COMPUTER GARDENING

ROBERT FAUGHT
A.B. Kenyon College 1978

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the Massachusetts Institute of Technology June 1980

© Robert Faught 1980

The Author hereby grants to MIT permission to reproduce and to distribute publicly copies of this thesis document in whole or in part.

Signature of Author

Department of Architecture, June 16, 1980

Certified by

Muriel Cooper
Associate Professor of Visual Studies
Thesis Supervisor

Accepted by

Nicholas Negroponte
Chairman
Departmental Committee for Graduate Students

SEP 25 1980

LIBRARIES
DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

The images contained in this document are of the best quality available.
ABSTRACT

This report documents the initial development of a computer-controlled system for the production of three-dimensional forms. The project involved the design and construction of a carving device which was attached to an existing x-y plotter. The carving device was connected to a computer graphics system and various ways of using that system for three-dimensional design were explored.

The material being carved is styrene foam in blocks, 4' x 4' x 1'. These carved blocks have potential use as sketches in exploring sculptural form, or as molds for the production of works in concrete, fiberglass, or metal.

Thesis Supervisor: Muriel Cooper
Associate Professor of Visual Studies
1.0 INTRODUCTION
1.1 COMPUTER GARDENING

The Visible Language Workshop at MIT has been developing a computer graphics system over the past year. The main direction of this research has been large-scale, two-dimensional color graphics. A large (6' x 8') four color airbrush plotter was constructed under the direction of Prof. Ron MacNeil. This airbrush device was supported by an interactive imaging system with the ability to photographically input images and to creatively manipulate those images in unusual ways.

The project described in this report is an extension of the capability of that system into the third dimension. The idea was to modify the existing plotter so that, in addition to the airbrush unit, it could carry a device to carve large blocks of plastic foam.

The resulting foam blocks could, by themselves, be used as sketches to explore three-d form in synthetic or programatic ways. In addition they could be used as an

FIG. 1.1 F.L.L. WRIGHT, "Wooden Mold for Cast Concrete Shaft, Unity Temple"
intermediate step in the production of cast sculpture or building elements. Polystyrene foams are already being used as molds for the casting of concrete, fiberglass, and metal. Such a device could facilitate work in the aforementioned materials of a variety, detail, and scale either too slow or economically unfeasible by hand methods.

The utilization of the computer allows various mechanisms to be used in the construction of such a system. The two most important of these may be called programming, which implies a methodical and directional approach to solving problems, and modeling, which implies a conscious relation between machine activity and objects or occurrences outside the machine.

PROGRAMMING. Karl Gerstner, in his book Designing Programmes, suggests an alternative method to the seeking of individual solutions to problems. He suggests that designing programs for solutions provides a structured way to arrive at several solutions "one of which will be the best under certain
circumstances. To demonstrate the application of this idea, Gerstner uses a set of windows from a Gothic cathedral. (fig. 1.2) Each window is a "design in itself based on an exact program of constants and variants". He elucidates the program:

"The material and execution are prescribed; the dimensions, outlines, including the vertical tripartition up to the springing of the arch. There are 16 different ornamental patterns to be designed in the triangle of the arch and they must be related from the following points of view: the profiles of the lines and the joining together of the bundles of lines are in principle all alike— the tracing of the lines must be adapted organically to the outline and also to the vertical tripartition— the lines meet either at right angles to each other (or to the periphery) or run into each other at 0 degrees— there must be no residual forms; that is, each line must form a self-contained pattern on two sides." (1)

The program allows for the generation of a

(1) Karl Gerstner, DESIGNING PROGRAMMES, p. 7
formally complex variety of solutions to the single problem of dividing the shape. A computer carving system would have the capacity to facilitate the development of similar programs for formal solutions relevant to the tasks at hand (visual, tactile, acoustic, etc.). And since objects can function simultaneously on different levels, (as decoration, as structure, as a medium of direct or indirect communication), the development of a piece might involve the application of a sequence of programs or the interaction and contention of a number of program requirements.

Various programs will be at hand for the design of these surfaces. Some of these programs are intended to be of general usefulness: basic programs to input depth information that can be used to generate a wide variety of shapes. Others will be idiosyncratic, special purpose programs of limited application: a computer representation of a specific iconographical program, for example. In short, the system's programs would be a reflection of the range of a user/artist's continuing concerns for

FIG. 1.3 ICONOGRAPHICAL PROGRAM FOR A MEMORY IMAGE, Rombech, "Gramatica" and key, from Yates, The Arts of Memory
creative problem solving. The computer representation of form follows a common format established to simplify the manipulation of surface data, the generation of displays from that data, and the use of that data in the carving process.

MODELING: A model is a partial image. The assumption in modeling of all sorts (even with a child's toy automobile, for example) is that if one's image is good enough, its behavior will tell us something important about that of which it is an image. It follows that the higher the quality of the image, the greater the detail, the more informative will be its behavior. Models are predictive of their subjects, but the development of a model depends on observation of the object or process (or similar objects or processes). Thus, the use of models in design involves a circular procedure of development, with the model informing its subject and the subject, in turn, responding to the adequacy or inaccuracies of the model. The limits are practical and economic; there is no reason to make a model more detailed than is
necessary for its predictive function.

Roland Baladi used a simple model for the sun's movement: he constructed an array of protrusions from a wall, which cast shadows at certain times of day.(1) (fig. 1.4) He could place two images so that each was revealed or hidden, as the sun moved across the sky. A more complex model might make it possible to design surfaces whose appearance and meaning change continuously through the day and throughout the year.

In a sense, the data describing the surface of the object and a display of that surface data could be considered models for a carved piece. The success of the system depends to a large extent on the accuracy of these representations. However, the system will also contain models in a more dynamic sense, as programatic aids to the design of objects to be placed in a real environment. Appropriate possibilities might be for models of environmental conditions: for sunlight, shading and the movement of shadows; for rain flowing across a surface and collecting in the hollows; or for the

FIG. 1.4 BALADI'S BASSORILIEVO SOLARE, from Domus, April 1979
(1) "Bassorilievo Solare" from Domus 557 April 1976, p. 50
acoustic properties of surfaces. Models for structural necessities, where reinforcing might be needed, could be useful as well. This kind of approach could make possible the interactive design of not only the formal elements, but also of dynamic and environmental elements. Displays of events of long duration (the sun's movements) can be sped up. Events of short duration (a drop of water falling) can be slowed down.

