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6.972: Game Theory February 3, 2005 

Lecture Static Games 2: 
Lecturer: Asu Ozdaglar 

1 Introduction 

The goal of today’s lecture is to introduce strategic form games and their solution concepts. A 
strategic form game is a model for a game in which all of the participants act simultaneously, and 
without knowledge of other players’ actions. More formally, 

Definition 1 (Strategic Game) A strategic game is a triplet �I, (Si)i∈I , (ui)i∈I � where 

1. I is a finite set of players, I = {1, . . . , I}. 

2. (Si)i∈I is a set of available actions where Si is the nonempty set of actions for player i. 
We denote by si ∈ Si an action for player i, and by s−i = [sj ]j=i, a vector of actions for 
all players except i. We will denote by S = Si the set of all profiles of actions, and by i 

S−i = Sj the set of all profiles of actions for all players except i. We call the tuple j=i 

(si, s−i) ∈ 
�
S an action profile, or outcome. 

3. (ui)i∈I is a set of payoff functions where ui : S R is a function from the set of all action →
profiles to the real numbers. 

Remarks: 

1. In today’s lecture the word strategy and the phrase pure strategy will denote an action. Later 
on in the class we will discuss strategies that are 1) randomizations over actions, or 2) in the 
context of dynamic games, contingency plans over actions. 

2. We note that in the game model, we implicitly assume that players have preferences over the 
outcomes, and that these preferences can be captured by assigning utilities to the outcomes. 
This assumption is a fundamental area of study in economics. Handouts will be posted on 
the web showing that not all preference relations can be captured by utility functions. 

3. The von NeumanMorgenstern model states that preferences about probability density func
tions over outcomes can be represented by expected value of a payoff function over determin
istic outcomes. 

1.1 Finite Strategy Spaces 

When the strategy space is finite, and when the number of players and actions is small, a game can 
be represented in matrix form. The cell indexed by row x and column y contains a pair, (a, b) where 
a = u1(x, y) and b = u2(x, y). For example, consider the following game of “Matching Pennies.” 

Heads Tails 
Heads −1, 1 1,−1 
Tails 1,−1 −1, 1 
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This game represents “pure competition” in the sense that one player’s outcome is the opposite 
of the other’s. Another way to view this situation is to note that the sum of the utilities for both 
players at each outcome is “zero.” This class of games, called “zerosum games” (or equivalently, 
“constantsum games”) is a special case which has been wellstudied. 

1.2 Continuous Strategy Spaces 

It is also possible for the strategy space for a player to be infinite. Consider the following game of 
Cournot competition which models two firms which produce the same widget and seek to maximize 
their profits. The formal game G = �I, (Si), (ui)� consists of 

1. A set of two players, I = 1, 2. 

2. The action for player i ∈ I is a quantity, si ∈ [0,∞] which represents the amount of widget 
that the player manufactures. 

3. The utility for each player is its total revenue minus its total cost, which can be written as 

ui(s1, s2) = sip(s1 + s2)− cisi 

where p(q) is a function which represents the price of the widget, and ci is the costperunit 
for firm i. 

For simplicity, consider the case where both firms have unit cost, c1 = c2 = 1. Notice that the 
price of the widget depends on the total amount of widget in the marketplace. Let us assume that 

We can analyze this game by considering the bestresponse func
tion for each of the firms. Let us fix the quantity that firm −i 
produces, and now write the function which maximizes the profit 
for firm i. Denoting this function as Bi(s−i), we have: 

Bi(s−i) = arg max(sip(si + s−i)− si) 
si≥0 

Notice that when s−i > 2, then the best response is 0 since the price becomes 0. On the other 
hand, when si ∈ [0, 2], then by differentiating and solving at zero, we find that 

p(q) = max(0, 2 − q) q

Price Function2

2
quantity

which is depicted below ( must assume a positive value in this context). 

Bi(s−i) = arg max(si(2 − si − s−i)− si) 
si≥0 

2= arg max(−si + si − sis−i) 
si≥0 

1− s−i = 
2 

Graphing both of these functions, the intuitive out
come of this game occurs at the point where both of 
these functions intersect. In the next section, we shall 
argue for this outcome using an entirely different ap
proach. 
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1.3 Dominant/Dominated Strategies 

It is easy to predict the outcome of some games, given that all the players are rational, because 
there is only one sensible outcome. Take, for example, the wellstudied Prisoner’s Dilemma game 
illustrated below. 

Cooperate Don’t Cooperate 
Cooperate −10,−1−2,−2 

Don’t Cooperate −1,−10 −5,−5 

Game 2: Prisoner’s Dilemma. 

Let us consider the row player’s situation. Notice that if the row player chooses “Don’t Coop
erate”, then his payoff is −1 > −2 if the Column player chooses his first option, and −5 > −10 if 
the Column player chooses his latter option. Thus, no matter what the column player does, the 
strategy “Don’t Cooperate” is always better for the row player than the “Cooperate” strategy. We 
say that the strategy “Don’t Cooperate” is strictly dominant, as no matter what action the other 
player chooses, this strategy is always the best response. By symmetry, the same holds for the 
Column player. In this case, we can therefore predict, unfortunately, that both players will choose 
“Don’t Cooperate” and spend the next five years in jail! 

Lets suppose, however, that we also allow the players to consider the action Suicide which has 
the following payoff structure. 

