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12.119 Geochemical Analysis of Environmental Materials Spring 2006 

 
Precision, Accuracy and Quality Control 

 
 When we interpret geochemical data, we must keep the “significance” of the 
numbers in mind at all time. Given two numbers (say, an EPA “action level” and a 
measurement of an element in a water sample), is the measurement above or below the 
limit. If the sample measures “29 ppb” and the action level is “30 ppb”, is the water 
safe to drink? If you were informed that the measurement has an uncertainty of 2 ppb, 
would your answer change? 
 
Some terms to be familiar with: 
 

Bias 
Accuracy 
Precision 
"Internal" Precision 
"External" Precision 
Reproducibility 
 
Error 
Systematic error 
Random error 
Correlated errors 
Significant figures 
Error Propagation 
 
Mean (average) 
Median 
Gaussian distribution (bell curve) 
Population 
Sample population 
degrees of freedom 

Standard Deviation 
Standard Error 
Pooled Standard Deviation 
One-sigma, two-sigma, three-
sigma 
 
Small-number statistics 
t-statistic 
 
Detection Limit 
 
Counting Statistics 
Shot Noise 
 
Variance 
Regression 
Linear Regression 
Correlation 
 
Significant figures 
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Standard Deviation, Pooled Standard Deviation, and Standard Error 

 
 Mean: 

   xmean =
xi

i
∑

n  

 Standard Deviation of the mean: 
 

  σ =
(xi − xmean )2

i
∑

n −1
 

 
 where  
 
  xi are the individual observations 
  xmean is the average of the individual observations 
  n is the number of points 
 
 The term n-1 is introduced to compensate for the loss of degrees of freedom. 
When you made your n observations, you had n degrees of freedom; in other words, 
none of the numbers was literally determined by any of the other numbers. However, 
when you calculate a mean you not only have the n observations, you have one more 
number (something for nothing; get 11 numbers for the price of 10...). Since you can't 
have something for nothing, you have to give up one degree of freedom because the 
average is not independent of the n observations. Stating it another way, if I told you 
that I had ten numbers and gave you nine of them and the average, you could calculate 
the tenth. 
 
 The squaring and square roots derive to the concept of the Gaussian 
Distribution (as known to physicists; statististicians and mathematicians call it the 
“normal distribution” and social scientists call it the “bell curve”), in which the 
frequency distribution of multiple observations of a variable x that has a mean value of 
µ is distributed according to the equation: 

P(x) =
1

σ π
e−( x−µ )2 /(2σ 2 )

 

The basic idea is that small errors are more probable than large errors. For some 
processes (e.g. radioactive decay or ion counting), we can prove that the deviations 
should follow this relation. For some other processes, we know that the deviations 
should follow a different probability density function (PDF). Most of the time, we 
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don’t know for sure what the distribution is. But except for exceptional cases 
requiring very high accuracy of error estimates, we typically just assume that the 
relationship is Gaussian, because most other relationships are similar to it, and the 
Gaussian function has some particularly handy mathematical properties. 
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If you integrate under a bounded range of the curve, you get the percentage of 
observations that will fall within those bounds. e.g., the integral of the bell curve 
within the bounds ±1σ is 71%; within the bounds ±2 σ is 95%; within the bounds ±3 σ 
is 99%. 
 
 In order to get a good estimate of the standard deviation, you need many 
measurements. For example, if n=10, then the standard deviation is estimated only to 
within about 20%. 
 
 In real life, you rarely analyze even as many as ten replicates of samples. Often, 
you may want to do samples in duplicate (or triplicate at most) to be sure that some 
error hasn't occurred. In this case, you can estimate the pooled standard deviation: 
given a set of replicate analyses of different samples, the pooled standard deviation 
estimates the error by pooling the statistics.  