FIG. 1.5 BENNET SUN ANGLE CHART (partial)
1.2 IMPLEMENTATION

The first step in the development of this system involved several tasks. First, the plotter had to be modified to carve the large foam blocks, (4' x 4' x 1' was the size decided upon), and still be able to quickly change back into a painting machine. Therefore, another axis (z) was constructed on which was mounted a router and cutting blade. This z axis assembly was mounted in place of the airbrush unit's counterweight on the y axis of the plotter. The whole plotter, which had previously been bolted to the wall, was placed on a pair of tracks perpendicular to the wall. Pushed all the way in to paint, it can also be pulled out varying distances to carve foam of different thicknesses.

Second, the basic programs for the design of surfaces had to be written. These programs were formulated to take advantage of the existing hardware and graphics software as much as possible. Three methods were explored:

a. an implementation of b-splines to describe
curved surfaces.
b. a "painting" approach where areas are drawn on the video monitor with their depth values represented by color.
c. the use of the digitizing camera as an input device, wherein levels of grey are interpreted as depth.
It is important to note that, as the system was never intended as a reproductive tool, the ability to directly input three-d data was not a central part of the system. In the future, however, it may be desirable to add some kind of three-d input device.

In addition to the three methods outlined above, various utility programs were written to compress or expand the range of depth and to produce data for molds by transforming depth images into back-to-front mirror images.

Third, an examination of various ways of representing three-d on two-d video screens had to be made. The objective was to find which display methods would best enable the user to monitor the manipulations made on the surface and to preview the appearance of
the carved piece. A shaded surface algorithm was implemented and is compatible with a partially completed shadowing algorithm.

Fourth, programs had to be written to drive the plotter. Various strategies to speed up the process were tried with 1/4" and 3/4" cutting blades.

In addition, the casting of several pieces in concrete was planned, but lack of time made it impossible to get beyond initial explorations of the possibilities of the carving device on a few foam pieces.
1.3 PRECEDENTS

The system bears a family resemblance to numerical control milling machines. Numerical control is a well developed field with its own languages. The machines are heavy, expensive, accurate, and optimized for working on heavy materials in production situations. An approach to three-d representation more closely related to this project can be found in the work of A.R. Forrest at Cambridge University. He has built a series of machines for carving three-d foam models. (1) (figs. 1.6, 1.7)

Many of the features of these machines are repeated in this system: the connection to a computer graphics system, the univalue surface with respect to the z axis, and the use of stepper motors on three axis, as well as their early problems with speed and dust removal. Forrest views his machines as computer peripherals attempting one solution to the problem of computer representation of three-d objects.

The characteristics evolving from its intended function as an environmental and...

9 bits (about 0.1" per picture element). In the future, hardware changes probably will be made to increase the size of the spray painted image while retaining the interactive graphic capabilities of the current system. This increase in size (to 18' x 30') could also be translated into a large increase in the x and y resolution of the carved image.
2.0 MACHINERY
2.1 HARDWARE CONSIDERATIONS

At the start of this project, certain decisions/assumptions were made which largely determined the configuration of the machine and limited its formal possibilities. The most important considerations concerned the modification of the existing plotter (rather than the construction of an entirely new machine), the choice of materials, the maximum size of those materials, and the shapes which were to be possible.

FOAM. Polystyrene foam was chosen as the primary material because it is cheap ($13 for a 4' x 4' x 1' block), readily available, easy to handle (1.5 lbs./cu ft.), and because it can be speedily cut with both standard router blades and with heated resistance wire. Though not a particularly pleasing material to work with, foam is presently carved as an intermediate step in casting concrete, in molding fiberglass, and in a variation of the lost wax process for casting metal. All of these possible applications for this system would be
interesting to explore.

SIZE. The maximum area over which the plotter can scan is about 6' x 8'. Since the foam is available in 4' x 8' sheets and the format of the Grinnel display is square, the natural size in the x and y dimensions is 4' x 4'. This means that each pixel in the Grinnel corresponds to a .094" square on the carved foam.

The maximum depth to which the machine can cut is twelve inches, a somewhat arbitrary decision based on calculations of how far the cutting blades can be extended from the motor without excessive vibration or wobbling, and the speed at which the cutting head can be pushed forward and backward to follow discontinuities (like sharp edges) in the piece being carved. Since, in its present state, the machine has to make multiple passes to get down to the final surface, time considerations have meant that only 5.5" of the depth capability has been used so far.

EXISTING PLOTTER. This project was conceived
of as an extension of the large airbrush painting project. The modification of the existing plotter, as opposed to the construction of an entirely new device, was one of the initial assumptions. The elegance transforming such a machine quickly from a painting device to a sculpting tool was appealing. This modification also saved space in a cramped situation, and it saved large amounts of time and money that would have been spent designing and building a prototype device.

SHAPE. Limiting the carving apparatus to cutting in relief is related to the use of the video frame buffer as the medium for design and storage of image information. Each point on the screen can hold only one depth or z value. This restriction also greatly simplifies the mechanical functioning of the device, because any swiveling or turning of the cutting head is unnecessary, as is the calculation of clearances for fourth or fifth axes.
2.2 THE PLOTTING DEVICE

The carving device built for this project rides on an x-y plotter built for a large scale painting application. (fig. 2.2) This plotter consists of a 12' long aluminum I-beam bolted to the wall about eight feet from the floor. On the upper channel of this I-beam is a round way on which the x axis carriage slides. This carriage is moved by a stepper motor mounted at one end of the beam. The motor turns a ball screw in a nut fixed to the top of the carriage.

