideas from statistical physics for the study of sparse eston.
Guo, Baron and Shamai [46] have provided a replica analysis
of compressed sensing that characterizes not just the-postu
lated MAP or postulated MMSE estimate, but the asymptotic
As an application of our main result, we will develop gosterior marginal distribution. That work also shows ashein
few analyses of estimation problems that arise in compdessgendence property across finite sets of components. Merhav,
sensing [[31]+[33]. Incompressed sensingne estimates a Guo and Shamal [47] consider, among other applications, the
sparse vectox from random linear measurements. A vectogstimation of a sparse vectsr from measurements of the
x is sparsewhen its number of nonzero entriésis smaller form y = x + w. In their model, there is no measurement
than its lengthm. Generically, optimal estimation of with a matrix such asp in (), but the components of are possibly
sparse prior is NP-hard [34]. Thus, most attention has feduscorrelated. Their work derives explicit expressions foe th
on greedy heuristics such as matching pursuit [35]-[38] amdMSE as a function of the probability distribution on the
convex relaxations such as basis pursuit [39] or lassd [4@Limber of nonzero components. The analysis does not rely
While successful in practice, these algorithms are diffitml on replica assumptions and is fully rigorous. More recently
analyze precisely. Kabashima, Wadayama and Tanaka [48] have used the replica
Compressed sensing of sparsehrough [1) (using inner method to derive precise conditions on which sparse signals
products with rows of®) is mathematically identical to can be recovered wittf,-based relaxations such as lasso.
sparse approximatiorof y with respect to columns of. Their analysis does not consider noise, but can find condi-
An important set of results for both sparse approximatiah ations on recovery on the entire vectgr not just individual
compressed sensing are the deterministic conditions ooothe components. Also, using free probability theory|[49],1[58]
herenceof ® that are sufficient to guarantee good performancecent analysis [51] extends the replica analysis of coagae
of the suboptimal methods mentioned abave [41]-{43]. Thesensing to larger classes of matrices, including matdedsat
conditions can be satisfied with high probability for certaiare possibly not i.i.d.

Many common sparse estimators can be seen as MAP
rTr\ag_timators with certain postulated priors. Most impottant
I181_::,50 and basis pursuit are MAP estimators assuming a Lapla-
cian prior. Other commonly-used sparse estimation algmist
including linear estimation with and without thresholding
r;fmd zero norm-regularized estimators, can also be seen as
gstulated MAP-based estimators. For these postulated-MAP
ased sparse estimation algorithms, the replica method can
rovide non-rigorous but sharp, easily-computable ptextis

D. Applications to Compressed Sensing
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E. Outline zero mean, unit variance and all other momentsA4of

The remainder of the paper is organized as follows. The finite. . _
precise estimation problem is described in Secfidn 1. Wée) The scale factors; are i.i.d., satisfys; > 0 almost surely,
review the RS postulated MMSE decoupling property of Guo  and all moments of; are finite. _
and Verdd in Sectiofilll. We then present our main result({f) The scale factor matri§, measurement matriA, vector
an RS postulated MAP decoupling property, in Secfioh Iv. X. and noisew are all independent.
The results are applied to the analysis of compressed gensin
algorithms in Sectiori_V, which is followed by numerical Ill. REVIEW OF THE REPLICA SYMMETRIC POSTULATED
simulations in Sectiof_VI. Conclusions are possible avenue MMSE DECOUPLING PROPERTY
for _future work are given in Sectic_n[@l_l. The proof of the We begin by reviewing the RS postulated MMSE decou-
main result is somewhat long and given in a set of appendmgﬁhg property of Guo and Verda [14].
Appendix[B provides an overview of the proof and a guide
through the appendices with detailed arguments. .
A. Postulated MMSE Estimators
Il. ESTIMATION PROBLEM AND ASSUMPTIONS To define the concept of a postulated MMSE estimator,
Consider the estimation of a random vectoe R” from SUPPOSe one is given a “postulated” prior distributiog,;
linear measurements of the form and a postulated noise leve} ., that may be different from
the true valueg, ando?. We define thepostulated minimum

y=®x+w=AS"’x+w, (3) MSE(PMMSE) estimate ok as
wherey € R™ is a vector of observation® = AS'/2, with KPe(y) = B (X | Y5 Ppost 02ost)
A € R™*™ is a measurement matri$; is a diagonal matrix P
of positive scale factors, = / XPx|y (X | ¥ 5 Pposts Orost) 4%, (5)
S = diag(s1,--.,850), 85> 0; (4) where pyy(x | y; ¢,0%) is the conditional distribution of

andw € R™ is zero-mean, white Gaussian noise. We considsrgiven y under thex distribution ¢ and noise variance”
a sequence of such problems indexedibwith n — co. For specified as parameters after the semicolon. We will use this
eachn, the problem is to determine an estimatef x from sort of notation throughout the rest of the paper, including
the observationsy knowing the measurement matrix and the use ofp without a subscript for the p.d.f. of the scalar or
scale factor matrixs. vector quantity understood from context. In this case, due t
The components;; of x are modeled as zero mean anéhe Gaussianity of the noise, we have
i.i.d. with some prior probability distributiopo(x;). The per-
component variance of the Gaussian nois&js;|> = o2.
We use the subscript 0 on the prior and noise level to dif- = Clexp <_L2|y _ ASl/2x|2) q(x),  (6)
ferentiate these quantities from certain “postulatedtealto 20
be defined later. When we develop applications in Se¢tion Where the normalization constant is
the priorpo(z;) will incorporate presumed sparsity &f 1
In @), we have factore® = AS'/? so that even with the C= /exp (——2||y - ASl/2x||2) q(x) dx
i.i.d. assumption or{z;}_, above and an i.i.d. assumption 20
on entries ofA, the model can capture variations in powers and ¢(x) is the joint p.d.f.
the components af that are knowra priori at the estimator. "
Specifically, multiplication byS!/2? scales the variance of the q(x) = H a(z;).
jth component ok by a factors;. Variations in the power of =1

x that are not known to the estimator should be captured in ) )
the distribution ofx. In the case whemp,.st = po and oy, = o, so that the

We summarize the situation and make additional assunﬁpstulated and true values agree, the PMMSE estimate reduce
tions to specify the problem precisely as follows: to the true MMSE estimate.
(8) The number of measurements= m(n) is a determin-
istic quantity that varies witln and satisfies B. Decoupling under Replica Symmetric Assumption

The essence of the RS PMMSE decoupling property is that
the asymptotic behavior of the PMMSE estimator is described
for someg > 0. (The dependence of: onn is usually by an equivalent scalar estimator. Lgtr) be a probability
omitted for brevity.) distribution defined on some sé& C R. Given u > 0, let
(b) The components; of x are i.i.d. with probability distri- p,.(z | z; ¢, 1) be the conditional distribution

butionpy(z;). Al moments ofz; are finite.
(c) The noisew is Gaussian withw ~ A(0,021L,,). Palz(2 | 25 ¢ 1)
(d) The components of the matri are i.i.d. and distributed ) )

as A;; ~ (1/y/m)A for some random variablel with - [/IEX oz —a; wal@)de) ¢z — x5 p)g(z) (7)

Pxly(x |y q,07)

nhﬁrrgo n/m(n) = p

-1
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where¢(-) is the Gaussian distribution v NNg(L/l)
p=og/s
1
QZS(’U ; ‘u) = 27‘-‘”67"‘"2/(2#) . (8) \//_L/U Hp = Ugfeff/s
The distributionp,,.(z|z; ¢, 1) is the conditional distribution
i ~ i i z ~pmmse ~
g; :Ez fs(;:r?#ar random variable ~ ¢(z) given an observation ~ po() ) FPIISC (st flp) | &
2=+ /i, ©)

N ; e Hiotr : ; ig. 1. Equivalent scalar model for the estimator behaviedjzted by the
wherev J\_/(O, 1). Using thls_dlstnbutlon, we can define therFeplica symmetric postulated MMSE decoupling property.
scalar conditional MMSE estimate

Tocatar (25 €5 1) = / Xxpw\z(fr |25 p)de. (10)  The effective noise levels, and o?_.q are described by
. e _ the solutions to fixed-point equatiodis(13). Note that and
Also, given two distributionspo () andp: (), and two noise 2 appear implicitly on the left- and right-hand sides of

levels, i > 0 andy,y > 0, define these equations via the terms and j,. In general, there
mse(p1, Po, fi1, o, 2) is no clo_sed form solution to these equ_at|ons_. Howe_ver, the
‘ expectations can be evaluated via (one-dimensional) ricater
= / |2 — 2heiae (2 D1y 111) | pajz (2 | 25 Do, po) dae, (Llintegration.
reX

It is important to point out that there may, in general, be
which is the MSE in estimating the scalaiffrom the variable multiple solutions to the fixed-point equatioris1(13). Insthi
z in (@) whenz has a true distribution: ~ po(z) and the case, it turns out that the true solution is the minimizer of a
noise level is = pio, but the estimator assumes a distributionertain Gibbs’ function described in [114].

x ~ pi(z) and noise level = ;.

