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Abstract. The Rubik’s Cube is perhaps the world’s most famous and
iconic puzzle, well-known to have a rich underlying mathematical struc-
ture (group theory). In this paper, we show that the Rubik’s Cube also
has a rich underlying algorithmic structure. Specifically, we show that
the n×n×n Rubik’s Cube, as well as the n×n×1 variant, has a “God’s
Number” (diameter of the configuration space) of Θ(n2/ logn). The up-
per bound comes from effectively parallelizing standard Θ(n2) solution
algorithms, while the lower bound follows from a counting argument.
The upper bound gives an asymptotically optimal algorithm for solving
a general Rubik’s Cube in the worst case. Given a specific starting state,
we show how to find the shortest solution in an n×O(1)×O(1) Rubik’s
Cube. Finally, we show that finding this optimal solution becomes NP-
hard in an n×n×1 Rubik’s Cube when the positions and colors of some
cubies are ignored (not used in determining whether the cube is solved).

Keywords: combinatorial puzzles, diameter, God’s number, combina-
torial optimization

1 Introduction

A little over thirty years ago, Hungarian architecture professor Ernő Rubik re-
leased his “Magic Cube” to the world.4 What we now all know as the Rubik’s
Cube quickly became a sensation [26]. It is the best-selling puzzle ever, at over
350 million units [15]. It is a tribute to elegant design, being part of the perma-
nent collection of the Museum of Modern Art in New York [18]. It is an icon for
difficult puzzles—an intellectual Mount Everest. It is the heart of World Cube
Association’s speed-cubing competitions, whose current record holders can solve
a cube in under 7 seconds (or 31 seconds blindfold) [1]. It is the basis for cube
art, a form of pop art made from many carefully unsolved Rubik’s Cubes. (For
example, the recent movie Exit Through the Gift Shop features the street cube

4 Similar puzzles were invented around the same time in the United States [9][17], the
United Kingdom [6], and Japan [10] but did not reach the same level of success.
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artist known as Space Invader.) It is the bane of many computers, which spent
about 35 CPU years determining in 2010 that the best algorithm to solve the
worst configuration requires exactly 20 moves—referred to as God’s Number [22].

To a mathematician, or a student taking abstract algebra, the Rubik’s Cube
is a shining example of group theory. The configurations of the Rubik’s Cube,
or equivalently the transformations from one configuration to another, form a
subgroup of a permutation group, generated by the basic twist moves. This
perspective makes it easier to prove (and compute) that the configuration space
falls into two connected components, according to the parity of the permutation
on the cubies (the individual subcubes that make up the puzzle). See [7] for how
to compute the number of elements in the group generated by the basic Rubik’s
Cube moves (or any set of permutations) in polynomial time.

To a theoretical computer scientist, the Rubik’s Cube and its many gen-
eralizations suggest several natural open problems. What are good algorithms
for solving a given Rubik’s Cube puzzle? What is an optimal worst-case bound
on the number of moves? What is the complexity of optimizing the number of
moves required for a given starting configuration? Although God’s Number is
known to be 20 for the 3 × 3 × 3, the optimal solution of each configuration in
this constant-size puzzle still has not been computed [22]. While computing the
exact behavior for larger cubes is out of the question, how does the worst-case
number of moves and complexity scale with the side lengths of the cube? In
parallel with our work, these questions were recently posed by Andy Drucker
and Jeff Erickson [4]. Scalability is important given the commercially available
4× 4× 4 Rubik’s Revenge [25]; 5× 5× 5 Professor’s Cube [13]; the 6× 6× 6 and
7× 7× 7 V-CUBEs [27]; Leslie Le’s 3D-printed 12× 12× 12 [14]; and Oskar van
Deventer’s 17 × 17 × 17 Over the Top and his 2 × 2 × 20 Overlap Cube, both
available from 3D printer shapeways [28].

Diameter / God’s Number. The diameter of the configuration space of a Rubik’s
Cube seems difficult to capture using just group theory. In general, a set of
permutations (moves) can generate a group with superpolynomial diameter [3].
If we restrict each generator (move) to manipulate only k elements, then the
diameter is O(nk) [16], but this gives very weak (superexponential) upper bounds
for n× n× n and n× n× 1 Rubik’s Cubes.