Hinged from this carriage is another I-beam. On this vertical I-beam are mounted two pairs of roundways on which travel the painting device and the painting machine counterweight. Both these mechanisms are attached to a chain mounted on the back of the vertical I-beam and are driven by a stepper motor turning the top chain sprocket. At the bottom of the vertical beam is a piece of aluminum with a roller bearing at one end. (fig. 2.3) This bearing rolls along the wall and is adjustable to keep the bottom of the y axis parallel to the wall.
The resolution of the x axis is 0.0125"/step and the y axis is 235"/step.

This plotter was modified for carving by removing the horizontal I-beam from the wall. A pair of brackets were made and bolted to the wall at both ends. (fig. 2.4) These brackets support roundways on which the I-beam slides, enabling the whole machine to be positioned against the wall, in its previous location, to paint. To carve, the machine can be pulled out from the wall and adjusted so that the cutting blade, even when fully extended will not hit the wall or jam against the clamps holding the foam.

To hold the foam for carving, a sheet of pegboard is mounted via bolts embedded in the wall. On the pegboard are two 1' x 4' pieces of wood which clamp the piece of foam at the top and bottom. Each wood strip contains about a dozen small spikes to grip the foam securely.

FIG. 2.4 WALL BRACKET supporting plotter on a sliding bearing
2.3 THE CARVING MACHINE

In place of the counterweight on the airbrush plotter, a carving device was attached. (fig. 3.5) The carving device has two 26" roundways on which a sliding plate rides. A 12 1/2" long rack is mounted on the lower edge of the plate. This rack is driven by a 3/4" pinion. The pinion shaft extends through a hole in the mounting plate and is coupled to a stepper motor. The motor turns 200 steps per revolution which, means that a step will move the sliding plate forward or back .012".

A small pneumatic die grinder motor, which replaced a one horsepower electric router that was too noisy and too powerful to be cutting foam, is mounted on the sliding plate. The motor is coupled to an extended cutting blade assembly. (figs. 2.6, 2.7) This assembly consists of a 1/4" shaft 12" long mounted in a .5" O.D. steel tube. A miniature ball bearing in the far end of the tube keeps the shaft from vibrating excessively at the 25,000 rpm free running
speed. The router blade is attached with adhesive into the end of the shaft. The tube is clamped firmly to the sliding plate and can be unclamped to change cutting blade assemblies. Three of these cutting blade assemblies have been made with different diameter blades (3/4", 1/4", and 1/16"). Because the blade extends from the motor, sharp edges can be carved without concern that the bulk of the motor will ruin the piece.
2.4 CUTTING STRATEGIES

The control of the cutter as it moves through the foam is of major importance, since this is the final and most basic determinant of the appearance of the piece. One goal is to make the carved piece conform as closely as possible to the data. However, it is perhaps equally important to explore possibilities for the interpretation of the data by using different cutting bits in a variety of ways. The variables that are being examined here are the size of the cutters (3/4", 1/4", and soon 1/16") and the degree of overlap on parallel passes. The limiting factor in these experiments has been speed; and various strategies were explored to get maximum detail in a minimum amount of time. These are only preliminary investigations. Further hardware changes will reduce the time necessary to reasonably carve a piece. These hardware improvements will make possible a wider variety of and deeper exploration into carving methods.

All the cutters used so far are cylindrical in shape, so their flat ends are ideal for
cutting flat surfaces. In addition, they precisely cut vertical edges in the direction of the scanning across the piece. However, when the blade has to move up or down in its scan across the piece, it leaves a semi-circular pattern with excess "tails" equal to the radius of the cutter. This pattern is most noticeable in deep edges perpendicular to the vertical scanning direction. (fig. 2.8) This pattern may be desirable or acceptable on pieces which have no deep edges. (fig. 2.9) The "tails" can be minimized by overlapping the cuts on successive passes. (fig. 2.10) When each pass overlaps the last by half, it doubles the time it takes to carve the piece, but reduces the excess to about an eighth of what it is with no overlap. (fig. 2.11) (The formula is: excess = 1 - (.5 x √4-d²), where d is the distance from cut to cut and both d and the excess are expressed as a percentage of the radius of the cutter.)

In cutting 4' x 4' blocks, 3/4" dia. blades are eight pixels wide and 1/4" dia. blades are 3 pixels wide. Before each pass a sort is done to find the highest pixel value
FIG. 2.12 SMOOTH CURVES WITH 50% OVERLAP, 3/4" BLADE

FIG. 2.13 SMOOTH CURVES WITH 50% OVERLAP, 3/4" BLADE
under the cutter at any point in the traverse across the piece. This means that the cutter should never remove any of the surface specified in the data. If it has to err, it will err high. The sorting process also makes it possible to remove the mass of material with large blades and to do single passes with smaller blades.
2.5 FUTURE IMPROVEMENTS

In the near future, several improvements will be made to the machinery. The first will be the construction or adaptation of longer cutting blades. At this time, both the 3/4" and the 1/4" blades are standard wood router blades 5/8" long. This means that multiple passes must be made to get rid of material above the final surface of the piece, resulting in incredibly long times to cut moderately detailed pieces (up to nine hours). A blade 3" long could cut the time by at least four times.

The Perkin-Elmer 3220 CPU is being used to generate pulses to move the three axes of the plotter, so that a large amount of computer time is dedicated to low level driving chores. In addition it is very difficult to accelerate or decelerate one axis while moving another axis. A microprocessor or microcontroller is planned to take over the pulse generation tasks.

A larger more powerful waste removal duct is necessary and is also planned.
3.0 DESIGN & DISPLAY
3.1 THE USE OF THE FRAME BUFFER

The design and display methods used in this project make use of various features of our video frame buffer, a Grinnel GMR-27. A frame buffer is basically a memory which stores a displayed image as a set of intensity values. The video screen is divided into a 512 x 512 grid and for each of the resulting 262,000 pixel elements or pixels there are stored 27 bits of data. For full color graphics, these bits are usually allocated so that eight bits describe each of the intensities of red, blue, and green. The remaining three bits in each pixel are used for the superimposition of various kinds of graphic information over the color picture. The information stored in each pixel location is read and passed to a monitor every thirtieth of a second to maintain a steady picture on the screen. In between the times the pixel memories are being read by the display, they are available to be read from or written to the host computer. This is how the image is modified.