Replica Symmetric Postulated MMSE Decoupling Prorg;' Effective Noise and Multiuser Efficiency

erty [14]: Consider the estimation problem in Sectioh II. Let To understand the significance of the effective noise level

xPmmse(y) be the PMMSE estimator based on a postmatesgfﬁ-, it is useful to consider the following estimation problem

prior ppese and postulated noise levet? .. For eachn, with side information. Suppose that when estimating the

let j = j(n) be some deterministic component index witffomponentz; an estimator is given as side information the
j(n) € {1,...,n}. Then under replica symmetry, there exisyalues of all the other componenfs,, ¢ # j}. Then, this
effective noise levels?; and gg_eﬂ such that: hypothetical estimator with side information can “subtraat”
(8) Asn — oo, the random vectorz;, s;, &™) con- the effect of all the known components and compute

verge in distribution to the random vectgr, s, &) con- 1

sistent with the block diagram in Figl 1. Heres, andv zj = ———a) [y - Z Vseagxe |,

are independentwith ~ po(z), s ~ ps(s), v ~ N(0,1), lagll*y/55 ]

and whereay is the ¢th column of the measurement matd. It

- j.scmaglje(z; Pposts ,up)a (12a) IS eaSIIy checked that ,
J J
wherep :.agﬁ»/s.andup = agfcﬁ»/s. . = 2+ hov;, (14)
(b) The effective noise levels satisfy the equations '
) ) where )
QUCH = U(Q) + ﬁ E [S mse(ppostapOa Hps Ky 2)] (13&) v; = 1 Qang Lo = ﬂ
Op—eff = Opost 00 Haj || Sj

+BE [sMSe(Ppost Pposts Hps Hps 2)] (13D) Thus, [(1#) shows that with side information, estimationzef
) reduces to a scalar estimation problem wheyés corrupted

where the expectations are taken over ps(s) andz  py additive noise,/ig v;. Sincew is Gaussian with mean
generated by[(12b). zero and per-component varianeg, v; is Gaussian with
ean zero and variance/||a;||?>. Also, sincea; is an m-
imensional vector whose components are i.i.d. with vagan
&Am, llaj||> — 1 asm — oco. Therefore, for largen, v; will
approachy; ~ N (0,1).

This result asserts that the asymptotic behavior of the joi
estimation of then-dimensional vectorx can be described
by n equivalent scalar estimators. In the scalar estimati

problem, a component ~ po(z) is corrupted by additive : . .
. : o ) " Comparing[(T¥) with[{I2b), we see that the equivalent scalar
Gaussian noise yielding a noisy measuremernthe additive model predicted by the RS PMMSE decoupling propdfiy{12b)

noise variance it = o2;/s, which is the effective noise . : - : o
divided by the scale factor. The estimate of that component's identical to the estimation with perfect side informat{@4),

is then described by the (generally nonlinear) scalar ettim except that the noise level is increased by a factor
~pmmse

Lscalar (Z; Ppost; ,up) 1/77 = ,u/,uo = USH/O'S. (15)
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In multiuser detection, the factay is called themultiuser for some constant’, that does not depend on (The scaling
efficiency[52], [53]. of the noise variance along with, enables the factorization
The multiuser efficiency can be interpreted as degradatiimthe exponent of (23).) Comparing 10 {18), we see that
in the effective signal-to-noise ratio (SNR): With perfside- - pmap 9
information, an estimator using in (I4) can estimate; with XPMP(y) = argmax pyy (X | ¥ pu, 03,)-

xeX™
an effective SNR of o © .
Thus for all sufficiently largeu, we indeed have a MAP

SNRy(s) = %E|acj|2 = %E|xj|2. (16) estimate—assuming the pripy, and noise leveb?.
0

In CDMA muItigser detectipn, the fact@NRo(s) is cglled the B. Decoupling under Replica Symmetric Assumption
post-despreading SNR with no multiple access interference

The RS PMMSE decoupling property shows that without side T0_analyze the postulated MAP (PMAP) estimator, we
information, the effective SNR is given by consider a sequence of postulated MMSE estimators indexed

) by u. For eachu, let
S
SNR(s) = —E|z,;|? = —E|z,|>. 17 ~
(S) [ |£CJ| Ugff |$J| ( ) X (y) —E (X | v pmo.i) ’ (24)
Therefore, the multiuser efficienayin (15) is the ratio of the which is the MMSE estimator of under the postulated prior
effective SNR with and without perfect side information.  p, in @I) and noise leveb? in (22). Using a standard
large deviations argument, one can show that under suitable

IV. ANALYSIS OF POSTULATED MAP ESTIMATORS via  conditions (
HARDENING lim X*(y) = %P (y)

U—r 00

The main result of the paper is developed in this sectiony, g y. A formal proof is given in AppendiX'D (see
Lemmal4). Under the assumption that the behaviors of the
A. Postulated MAP Estimators postulated MMSE estimators are described by the RS PMMSE
decoupling property, we can then extrapolate the behavior o
e postulated MAP estimator. This will yield our main resul
In statistical physics the parameterhas the interpretation
- oma 1 " of inverse temperature (see a general discussion in [SA)s,T
xPM(y) :aigegljnﬂHy_Asl/szg+Zf(xj)’ (18) the limit asu — oo can be interpreted as a cooling or
=1 “hardening” of the system.
wherevy > 0 is an algorithm parameter anfl: X — R is In preparation for the main result, define the scalar MAP
some scalar-valued, nonnegative cost function. We williaes estimator
that the objective function in[{18) has a unique essential

Let X € R be some (measurable) set and consider
estimator of the form

minimizer for almost ally. Peeatar (23 A) = arfen);mF(x’ %) (25)
The estimator[{(18) can be interpreted as a MAP estimator.
To see this, suppose that farsufficiently large, where 1
F(z,z,\) = ﬁ|z—x|2+f(:v). (26)
/ e ™) dx < oo, (19)
xEX™ The estimator[{25) plays a similar role as the scalar MMSE
where we have extended the notatjé ) to vector arguments €Stimator [(ID). _ _ _
such that The main result pertains to the estimafor] (18) applied to the
n sequence of estimation problems defined in Sedfibn II. Our
)= flay). (20) assumptions are as follows:
J=1 Assumption 1:For all w > 0 sufficiently large, assume that
When [I9) is satisfied, we can define a prior probabiliffe postulated MMSE estimatdr] (5) with the postulated prior
distribution depending on: py in (1) and postulated noise leve} in (22) satisfy the RS

. PMMSE decoupling property in Section 111-B.
_ _ - _ Assumption 2:Let o%;(u) and 0% __;(u) be the effective
Pulx) = {/xeXn exp(—uf(x)) dx} exp(—uf(x)). (21) noise levels when using the postulpated prigrand noise level
o2. Assume the following limits exist:

Also, let
o2 =/u. 22) R )
Substituting[(2l1) and_(22) int@](6), we see that Vp = uli_}rr;() uag,cﬂ»(u).
Pxly(x [ ¥; PusT3) Assumption 3:Suppose for each, i%(n) is the MMSE

estimate of the component; for some indexj € {1,...,n}

_ 1 1/2112
= Cuexp [_u (ﬂ'y_ AS x|+ f(x) )| (23) based on the postulated pripy, and postulated noise level
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o2. Then, assume that limits can be interchanged to give the v~ N(0,1)
following equality: H= Ugff,map/s
lim lim 27 (n) = lim lim 2%(n), Vi Ao = /s
U—00 Nn—o0 - n—00 Uu— 00
where the limits are in distribution.
Assumption 4:For everyn, A, and S, assume that for z .pmap .

almost all y, the minimization in [(IB) achieves a unique @~ po(@) N\ Tscatar (3 A) v
essential minimum. Here, essential should be understood in

the standard measure-theoretic sense in that the minimdm %_n > Equvalent scal del for the estimator behaviedisted by th
essential inﬁmum agree' 1g. 2. quivalent scalar model 1or the estimator benavi [cte y the

. . . _ replica symmetric postulated MAP decoupling property.
Assumption 5:Assume thatf(x) is nonnegative and satis-

fies
1f (z) _ 50, (b) The limiting effective noise levels?; .
|z|—oc log || the equations

and~, satisfy

where the limit must hold over all sequencestnwith |z| — 9 5 o
oo. If X is compact, this limit is automatically satisfied (since Octmap = 00+ BE [slz -], (30a)
there are no sequencesAnwith || — o). YW = 7v+BE[so(z,))],  (30b)

Assumption 6:For all A € R and almost allz, the mini-
mization in [25) has a unique, essential minimum. Moreover,
for all A and almost alk, there exists a?(z, \) such that

where the expectations are taken ower po(x), s ~
ps(s), andv ~ N (0, 1), with Z and = defined in [ZD).

o Proof: See Appendices]BiF. ]
lim |z — 2| = 02(z,)\) (28) Analogously to the RS PMMSE decoupling property, the RS
e—i 2(F(z,2,A) — F(&,2,A)) T PMAP decoupling property asserts that asymptotic behafior
whered = 270 (25 A). the PMAP estimate of any single componenkds described

Assumptiori L is simply stated to again point out that we aky & simple equivalent scalar estimator. In the equivalesies
assuming the validity of replica symmetry for the postudatemodel, the component of the true vecteris corrupted by
MMSE estimates. We make the additional Assumptibhs Gaussian noise and the estimate of that component is given
and[3, which are also difficult to verify but similar in spirit by & scalar PMAP estimate of the component from the noise-
Taken together, Assumptiois[1-3 reflect the main limitatio§Orrupted version.
of the replica symmetric analysis and precisely state the
manner in which the analysis is non-rigorous. V. ANALYSIS OF COMPRESSEDSENSING

Assumptiong 36 are technical conditions on the existencegyr results thus far hold for any separable distributionsdor
and uniqueness of the MAP estimate. Assumplibn 4 will h@ee Sectiofll) and under mild conditions on the cost famcti
true for any strictly convex regularizatiofi(z;), although ¢ (see especially Assumptidd 5, but other assumptions also
it is difficult to verify in the non-convex case. The othejmpiicitly constrain f). In this section, we provide additional
two assumptions, Assumption$ 5 and 6, will be verified fofetails on replica analysis for choices pfthat yield PMAP
the problems of interest. In fact, we will explicitly caleté estimators relevant to compressed sensing. Since thefrgle o

a?(z,A). . is to determine the estimator, this is not the same as chgosin
We can now state our extension of the RS PMMSE decosharse priors forx. Numerical evaluations of asymptotic
pling property. performance with sparse priors farare given in Section VI.