Fortunately, we confirm that the general approach taken by folk algorithms
for solving Rubik’s Cubes of various fixed sizes can be generalized to perform a
constant number of moves per cubie, for an upper bound of O(n2). This result
is essentially standard, but we take care to ensure that all cases can be handled.

Surprisingly, this bound is not optimal. Each twist move in the n×n×n and
n×n×1 Rubik’s Cubes simultaneously transforms nΘ(1) cubies (with the expo-
nent depending on the dimensions and whether a move transforms a plane or a
half-space). This property offers a form of parallelism for solving multiple cubies
at once, to the extent that multiple cubies want the same move to be applied at
a particular time. We show that this parallelism can be exploited to reduce the
number of moves by a logarithmic factor, to O(n2/ log n). Furthermore, an easy
counting argument shows an average-case lower bound of Ω(n2/ log n).
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Thus we settle the diameter of the n×n×n and n×n×1 Rubik’s Cubes, up
to constant factors. These results are described in Sections 4 and 3, respectively.

n2−1 puzzle. Another puzzle that can be described as a permutation group given
by generators corresponding to valid moves is the n × n generalization of the
classic Fifteen Puzzle. This n2 − 1 puzzle also has polynomial diameter, though
without any form of parallelism, the diameter is simply Θ(n3) [20]. Interestingly,
computing the shortest solution from a given configuration of the puzzle is NP-
hard [21]. More generally, given a set of generator permutations, it is PSPACE-
complete to find the shortest sequence of generators whose product is a given
target permutation [5,11]. These papers mention the Rubik’s Cube as motivation,
but neither addresses the natural question: is it NP-hard to solve a given n×n×n
or n×n×1 Rubik’s Cube using the fewest possible moves? Although the n×n×n
problem was posed as early as 1984 [2,21], both questions remain open [12].
We give partial progress toward hardness, as well as a polynomial-time exact
algorithm for a particular generalization of the Rubik’s Cube.

Optimization algorithms. We give one positive and one negative result about
finding the shortest solution from a given configuration of a generalized Rubik’s
Cube puzzle. On the positive side, we show in Section 6 how to compute the ex-
act optimum for n×O(1)×O(1) Rubik’s Cubes. Essentially, we prove structural
results about how an optimal solution decomposes into moves in the long dimen-
sion and the two short dimensions, and use this structure to obtain a dynamic
program. This result may prove useful for optimally solving configurations of
Oskar van Deventer’s 2× 2× 20 Overlap Cube [28], but it does not apply to the
3× 3× 3 Rubik’s Cube because we need n to be distinct from the other two side
lengths. On the negative side, we prove in Section 5 that it is NP-hard to find
an optimal solution to a subset of cubies in an n×n× 1 Rubik’s Cube. Phrased
differently, optimally solving a given n × n × 1 Rubik’s Cube configuration is
NP-hard when the colors and positions of some cubies are ignored (i.e., they are
not considered in determining whether the cube is solved).

2 Common Definitions

We begin with some terminology. An ` ×m × n Rubik’s Cube is composed of
`mn cubies, each of which has some position (x, y, z), where x ∈ {0, 1, . . . , `−1},
y ∈ {0, 1, . . . ,m−1}, and z ∈ {0, 1, . . . , n−1}. Each cubie also has an orientation.
Each cubie in a Rubik’s Cube has a color on each visible face. There are six colors
in total. We say that a Rubik’s Cube is solved when each face of the cube is the
same color, unique for each face.

An edge cubie is any cubie which has at least two visible faces which point
in perpendicular directions. A corner cubie is any cubie which has at least three
visible faces which all point in perpendicular directions.

A slice of a Rubik’s Cube is a set of cubies that match in one coordinate
(e.g. all of the cubies such that y = 1). A legal move on a Rubik’s Cube involves
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rotating one slice around its perpendicular5. To preserve the shape of the cube,
there are restrictions on how much the slice can be rotated. If the slice to be
rotated is a square, then the slice can be rotated 90◦ in either direction. Other-
wise, the slice can only be rotated by 180◦. Finally, note that if one dimension of
the cube has length 1, we disallow rotations of the only slice in that dimension.
For example, we cannot rotate the slice z = 0 in the n× n× 1 cube.