The Grinnel has several features that were
TO CPU

EIGHT BIT MEMORY CHANNELS

(RED) (GREEN) (BLUE)

OVERLAY PLANES

NINE

EIGHT TEN

LOOK-UP TABLE MUX

LOOK-UP TABLES

LOOK-UP TABLE SELECT

OUTPUT MUX

OVERLAY PLANE CLAMPS

OUTPUT TO COLOR MONITOR

OVERLAY PLANE OUTPUTS
useful in this project. (fig. 3.1) There are	hree- ten bit by eight bit lookup tables
which use the data stored in the eight bit
memory channels plus two of the overlay
planes to index a table of eight bit
intensity values. Since these tables are
loaded independently of the memories, color
can be assigned arbitrarily to memory values.
There are also a number of clamps and
multiplexers which can be used to change the
configuration of the data paths from memory,
through or around the lookup tables, and to
the output amplifiers. Another feature that
proved useful was the separate video outputs
on the overlay planes. This meant that a
high-contrast black and white monitor could
be run from the Grinnel, in addition to the
full color monitor.
3.2 GRINNEL CONFIGURATION

The Grinnel was made for the display of high quality color images. However, its versatility makes it possible to apply some of its capabilities to the task of three-d imaging.

What makes it so useful is the limitation of the mechanical part of the cutting machine to three axes of movement. The fact that the surface is univalued with respect to the z axis (no undercutting being possible) means that a two-d array of depth values will describe the surface completely. The frame buffer is a convenient 2-d memory organization and is ideal for the storage and manipulation of such an array, since it is not storing "color" but numbers describing color intensities. (fig. 3.2)

Allocating 16 of the 27 bits of each pixel (the red and green channels) to depth information has several implications:

1. The depth data stored in this way becomes available for real time interactive manipulation, with speed comparable to
two-d graphics applications.

2. Both primitive and complex two-d graphics routines can be directly applied to the task of three-d imaging. A square drawn in the green and red channels might become a cube depending on its "color" value. Three-d images can be saved and loaded from the magnetic disc into the Grinnel memory as if they were color images. This compatability greatly simplifies the task of developing a three-d system.

3. The higher eight bits (the blue channel) and the overlay planes are available for display of information about the surface. The data in this display can be a realistic shaded surface picture calculated at the same time as the depth info. Both can be written into the Grinnel with one write instruction. Ordinarily, the display, since it is in the blue channel, would be blue. But, by directing the blue memory channel to all three lookup tables, and loading the tables with appropriate values, a 256 color display can be generated.
4. Since the carving machine has a z axis resolution of 10 bits (.012"/step) in full step mode and 11 bits (.006"/step) in half step mode, there are five or six extra bits available in the 16 bit Grinnel depth channels. These will be used in the future for the generation of a shadow display using a "z buffer" algorithm (1). Three of these bits will be the most significant depth bits and will allow for the rotation of a representation of a 4' x 4' x 1' block to any angle to calculate the sun angle view. (Since 10 bits are needed for the 1' depth, three more are needed for the 5'9" maximum diagonal.) The other bits will be used at the less significant end to provide a higher precision depth value which, though not used by the carving machine at this time, will reduce the quantization error in the shadowing calculations.

5. Various control functions to govern the carving machine could be stored in the overlay planes above the corresponding depth values. They would be accessed at the same time as the data.

(1) L. Williams, "Casting Curved Shadows on Curved Surfaces" from COMPUTER GRAPHICS, SIGGRAPH, August 1978 p. 270
6. The depth information of smooth curves, when viewed in the normal configuration, is a kind of dizzy moire pattern. The less significant bits of the depth information fall in the more significant bits of the red channel, while the more significant bits of the depth information fall in the less significant bits of the green channel. By directing this information to properly loaded lookup tables, meaningful contour maps of the surface can be directly and instantaneously obtained without calculations using the data.
3.3 DESIGN

Three basic programs for the design of surfaces have been written: an application of b-spline methods for the generation of smooth surfaces, a program for the interpretation of photographically digitized images into depth information, and a program for "painting" in depth.

All the programs are operated from the work station shown in figure 3.3. It is equipped with a terminal, a graphic tablet, and two monitors: one a color display and the other a black and white display connected to overlay channel eight.

The spline program shows the first traces of the dynamic modeling mechanism applied to environmental elements. It allows for a shading algorithm (1) to be applied to the surface information to generate a shaded image of the surface with the sun at a given chosen angle. This display is rather crude, it needs to be smoother and it does not show shadows except where the surface features shadow themselves. It is, nevertheless,

(1) Newman and Sproull, PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS, p. 389-395
surprisingly accurate as a comparison of photographs of the shaded display and of the piece will show. (figs. 3.22, 3.23)

The photographic and painting programs are used in the design of a piece as a basic demonstration of the interaction of multiple programs on a single surface.
3.3.1 B-SPLINES

The basic program for the design of curved surfaces uses a geometric technique known as B-splines. Its mathematical basis (1) and algorithms for implementation (2, 3) are well documented. The technique uses a set of "control points" to which a blending function is applied. This blending function means that an area on the curved surface will be influenced by the position of the control points nearest that area. Each control point exerts a kind of gravitational "pull" on the surface. Thus the positions of a small number of control points can determine the shape of a complex surface.

Fig. 3.4 shows the relative influence of six control points on a third order curve. At either end the blending function considers only one point so, the curve will touch those points. At all the other points the curve is being tugged at by three control points. Increasing the order of the curve will increase the number of control points which affect any point on the curve, with a

(1) C. DeBoor, "On Calculating with B-splines" from JOURNAL OF APPROXIMATION THEORY, 6, 1972, p. 50-62

(2) Gordon and Riesenfeld, "B-spline Curves and Surfaces" from Barnhill and Riesenfeld, COMPUTER AIDED GEOMETRIC DESIGN, p. 293-310

(3) Newman and Sproull, PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS, p. 320-325
corresponding change in the shape of the curve. The relative pull of a control point on different orders of curves is shown in fig. 3.5. The lower the order, greater is the effect of the control points position on a narrower area of the curve. And the higher the order the more blending will occur and the smoother will be the curve.