Replica Symmetric Postulated MAP Decoupling Property:
Consider the estimation problem in Sectloh Il. B&®™P(y) A. Linear Estimation

be the dpostulaged tMAI.D esAtimato§[18€)] E_‘?ngd for some We first apply the RS PMAP decoupling property to the
f(z) andy > 0 safisfying Assumption - For eaeh simple case of linear estimation. Linear estimators only us

let j = j(n) be some deterministic component index WIt%econd—order statistics and generally do not directly @kpl

j(n) € {1,...,n}. Then under replica symmetry (as part ok . o or other aspects of the distribution of the unknown

Assumptior{1): vectorx. Nonetheless, for sparse estimation problems, linear

() Asn — oo, the random vectorr;, s;, &5"°") converge estimators can be used as a first step in estimation, followed
in distribution to the random vectd, s, #) consistent py thresholding or other nonlinear operatiofis [55];] [58]. |
with the block diagram in Fid.]2 for the limitingffective s therefore worthwhile to analyze the behavior of linear
noise levelsZ; andy, in Assumptio 2. Here, s, andv  egtimators even in the context of sparse priors.

are independentwith ~ po(z), s ~ ps(s), v ~ N(0,1), The asymptotic behavior of linear estimators with large ran
and dom measurement matrices is well known. For example, using
% PP (2 N,), (29a) the Mar(:_enko-Pastur the_orern :5_7], Verdl’_J and Sha_mai [58]
— o+ Vi (29b) _c_haracten_zed the behavior of linear estimators with large
’ i.i.d. matrices A and constant scale factol$ = [. Tse
wherep = 02 .,/s @and A, = v, /s. and Hanly [59] extended the analysis to gen&alGuo and
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Verdd [14] showed that both of these results can be recdvewhere the expectation is over~ pg(s). In the case when
as special cases of the general RS PMMSE decoupling prap= o2, it can be verified that a solution to these fixed-point
erty. We show here that the RS PMAP decoupling properéguations isr2 = 7, Which results inu = A, and

can also recover these results. Although the calculatioes a

very similar to [14], and indeed we arrive at precisely thmea 2 o2+ BE [ SAp }

eff ;map

Ocff ,map

results, walking through the computations will illustrdtew L+
; . 52
the RS PM_AP decouph_ng property is used. _ 2 44E SO6tF map (35)
To simplify the notation, suppose that the true priorson 0 s+ 02 ma :
is such that each component has zero mean and unit variance. P
Choose the cost function The expression(35) is precisely the Tse-Hanly formUla [59]
1 for the effective interference. Given a distribution enthis
f(x) = §|x|2, expression can be solved numerically fof; ... In the

special case of constant (38) reduces to Verd( and Shamai’s
which corresponds to the negative log of a Gaussian prior al®sult in [60] and can be solved via a quadratic equation.
with zero mean and unit variance. With this cost functioe, th The RS PMAP decoupling property now states that for
PMAP estimator[(18) reduces to the linear estimator any component indey, the asymptotic joint distribution of
, . (xj,s;j,%;) is described by:; corrupted by additive Gaussian
XPeP(y) = SV2A! (ASA' +91) " y. (31) noise with variances?; . /s followed by a scalar linear
estlmator
Wheny = o3, the true noise variance, the estimafor] (31) is As described in[[14], the above analysis can also be applied

the linear MMSE estimate. to other linear estimators including the matched filter (vehe
Now, let us compute the effective noise levels from the RS

— or the decorrelating receivery ( 0).
PMAP decoupling property. First note thaY{x, z, A) in (26) T o) g ey & 0)
is given by o
B. Lasso Estimation
F(z,2,)\) = i|z —z]? + 1|x|2, We next consider lasso estimation, which is widely used
2\ 2 for estimation of sparse vectors. The lasso estimate [40]
and therefore the scalar MAP estimator[inl(25) is given by (sometimes referred to as basis pursuit denoising [39]iveng

1 by
ASCala}:;( ; ): H—AZ (32) slasso 1/2
x(y) = argggn—Hy ASYZx|3 + lIx]l1,  (36)
A simple calculation also shows that(z, \) in (28) is given < ) )
by where~ > 0 is an algorithm parameter. The estimator is
A essentially a least-squares estimator with an additiigél
o?(z,)) = TN (33) regularization term to encourage sparsity in the solution.

The parameter is selected to trade off the sparsity of the
AS part (a) of the RS PMAP decoupling property, let=  estimate with the prediction error. An appealing feature of
02 map/ 5 @ANA A, = 7,/5. Observe that lasso estimation is that the minimization {1 (36) is convex;
goman ) lasso thus enables computationally-tractable algorittions
[ |7 — &gt (25 Ap)] } finding sparse estimates.
(

a) 1 2 The lasso estimatolr (B6) is identical to the PMAP estimator
= Elsjor-1o N (I8) with the cost function
W o[ |2 vE P f(a) = lal.

1+ 1+ With this cost function F'(z, z, \) in (28) is given by

(é) S(/\ZQ, + )

1
vp 7 F P
where (a) follows from[(32): (b) follows fromi{2b): and (C)and therefore the scalar MAP estimator [inl(25) is given by
follows from the fact that: andv are uncorrelated with zero G (25 \) = T30 (2), (37)

mean and unit variance. Substitutirig](33) ahd (34) into the oft/ )
fixed-point equation$ (30), we see that the limiting noisele whereT3"(z) is the soft thresholding operator

szf,map and’YP must SatiSfy z — )\, if 2 > /\7
02 ) T (2) = 0, if [2] <\ (38)
2 _ 2 s(Ap + 1 2+ A ifz< =\
Ocffmap — 90 + B E m .
P The RS PMAP decoupling property now states that there
v = 7+ BE 5Ap exists effective noise levels?; ., and~, sucAh that for any
P L+ ] component indey, the random vectofz;, s;, &,) converges



RANGAN, FLETCHER, AND GOYAL 9

in distribution to the vectofz, s, z) wherexz ~ po(z), s ~ norm-regularized estimator is identical to the PMAP estana
ps(s), andz is given by (@I8) with the cost function

E=T"2), z=z+m, (39) 0, if z=0;
@) =91 it o £0
wherev ~ N(0,1), A, = 7p/s, andp = o3 ,..../5. Hence, ’ '

the asymptotic behavior of lasso has a remarkably simptgchnically, this cost function does not satisfy the cdodit
(ilescnpnon: the asymp_totllc d|§tr|but|0n of. the lassoreate f the RS PMAP decoupling property. For one thing, without
i; of the component; is identical tox; being corrupted by poynding the range of:, the bound [{19) is not satisfied.
Gaussian noise and then soft-thresholded to yield the a&imp|so, the minimum of [25) does not agree with the essen-

j. ) o o tial infimum. To avoid these problems, we can consider an
This soft-threshold description has an appealing intéapre 5 roximation of [(5),

tion. Consider the case when the measurement matrix /.
In this case, the lasso estimatdr](36) reduces:tscalar fs (@) = 0, if |z| <d;
estimates, OMUE) =\ 1, if || € [5, M],

(45)

&y =T (2 + Viiov;) j=1,2,...;n,  (40) which is defined on the set = {z : |z| < M}. We
wherev; ~ N(0,1), A = ~/s, and i = 02/s. Comparing can Fhen t_ake the Iimitg& - 0and M — 0. For space
(@9) and [@D), we see that the asymptotic distribution &pPnsiderations an_d to simplify the pre_sentauon, we yV|ﬁtJu
(z;, 5;,4;) with large randomA is identical to the distribution @PPly the decoupling property witfi(x) in @5) and omit the
in the trivial case where\ = I, except that the noise levejs d€tails of taking the appropriate limits. .
ando are replaced by effective noise levelsando?; ... With f(x) given by [45), the scalar MAP estimator 0 [25)

To calculate the effective noise levels, one can performi&given by
simple calculation to show that?(z, \) in (28) is given by

P (23 A) = TP 4(z),  t=V2\, (46)
9 A iz >N
o*(2,A) = { 0, if |z] <A\ (41) whereT}»*d is the hard thresholding operator,
Hence, .
Thard(z) _{ 2 If |Z| >t; (47)
E [s0%(2,0p)] = E[s\, Pr(z] > ))] k 0, if |z <t
= W Pr(z[ > 7/s), (42)  Now, similar to the case of lasso estimation, the RS PMAP
where we have used the fact thgt = v, /s. Substituting[(37) decouplging property states that there exists eﬁec.tivegmoi
and [42) into[(3D), we obtain the fixed-point equations levels o5 1., @nd7y, such that for any component indgx
' the random vectofz ;, s;, Z;) converges in distribution to the
Olimap = 00+ PE [s|x - Tf;’“(z)ﬂ ,  (43a) vector(z,s,) wherex ~ po(z), s ~ ps(s), andz is given
b
YW = 7+ B Pl > %/s), (a3p) ™Y
& =TPrd(z), z =+ /v, (48)

where the expectations are taken with respect e po(x),

s ~ ps(s), and z in (39). Again, while these fixed-pointwherev ~ A/(0,1), Ap = Vp/5 1t =02 /s, and
equations do not have a closed-form solution, they can be mep

;ﬂgt;Yely easily solved numerically given distribution$ x 4= \/ﬁ _ \/m. (49)
Thus, the zero norm-regularized estimation of a vestds
C. Zero Norm-Regularized Estimation equivalent ton scalar components corrupted by some effective
Lasso can be regarded as a convex relaxation of zero nofifiise leveb; . and hard-thresholded based on an effective
regularized estimator noise levely,.
1 The fixed-point equations for the effective noise levels
X**°(y) = arg min %Hy — ASY2x|12 + ||x]Jo, (44) 02 .., @nd7y, can be computed similarly to the case of lasso.