A configuration of a Rubik’s Cube is a mapping from each visible face of each
cubie to a color. A reachable configuration of a Rubik’s Cube is a configuration
which can be reached from a solved Rubik’s Cube via a sequence of legal moves.

For each of the Rubik’s Cube variants we consider, we will define the contents
of a cubie cluster. The cubies which belong in this cubie cluster depend on the
problem we are working on; however, they do share some key properties:

1. Each cubie cluster consists of a constant number of cubies.
2. No sequence of legal moves can cause any cubie to move from one cubie

cluster into another.

Each cubie cluster has a cluster configuration mapping from each visible face of
the cubie cluster to its color. Because the number of cubies in a cubie cluster is
constant, the number of possible cluster configurations is also constant.

We say that a move affects a cubie cluster if the move causes at least one
cubie in the cubie cluster to change places. Similarly, we say that a sequence of
moves affects a cubie cluster if at least one cubie in the cubie cluster changes
position or orientation after the sequence of moves has been performed.

3 Diameter of n × n × 1 Rubik’s Cube

When considering an n× n× 1 Rubik’s Cube we omit the third coordinate of a
cubie, which by necessity must be 0. For simplicity, we restrict the set of solutions
to those configurations where the top of the cube is orange. We also assume that
n is even, and ignore the edge and corner cubies. A more rigorous proof, which
handles these details, is available in the full version of this paper.6

Consider the set of locations reachable by a cubie at position (x, y). If we flip
column x, the cubie will move to position (x, n− y− 1). If we instead flip row y,
it will move to position (n − x − 1, y). Hence, there are at most four reachable
locations for a cubie that starts at (x, y): (x, y), (x, n−y−1), (n−x−1, y), and
(n− x− 1, n− y − 1). We call this set of locations the cubie cluster (x, y).

We begin by showing that for any reachable cluster configuration, there exists
a sequence of moves of constant length which can be used to solve that cluster
without affecting any other clusters. Figure 1 gives just such a sequence for each
potential cluster configuration.

In the remainder of Section 3, we use the notation H1, H2 and V1, V2 to
denote the two rows and columns containing cubies from a single cubie cluster.
5 While other definitions of a legal move exist (e.g. rotating a set of contiguous parallel

slices), this definition most closely matches the one used in popular move notations.
6 http://arxiv.org/abs/1106.5736

http://arxiv.org/abs/1106.5736
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H1

H2

V1 V2

(a) Solved.

H1

H2

V1 V2

(b) V1, H1, V1, H1.

H1

H2

V1 V2

(c) V2, H1, V2, H1.

H1

H2

V1 V2

(d) H1, V1, H1, V1.

H1

H2

V1 V2

(e) H2, V1, H2, V1.

H1

H2

V1 V2

(f) H1, H2, V1, H1, H2, V1.

Fig. 1. The reachable cluster configurations and the move sequences to solve them.

We also use the same symbols to denote single moves affecting these rows and
columns. In the special cases of cross and center cubie clusters, we denote the
single row or column containing the cluster by H or V , respectively.

3.1 n × n × 1 Upper Bound

There are n2 clusters in the n×n×1 Rubik’s Cube. If we use the move sequences
given in Fig. 1 to solve each cluster individually, we have a sequence of O(n2)
moves for solving the entire cube. In this section, we take this sequence of moves
and take advantage of parallelism to get a solution with O(n2/ log n) moves.

Say that we are given columns X and rows Y such that all of the clusters
(x, y) ∈ X × Y are in the cluster configuration depicted in Fig. 1(b). If we solve
each of these clusters individually, the number of moves required is Θ(|X| · |Y |).

Consider instead what would happen if we first flipped all of the columns
x ∈ X, then flipped all of the rows y ∈ Y , then flipped all of the columns x ∈ X
again, and finally flipped all of the rows y ∈ Y again. What would be the effect
of this move sequence on a particular (x∗, y∗) ∈ X×Y ? The only moves affecting
that cluster are the column moves x∗ and (n − 1 − x∗) and the row moves y∗

and (n− 1− y∗). So the subsequence of moves affecting (x∗, y∗) would consist of
the column move x∗, followed by the row move y∗, followed by the column move
x∗ again, and finally the row move y∗ again. Those four moves are exactly the
moves needed to solve that cluster.