The program for the manipulation of the position of the control points uses two monitors. To start, a 4 x 4 grid is displayed. On one monitor is a view looking at the grid along the z axis (fig. 3.6), on the other is a view of the grid from a position 45 degrees above the horizon (fig. 3.7).

The user selects one of these views and with the tablet can choose a point and move it around the screen. With the top view selected he can change the position of the point relative to the x and y axes. This top view is normally used for stacking points in certain areas to locally reduce the order of the curve. This creates discontinuities or edges on the surface. With the angled view
selected he can change the position of the point only in relation to the z axis. (fig. 3.8) As the changes in position are made, the new locations are entered in a list of the points' coordinates stored in a data segment.

With the 4 x 4 grid of control points the user can make gross changes in the surface. By pressing a button on the tablet, a preview of the surface is generated on the top monitor (this takes about 5 seconds). Points moved up create bulges in the surface and points moved down create depressions. (The preview shown in fig. 3.9 is a third order curve.)

To allow finer surface features to be created the user can quickly increase the number of control points. A linear interpolation is done between the existing points and the grid is increased to 7 x 7. (figs. 3.10, 3.11) The angled view can be spun around to permit a more accurate reading of the grid of points in space. This is useful since confusion may arise, as the grid resolution increases, because of the
the lack of hidden line removal in the display.

The process of subdividing the grid of control points can be repeated twice more to make grids of 13 x 13 (figs. 3.12, 3.13) and 25 x 25. Finer and finer distinctions are possible with each increase in grid resolution.

Figs. 3.14 through 3.22 show the final steps in the design of a surface.

Fig. 3.14 is the top view. Points are moved to vary the effective order of the curve across the surface creating a variety of shapes and edges.
Figs. 3.15-3.18 are displays of the control points and preview curves from two different angles. Although confusing in the photographs, it was still possible, by rotating the grids and drawing the preview curves, to see where points were located in the represented space.
Figures 3.19 and 3.20 show shaded surface views with the light source at different angles. In these displays a spline surface with a 50 x 50 resolution was generated from the control points. The image is drawn from back to front to eliminate the need for hidden surface removal. These images took thirty seconds to draw.

Figure 3.22 shows a shaded view of the surface. The display actually uses just the blue channel of the Grinnel. By directing the data in that channel to all three video output amplifiers, the actual depth information is made invisible. The depth data (made visible for fig. 3.21) is generated from the spline curve at the same time as the shaded image. It is this depth data which the carving machine uses in cutting the piece.
Fig. 3.23 shows a sample piece carved from the data in figure 3.21. It was carved with a 3/4" cutter with 50% overlap of each vertical scan. It took approximately eight hours to carve.
3.3.2 PHOTOGRAPHIC INPUT

Two programs were written to take advantage of the possibility of interpreting photographic images as three-d forms. The first program takes an eight bit color channel and transforms the grey tones into depth values in the standard 16 bit depth format. These depth values range between a high bound (white) and a low bound (black). Since the photographic image does not contain three-d data except by inference, this process involves a level of abstraction in the interpretation of gradation of grey tone as change in depth. The second program takes an eight bit color channel and sets the depth value to a high bound if the tone is above middle grey ('1000000'b) and sets it to a low bound if the tone is below middle grey. Figs. 3.24-3.26 show this second program applied to an image photographically digitized from a type specimen book.

Figure 3.24 shows the digitized page. It is a black and white image.

In figure 3.25 the eight bit green channel was
processed into the sixteen bit depth format. The high bound was 410 (about 5") and the low bound was 235 (about 4").

Figure 3.26 shows a cross section of the depth of the surface at a horizontal line through the middle of the letters. (the cursor is visible in the verticle stroke of the "b" indicating the position of the cross section.)
3.3.3 PAINTING

Since the surfaces being designed are univalued with respect to the z axis, and since the depth information is being stored in what are normally color channels, it is possible to choose color values which correspond to depth levels and to write areas having those values to the Grinnel. This "painting" process is exactly the same as that used in two-d color graphics. The graphic tablet is used to indicate position on the video screen to the computer. Squares are drawn in those positions so quickly by the Grinnel that moving the tablet stylus produces lines or continuous curves. The "brush" has the same width as the squares being drawn.

In fig. 3.26 the upper case letters were painted over with a brush of the same value as the background, thereby erasing them.

In fig. 3.27 various lines and curves were drawn over the image in fig. 3.26. (The tones represent the actual depth data, so they signify different depths, but not relative
depth values.)

Fig. 3.28 is the final piece. It was carved with a 1/4" cutter with the vertical scans overlapping each other by 50%. It took six hours to carve.
3.4 CONTOURS

The depth data, when displayed in the normal manner (fig. 3.21), is not very useful. Since the less significant bits of the depth data fall in the more significant bits of the red channel, they appear as tiny concentric lines. The more significant depth bits fall in the lower part of the green channel and are too dim to be recognizable. However, since each depth has a unique value, it is possible, by using the color lookup tables, to assign a color to each value. Using the depth values as indexes to properly assigned lookup tables, topographic maps of the surface can be generated. These maps can be color-coded in innumerable ways. Since there are no calculations involving the depth data, these maps can be displayed almost instantly.

Four possibilities were explored. Some may be more useful in specific situations than others.

a. The first map (fig. 3.29) uses the most significant bit in the red channel (bit 5 in
the 10 bit carving data) to generate black and white lines. This is slightly better than the raw data.

b. A bolder version of "a" (fig. 3.30) which uses bit two in the green channel (bit 7 in the 10 bit carving data).

c. A map (fig. 3.31) that uses the lower five bits in the green channel (bits 6-10 in the carving data) to generate a 32 step grey scale where black is the lowest level and white is the highest level.

d. A map (fig. 3.32) that uses bits two through five in the green channel to generate a 16 step grey scale. This sixteen step version seems to better convey the shapes of deeper pieces than the 32 step version.