xeR" Specifically, one can verify thdi (1) ard [42) are both fiatis

where||x||o is the number of nonzero componentsxofFor for the hard thresholding operator as well. Substituting) (4
certain strictly sparse priors, zero norm-regularizedretion and [46) into[(3D), we obtain the fixed-point equations
may provide better performance than lasso. Whienputing

the zero norm-regularized estimate is generally very dilffic Otmap = 06+ BE [slz—TP*(2)]’], (50a)
we can use the replica analysis to provide a simple predictio Yo = 7+ By Pr(z] >1), (50Db)
of its performance This analysis can provide a bound on the

performance achievable by practical algorithms. where the expectations are taken with respect 9 po(x),

To apply the RS PMAP decoupling property to the zers ~ ps(s), z in (@8), andt given by [49). These fixed-point
norm-regularized estimatof_(44), we observe that the zeequations can be solved numerically.
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D. Optimal Regularization 0 ‘ ‘ ‘ ‘ 11 Linear

The lasso estimatof (B6) and zero norm-regularized estin (Lriiglgcra)
tor (44) require the setting of a regularization parameter ° (sim)
Qualitatively, the parameter provides a mechanism to tra 5 ~ Lasso
off the sparsity level of the estimate with the fitting errorS _ (replica)
One of the benefits of the replica analysis is that it provide £ '(-jrsns‘)’
a simple mechanism for optimizing the parameter level give% - _Zerd
the problem statistics. g norm-reg

Consider first the lasso estimatbri36) with sofe 0 and & ~10 ] ___Optimal
distributionsz ~ po(z) and s ~ pg(s). Observe that there § gl MMSE
exists a solution td (43b) with > 0 if and only if g

Pr(lz] > %/s) <1/8. (51)
This leads to a natural optimization: we consider an optmiz
i i 2 inimi _ i i i i i
tl(;n over two variables % ..., and~,, where we minimize 18 1 s 5 25 3
ot map SUDjECt t0[(43a) and (51). Measurement ratio 3 = n/m

One simple procedure for performing this minimization

is as follows: Start witht = 0 and some initial value of Fig. 3. MSE performance prediction with the RS PMAP decaogpfiroperty.

Ugﬁ-_,map(o)- For any iterationt > 0, we updateofﬁ-_,map (t)  Plotted is the median normalized SE for various sparse ezgoaigorithms:
with the minimization linear MMSE estimation, lasso, zero norm-regularizedhestion, and optimal
MMSE estimation. Solid lines show the asymptotic predidt¢8E from the
2 — 452 ; __ rpsoft 2 replica method. For the linear and lasso estimators, thesirand triangles
Teff,map (t+1D) =09 +5 H%n E [Slx Ap (2)] } - (52) show the actual median SE over 1000 Monte Carlo simulatibhs.unknown
. . . . vector has i.i.d. Bernoulli-Gaussian components with a §@%bability of
where, on the right-hand side, the expectation is taken oVing zero. The noise level is set so tsalRy = 10 dB. See text for details.

x ~ po(x), s ~ ps(s), zin @), 4 = 02 ap(t)/5, andA, =

vp/s. The minimization in[(5R) is ovey,, > 0 subject to[(51L).

One can show that with a sufficiently high initial conditionanalysis. For each value ¢f, we performed 1000 Monte
the sequence’; .. (f) monotonically decreases to a localCarlo trials of each estimator. For each trial, we measured
minimum of the objective function. Given the final value fothe normalized squared error (SE) in dB

vp» One can then recover from (43B). A similar procedure % - x|2

can be used for the zero norm-regularized estimator. 101og;, (W) ,

where X is the estimate ofx. The results are shown in
Fig.[3, with each set of 1000 trials represented by the median
normalized SE in dB.

As discussed above, the replica method is based on certaiifhe top curve shows the performance of the linear MMSE
unproven assumptions and even then the decoupling resektmator [(3]L). As discussed in Section V-A, the RS PMAP
under replica symmetry are only asymptotic for the largéecoupling property applied to the case of a constant scale
dimension limit. To validate the predictive power of the R®natrix S = I reduces to Verdl and Shamai’s result[in][60].
PMAP decoupling property for finite dimensions, we firsAs can be seen in Fidl 3, the result predicts the simulated
performed numerical simulations where the components ofperformance of the linear estimator extremely well.
are a zero-mean Bernoulli-Gaussian process, or equiljalent The next curve shows the lasso estimafor] (36) with the
a two-component, zero-mean Gaussian mixture where daetor v selected to minimize the MSE as described in
component has zero variance. Specifically, Section[V-D. To compute the predicted value of the MSE

N N{ N(0, 1), with prob. p; from the RS PMAP decoupling property, we numerically
J

VI. NUMERICAL SIMULATIONS
A. Bernoulli-Gaussian Mixture Distribution

0. with prob.1 — p solve the fixed-point equation§_(43) to obtain the effective
’ ' ’ noise levelso; .., and~,. We then use the scalar MAP
where p represents a sparsity ratio. In the experimepts; model with the estimatol (37) to predict the MSE. We see
0.1. This is one of many possible sparse priors. from Fig.[3 that the predicted MSE matches the median SE
We took the vecto to haven = 100 i.i.d. components within 0.3 dB over a range of values. At the time of initial
with this prior, and we variedn for 10 different values of dissemination of this work [61], precise prediction of laiss
B =n/m from 0.5 to 3. For the measuremerii$ (3), we tooerformance given a specific noise variance and prior was
a measurement matriX with i.i.d. Gaussian components anchot achievable with any other method. Now, as discussed in
a constant scale factor matr&= 1. The noise leveb? was SectiorI-C, such asymptotic performance predictions ¢sm a
set so thaBNRy = 10 dB, whereSNRy is the signal-to-noise be proven rigorously through connections with approximate
ratio with perfect side information defined in_{16). belief propagation.

We simulated various estimators and compared their perforFig.[3 also shows the theoretical minimum MSE (as com-
mances against the asymptotic values predicted by theceeplbuted with the RS PMMSE decoupling property) and the
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p=1 B=2 occur; he calls this theself-averagingassumption. Fig[]4
1 T 1 T provides some empirical evidence that self-averaging does
0.9 . 0.9} : indeed occur. However, even at = 500, the variation is
: : not insignificant. As a result, caution should be exercised i
0.8 : 08y : using the replica predictions on particular low-dimension
0.7} I 0.7} I instances.
_8' 1 1
S 06 ; 0.6 ; . o . .
o : : B. Discrete Distribution with Dynamic Range
EO'S’ 0.57 The RS PMAP decoupling property can also be used to
£ 041 , 0.4f , study the effects of dynamic range in power levels. To védida
© 03l : 0.3l : ~ n=100 | the replica analysis with powervariations_, we ran the foifg
: : sim. experiment: the vectat was generated with i.i.d. components
0.2f ! 0.2 ' |_n=500 |
1 1 sim. Tj = \/S—ju_j, (53)
0.1r ' 0.1 ' _ _Replicalj . . .
. . limit wheres; is a random power level and; is a discrete three-
9% 15 0 395 o _5 valued random variable with probability mass function
SE (dB) SE (dB)

1/\/p, Wwith prob = p/2;
—1/y/p, with prob = p/2;
0, with prob =1 —p.

(54)

Uy ~
Fig. 4. Convergence to the asymptotic limit from the RS PMAZealipling
property. Plotted are the CDFs of the SE over 1000 Monte Qedls of the

lasso method for the Gaussian mixture distribution. Detaile in the text. As before, the parametegirepresents the sparsity ratio and we
The CDF is shown for dimensions = 100 andn = 500 and8 = 1 and2.

As vector dimension increases, the performance beginsriceatrate around chose a value Oﬁ = 0.1. The measurements were generated
the limit predicted by the RS PMAP decoupling property. by
y=Ax+w=AS"?u+w,

. . . where A is an i.i.d. Gaussian measurement matrix amd
theoretical MSE from the zero norm-regularized estima®r & . ssian noise. As in the previous section, the post-

computed in Section VAC. For these two cases, the estimatgis;, eading SNR with side-information was normalized to
cannot be simulated since they involve NP-hard computstio

But we have depicted the curves to show that the repIicaThe' factors; in (53) accounts for power variations i
method can be used to calculate the gap between practical 9\'7éjconsiderej

. . : : ) d two random distributions for. (a) s; = 1, so
impractical algorithms. Interestingly, we see that theratiout that the power level is constant; and ()is uniform (in dB
a 2.0 to 2.5 dB gap between lasso and zero norm-regulari

A q h q b %Pc%le) over a 10 dB range with unit average power.
estlrr;a'qona and another ﬁ to 2 |I3 gap between zero NOIMy, caqe (b), when there is variation in the power levels, we
regularized estimation and optimal MMSE. can analyze two different scenarios for the lasso estimator

It is, of course, not surprising that zero norm-regularized . Power variations unknowrif the power levels; in (53) is

estimation performs better than lasso for the strictly spar unknown to the estimator, then we can apply the standard
prior considered in this simulation, and that optimal MMSE lasso estimator: '

performs better yet. However, what is valuable is that ogpli
analysis can quantify the precise performance differences

In Fig.[3, we plotted the median SE since there is actually
considerable variation in the SE over the random realiratio
of the problem parameters. To illustrate the degree of vari-
ability, Fig.[4 shows the CDF of the SE values over the

- 1
X(y) = argmin —|ly — Axl3 + [x[l,  (55)
x€eR™ Y

which does not need knowledge of the power lewgls
To analyze the behavior of this estimator with the replica
method, we simply incorporate variations of bethand

1000 Monte Carlo trials. Each trial has different noise and
measurement matrix realizations, and both contribute to SE
variations. We see that the variation of the SE is especiallye
large at the smaller dimension = 100. While the median
value agrees well with the theoretical replica limit, anytjgza
ular instance of the problem can vary considerably from that
limit. This is a significant drawback of the replica method: a
lower dimensions, the replica method may provide accurate
predictions of the median behavior, but it does not bound the
variations from the median.