A generalization of this idea gives us a technique for solving all cubie clusters
(x, y) ∈ X × Y using only O(|X|+ |Y |) moves, if each one of those clusters is in
the same configuration. Our goal is to use this technique for a related problem:
solving all of the cubie clusters (x, y) ∈ X × Y that are in a particular cluster
configuration c, leaving the rest of the clusters alone.

For each y ∈ Y , we define Sy = {x ∈ X | cluster (x, y) is in configuration c}.
For each S ⊆ X, we define YS = {y ∈ Y | Sy = S}. For each of the 2|X| values of
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S, we use a single sequence of moves to solve all (x, y) ∈ S × YS . This sequence
of moves has length O(|S| + |YS |) = O(|X| + |YS |). When we sum the lengths
up for all YS , we find that the number of moves is bounded by

O

(∑
S

(|X|+ |YS |)

)
= O

(
|X| · 2|X| +

∑
S

|YS |

)
= O

(
|X| · 2|X| + |Y |

)
.

To make this technique cost-effective, we partition all bn/2c columns into
sets of size 1

2 log n, and solve each such group individually. This means that we
can solve all clusters in a particular configuration c using

O

( n
2

1
2 log n

·
(

1
2

log n · 2 1
2 logn +

n

2

))
= O

(
n2

log n

)
.

moves. When we construct that move sequence for all 6 cluster configurations,
we have the following result:

Theorem 1. Given an n× n× 1 Rubik’s Cube configuration, all cubie clusters
can be solved in O(n2/ log n) moves.

3.2 n × n × 1 Lower Bound

Using calculations involving the maximum degree of the graph of the config-
uration space and the total number of reachable configurations, we have the
matching lower bound:

Theorem 2. Some configurations of an n×n×1 Rubik’s Cube are Ω(n2/ log n)
moves away from being solved.

Omitted proofs may be found in the full version of this paper.

4 Diameter of n × n × n Rubik’s Cube

For simplicity, we again assume that n is even and ignore all edge and corner
cubies. A more rigorous proof, which handles these details, is available in the
full version of this paper.

Because the only visible cubies on the n × n × n Rubik’s Cube are on the
surface, we use an alternative coordinate system. Each cubie has a face coordi-
nate (x, y) ∈ {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}. Consider the set of reachable
locations for a cubie on the front face with coordinates (x, y). A face rotation of
the front face will let it reach the coordinates (n−y−1, x), (n−x−1, n−y−1),
and (y, n− x − 1) on the front face. Row or column moves will allow the cubie
to move to another face, where it still has to have one of those four coordinates.
Hence, it can reach 24 locations in total. We define the cubie cluster (x, y) to be
those 24 positions that are reachable by the cubie (x, y).

Just as in the case of the n × n × 1 cube, our goal is to prove that for each
cluster configuration, there is a sequence of O(1) moves that can be used to solve
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the cluster, while not affecting any other clusters. For the n × n × 1 cube, we
wrote these solution sequences using the symbols H1, H2, V1, V2 to represent a
general class of moves, each of which could be mapped to a specific move once the
cubie cluster coordinates were known. Here we introduce more formal notation.

Because of the coordinate system we are using, we distinguish two types of
legal moves. Face moves involve taking a single face and rotating it 90◦ in either
direction. Row or column moves involve taking a slice of the cube (not one of its
faces) and rotating the cubies in that slice by 90◦ in either direction. Face moves
come in twelve types, two for each face. For our purposes, we will add a thirteenth
type which applies the identity function. If a is the type of face move, we write
Fa to denote the move itself. Given a particular index i ∈ {1, 2, . . . , bn/2c − 1},
there are twelve types of row and column moves that can be performed — three
different axes for the slice, two different indices (i and n − i − 1) to pick from,
and two directions of rotation. Again, we add a thirteenth type which applies
the identity function. If a is the type of row or column move, and i is the index,
then we write RCa,i to denote the move itself.