All these contour programs direct either the red or the green channel to all three of the lookup tables, and after loading those tables, they enable the lookup table select switches.
3.5 TRANSFORMATIONS

Four programs were written for transforming entire images. The figures shown use a sixteen step contour map with light greys indicating high places, dark greys indicating low places. A program called "scan" was called to give a cross section of a horizontal line about halfway up the screen. The effects of the transformations described are visible on both the cross section and on the greys in the contour map.

COMPRESS looks for the high and low bounds of the existing image (fig. 3.33) and asks for new high and low depth boundaries. It then compresses the depth values linearly to fit within those bounds. (fig. 3.34)

INVERT takes the image (fig. 3.34) and turns it inside out (fig. 3.35). The places which were once high are now low and vice versa.

MIRROR takes the image (fig. 3.35) and turns it around so that what was on the left is on the right and vice versa. (fig. 3.36)
MOLD does the same things as compress, invert and mirror but in one step. It is useful for making molds for surfaces.
3.6 PROBLEMS

It was assumed that the power of the computer as an extendable, interactive tool would overcome the untactile and unsatisfying nature of the design of sculptural shapes on a two dimensional display. The goal of this project was not to eliminate those negative aspects caused by this distancing, but to provide other capabilities that would minimize their importance. In the current primitive state of the system, they still loom large.
4.0 PROGRAMS
The following pages contain an alphabetized list of the programs written for this project. The name of each routine is followed by:

1. A brief description of the program.
2. The format for its correct use (the declare and call statements, if applicable).
3. A list of the programs it calls, if they are not installed in the systems or graphics libraries.
4. A list of the programs which call the routine.

All these programs can be found in the directory >u>fot.

The programs dealing with machine functions are in subdirectory "real". The names of the various carving programs end with "pass". (dpass,npass,onepass,qopass qpass). The programs to adjust the speeds of the axes are "rampant" and "zinc".

The programs for the design of surfaces are in subdirectory "s". To manipulate the grid of spline control points call "cs". Then
call "sp50" and "sm50" for the shaded view
and depth map, or call "tlt50" and "tms"
for the shaded angled view.

Other design programs in subdirectory "s"
are:
"cross" for interactive painting in depth,
"crunch" and "tocrunch" for transforming
photographs into the depth format,
"scan" and "look" for cross sections of
surfaces,
"contour","contour2","contour3","contour4"
for generating topographic maps with
the lookup tables,
"compress","invert","mirror" and "mold" for
doing transformations on entire images.

The programs to change the Grinnel
configuration are in subdirectory "grin".
These programs are "lt_mux","switch", and
"ocolor". From command level, "otest" and
"stest" call "ocolor" and "lt_mux"
respectively.

This thesis report can be found in
subdirectory "thesis".
ANOTHER

This routine divides irregular polygons into rectangles and passes each rectangle's coordinates, plane equations and color to SGROUND.

dcl another entry (, ,fix,flt,flt,flt,bit(8));
call another (x_array,y_array,n,a,b,c,color);

x_array, y_array are the vertices of the polygon listed either clockwise or counterclockwise.
n is the number of vertices,
a,b,c is the plane equation of polygon,
color is the shade or color of polygon.

called by: sm50, tm50
calls: sground

COMPRESS

This routine asks for new high and low bounds and compresses or expands all the depths in the depth map to fit into those bounds.

CONTOUR

These are a set of routines which load the lookup tables with values and direct a channel of the depth map to all three tables. They give a kind of topographic map effect. CONTOUR alternates black and white to indicate depth changes in wide bands. CONTOUR2 uses narrow black and white bands. CONTOUR3 uses changes in value from dark (low) to white (high) to indicate changes in level. CONTOUR4 is the narrow band version of CONTOUR3. Which program is used depends on the image being displayed. Images which have a small range of subtle changes would best be shown with a program which uses narrow bands. The same program would be confusing when applied to an image with a wide range of depth.
CROSS
This routine allow the user to draw directly with depth values into the Grinnel. The buttons on the tablet are used to select depth values, to draw horizontal or vertical lines, or to draw free curves.

CRUNCH
This routine is used to convert the grey tones of digitized photographic images into the carving data format. It asks for a high bound, a low bound and whether or not the data should be inverted. The eight bits which make up what is normally the green channel are compressed or expanded so that white is the high bound and black is the low bound and the grey values are in between.

CS
This is the main process for the design of b-spline surfaces. It uses two monitors, the color monitor and one connected to overlay channel eight. CS asks for the order of the preview curve, all the rest of the commands are controlled through a menu and the tablet buttons.
calls: splinep, linev, ocolor, trans, trig

dPASS
Carving program for 3/4" blade. It cuts without overlapping for fast removal of foam, but with the disadvantage of leaving a rough surface.
calls: nfast, move$calibrate, move$init$, move$\$x

HQUICK
This is a higher resolution version of QUICK which uses 9 bits but distorts the relationship between the depth values and the y axis.
INVERT
This routine takes the depth map and inverts it so that the highest part is low and the lowest part is high. It also allows one to specify a new high bound so that the image can be compressed or expanded along the depth (z) axis. This routine is useful in converting an image into a negative mold of that image.

LINEV
This routine is for drawing or erasing lines in an overlay plane without writing over information in the other overlay planes.

dcl grin$linev (fix,fix,fix,fix,bit(16), fix);
call grin$linev (xl,yl,x2,y2,plane,on);

xl,yl,x2,y2 are the endpoints of the line, plane is the overlay plane.
on=1 to write ones into the plane.
on=0 to write zeros into the plane.
called by: cs, splinep

LOOK
This routine asks the user to type in a line number and then displays a cross section of that line in plane eight.