As one might expect, at the higher dimensionnof= 500,

s; into the prior ofz; and assume a constant scale factor
s in the replica equations.

Power variations known:lf the power levelss; are
known, the estimator can compute

~ o1

t(y) = argmin [y — AS*ul3 + [ull;  (56)
ucRn® Y

and then takex = S'/?u. This can be analyzed with

the replica method by incorporating the distributionsef

into the scale factors.

Fig.[3 shows the performance of the lasso estimator for the

the level of variability is reduced and the observed SE bdifferent power range scenarios. As before, for edchhe
gins to concentrate around the replica limit. In his origindigure plots the median SE over 1000 Monte Carlo simulation
paper [12], Tanaka assumes that concentration of the SE wiilhls. Fig[5 also shows the theoretical asymptotic penfomce
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-2 —— Const. power (replica) Of course, one cannot conclude from this one simulation
o Const. power (sim.) o that these effects of dynami_c range _ho_ld more generally. The

-4 10dB range, unknown (replica) 7 study of the effect of dynamic range is interesting and bdyon
10dB range, unknown (sim.) g the scope of this work. The point is that the replica method

-6 10dB range, known (replica) 4 provides a simple analytic method for quantifying the effec

o 10dB range, known (sim.)

of dynamic range that appears to match actual performance
4 well.

10 C. Support Recovery with Thresholding
| In estimating vectors with strictly sparse priors, one im-
portant problem is to detect thications of the nonzero
_pgp—" v | components in the vectot. This problem, sometimes called
support recovery arises for example in subset selection in
‘ ‘ ‘ .| linear regressior _[64], where finding the support of the eect
0.5 1 15 2 25 3 x corresponds to determining a subset of features with strong
Measurement ratio § = n/m linear influence on some observed dgtaSeveral works have
attempted to find conditions under which the support of a
Fig. 5. MSE performance prediction by the replica methodhef lasso sparse vectork can be fully detected [44], [56], [65] or

estimator with power variations in the components. Ploitedhe median ; Te ; ;
SE of the lasso method in estimating a discrete-valued ilision. Three partially detected [86]£[68]. Unfortunately, with the extion

scenarios are considered: (a) all components have the sawer;p(b) the Of [44], the only available results are bounds that are rybitti
components have a 10 dB range in power that is unknown to tivaaer; One of the uses of RS PMAP decoupling property is to

and (c) the power range is known to the estimator and incatpdrinto the - oy 5 ctiynredict the fraction of support that can be detected cor-
measurement matrix. Solid lines represent the asympteotidigtion from the .
RS PMAP decoupling property, and the circles, triangles| squares show €Ctly. To see how to predict the support recovery perfoicean
the median SE over 1000 Monte Carlo simulation. See text ébails. observe that the decoupling property provides the asymaeptot
joint distribution for the vector(x;, s;, Z;), wherez; is the
_ . _ ~ component of the unknown vectos; is the corresponding
as predicted with the RS PMAP decoupling property. Simiécale factor and; is the component estimate. Now, in support

lated values are based on a vector dimension ef 100 and  recovery, we want to estimatg, the indicator function that

-12

Median squared error (dB)

optimal selection ofy as described in Sectidn V}D. x; is nonzero
We see that in all three cases (constant power and power 1, if z; #0;
variations unknown and known to the estimator), the replica 0; = 0, if x; #0.

prediction is in excellent agreement with the simulatedqrer ) ) )

mance. With one exception, the replica method matches {H8€ natural estimate fdf; is to compare the magnitude of
simulated performance within 0.2 dB. The one exception {8€ component estimatg; to some scale-dependent threshold
for B = 2.5 with constant power, where the replica methob(7); )

underpredicts the median SE by about 1 dB. A simulation at 0, — { L, !f |~?j| > 1(s;);

a higher dimension of. = 500 (not shown here) reduced this ! 0, if |Z;] <i(s;).

discrepancy to 0.2 dB, suggesting that the replica methodyifis idea of using thresholding for sparsity detection has

still asymptotically correct. . ~_ been proposed i [55] and [69]. Using the joint distribution
‘We can also observe two interesting phenomena inlfig. &, s, 4), one can then compute the probability of sparsity
First, the lasso method’s performance with constant powgfisdetection

is almost identical to the performance with unknown power _ p(a. }
L. . DPerr = Pr(ej 7& 9])
variations for values ofs < 2. However, at higher values
of 3, the power variations actualiynprovethe performance The probability of error can be minimized over the threshold
of the lasso method, even though the average power is theelst(s).
same in both cases. Wainwright's analys$is| [44] demonsirate To verify this calculation, we generated random vectors
the significance of the minimum component power in dictatingith » = 100 i.i.d. components given by (53) and {54). We
lasso’s performance. The above simulation and the cornespoused a constant powes,;( = 1) and a sparsity fraction of
ing replica predictions suggest that dynamic range may also= 0.2. As before, the observations were generated with
play a role in the performance of lasso. That increased dyn i.i.d. Gaussian matrix witBNRy = 10 dB.
namic range can improve the performance of sparse estimatio Fig.[@ compares the theoretical probability of sparsity-mis
has been observed for other estimators [62]] [63]. detection predicted by the replica method against the hctua
A second phenomena we see in Fif. 5 is that knowing tipeobability of misdetection based on the average of 1000
power variations and incorporating them into the measunémdvionte Carlo trials. We tested two algorithms: linear MMSE
matrix can actually degrade the performance of lasso. thdeestimation and lasso estimation. For lasso, the regutaiza
knowing the power variations appears to result in a 1 to 2 diarameter was selected for minimum MMSE as described in
loss in MSE performance. Section V-D). The results show a good match.
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APPENDIXA
REVIEW OF THE REPLICA METHOD

We provide a brief summary of the replica method, with
a focus on some of the details of the replica symmetric
analysis of postulated MMSE estimation in [12], [14]. This
review will elucidate some of the key assumptions, notably
the assumption of replica symmetry. General descriptidns o
the replica method can be found in texts suchlas [8]-[11].

The replica method is based on evaluating variants of the
so-calledasymptotic free energy

P(misdetection)

1
—— Linear+thresholding (replica) F =— lim —EllogZ(y,®)], (57)
o Linear+thresholding (sim.) n—oon

Lasso+thresholding (replica) | where Z(y, ®) is the postulated partition function
Lasso+threshodling (sim.)

05 1 15 2 25 3 Z(y,®) =E [logpy(y | ©; Ppost> Toost)]
Measurement ratio 3 = n/m

and the expectation if_(b7) is with respect to the true dis-

Fig. 6. Support recovery performance prediction with theica method. The .trlbutlon ony. F(-)r the- r_epllca PMMSE and PMAP analyses
solia iines show the theoretical probability of error in spty misdete.ction in [12], [14], various joint mpmer,ts of the Va”able§ and
using linear and lasso estimation followed by optimal theeding. The circles  Z; are computed from certain variants of the free energy, and
and triangles are the corresponding mean probabilities isfietection over the convergence of the joint distribution ij’i-j) is then
1000 Monte Carlo trials. analyzed based on these moments.

To evaluate the asymptotic free energy, the replica method
VIl. CONCLUSIONS ANDFUTURE WORK uses the identity that, for any random varialle

) ) o ) Ellog Z] = lim 2 logE [Z"].

We have applied the replica method from statistical physics v—0 Qv
for computing the asymptotic performance of postulated MAPherefore, the asymptotic free enerflyl(57) can be rewriten
estimators of non-Gaussian vectors with large random dinea 1 9
measurements, under a replica symmetric assumption. The F=—lim —lim —logE [Z"(y, ®)]. (58)
method can be readily applied to problems in compressed n—yoo nv=0 Ou
sensing. While the method is not theoretically rigorous)-si 1he ‘replica trick” involves evaluating the expectation
ulations show an excellent ability to predict the perforemn E[Z”(y, ®)] for positive integer values of and then assuming
for a range of algorithms, performance metrics, and inpsit di@n analytic continuation so that the resulting expressioalid
tributions. Indeed, we believe that the replica method joies for real v in the vicinity of zero. For positive integer values
the only method to date for asymptotically-exact predictop  ©f v, the quantityZ”(y, ®) can be written as
performance of compressed sensing algorithms that cay appl v
in a large range of circumstances. Z"(y,®)=E pr|x(y | Xa, @ ; Ppost crgost) ,  (59)

Moreover, we believe that the availability of a simple scala a=1
model that exactly characterizes certain sparse estimat@here the expectation is over independent copies of thersect
opens up numerous avenues for analysis. For one thingxjt, a = 1,...,v, with i.i.d. componentse,; ~ ppost(Za;)-
would be useful to see if the replica analysis of lasso cathe motivation for the replica trick is that the quantity
be used to recover the scaling laws of Wainwright![44}”(y, &) in (59) can be thought of as a partition function of
and Donoho and Tannel [45] for support recovery and tpnew system with “replicated” copies of the variables,,
extend the latter to the noisy setting. Also, the best known=1,... ». The parameter is called the replica number.
bounds for MSE performance in sparse estimation are giverThe replicated system is relatively easy to analyze. Specif
by Haupt and Nowak( [70] and Candés and Tao [71]. Singgally, to evaluateE[Z"(y, ®)], the replica analysis il [12],
the replica analysis is asymptotically exact (subject to- ve[14] first assumes aelf-averagingproperty that essentially
ious assumptions), we may be able to obtain much tightggsumes that the variations & (y, ®) due to randomness of
analytic expressions. In a similar vein, several reseaschéhe measurement matri@ vanish in the limit asn — oo.
have attempted to find information-theoretic lower boun(Nthough a large number of statistical physics quantities
with optimal estimation[[56],[65],[[72]. Using the replicaexhibit such self-averaging, the self-averaging of thevant
analysis of optimal estimators, one may be able to improggantities for the general PMMSE and PMAP analyses has
these scaling laws as well. not been rigorously established. Followirig [12],[14],fsel