PSD =
σ1

2 f1 + σ2
2 f2 +…

f1 + f2 +…
 

where fi is the number of degrees of freedom for sample 1 (e.g., for triplicate analyses 
of sample 1, f1 = 3-1 = 2; for duplicate analyses of sample 2, f2 = 2-1 = 1). This 
approach assumes that all of the measurements have the same σ, so it cannot be 



 4
applied to cases where the error varies between measurements. For example, in some 
analyses, the error is a constant percentage of the signal. In that case, you can pool 
samples that fall within some range of values. 
 

Propagation of errors: 
 
 The basic idea is that if a (final) number is computed from other (primary) 
numbers, an uncertainty in the primary numbers propagates to uncertainty in the final 
number. The simplest way to estimate the effect of error in one of the primary numbers 
on the final number is just to do the calculation 3 times: 
 
Suppose y = f(x) and that x has an uncertainty σx. Then calculate: 
 
  y(x+σx), y(x), y(x-σx) 
 
Then y = y(x) +  y(x+σx)-y(x) 
     -  y(x-σx)-y(x) 
 
If the relationship between y and x is non-linear (e.g. y=ex) and the error is relatively 
large, the difference between the estimate and the upper error bound may differ from 
that of the lower error bound. This method does not conform to strict statistical 
principles, but it is better than nothing when you have a formula that doesn’t obey the 
simple rules below. 
 
 If a final number is calculated from several primary numbers, then a more 
formal error analysis is necessary. A decision is also required: Are the errors 
uncorrelated (no relationship between the magnitudes of the errors between the 
primary variables) or correlated? Most error analyses assume that errors are 
uncorrelated (although this is not necessarily so). In this event, however, it is not 
possible to do the calculation as we have done it above because when one error in 
variable 1 zigs up, the error in variable 2 may be zigging down. 
 
The total error du is equal to the partial derivatives of u with respect to each variable 
times the error attributable to each variable dx. In other words, if u is the result of a 
calculation involving the three variables x, y, and z, then the uncertainty in u can be 
calculated from the partial derivatives: 
 

du =
∂u
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

y,x

dx +
∂u
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x,z

dy +
∂u
∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

x,y

dz
 

 
Generally, most calculations of this sort can be simplified by assuming that the 
errors are small compared to the numbers themselves (often but not always true). 
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Approximations using Taylor expansions are employed, leading to the following 
expressions, where u and v are numbers with uncertainties σu and σv 

 
 First, if you simply multiply a number u with an uncertainty σu by an exact 
constant a with no error (e.g. π is an exact constant), then the error in the product au is: 
 

σ au = aσ u
 

 
 For addition, multiplication, and division: 
 
If x = u ± v , then σ x

2 = σ u
2 +σ v

2 ± 2σ uv
2  

 
If 

x =
u
v

, then σ x
2

x2 =
σ u

2

u2 +
σ v

2

v2 − 2 σ uv
2

uv
 

 
If , then x = uv σ x

2

x2 =
σ u

2

u2 +
σ v

2

v2 + 2 σ uv
2

uv
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 Practically, as long as the errors are a small percentage of the numbers 
themselves and are not correlated between variables, the final terms of these equations 
(cross products) can be neglected, resulting in the simpler expressions: 
 
If x = u ± v , then σ x

2 ≈ σ u
2 +σ v

2 
 
If 

x =
u
v

, then σ x
2

x2 ≈
σ u

2

u2 +
σ v

2

v2

 

 
If , then x = uv σ x

2

x2 ≈
σ u

2

u2 +
σ v

2

v2

 

 
In most cases you will be able to use these approximations in your calculations for this 
course. If you have to use more complicated functions (e.g. logs or exponentials), you 
can approximate the error in f(x) by calculating f(x-σx) and f(x+σx). 
 

Curve Fits and Small Number Statistics 
 
 Although it is not always the only right thing to do, it is common (and for 
Gaussian error distributions, statistically correct) to do a least-squares fit to data. The 
idea is that given some function f(x) that the data should conform to, the "best" fit is 
one that minimizes the standard deviation of the observations relative to the curve fit. 
 