LT_MUX
This routine changes the Grinnel lookup table mux. Any combination of the three lookup tables can be connected to one of the three memory channels or the digitizer. (a=0,b=1,c=2 is the normal mode.)

dcl lt mux entry (fix,fix,fix);
call lt_mux (a,b,c);

(where a,b,and c are the three lookup tables which are equal to channels 0,1,2, or 3. 3 being the digitizer.)
called by: sm50, tm50, tms50
MAKEA

This routine is for making the tables of b-spline blending values. It looks in the directory >u>fot>tables for a segment containing the specified table. If none is found it makes the table and stores it in that directory.

dcl makea entry (fix,fix,fix);
call makea (n,k,s);

n is the number of control points minus one, k is the order of the curve, s is the number of line segments which make the curve.

called by: splinep, tilt50, sp50

MIRROR

This routine reverses the image so that what was on the left is on the right, and what was on the right is on the left.

MOLD

This routine inverts the image from front to back and left to right in one step. This is the transformation necessary to convert an image into a mold for that image.

MOVE$CALIBRATE

This routine aligns the cutter at the end of each pass.

dcl move$calibrate entry (fix,fix);
call move$calibrate (bias,endlevel);

endlevel is the depth of the cutter at the end of the previous pass, bias is the depth of the cutter at the beginning of the next pass.
MOVE$INIT0

This routine initializes the 3/4" cutter position on the y axis at the beginning of the first pass of the carving program. The cutter is aligned with the top left corner of the block of foam. MOVE$INIT0 moves it down by a specified number of steps.

dcl move$init0 entry;
call move$init0;

MOVE$X

This routine moves the horizontal axis. There are 1600 steps/inch.

dcl move$x entry (fix);
call move$x (steps);

steps is the number of steps to be moved (positive values move it to the right).

MOVE$Y

This routine moves the vertical axis. There are about 84 steps/inch.

dcl move$y entry (fix);
call move$y (steps);

steps is the number of steps to be moved (positive values move it up).

NPASS

Carving program for 3/4" blade. It executes multiple cuts down to the proper level and overlaps the passes across the piece by 50%.

calls: nfast, move$calibrate, move $init0, move$x

OCOLOR

This is a routine to assign colors to the Grinnel overlay planes. Each of the overlay planes is connected to each of the three output drivers (red, green, and blue). By
switching these connections on or off each overlay can be given one of seven colors or black (off). The colors are coded: 0=black (off), 1=blue, 2=green, 3=bluegreen, 4=red, 5=magenta, 6=yellow, and 7=white. It is also useful for making information invisible on the main monitor while displaying it on a monitor connected to the overlay plane output.

dcl ocolor entry (fix, fix, fix);
call ocolor (eight, nine, ten);

called by: cs, sm50, tms50, tm50

ONEPASS

Carving program for 3/4" blade. It only executes the final cut across the surface. This makes it useful after DPASS to get a piece with finer resolution. It overlaps the passes across the piece by 50%.

calls: nfast, move$calibrate, move
$init0, move$x

OTEST

This is for colorizing the Grinnel overlay planes from command level.

calls: ocolor

QOPOPASS

Carving program for 1/4" blade. It overlaps the passes by 50% and only executes the final pass across the surface.

calls: qfast, move$calibrate, move
$init0, move$x

QPASS

Carving program for 1/4" blade. 50% overlap.

calls: qfast, move$calibrate, move
$init0, move$x
QUICK

This routine uses the tablet to create a quick, low resolution (only 7 bits) surface that curves in only the y direction. Useful for tests.

RAMPANT

This routine stores information about the movement of the x and y axis in the data segments "x.curve" and "y.curve". It also computes the acceleration and deceleration curves for the axis. The data is stored in a structure like this:

```
dcl 1 data based (dp);
  2 upstepno,
  2 dnstepno,
  2 begdelay,
  2 enddelay,
  2 vmesh flt,
  2 hmesh flt,
  2 ups(600),
  2 dns(600),
  2 rpf flt,
  2 run;
```

upstepno, dnstepno are the number of steps to accelerate and decelerate.
begdelay, enddelay are the starting delay value and the minimum delay value (a delay is = .000002 sec.).
hmesh is the starting angle of the curve. ups and dns are arrays of delay values.
run is the distance travelled at maximum speed.
All the other variables are no longer relevant.
calls: "y.curve", "x.curve"

SCAN

This routine takes a position from the tablet and draws (in plane eight) a horizontal or vertical cross-section through that point.
SGROUND

This routine takes a rectangle, a plane equation, and a color. It does a linear interpolation to find all the z values of the points bound by the rectangle. It then writes a rectangular area with this information into the bottom 16 bits and a color to the top eight bits of the Grinnel.

dcl sground entry (fix, fix, fix, fix, flt, flt, flt, bit(8));
call ground (left, bottom, right, top, a, b, c, color);

left, bottom, right, and top are the sides of the rectangle,
a, b, and c are the plane equation,
color is the color or shade of the rectangle.

called by: another

SM50

This routine uses the 50x50 spline curve grid which has been stored in the data segment "points" by SP50. It reconfigures the Grinnel so that the top eight bits are directed to all three output drivers. A ray toward the light source is used to generate a shaded image of the surface in the top eight bits. At the same time a 512 x 512 depth map is generated in the (invisible) bottom 16 bits. The surface can be cut directly from this map.

calls: another, ocolor, lt_mux

SP50

This routine uses the grid of control points stored in the first part of the data segment "stuff" to make a 50 x 50 array of points on a b-spline curve of a given order. It stores this array in the data segment "points".

calls: makea, "stuff", "points",
SPLINEP

This routine is used to quickly preview the spline surface while it is being designed. It draws a 25 x 25 grid in plane eight.

dcl splinep entry (ptr,ptr,ptr,fix,fix,fix); call splinep (x_ptr,y_ptr,z_ptr,maxx,maxy,k);

x_ptr,y_ptr,z_ptr are pointers to arrays of control points expressed as floating point numbers, maxx,maxy are the dimensions of the grid of control points, k is the order of the curve to be drawn.

called by: cs
calls: makea, linev

STEST

This is for changing the configuration of the Grinnel lookup table mux from command level.

calls: lt_mux

SWITCH

This routine changes the Grinnel video input mux configuration. Each of the three video channels (red, green, and blue) can be directed toward any of the three video drivers.

dcl switch entry (fix,fix,fix); call switch (a,b,c);

a,b, and c are the output drivers. They can be equal to 0, 1, or 2 which correspond to the input channels. (a=0, b=1, c=2 is the normal mode.)