Finally, there is a well-understood connection between staveraging in this work is thus simply assumed.
tistical mechanics and belief propagation-based decoding Under the self-averaging assumption, the expectatidndj (5
error correcting codes|[6].[7]. These connections may saggis evaluated in[[14] by first conditioning on the + 1)-by-
improved iterative algorithms for sparse estimation ad.wel (v + 1) correlation matrixQ = (1/n)X*X, whereX is the
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n-by-(v + 1) matrix derived for RS analysis of, reconstruction with Bernoulli—
Gaussian priors. Unfortunately, no equivalent conditi@s h
been derived for the general scenario considered in Guo and
with x having i.i.d. components according to the true distriverd’s extension in[[14].

bution z; ~ po(z;) and the vectors, being independent In this work, we simply assume replica symmetry for the
with i.i.d. components following the postulated distriiomt all values of the scale factar > 0. Sincew is analogous to

Taj ~ Ppost(Tqj). The conditioning orQ reduces the expec- inverse temperature [54] and validity of the RS assumptson i

X=[xx1 ... X,

tation in [59) to an integral of the form more problematic at low temperatures, one must be cautious i
1 interpreting our results. As stated in Sectibn I, where jbess
EE[ZV(.Y’ P)] we have confirmed the replica predictions by comparison

1 n 1 to numerical experiments. However, such experiments are

= = 1Og/€XP (BG(V)(Q)) p(dQ) + 0 (5)(50) limited to computable estimators such as LASSO and linear
estimators. For other estimators, such as the true MMSE or

whereG)(Q) is some function of the correlation matr  zero norm-regularized estimator, the RS assumption may ver

anduﬁl”)(Q) is a probability measure o@. It is then argued well not hold.

that the measureg!, (Q) satisfy a large deviations property

with some rate function’”(Q). Then, using standard large

deviations arguments as in [73], the asymptotic value of the

expectation in[(60) reduces to a maximization of the form

APPENDIXB
PROOFOVERVIEW
1 Fix a deterministic sequence of indicgs= j(n) with
lim E[Z"(y,®)] = sup EG(V)(Q) —I"(Q)] ., (61) j(n) € {1,...,n}. For eachn, define the random vector

nree Q triples
where the supremum is over the set of covariance mattres " »
The correlation matrixQ plays a similar role as the so-called 0%(n) = (2;(n),s;(n), & (n)), (62a)
overlap matrix in replica analyses of systems with discrete o™ (n) = (x;(n),s;(n), 277" (n)),  (62Db)

energy states [10]. o - bma )
The maximization in[{(61) over all covariance matrices is, i herex;(n), z#(n) aﬂgﬁ p(n)Aa;i the;th compongnts of

general, difficult to perform. The key replica symmetry (R € rgndom vectors, X*(y), ar!dxp *(y), ands;(n) is the

assumption used in_[12] and [14], and hence implicitly useﬁh diagonal entry (_Jf the matris. .

in this paper, is that the maxima are achieved with matrices':Or eachu, we will use the notation

Q that are symmetric with respect to permutations of the

replica indices. Under this symmetry assumption, the spéce

covariance matrices is greatly reduced and the maxima (&therep,, is defined in[(21L) and”""(z; -, -) is defined in

scalar

AU
Lscalar

(25 A) = 20 (25 Pu, M u), (63)

scalar

can be explicitly evaluated. (10). Also, for everys and~ > 0 define the random vectors
The RS assumption is not always valid, even though the

system itself is symmetric across the replica indices. For Oueatar (02,7) = (2,8, Boarar (23 7/9)),  (648)

example, it is well-known that even in the simple random oo (0%,y) = (7,8,3000P (25 v/s)),  (64b)

energy model, the corresponding maximization may notfgatis ) )
the RS assumption, particularly at low temperatuies [168; s Wherex and s are independent with: ~ po(z), s ~ ps(s),
also [74]. More recently, it has been shown that replica syrﬁ—nd o
metry may also be broken when analyzing lattice precoding z=x+ Ev (65)
for the Gaussian broadcast channel [15].
In absence of replica symmetry, one must search througith v ~ A(0,1).
a larger class of overlap or covariance matrid®s One Now, to prove the RS PMAP decoupling property, we need
such hierarchy of classes of matrices that is often usedtésshow that (under the stated assumptions)
described by the so-callektstep replica symmetry breaking . e map | 2
(RSB) matrices, a description of which can be found in vagiou Jim 0 P(n) = Ocatar (et maps V) (66)
texts [8]-[11]. In this regard, the analysis in this papehjch o )
assumes replica symmetry, is thus only a 0-step RSB analydfaere the limit is in distribution and the noise levef}; ,...,,
or Oth-level prediction. _and'yp_satlsfy part _(b) of the claim. _Thls desired equivalence
It is difficult to derive general tests for whether the R$S depicted in the right column of Figl 7.
assumption is rigorously valid. Tanaka’s original wofk [12 10 show this limit we first observe that under Assumplibn 1,
derived an explicit condition for the validity of the Rsfor u sufficiently large, the postulated prior distributipn(x)
assumption based on the Almeida—Thouless (AT) test [78] @1) and noise leved in (22) are assumed to satisfy the
that considers asymmetric perturbations around the RSesadd> PMMSE decoupling property. This implies that
points of the maximization[{61). For the case of binary . o
signals, the condition has a simple formula with the SNR Am (z5(n), 55 (1), 5 (n))
and measurement ratj@. In [48], an AT condition was also = (z,8, 8000 (25 pu, 05 o (1) /9)), (67)

scalar
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Appendix[D imits i
#(n) ppendix[D 2 () limits is
. (a) . .
map S u
RS PMMSE RS PMAP Jlim §™*P(n) = lim lim 6*(n)
decoupling decoupling (b) ] ]
property property = uh_}rrgo nh_)rrgo 0%(n)
A Appendix(B . (0 . 2 2
xgcalar (Z > 7/8) pp— Ccsp;iipr (Z > 7/8) - uh*}Hgo egcalar(o'eff (u)v uap—eff (u))
Fig. 7. The RS PMAP decoupling property of this paper relat?’?‘p(n) (i) ema%) (Uzﬁ' )
scalar \” efl,map’

to #07°P (25 /) through amn — oo limit. We establish the equivalence of
its validity to the validity of the RS PMMSE decoupling prape{14] through  \yhere all the limits are in distribution and (a) follows from
“"’lou — oo limits: Appe”j'fﬂ;f'at?%? (n) andz7™" (n); Append(E  @my- (1) follows from Assumptiofil3; (c) follows froni (58);
FElRteS catar (73 7/5) AN 2 catar (25 1/5): and (d) follows from[{7D). This proveB (66) and part (a) of the
claim.

Therefore, to prove the claim we prove the linfit (69) in

where the limit is in distribution ~ po(x), 5 ~ ps(s), and Appendix[D and the limit[{70) in AppendX]E and show that

ot (1) the limiting noise levels?; ., andv, satisfy the fixed-point
z=z+ ETU, v~ N(0,1). equations in part (b) of the claim in Appendik F. Before these
results are given, we review in Appendid C some requisite
Using the notation above, we can rewrite this limit as results from large deviations theory.
. u (a) . AU A C
lim 0%(n) = lim (x;(n),s;(n),2%(n)) PPENDIX
nreo o oo ! ! LARGE DEVIATIONS RESULTS
= (@5, 8 (25 pus oo (u)/9)) The above proof overview shows that the RS predictions for
© (2,5, 8% 1 (2 uo?_ g (u)/s)) the postulated MAP estimate are calculated by taking thi lim
77 scalart® s Tp—eft asu — oo of the RS predictions of the postulated MMSE
@ egcalar(o'zﬁ.(u)’uagicﬁ.(u))’ (68) estimates. These limits are evaluated with large deviation

theory and we begin, in this appendix, by deriving some stmpl
where all the limits are in distribution and (a) follows frahe modifications of standard large deviations results. Thenmai
definition of 6 (n) in (623); (b) follows from[{6]); (c) follows result we need is Laplace’s principle as described_ in [73]:
from (&3); and (d) follows from[{64a). This equivalence is Lemma 1 (Laplace’s Principle)Let ¢(x) be any measur-

depicted in the left column of Fi@l] 7. able function defined on some measurable suliset R™
The key part of the proof is to use a large deviatiorgiich that
argument to show that for almost af| exp(—p(x)) dx < 0. (71)
xeD
Jim X"(y) = xPmP(y). Then

o1 :
This limit in turn shows (see Lemnid 5 of Appendix D) that 1M w IOg/GD exp(—up(x)) dx = —eisé%lf%@(x)-
for everyn, _ b _ o
Given p(x) as in Lemmall, define the probability distribu-
lim 6“(n) = 6™ (n) 69) tion
uU—r 00

-1
almost surely and in distribution. A large deviation argumtne ; (x) = {/ exp(_uw(x))dx] exp(—up(x)).  (72)
is also used to show that for evekyand almost allz, x€D

We want to evaluate expectations of the form

uh~>ngo j:calar(z; /\) = jjs:;la; (Z7 )\)

lim g(u, X)gy (x) dx

Combining this with the limits in Assumptidd 2, we will see 40 JxeD

(see Lemm&]7 of Append[X E) that for some real-valued measurable functigm, x). The follow-
ing lemma shows that this integral is described by the behnavi

lim 0% atar (02 (1), uo?_ o (w)) of g(u,x) in a neighborhood of the minimizer qf(x).
— g (2 ) (70) Lemma 2:Suppose thatp(x) and g(u,x) are real-valued
scalar \7eff map: Tp measurable functions such that:
almost surely and in distribution. (@) The functiony(x) satisfies [(711) and has a unique es-