A cluster move sequence consists of three type sequences: face types a1, . . . , a`,
row and column types b1, . . . , b`, and row and column types c1, . . . , c`. For a clus-
ter (x, y), the sequence of actual moves produced by the cluster move sequence is
Fa1 , RCb1,x, RCc1,y, . . . , Fa`

, RCb`,x, RCc`,y. A cluster move solution for a cluster
configuration d is a cluster move sequence with the following properties:

1. For any (x, y) ∈ {1, 2, . . . , bn/2c − 1}× {1, 2, . . . , bn/2c − 1}, if cluster (x, y)
is in configuration d, then it can be solved using the sequence of moves
Fa1 , RCb1,x, RCc1,y, . . . , Fa`

, RCb`,x, RCc`,y.
2. The move sequence Fa1 , RCb1,x, RCc1,y, . . . , Fa`

, RCb`,x, RCc`,y does not af-
fect cubie cluster (y, x).

3. All three of the following sequences of moves do not affect the configuration
of any cubie clusters:

Fa1 , RCb1,x, Fa2 , RCb1,x, . . . , Fa`
, RCb`,x;

Fa1 , RCc1,y, Fa2 , RCc1,y, . . . , Fa`
, RCc`,y;

Fa1 , Fa2 , . . . , Fa`
.

Our goal is to construct a cluster move solution for each possible cluster config-
uration, and then use those solutions to solve multiple cubie clusters in parallel.

In the speed cubing community, there is a well-known technique for solving
n× n× n Rubik’s Cubes in O(n2) moves, involving a family of constant-length
cluster move sequences. These sequences are attributed to Ingo Schütze [24], but
due to their popularity in the speed cubing community, their exact origins are
unclear. These cluster move sequences can be combined to construct constant-
length cluster move solutions for all possible cluster configurations, which is
precisely what we wanted. A detailed explanation and proof of correctness for
this method can be found in the full version of this paper.
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4.1 n × n × n Upper Bound

As in the n×n× 1 case, we wish to solve several clusters in parallel, so that the
length of the solution is reduced from O(n2) to O(n2/ log n). Say we have a set of
columns X = {x1, . . . , x`} and rows Y = {y1, . . . , yk} such that X ∩ Y = ∅ and
all cubie clusters (x, y) ∈ X × Y have the same cluster configuration d. Solving
each cluster individually requires a total of Θ(|X| · |Y |) moves.

Instead, we will attempt to parallelize. The cluster configuration d must
have a constant-length cluster move solution with type sequences a1, . . . , am,
b1, . . . , bm, and c1, . . . , cm. To construct a parallel move sequence, we use the
following sequence of moves as a building block:

Bulki = Fai
, RCbi,x1 , RCbi,x2 , . . . , RCbi,x`

, RCci,y1 , RCci,y2 , . . . , RCci,yk
.

The full sequence we use is Bulk1,Bulk2, . . . ,Bulkm. A careful case-by-case
analysis using the properties of cluster move solutions reveals that this sequence
of O(|X| + |Y |) moves will solve all clusters X × Y , and that the only other
clusters it may affect are the clusters X ×X and Y × Y .

Now say that we are given a cluster configuration d and a set of columns
X and rows Y such that X ∩ Y = ∅. Using the same row-grouping technique
that we used for the n × n × 1 case, it is possible to show that there exists
a sequence of moves of length O(|X| · 2|X| + |Y |) solving all of the clusters in
X×Y which are in configuration d and limiting the set of other clusters affected
to (X ×X) ∪ (Y × Y ). By dividing up X into groups of roughly size 1

2 log |Y |,
just as we did for the n× n× 1 cube, we may show that there exists a sequence
of moves with the same properties, but with length O(|X| · |Y |/ log |Y |).