Cooperate Don’t Cooperate Suicide 
Cooperate 

Don’t Cooperate 
Suicide 

−2,−2 −10,−1 0,−20 
−1,−10 −5,−5 −5,−20 
−20, 0 −20,−5 −20,−20 

Game 2: Prisoner’s Dilemma with Suicide. 

Indeed, if one player plays Suicide, then, due to the lack of witnesses, the other player gets 
off free. Notice, however, that this strategy of Suicide is the worst possible option for a player, 
no matter what the other player does. In this sense, Suicide is strictly dominated by the other 
two options. More generally, we say that a strategy is strictly dominated if the exists some other 
strategy that always gives a better outcome. 

Definition 2 (Strictly Dominated Strategy) A strategy si ∈ Si is strictly dominated for player 
i if ∃ si

� ∈ Si such that for all s−i ∈ S−i 

ui(si
� , s−i) > ui(si, s−i). 

We can also define a weaker version of dominated strategies. 

Definition 3 (Weakly Dominated Strategy) A strategy si ∈ Si is weakly dominated for player 
i if ∃ si

� ∈ Si such that for all s−i ∈ S−i 

ui(s�i, s−i) ≥ ui(si, s−i), 

and for some s−i ∈ S−i 

ui(si
� , s−i) > ui(si, s−i). 
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1.4 Iterated Elimination of Strictly Dominated Strategies 

Consider the following game. 

Left Middle Right 
Up 

Middle 
Down 

4, 3 5, 1 6, 2 
2, 1 8, 4 3, 6 
3, 0 9, 6 2, 8 

Game 3: Example for Iterated Removal of Dominated Strategies. 

Note that there do not exist any strategies that are strictly dominated for player 1 (the Row player). 
On the other hand, note that the strategy Middle is strictly dominated by the strategy Right 
for player 2 (the Column player). Thus, we conclude that it is never rational for player 2 to play 
Middle and we can therefore remove this column in the game, resulting in the following game. 

Left Right 
Up 

Middle 
Down 

4, 3 6, 2 
2, 1 3, 6 
3, 0 2, 8 

Game 3: Game after One Removal of Dominated Strategies. 

Now, note that both the actions Middle and Down are strictly dominated by the action Up for 
player 1, which means that both these rows can be removed, resulting in the following game. 

Left Right 
Up 4, 3 6, 2 

Game 3: Game after Three Iterated Removals of Dominated Strategies. 

We are left with a game where player 1 does not have any choice in his actions, while player 2 can 
choose between Left and Right. Since Left will maximize the utility of player 2, we conclude 
that the only rational action profile in the game is (Up,Left). 

Remark: One might worry that different orderings of the removals of dominated strategies can 
yield different results. One of the problems in the first homework will show that this can not 
happen. That is, the ordering in which strategies are eliminated does not affect the set of strategies 
that survive iterated strict dominance. 

1.5 Back to the Cournot Example 

We now apply the technique of iterated elimination of strictly dominated strategies to the Cournot 
Competition. (Our terminology in the following example is somewhat loose and informal.) In the 
first step, we note that both firms must choose a quantity between [0, ∞]. We denote this: 

A1 = [0, ∞]1 

A1 = [0, ∞]2 
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Notice, however, that it is not rational for player 1 to choose any quantity that is outside of 
the range [0, 1/2] since player 1’s best response function is 0 outside of that range. Therefore, 
playing any strategy which is defined over [0, ∞] is dominated by playing one over [0, 1/2]. The 
same reasoning holds for player 2. Thus, at the second iteration, we can argue that the pair of best 
responses must be 

A2 = [0, 1/2]1 

A2 = [0, 1/2]2 

1/2 1
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Given that player 2 only plays in the range [0, 1/2], 
then player 1 can restrict his best response function to 
only these values. In the graph below, this is depicted 
with the orange dashed lines. Consider the point where 
the horizontal orange line intersects B1(s2). Since 
player 2 will only play strategies below the dashed
orange line, then player 1 need only consider strategies 
between [1/4, 1/2]. The same situation holds for player 
2. 

A3 = [1/4, 1/2]1 

A3 = [1/4, 1/2]2 

The graph below depicts the same analysis. A formal argument can be made to show that the 
limit of this process will converge on the point where the two best response functions intersect. 
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Nash Equilibrium 

We end this lecture by introducing the famous Nash Equilibrium. We will discuss this Equilibrium 
in more detail during the next lecture. 
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At a highlevel, a Nash Equilibrium is a profile of actions, which has the property that no single 
player can profit by deviating from the action profile, assuming that all other players act according 
to it. More formally, 

Definition 4 (Nash Equilibrium) A pure strategy Nash Equilibrium of a strategic game �I, (Si), (ui)i∈I �
is an action profile s∗ ∈ S s.t. ∀i ∈ I the following condition holds 

ui(si 
∗, s−i) ≥ ui(si, s

∗∗
−i) ∀si ∈ Si. 

We note that the definition can be restated in terms of a bestresponse function: 

Definition 5 (Nash Equilibrium  Restated) Let �I, (Si), (ui)i∈I � be a strategic game. For 
any s−i ∈ S−i, define the bestresponse function Bi(s−i), 

Bi(s−i) = {si ∈ Si ui(si, s−i) ≥ ui(si
� , s� �| −i) ∀si ∈ Si} 

We say that an action profile s∗ is a Nash Equilibrium iff 

−i) ∀i.si 
∗ ∈ Bi(s∗ 
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