 If you are using observations to fit a presumed function f(x) with coefficients ai 
that are determined by the fit (e.g., fitting a straight line with intercept a1 and slope a2 
to a series of paired x,y observations) and want to see how well the function fits the 
data, you can calculate the standard deviation of the fit:  
 

 Standard deviation (s.d.) =  
yi − f (xi)( )2

i
∑

n − m
 

 
where m is the number of coefficients in your curve fit (e.g., if you estimate a slope 
and intercept, then your degrees of freedom is reduced to n-2). 
 
 For example, if we have a series of paired observations (xi,yi) which we are 
fitting to a line a1 +b1x, then we calculate: 
 

  S =  yi − a1 − a2xi( )[ ]2
i

∑
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  We want a1 and a2 such that S is minimized. So we take the derivatives 
of S with respect to a1 and a2 and set them to zero. This gives us two equations in two 
unknowns, and so we can solve for a1 and a2. This gives the usual least squares 
formula built into calculators. Note that this line may not always be the truly "best" 
line, because it assumes that the x variable has NO error and that all of the error is in 
the y variable. In the more general case where both x and y have errors, a more 
complicated treatment is necessary [the "York" method: Earth Planet. Sci. Lett. 5:320-
324 (1969)]. 
 
 For large n, there are standard statistical procedures for calculating the error on 
the estimates for derived quantities such as slope and intercept of a straight line. 
Because of the aforementioned "luck of the draw" effects, the error of derived 
quantities such as the slope and intercept is often underestimated. For example, if you 
have only three paired observations (x1,y1) and (x2,y2), they will define a straight line 
with only one degree of freedom. The estimated error for slope and intercept of a least-
squares fit calculated from the large-n statistical formulas will underestimate the true 
error, so it is necessary to adjust these estimates using a t-statistic, a multiplier that 
compensates for the small number statistics. For example, for a straight line fit for n=3, 
t=6.3 (but t declines rapidly for larger n). 
 
 
 

Counting Statistics 
 
 Sometimes we measure properties by counting individual events. For example: 
How many atoms of a radioactive isotope have decayed and been counted by a Geiger 
counter? How many atoms have passed through a mass spectrometer and hit the 
detector? How many photons have been detected by a photomultiplier tube? 
 There is a fundamental law of statistics that applies whenever we sample a larger 
population by randomly by counting. If we have counted n atoms, then the one-sigma 
uncertainty is √n. For example, suppose we were to count the number of radioactive 
decays occurring for a 1 minute interval, and then repeat this process many times. If on 
average we find n decays per minute, the standard deviation of our count data for the 
many 1 minute intervals would be √n. 
 

Quality Control in the Analysis of Geological Materials: Part I 
 
 In addition to fundamental instrumental, methodological and statistical errors 
that affect the analysis (that will apply whenever a measurement is made), further 
errors will creep into any effort to analyze materials over an extended period. For 
example: the standards employed may be unstable or erroneous pipettes and balances 
may be misused or improperly calibrated. In general, few laboratories can consistently 
analyze a well-known standard as an unknown and obtain results over months and 
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years with a standard deviation as low as that obtained from replicate determinations 
for a shorter period. In order to maintain the best reproducibility over long time periods 
and assess the true analytical reproducibility, quality-control efforts are required. 
 
 Government agencies have devised various analytical quality control procedures 
known by names such as “GLP” (good laboratory practices),  "CLP" (chemical 
laboratory practices), etc.. These are rigidly enforced upon any laboratory that does 
work that is required by federal regulations. If you go to work in such a laboratory, you 
will want to become familiar with these procedures because they are required by law. 
Most academic labs do not follow these procedures. They are not required to do so  by 
law, and in any event most academic laboratories feel that their own quality control 
efforts are superior to the rigid CLT protocols because they are tailored to the 
application at hand, rather than being monolithically imposed to suit everything. The 
CLT protocols are probably  successful in imposing some minimum level of 
competency on environmental consulting firms, but in some cases they require an 
inappropriate error-ridden old-fashioned method to the exclusion of a modern method 
that gives more reliable numbers. 
 