To finish constructing the move sequence for the entire Rubik’s Cube, we
must account for two differences between this case and the n × n × 1 case: the
requirement that X∩Y = ∅ and the potential to affect clusters in (X×X)∪(Y ×
Y ). We handle both cases by taking the initial set of columns {1, 2, . . . , bn/2c−1}
and dividing it into groups X1, . . . , Xj of size

√
n/2. We partition the initial set

of rows into sets Y1, . . . , Yj in a similar fashion. We then loop through pairs
(Xi, Yj), where i 6= j, to solve all clusters in configuration d for all but the
clusters (X1 × Y1) ∪ . . . ∪ (Xj × Yj). Because j = |Xi| = |Yi| =

√
n/2, the total

number of moves required for this step is O(n2/ log n). To solve the clusters
(X1 × Y1) ∪ . . . ∪ (Xj × Yj), we simply solve each cluster individually, which
requires a total of O(n3/2) < O(n2/ log n) moves. If we add up that cost for each
of the O(1) different configurations, the total number of moves is O(n2/ log n).

Theorem 3. Given an n× n× n Rubik’s Cube configuration, all cubie clusters
can be solved in O(n2/ log n) moves.

4.2 n × n × n Lower Bound

Just as we did for the n×n× 1 lower bound, we can calculate a matching lower
bound using the maximum degree of the graph of the configuration space and
the total number of reachable configurations:
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Theorem 4. Some configurations of an n×n×n Rubik’s Cube are Ω(n2/ log n)
moves away from being solved.

5 Optimally Solving a Subset of the n × n × 1 Rubik’s
Cube is NP-Hard

In this section, we consider a generalization of the problem of computing the
optimal sequence of moves to solve a Rubik’s Cube. Say that we are given a
configuration of an n × n × 1 Rubik’s Cube and a list of important cubies. We
wish to find the shortest sequence of moves that solves the important cubies.
Note that the solution for the important cubies may cause other cubies to leave
the solved state, so this problem is only equivalent to solving an n×n×1 Rubik’s
Cube when all cubies are marked important.

In this section, we prove the NP-hardness of computing the length of this
shortest sequence. More precisely, we prove that the following decision problem
is NP-hard: is there a sequence of k moves that solves the important cubies of
the n × n × 1 Rubik’s Cube? Our reduction ensures that the cubies within a
single cluster are either all important or all unimportant, and thus it does not
matter whether we aim to solve cubies (which move) or specific cubie positions
(which do not move). Therefore the problem remains NP-hard if we aim to solve
the puzzle in the sense of unifying the side colors, when we ignore the colors of
all unimportant cubies.

Certain properties of the Rubik’s Cube configuration can affect the set of
potential solutions. For the rest of this section, we will consider only Rubik’s
Cubes where n is odd and where all edge cubies and cross cubies are both
solved and marked important. This restriction ensures that for any cluster, the
number of horizontal moves and vertical moves affecting it must both be even.
In addition, we will only consider Rubik’s Cubes in which all cubie clusters
are in the cluster configurations depicted in Figures 1(a), 1(b), and 1(d). This
restriction means that the puzzle can always be solved using moves only of types
H1 and V1. This combination of restrictions ensures that each unsolved cluster
must be affected by both vertical and horizontal moves.

Suppose that we are given a configuration and a list of important cubies. Let
ur be the number of rows of index ≤ bn/2c that contain at least one important
unsolved cubie. Let uc be the number of columns of index ≤ bn/2c that contain
at least one important unsolved cubie. Then we say that the ideal number of
moves for solving the given configuration is 2(ur +uc). In other words, the ideal
number of moves is equal to the smallest possible number of moves that could
solve all the important cubies. An ideal solution for a subset of the cubies in a
particular n×n×1 puzzle is a solution for that set of cubies which uses the ideal
number of moves. For the types of configurations that we are considering, the
ideal solution will contain exactly two of each move, and the only moves that
occur will be moves of type H1 or V1.

Definition 1. Let Ik(m) denote the index in the solution of the kth occurrence
of move m.
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x1x2x3 x̃1x̃2

y1
y2
y3

ỹ1
ỹ2
ỹ3

Fig. 2. A sample of the betweenness gadget from Lemma 1. Important cubies are
orange (solved) and blue (unsolved). Unimportant cubies are white. Any ideal solution
must either have I1(x1) < I1(x2) < I1(x3) or I1(x3) < I1(x2) < I1(x1).