TCRUNCH

This routine is a high contrast version of CRUNCH. It takes eight bits from the green channel of the Grinnel and converts it to the carving data format. It takes high and low bounds and sets pixels equal to one or
the other depending on whether they are above or below middle grey.

TEST

This is for moving the x-axis on the plotter from command level. There are 1600 steps to the inch. Positive numbers of steps move the plotter arm to the right.

calls: move$x

TILT50

This routine uses the grid of control points stored in the second part of the data segment "stuff" to make a 50 x 50 array of points on a b-spline curve. The viewpoint is that of the last 45 degree altitude view used by CS. It stores the array in the data segment "points".

calls: makea, "points", "stuff"

TM50

This routine uses the curve generated by TILT50 to draw a shaded view coupled with a depth map. The hidden surface problem is eliminated by drawing the surface from farthest point to nearest. The depth map will be used in the future by a shadowing algorithm.

calls: ocolor, lt_mux, another

TMS50

This routine is like TM50 except that only the shaded view, not the depth map, is written to the Grinnel. It is a slightly faster way to generate a shaded view of a surface.

calls: ocolor, lt_mux
TRANS

This routine takes a point in display coordinates and rotates it around the center (256,256,0) of the screen. The angles of rotation are stored in a structure by the program TRIG and passed to TRANS as an argument.

dcl trans entry (flt,flt,flt,structure,flt,flt,flt,flt);
call trans (x,y,z,trig,x2,y2,z2);

trig is declared:
 1 trig,
 2 sin_alt flt,
 2 cos_alt flt,
 2 sin_az flt,
 2 cos_az flt;

x,y,z is the point
x2,y2,z2 is the transformed point

called by: cs

TRIG

This routine calculates the cosine and sine of the altitude and azimuth and places them in a structure.

dcl trig entry (flt,flt,structure);
call trig (altitude,azimuth,trig)

altitude is the angle above the horizon (x-y plane) expressed in radians.
azimuth is the rotation around the z-axis expressed in radians.
trig is the structure in which the values are placed. it is declared:
 1 trig,
 2 sin_alt flt,
 2 cos_alt flt,
 2 sin_az flt,
 2 cos_az flt;

called by: cs

YTEST

This is for moving the y-axis on the plotter from command level. There are approximately
85 steps to the inch. Positive numbers move the carriage up.

calls: moveSy

ZINC

This routine is used to change the factors which control the z axis movement. The parameters are stored in a structure in the segment "zinc.data" like so:

dcl 1 data based (dp),
 2 hmesh flt,
 2 rpf flt,
 2 upeq flt,
 2 run fix,
 2 upstepno fix,
 2 begdelay fix,
 2 enddelay fix;

hmesh is the starting angle if the acceleration curve.
run is the number of pulses it takes to reach speed.
upstepno is the number of elements in the table.
begdelay is the beginning delay value.
enddelay is the minimum delay value.
The other variables are no longer relevent.

The acceleration curves are stored in a table in the segment "ztable.data". A curve is computed for all the possible step distances up to 2 x upstepno.

calls: "zinc.data", "ztable.data"
5.0 BIBLIOGRAPHY
Formulas and Tables for computing angles of solar incidence

Bogart M., "In Art the Ends Just Don't Always Justify Means", SMITHSONIAN MAGAZINE, 1979
A short history of 3-d reproductions methods

DeBoor C. "On Calculating with B-splines", JOURNAL OF APPROXIMATION THEORY, 6, 50-62 1972
Mathematics of b-splines

Solution to a similar problem

Gerstner, Karl, DESIGNING PROGRAMMES, Arthur Niggli Ltd. 1964

Smooth surface techniques

Gouraud H., "Continuous Shading of Curved Surfaces", IEEE TRANS. C-20 (6) June 1971
Sophisticated shading techniques

Ingram A.R. & Fogel J., "Polystyrene and Related Thermoplastic Foams" from Frisch & Saunders, PLASTIC FOAMS, Marcel Dekker 1973
Basic data and properties of styrene foam

Mazzocchi, G. ed., "Bassorilievo Solare, Una Nuova Invenzione per Transformare il Paesaggio", DOMUS 557, p. 50, Aprile 1976
An artist constructing objects to cast shadows on flat surfaces

Negroponte, N. ed., REFLECTIONS ON COMPUTER AIDS TO DESIGN AND ARCHITECTURE, Petrocelli/Charter 1965
A collection of essays, including some by skeptics, on computer applications in the design process

An overview of computer graphics issues

Basic concrete text
a study of artificial memory with implications for the programatic
use of computer memory

Williams L., "Casting Curved Shadows on Curved Surfaces", COMPUTER
GRAPHICS, SIGGRAPH v.12 #3 august 1978
Shadow display techniques

Wright F.LL., IN THE CAUSE OF ARCHITECTURE, Architectural Press 1975
a collection of articles, many about the nature of materials including
several about concrete, with drawings and photographs of projects
ACKNOWLEDGMENTS

This project would not have been possible without the aid of many people. I would like to thank some of them here.

Ron MacNeil, for his continued support and freely given advice over many years.

Peter Lindenmuth of the Nexus Machine Shop and Gallery, for his knowledge and skill in the arts of machining and cooking.

Dan Franzblau, Paul Trevithick, Paul Heckbert, Bob Mohl, and Walter Bender, for sharing their programs and knowledge, saving me many weeks of work.

Phil Meyfarth, for good advice at a crucial time.

Dean William Porter of the School of Architecture and Planning, The MIT Council for the Arts, and the M.S.V.S. Research Seed Fund Committee, for the financial support necessary to build the carving device.

Muriel Cooper of the Visible Language Workshop, for supporting the production of this report.

Laura Blacklow, the editor of this report, for untwisting much convoluted prose.