 One of the keys to maintaining good quality control is the maintenance of a 
thorough laboratory book. A good lab book starts with bound pages (so they don't fall 
out from wear-and-tear) of high quality acid-free paper. Entries into this book should 
be dated and made either with a permanent ink (carbon-black is best) or with similarly 
reliable computer output (these days, that generally means black laser-printer output, 
although old-fashioned dot-matrix printers with carbon ribbons are also satisfactory. 
But the laser printer paper used would have to be acid free ideally, and it hardly ever 
is). Thermal paper and (often but not always) ink-jet prints are not stable and will fade 
with time, exposure to light, and being taped over...). Any procedure performed on a 
sample is described in complete detail. For example: 
 

2.15 mg of reagent grade CaCO3 was weighed out onto weighing paper on a 
tared Mettler P61 balance and transferred into a calibrated 500 ml glass 
volumetric flask (V=499.1 ml). 100 ml of water distilled from a quartz still was 
added to the flask, the solid was stirred into the solution, and 10 ml of 
concentrated analytical grade HNO3 added dropwise so as to minimize fizzing 
and spattering. Another 380 ml of distilled water was added. After cooling to a 
room temperature of 20°C, the solution was diluted to the mark and thoroughly 
mixed. 
 

If a procedure is repeated over and over, you can simply refer to an earlier description 
of the method and give the essential changing details such as the sample weights. Save 
the raw data from the instrument in the lab book in a permanent form, and describe the 
calibration and calculation procedures. 
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 One modern problem is that data is often collected by computer systems; how 
does one properly archive this data when data storage systems, programs, and 
protocols are rapidly changing. A multiple-method backup system is usually best, 
including: 
 

(1) Paper output for primary data, if it can be done reasonably (sometimes, a plot is 
better than a long list of numbers, e.g. in chromatography). 

(2) Save the primary data on digital medial in as simple a computer representation 
as possible; e.g., rather than saving the data table (only) as an Excel©, 
SigmaPlot©, or MassLynx© file, save it as a flat delimited ASCII files. The 
reason for doing this is that ASCII files have been around for decades and all 
computers can read ASCII files. There aren’t any current versions of Excel, for 
example, that will read “Excel 1.5” files. 

For the uninitiated, a “flat delimited ASCII file” has the following properties:  
(1) It only contains ASCII characters (which are ultimately one-byte numbers between 0 and 

127); basically, ASCII characters are English letters and numbers, along with a few 
punctuation marks, symbols, and “control characters” such as “tab” and “end of 
paragraph”. 

(2) It is “delimited” if it is essentially a list in row-and-column format, with the individual 
“cell” entries listed in order starting from the upper left corner, across the columns to the 
right, then the second row, etc. down to the lower left. The individual numbers in a row 
are separated by a “delimiter” such as “tab”, “comma”, “semicolon”, “space” – or – the 
columns have a fixed number of entries per row (“fixed width”) e.g. a 7 digit number in 
row 1, a five digit number in row 2, etc – and the rows are terminated by and “end of 
paragraph” mark. 

 These days, most commercial software has a “save as…” option that will allow 
you to choose “text” file and perhaps give you a choice as to the method of 
delimitation. 

(3) Make at least two copies of the files in separate directories on your hard disk (in 
case of file corruption), and make copies on at least two separate removable 
media storage  systems stored in different places from your computer (and better 
yet, from each other. The reasoning behind this advice is: (a) file corruption on 
hard disks is the most common cause of data loss, (b) hard drive failure is the 
second most common cause of data loss, (c) removable media can be unreliable 
(I have had CD-R disks that simply sat in a box without ever being touched go 
from readable to unreadable over a period of a few years), and (d) when the fire, 
flood, tornado, hurricane, earthquake, or meteor strike occurs, do you want to 
still have access to your data? 
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Fundamentals of Correlation Analysis 
 