For our hardness reduction, we develop a gadget (depicted in Fig. 2) which
forces a betweenness constraint on the ordering of three different row moves:

Lemma 1. Given three columns x1, x2, x3 ≤ bn/2c, there is a gadget using six
extra rows and two extra columns ensuring that I1(x2) lies between I1(x1) and
I1(x3). This gadget also forces I2(x2) < I2(x1), I2(x2) < I2(x3), and

max
x∈{x1,x2,x3}

I1(x) < min
x∈{x1,x2,x3}

I2(x).

The betweenness problem is a known NP-hard problem [8,19]. In this problem,
we are given a set of triples (a, b, c), and wish to find an ordering on all items
such that, for each triple, either a < b < c or c < b < a. In other words, for each
triple, b should lie between a and c in the overall ordering. Lemma 1 gives us a
gadget which would at first seem to be perfectly suited to a reduction from the
betweenness problem. However, because the lemma places additional restrictions
on the order of all moves, we cannot reduce directly from betweenness.

Instead, we provide a reduction from another known NP-hard problem, Not-
All-Equal 3-SAT [8,23]. In this problem, sometimes known as 6=-SAT, the input
is a 3-CNF formula φ and the goal is to determine whether there exists an
assignment to the variables of φ such that there is at least one true literal and one
false literal in every clause. Our reduction from 6=-SAT to ideal Rubik solutions
closely follows the reduction from hypergraph 2-coloring to betweenness [19].



Algorithms for Solving Rubik’s Cubes 11

Theorem 5. Given a 6=-SAT instance φ, it is possible to compute in time poly-
nomial in the size of φ an n×n× 1 configuration and a subset of the cubies that
has an ideal solution if and only if φ has a solution, i.e., belongs to 6=-SAT.

6 Optimally Solving an O(1) × O(1) × n Rubik’s Cube

For the c1 × c2 × n Rubik’s Cube with c1 6= n 6= c2, the asymmetry of the
puzzle leads to a few additional definitions. We call a slice short if the matching
coordinate is z; otherwise, a slice is long. A short move involves rotating a short
slice; a long move involves rotating a long slice. We define cubie cluster i to be
the pair of slices z = i and z = (n− 1)− i. This definition means that any short
move affects the position and orientation of cubies in exactly one cubie cluster.

Each short move affects exactly one cluster. Hence, in the optimal solution,
the number of short moves affecting a particular cluster is at most the number
of configurations of that cluster. Each cluster has O(1) configurations, so in any
optimal solution, any particular short move will be performed O(1) times.

Any sequence of long moves corresponds to an arrangement of c1c2 blocks of
cubies with dimensions 1× 1×n. We call each such arrangement a long configu-
ration. There are a constant number of long configurations, so there must exist a
long move tour : a constant-length sequence of long moves which passes through
every long configuration before returning to the initial long configuration.

The effect of a short move depends only on the current long configuration.
Hence, to solve a particular c1× c2×n puzzle, it is sufficient to know a sequence
of short moves for each cluster, annotated with the long configuration that each
such move should be performed in. If we have such a sequence for each cluster,
we may construct a full solution to the puzzle by repeatedly performing a long
move tour, and inserting short moves into the appropriate places. Then we are
guaranteed to be able to perform the kth short move for every cluster during
the kth long move tour. Hence, the number of long move tours necessary is
bounded by the maximum length of any short move sequence, which is O(1) in
any optimal solution. Therefore, any optimal solution contains O(1) long moves.

This bound on the number of long moves allows us to construct an algorithm
that does the following:

Theorem 6. Given any c1× c2×n Rubik’s Cube configuration, it is possible to
find the optimal solution in time polynomial in n.

References

1. World Cube Association. Official results. http://www.worldcubeassociation.org/
results/, 2010.

2. Stephen A. Cook. Can computers routinely discover mathematical proofs? Pro-
ceedings of the American Philosophical Society, 128(1):40–43, 1984.