The equivalence&69) arld{70) are shown as rows ifFig. 7. Sential minimizerx € R" such that for every open
As shown, they combine with the RS PMMSE decoupling neighborhood/ of X,
property to prove the RS PMAP decoupling property. In inf o(x) > p(X).
equations instead of diagrammatic form, the combination of xgU
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(b) The functiong(u,x) is positive and satisfies

Jim sup sup — 289X _
u—oo xgU U(p(x) — @(X))
for every open neighborhodd of x.
(c) There exists a constagt, such that for every > 0,
there exists a neighborhodd of & such that

lim sup / 9(u, X)qy(x) dz — goo| < €.
U—00 U
Then,
lim | g(u,x)qu(X) dx = goo-
U— 00

Proof: Due to item (c), we simply have to show that for

any open neighborhood of x,

lim sup/ g(u,x)q,(x)dx = 0.
xeUe

U—r 00

To this end, let
Z(u) = log/ 9(u, X)qy (x) dx.
xeU«c

It suffices to show thaf/(u) — —oo asu — oo. Using the
definition of ¢,,(x) in (72), it is easy to check that

Z(u) = Z1(u) — Za(u), (73)
where
Zi(u) = 1og/€Uc g(u,x) exp (—u(p(x) — (X)) dx,
Zofw) = log [ exp(—u(e(0) - p(8) dx.
Now, let

M = essinf o(x) — p(%).
By item (a), M > 0. Therefore, we can find &> 0 such that
—M(1-46)+35<0. (74)

Now, from item (b), there exists @ such that for alks > wu,

2 < tog [ exp(oull - 9)(px) - o) dx

By Laplace’s principle, we can find a; such that for all
u > Uy,

20 < o ing (1= 6)pk) - p(R)
= u(=M(1-90)+9). (75)
Also, sincex is an essential minimizer af(x),

essinf o(x) = p(X).

Therefore, by Laplace’s principle, there existaasuch that
for u > us,

Zs(u) > u |—0 — essinf(p(x) — (X))

x€D

= —ud.

(76)

Substituting [[7b) and (I6) intd_(73) we see that fosuffi-
ciently large,

Z(u) <u(—M(1—196)+9)+ud < —ud,

where the last inequality follows from[_(J74). This shows
Z(u) — —oo asu — oo and the proof is complete. [ |
One simple application of this lemma is as follows:
Lemma 3:Let ¢(x) and h(x) be real-valued measurable
functions satisfying the following:
(a) The functionp(x) has a unique essential minimizgr
such that for every open neighborhobidof x,

Jnf P(x) > p(X).

(b) The functionh(x) is continuous ak.
(c) There exists @ > 0 and compact sek” such that for all
x ¢ K,

p(x) = clog|h(x)]. (77)

Then,

lim
U—r 00

h(x)qu(x) dx = h(X).

Proof: We will apply Lemmé& 2 withg(u, x) = |h(x) —
h(X)| and g = 0. Item (a) of this lemma shows that(x)
satisfies item (a) in Lemnid 2.

To verify that item (b) of Lemma&l2 holds, we first claim
there exists a constaff > 0 such that for allx,

p(x) = p(x) = Mlog |h(x) = h(X)]- (78)

We find a valid constamt/ for three regions. First, |éf be the
set ofx such thaih(x) — h(X)| < 1. Sinceh(x) is continuous
in x, U is an open neighborhood &. Also, for x € U, the
right hand side of[(48) is negative. Since the left-hand side
(79) is positive, the inequality will be satisfied @ for any
M > 0.

Next, consider the set’y = K\U whereK is the compact
set in item (c) of this lemma. SinckE is compact and(x) is
continuous, there existsa > 0 such thafog |h(x) —h(X)| <
¢ forall x € K. Also, sinceU is an open neighborhood &f
by item (a), there exists @ > 0 such thatp(x) — p(X) > ¢
for all x € U. Hence, the inequalitf (¥8) is satisfied with
M = cy/cqy in the setk;.

Finally, consider the sek®. In this set, [Z)7) is satisfied
for somec > 0. Combining this inequality with the fact that
o(x) — ¢(X) > ¢y for somecy, > 0, one can show thaf (¥8)
also holds for some&l/ > 0. Hence, for each of the regions
U, K\U and K¢, (Z8) is satisfied for som@/ > 0. Taking
the maximum of the three values #f, one can assumg_([78)
for all x.

Applying (78), we obtain

logg(u,x) _ loglh(x) —h(®)| _ 1
p(x) — () p(x) —p(x) — M
Hence, for any open neighborhoédof x,
) log g(u, x)
DI 220 W) — 9w

Now let us verify that item (c) of Lemmf] 2 holds. Let
e > 0. Sinceh(x) is continuous atk, there exists an open
neighborhood/ of x such thaty(u,x) < e for all x € U and
u. This implies that for alku,

[ stwxn ) ix < [ aoax<e

=0.

u—oo uM
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which shows thay(u, x) satisfies item (c) of Lemnid 2. ThusThen, forx ¢ K,

[ 19 (x) dx — 13
" where (a) follows from the definition op(x) in (79); (b)
= /(h(x) = h(x))qu(x) dx follows from (20) and the assumption that the cost functions
f(z;) are non-negative; and (c) follows frofn (81). Therefore,
/|h X)|qu(x) dx item (c) of LemmdB follows sincé(x;) = x;. Thus, all the

o) 2 fx) 2 f(ay) S cloglay),

<
hypotheses of Lemnid 3 are satisfied and we have the limit

lim 27 (y) = h(xP"*(y)) = 27" (y).

U—r 00 J

< /g(u’X)Qu(x) dx — 0,

where the last limit is as — oo and follows from Lemmal2. .
This proves the lemma. ]

Lemma 5:Consider the random vectaf¥(n) and6™2P (n)
APPENDIX D defined in [62a) and (62b), respectively. Then, forrall

EVALUATION OF limy o X“(y) ILm 0% (n) = 6™ (n) (82)

We can now apply Laplace’s principle in the prewous e
section to prove[(89). We begin by examining the p0|ntW|seImOSt surely and in distribution. C
Proof: The vectorg)*(n) and ™2P(n) are deterministic

convergence of the PMMSE estimatet (y). functions ofx(n), A(n), S(n), andy. Lemmd4 shows that the
Lemma 4:For everyn, A, and$ and aimost aly, limit (B2) holds for any values ok(n), A(n), andS(n), and

lim X"(y) = xP™*P(y), almost ally. Sincey has a continuous probability distribution

uee (due to the additive noise in ([@)), the set of values where this

wherex*(y) is the PMMSE estimator il (24) an®®™*"(y)  |imit does not hold must have probability zero. Thus, theitlim

is the PMAP estimator ir (18). (82) holds almost surely, and therefore, also in distriutim
Proof: The lemma is a direct application of Lemrihh 3.

Fix n, y, A, andS and let

APPENDIXE
1 EVALUATION OF lim,_soo 2% Z; A
px) = 5rly — ASxP 4+ f(x). (79) | voo Tacter23 )
We first show the pointwise convergence of the scalar
The definition ofx?™2P(y) in (I8) shows that MMSE estimatorzy, ;.. .(z; A).

Lemma 6:Consider the scalar est|mator§wldr( A) de-
fined in [€63) andi”""" (2 ; ) defined in [2b). For aIL\ >0

scalar

Assumptior %4 shows that this minimizer is unique for almoé'jltnd almost alk:, we have the deterministic limit

XPMEP(y) = arg min ¢(x).
Xex™

all y. Also (23) shows that lim &%, (25 A) =200 (2 \).
U—00
Pxly (x| y; PusT3) Proof: The proof is similar to that of LemmEl 4. Fix
-1 z and A and consider the conditional distributign,. (= |
= /x L P () dx| - exp(—up(x)) 2: pus Au). Using [7) along with the definition of, () in
_ (21) and an argument similar to the proof of Lemima 4, it is
= qu(x) :
easily checked that
whereg, (x) is given in [72) withD = X™. Therefore, using
@3, Pol=( | 25 pu, A1) = qu(2), (83)
~u wheregq, (z) is given by [72) withD = X and
X'(y) =E(x|y; puoy) —/ xqu(x)dx.  (80) 7(@) 15 0 y i)
xean o(x) = F(z,2,\), (84)

Now, to prove the lemma, we need to show that ] ] ) ]
where F(z, z, \) is defined in[(2B). Usind (63) and{10),

lim #%(y) = 2" (y
R H W) =5 P55 X) = 2 )
for every componenf = 1,...,n. To this end, fix a compo- .
nent index;. Using [80), we can write thgth component of = /zexxpW(x | 23 pus A u) d
e [ hwa@a
A = T)qu\T)ax,
i(y) = / . h(x)gq, (x) dx, reX
Xexm"

with h(z) =
We can now apply Lemnid 3. The definitiondf, -
n (25) shows that

whereh(x) = z;. The functionh(x) is continuous. To verify
item (c) of LemmaB, using Assumptidd 5, we first find a
compact setk’ such thatx| ¢ K implies that

lar\#

spmap (. ) _ :
;) > clog ;). (81) Toow (25 A) = arger?(ln o(x). (85)
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Assumptior 6 shows that for al > 0 and almost alk, this APPENDIXF
minimization is unigue so PROOF OF THEFIXED-POINT EQUATIONS
pmap (. For the final part of the proof, we need to show that the
#(2) > PEcaiar (25 1)) limits 02 ., and, in Assumptior2 satisfy the fixed-point
for all z £ &P™ 2+ \). Also, using [25), equatlons 0). The proof is straightforward, but we justche
scalar

to keep track of the notation properly. We begin with the

() following limit.