I. Correlation 
 
A. Correlation coefficient 

           

     r =
1

n −1
(
x

i
− x
S

x
i =1

n

∑ )(
y

i
− y
S

y

) =
1

n −1

(xi − x)(yi − y)
i=1

n

∑

S
x
S

y

                       

_ 

     where  Sx = std. dev. of x = (Σ(xi-
_
x  )2/n-1)1/2 

                                           

     and    Sy = std. dev. of y = (Σ(yi-
_
y  )2/n-1)1/2 

 
    i.e. Sx and Sy relate the deviations of points from 

       the average relative to the "range" (actually std. dev.) 
       of the observations. 
 

B. Variance and Covariance 
 

1. Variance (of x is denoted Sx2; variance of y is denoted Sy2) is a measure of the scatter of 
values of a variable about its mean: 

                    

Sx

2 = (xi − x)
i =1

n

∑
2

/ n 

 
2. Covariance (of x and y) expresses the relationship between two variables (a measure of 

the scatter of values of points in a plane relative to the mean value): 
       

Sxy

2 = (xi − x)
i =1

n

∑ (yi − y) / n  

 
3. r2 is "the variance of Y accounted for by it's 
  covariance with x" (usually expressed in % units). In other words, the Covariance divided 

by the product of the Variances. 
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C. Relation to linear regressions (x on y; y on x; others) 
 

1. Common linear regression of y on x: y = A + Bx 
 
      Let  S = Σ (yi - A - B xi)2 
 
   Set ∂S/∂A =0; ∂S/∂B =0; solve for A and B. 
 
2. Matrix math solution of Linear Regression: 
 
   for eq'n Ax = b  (m eq'ns, n unknowns), 
   if columns of A are linearly independent, 
   then: 
 

x = (AT A)−1 AT b 
 

a. For example, for the simple linear regression  
 
                y = C + Dx,  
 

   where we want to fit pairs of data  
 
                xi, yi  
 

   we want to find  
 
                 C, D  
 

  that mimimize  
 
                Σ [yi - (C + Dxi)]2 
 

   In matrix form, we write the equation y = C + Dx as: 
               _     _               _    _ 
              |  1 x1 |   _ _       |  y1  | 
              |  1 x2 |  | C |      |  y2  | 
              |  . .  |  | D |  =   |  .   | 
              |  . .  |   

_
 
_
       |  .   | 

              |  1 xn |             |  yn | _ _ _ _
               

_
     

_               _
    

_
 

 
      i.e.        A        x    =      b 
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       Similarly, to solve the equation y = A + Bx +Cx2: 

 
               _           _              _     _ 
              |  1  x1  x12 |   _ _       |  y1  | 
              |  1  x2  x22 |  | A |      |  y2  | 
              |  .  .       |  |_B_|  =   |  .   | 
              |  .  .       |  | C |      |  .   | _ _
              |  1  xn  xn2_|   

_
 
_
       |  yn _| _ _

               
_
           

_              _
     

_
 

b. Simple matrix formulas also allow you to compute the estimated uncertainties of the 
regression coefficients and the correlation coefficients. 

 
II. Correlation in n dimensions 
 
A. Multiple linear regression 
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B. r-matrix (later we will refer to this as the matrix Σ) 
 
   Property     1     2     3     4     5 
 
          1   1.00  0.86  0.45  0.83  0.45 
          2   0.86  1.00  0.74  0.23  0.64 
          3   0.45  0.74  1.00  0.78  0.57 
          4   0.83  0.23  0.78  1.00  0.39 
          5   0.45  0.64  0.57  0.39  1.00 
 
                        (ρij) 

 
 

 
source: Joreskog et al. Geological Factor Analysis (1976) 

 
C. Factor analysis: construction of a few “artificial variables” that caption statistical 

essence of a large data set. 
 

X2

X1

Bivariate scatter diagram with equal-density contour lines. The inner ellipse 
encloses 66% of the data points, The outer ellipse 95% of the data points.

Figure by MIT OCW.


