6.972: Game Theory February 17, 2005

Lecture 6: Existence of Equilibrium

Lecturer: Asu Ozdaglar

1 Introduction

In this lecture we are concerned with the existence of equilibrium. Specifically, we discuss:
e Existence of Nash equilibrium in finite games.
e Existence and computation of correlated equilibrium in finite games.

e Continuous strategy spaces.

General Proof Strategy

The general proof strategy for the existence of an equilibrium is based on analyzing the best response
correspondence B. Let B : ¥ = X be the best response correspondence of a game, such that

B(o) = [Bi(s—i)]ier

The existence of equilibrium is then equivalent to the existence of a mixed strategy o such that
o € B(o). This is typically proved with the use of fixpoint theorems. The most commonly used
one is Kakutani’s theorem.

Theorem 1 (Kakutani) Let f: A = A be a correspondence, with x € A — f(x) C A, satisfying
the following conditions:

1. A is a compact, convex, and non-empty subset of a finite dimensional Fuclidean space.
2. f(z) is non-empty: Vx € A, f(x) is well defined.
3. f(z) is convex: Yx € A, f(x) is a convexr valued correspondence.

4. f(x) has a closed graph: If {z",y"} — {z,y} with y" € f(a™), and f is an upper semi-
continuous correspondence.

Then, 3z € A, such that z € f(z).

2 Existence of Nash equilibrium
The following theorem by Weirstrass is used in the proof of Nash’s theorem.

Theorem 2 (Weirstrass) Let f: A — R be a continuous function, with A non-empty and com-
pact. Then there exists an optimal solution to the program minge4 f(x).

We proceed now to the main result of the section.
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Theorem 3 (Nash) Any finite strategic game has a Nash equilibrium

Proof:

The idea is to apply Kakutani’s theorem to the best response correspondence B : ¥ = YX. We
show that B(o) satisfies the conditions of Kakutani’s theorem.
1. ¥ is compact, convex, and non-empty.

By definition

> =]]=
i€l

where each ¥; = {z| > z; = 1} is a simplez of dimension |S;| — 1
2. B(0) is non-empty.

By definition,

Bi(o_;) € argmaxu;(x,0_;)
1’62,‘

where ¥; is non-empty and compact, and wu; is linear in xz. Hence, u; is continuous, and by
Weirstrass’s theorem B(co) is non-empty.
3. B(o) is convex.

Equivalently, B(o) C ¥ is convex Vo iff B;(o_;) is convex Vi.

Let of,0! € Bij(0—;). Then, VA € [0,1] € B;(0—;),

Ui(Ug,U—z‘) > ui(13,0-;),V1 € 5

ui(of,0-i) > ui(ti,0-4),¥1 € X
Thus,
Mui(0f,0-i) + (1= Nug(o7,0-5) > ui(ri,0-4), Y1 € %

By linearity of wu;,

wi(Ao + (1= N)oi',0-) > ui(ti,0-4),Y7 € X
Therefore, Ao’ + (1 — X)o!' € Bi(o—;), and B is convex.

4. B(o) has a closed graph.

Suppose, for contradiction, that B(o) does not have a closed graph.
Then, there exists a sequence (0",6™) — (0,6) with 6" € B(c™) but 6 ¢ B(0).
Therefore, 3i such that 6; ¢ B;(o_;), which implies that for some ¢ > 0

Jo} € ¥y, 8.t wi(o], 0-3) > ui(64,0-;) + 3e
For sufficiently large n,
ui(ol,o™) > ui(oh,0-;) — €

because o"; — o_; and u; is continuous.
Thus
/ n AT
ui(o;,0;) > ui(67',0-;) + 2¢
and
! n ~Nn n
ui(0, 0%;) > ui(67,0%;) + €

which is a contradiction, because ¢™ is a best response.
O
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3 Existence and computation of correlated equilibrium

Every mixed strategy equilibrium is trivially a correlated equilibrium. Therefore, any finite strategic
has a correlated equilibrium. In this section we are concerned with correlated equilibria that may
lie outside the scope of mixed strategies.

Proposition 1 FEvery finite game has a correlated equilibrium

The proposition was first shown by Hart and Schmeidler (1989), using a double mini-max
argument. Here we discuss a proof by Papdimitriou (2005), which also yields a polynomial time
algorithm for computing a correlated equilibrium. It should be noted that the resulting equilibrium
is not necessarily the pareto optimal correlated equilibrium. We sketch Papdimitriou’s proof in the
sequel.

Recall that a correlated equilibrium is a probability distribution p(-) on S such that Vi €
Z,si,t; €S,

ZP(Si, s—i) [ui(si, 8—i) — ui(ti; s—i)] > 0
5—i

This leads to an optimization formulation, with I's(s — 1) constraints and a decision vector of
dimension s’. The optimization formulation considers the program

subject to the constraints

x>0

The duality theorem from linear optimization are the basis of Papadimitriou’s proof with this
formulation.

Theorem 4 (LP Duality) Let f* = maxcx subject to the constraints Ax > b,z > 0 be the primal
problem. The dual problem is defined as ¢* = maxp’b subject to the constraints ATp < 0,p > 0.
Then,

1. Weak Duality: ¢* < f*
2. Strong Duality: If the primal problem is bounded, then ¢* = f*

In the primal, either f* = 0 or f* = oco. If we can show that f* = oo, then there exists a
correlated equilibrium. More precisely, there exist some x # 0 that can be normalized to yield a
correlated equilibrium.

Consider the dual program constraints

U'p < [-1]

p=0

Claim 1 If the dual is infeasible, then f* = oo
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Proof Sketch: Show that if f* < co then the dual is feasible. If f* = 0, then by strong duality
q* = 0. If ¢* = 0, then the dual has a feasible solution. The infeasibility of dual is an immediate
consequence of the Papadimitriou’s lemma given below (or else UTp < [-1]). O

Lemma 1 (Papadimitriou) For any p > 0, there exists a probability distribution x such that
TUTp=0

Further details are available in C. Papadimitriou, “Computing Correlated Equilibria in Multi-
player Games”, STOC 2005.

4 Continuous strategy spaces

The results we have presented so far concern finite games. As a natural extension, the following
theorem states the conditions for the existence of a pure strategy Nash equilibrium in continuous
strategy spaces.

Theorem 5 (Debreu, Glicksberg, Fan) Consider a strategic form game < I, (s;), (u;) >, where
S; 1§ continuous.
Assume:

1. s; s non-empty, convex, and compact.
2. u;(s) is continuous in S.
3. u(si, s—) is concave (quasi-concave) in S;.

Then, there erists a pure strateqy Nash equilibrium for < T, (s;), (u;) >.

Example: Unit circle game

Two players pick points s; and s on the unit circle. The payoffs for the two players are
u1(s1,52) = d(s1,s2)

ug(s1, s2) = —d(s1, $2)

where d is the Euclidean distance metric.

Show that there is no pure strategy Nash equilibrium and find the mixed strategy Nash equi-
librium. (Hint: If both players pick the same location, player 1 has incentive to deviate. If they
pick different locations, player 2 has incentive to deviate).
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