Jm (@) = lm P,z Lemma 8: The following limit holds:
® ©
> lim f(x) < oo (86) lim B [smse(pu, po, p; 1", 2")]
Tr|—00

= E[sle— 20500 (2 VP,
where (a) follows from[(84); (b) follows fron{(26); and (c)
follows from Assumptiof b. Equations (85) and](86) show thalf

item (a) of LemmanR is satisfied. Item (b) of Lemfda 3 is als§’

here the expectations are taken ower po(xz) and s ~
(s), andz andz* are the random variables

clearly satisfied sincé(x) = « is continuous. 2% = x4+, (89a)
Also, similar to the proof of Lemmi 4, one can show using p o= 4w (89h)

Assumptior[ b that item (c) of Lemnid 3 is satisfied for some
¢ > 0. Thus, all the hypotheses of Lemifa 3 are satisfied amith v ~ N(0,1) and " = o2(u)/s, py = o5 _oq(u)/s,

we have the limit [t = 02 map/ > @NdA = 7, /5.
Proof: Using the definitions ofmse in (@I) and
ma; ~pma A
ull{{.lo ‘Tscalar(z /\) h( S(:alaf;(z )‘)) ‘Tgcalali(z; /\) bedldI‘( ) in @)
This proves the lemma. m Mse(Pu,po, by 15 2Y)

euWe (0n2ov21u)tu;22 to &())r)lvergence of the random variable _ /EX |z — GPmmse pu,ug)lzpz\z(fc | 2% po, u*) da
scalar \" eff ’ p—eff . z
Lemma 7:Consider the random vectot®. ;. (c%,~) de- / u w. w2 u u
. . ] . ’ = ; 5 DO, dx.
fined in (628) andflif, (o%5) in (@2D). Let oy(u), 18 Breatns (25 4 [ Pz (] 275 po, ) e
2
07 o (u), 02 map @Nd 7y, be as defined in Assumptidd 2-Therefore, fixing s
Then the following limit holds:

T —T

and henceu® and p*), we obtain the
Loy Iz
conditional expectation

li}nolo egcalar( eff( ) uaf}—eﬂ(u)) = ezz%aar(agﬂr,map’ /Y;D) E [mse(p’U«7p07 MZ’ Mu’ Zu) | S}
(87) = Ef|lz — 2% (2" pn/u))?
. . . . - scalar ;M /u)| | S| (90)
almost surely and in distribution. [ : b }

Proof: The proof is similar to that of Lemnid 5. For anywhere the expectation on the right is over- po(x) and z*

o2 andy > 0, the vectorg)™_,_(02,~) andd™™ (02 ~) are given by (894).

deterministic functions of the random variables~ po(z),  Also, observe that the definitions' = o7 (u)/s and =

s ~ ps(s), and z given [65) withv ~ A(0,1). Lemmal® o4 ‘map/$ @nd along with the limit in Assumptidd 2 show that

shows that the limit _
lim p* = p. (91)
U—r 00

2 __ pmap 2
uhm ethldl‘( ’7) escalar( 7’7) (88) Slmllarly, Sinceug = 0'p eff( )/S and \ = ’}/p/S ASSUmp'
) tion[2 shows that N
holds for any values of“, v, x, ands and almost alk. Also, lim Hp _ N (92)

if we fix x, s, andv, by Assumptiori B, the function uSoo 1
Taking the limit asu — oo,

~ P N g
B v/s) = R+ v /)
Jim E [smse(pu, po, 1, 1", 2 )]
is continuous iny ando? for almost all values of. Therefore, (@) lim E [S|x _ “ )| ]
we can combind(88) with the limits in Assumptigh 2 to show T usoo Ticalar (2" 41 ’
that o .
= uli)noloE [Sl(E - scalar u; /\)|2] )
: 2 2 2
ulgr;o egcalar(aeﬂ” (u)7 uap—eﬂ(u)) engar(o—eﬂ‘,map7 '71)) (:C) ulggo E [ scalar . /\)|2] ,

for almost all z and s and almost allz. Since z has a D im E [slz — #2750 (z; V)],
continuous probability distribution (due to the additiveise u—00 scatar

v in ([@8)), the set of values where this limit does not hold/here (a) follows from[{90); (b) follows froni {92); (c) folles
must have probability zero. Thus, the linfii{87) holds almo$rom (@1), which implies that* — z; and (d) follows from
surely, and therefore, also in distribution. B Lemmal®6. [ ]



RANGAN, FLETCHER, AND GOYAL 19

The previous lemma enables us to evaluate the limit of thesimilar calculation shows that
MSE in (304). To evaluate the limit of the MSE in_(30b), we

, _ 5)3/2
need the following lemma. 1iminf/ o, 2)gu () dz > (1-9) o2z ).
Lemma 9:Fix z and A, and let u—=0o [ ey 1+6
g(u, ) = ulz — 2%, =200 (z; N).  (93) Therefore, with appropriate selection 6f one can find a

ighborh f 2 h that
Also, let o(x) be given by [(84) and,(x) be given by [(7R) neighborhood of & such tha

with D = X. Then, for anye > 0, there exists an open ) )
neighborhood/ C X of i such that 11£S£P /GUQ(va)qu(CC) dr —o°(z,\)| <e
lim sup / g(u, 2)qy(v) dz — 02 (2,\)| <€, and this proves the lemma. [
uee _ IEI_J . . Using the above result, we can evaluate the scalar MSE.
whereo?(z, \) is given in Assumptiofll6. Lemma 10:Using the notation of Lemnia 8,

Proof: The proofis straightforward but somewhat tedious.
We will just outline the main steps. Lei > 0. Using lim E [us MSe(Pu, Pu, Ky, s, 2 )} =E [302(27%/3)],
Assumption b, one can find an open neighborhébd- X U=eo

of  such that for all: € U andu > 0, Proof: This is an application of Lemmd 2. Fix and A

¢ (2,07 (u)) < exp(—u(p(z) — p(#))) < ¢ (2,07 (u)), and defineg(u, z) as in [98). As in the proof of Lemmnid 6,
(94) the conditional distributionp,.(z | z; pu, A/u) is given by
where¢(z, 0?) is the unnormalized Gaussian distribution ~ @3) With o (x) given by [84). The definition of /11 (2 A)
in @25) shows thati®"''P (z; A\) minimizes p(z). Similar to

scalar

b(z,0%) = exp <_L|x _ j|2) the proof of Lemmad6, one can show that items (a) and (b)
202 of Lemmal2 are satisfied. Also, Lemria 9 shows that item
and (c) of Lemme&l® holds withy., = o?(z, \). Therefore, all the
hypotheses of Lemnid 2 are satisfied and
cri(u) = (1+6)0?(z,\)/u,
o2 (u) = (1—208)a*(z,\)/u. lim ulr — 2P (25 NP qu(x) de = (2, ), (98)
U0 Jrex

Combining the bounds ih (94) with the definition @f(z) in
(72) and the fact tha/ C X shows that for alle € U and for all A and almost allz.

u >0, Now
-1
wle) = |[emad e e(pus pus M1t M, 2)
reX a ~pmmse
- Do I M 0P| 23 ps M) d
< [ oworuna] owet) e
o< Q[ e pu AP (o) do
Therefore, TEX
() ~u
/ 9(u, ) qu (@) da _/ Uu|$_@|2qu(x) da = /IGX | = Tiatar (25 NP qu(2) da, (99)
e
¢ ! where (a) is the definition ofnse in (I1); (b) follows from
@,0% (83); and (c) follows from [(63). Taking the limit of this
) expression
/ u|:1c — &[*¢(x, 0% (u)) da. (95)
zeU
li mse(puy, Pu, A/ U, A/,
Now, it can be verified that uthoo (Pus pus Aty M, 2)
(@) ..
lim U1/2¢((E,UE(U)) dr = 27’1’(1 — 5)0_(27)\) (96) ul~>nolo ex 'Uz|1' xbcalar(z )l q ( )
(®) . .pma
and = ulgxgo . ulr — 22 (25 N)|?qu () da
lim W32z — 22p(x, 02 (u)) do 9 520z, 0), (100)
= 21(1+ 0)30(2, \)3. (97) where (a) follows from[(39); (b) follows from Lemniad 6; and
Substituting [(9B6) and (97) int¢_(P5) shows that (c) follows from [98).

The variablesz* and z in (893) and[(89b) as well ag®
(1+6)%2 , and p% are deterministic functions of, v, s, andu. Fixing

lim sup /IEUg(u 2)qu(w) dv < -5 7 (2, 4). x, v, ands and taking the limit with respect ta we obtain

U—r 00
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the deterministic limit Similarly,
. u U u (a) .
uh_{go“ MS€(Pus Pus Koy s Hys 2*) Y = uhj& uag_eﬂ(u)
(a) . u b
= ulglgoumse(puapuaUﬁ—eﬂ(“)/&”ﬁ—eﬂ(u)/svz ) ® v+ BE [s mse(pu,pu,uz,uz,z“)]
@ im o2 (2", uagfcﬁ-(u)/s) @ v+ BE [s0°(2,M)] ,
U— 00

) im O_z(zvuo_g_eﬂ(u)/s) where (a) follows from the limit in Assumptidd 2 (b) follows
u—ro0 from (102B); and (c) follows from Lemniall0. This shows that

= 02(z,7/5), (101) (30D) is satisfied. m

where (a) follows from the definitions of* and ; in
Lemmal8; (b) follows from[(100); (c) follows from the limit _
(proved in Lemma&l8) that* — » asu — oc; and (d) follows ~ The authors thank reviewers for helpful comments. They
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