3. James R. Driscoll and Merrick L. Furst. On the diameter of permutation groups.
In Proceedings of the 15th Annual ACM Symposium on Theory of computing, pages
152–160, 1983.

http://www.worldcubeassociation.org/results/
http://www.worldcubeassociation.org/results/


12 E. D. Demaine, M. L. Demaine, S. Eisenstat, A. Lubiw, A. Winslow

4. Andy Drucker and Jeff Erickson. Is optimally solving the n × n × n Ru-
bik’s Cube NP-hard? Theoretical Computer Science — Stack Exchange
post, August–September 2010. http://cstheory.stackexchange.com/questions/783/
is-optimally-solving-the-nnn-rubiks-cube-np-hard.

5. Shimon Even and Oded Goldreich. The minimum-length generator sequence prob-
lem is NP-hard. Journal of Algorithms, 2(3):311–313, 1981.

6. Frank Fox. Spherical 3x3x3. U.K. Patent 1,344,259, January 1974.
7. Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms for

permutation groups. In Proceedings of the 21st Annual Symposium on Foundations
of Computer Science, pages 36–41, 1980.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences).
W. H. Freeman & Co Ltd, first edition edition, January 1979.

9. Wiliam O. Gustafson. Manipulatable toy. U.S. Patent 3,081,089, March 1963.
10. Terutoshi Ishige. Japan Patent 55-8192, 1976.
11. Mark R. Jerrum. The complexity of finding minimum-length generator sequences.

Theoretical Computer Science, 36(2–3):265–289, June 1985.
12. Graham Kendall, Andrew Parkes, and Kristian Spoerer. A survey of np-complete

puzzles. International Computer Games Association Journal, 31(1):13–34, 2008.
13. Udo Krell. Three dimensional puzzle. U.S. Patent 4,600,199, July 1986.
14. Leslie Le. The world’s first 12x12x12 cube. twistypuzzles.com forum post, Novem-

ber 2009. http://www.twistypuzzles.com/forum/viewtopic.php?f=15&t=15424.
15. Seven Towns Ltd. 30 years on. . . and the Rubik’s Cube is as popular as ever. Press

brief, May 2010. http://www.rubiks.com/i/company/media library/pdf/Rubiks%
20Cube%20to%20celebrate%2030th%20Anniversary%20in%20May%202010.pdf.

16. Pierre McKenzie. Permutations of bounded degree generate groups of polynomial
diameter. Information Processing Letters, 19(5):253–254, November 1984.

17. Larry D. Nichols. Pattern forming puzzle and method with pieces rotatable in
groups. U.S. Patent 3,655,201, April 1972.

18. Museum of Modern Art. Rubik’s cube. http://www.moma.org/collection/browse
results.php?object id=2908.

19. Jaroslav Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–
114, 1979.

20. Ian Parberry. A real-time algorithm for the (n2−1)-puzzle. Information Processing
Letters, 56(1):23–28, 1995.

21. Daniel Ratner and Manfred Warmuth. The (n2 − 1)-puzzle and related relocation
problems. Journal of Symbolic Computation, 10:111–137, 1990.

22. Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. God’s
number is 20, 2010. http://cube20.org.

23. Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, pages 216–226, San
Diego, CA, 1978.

24. Ingo Schütze. V-cubes Solutions. http://solutions.v-cubes.com/solutions2/.
25. Peter Sebesteny. Puzzle-cube. U.S. Patent 4,421,311, December 1983.
26. Jerry Slocum. The Cube: The Ultimate Guide to the World’s Bestselling Puzzle —

Secrets, Stories, Solutions. Black Dog & Leventhal Publishers, March 2009.
27. V-CUBE. V-cube: the 21st century cube. http://www.v-cubes.com/.
28. Oskar van Deventer. Overlap cube 2x2x23. shapeways design. http://www.

shapeways.com/model/96696/overlap cube 2x2x23.html.

http://cstheory.stackexchange.com/questions/783/is-optimally-solving-the-nnn-rubiks-cube-np-hard
http://cstheory.stackexchange.com/questions/783/is-optimally-solving-the-nnn-rubiks-cube-np-hard
http://www.twistypuzzles.com/forum/viewtopic.php?f=15&t=15424
http://www.rubiks.com/i/company/media_library/pdf/ Rubiks%20Cube%20to%20celebrate%2030th%20Anniversary%20in%20May%202010.pdf
http://www.rubiks.com/i/company/media_library/pdf/ Rubiks%20Cube%20to%20celebrate%2030th%20Anniversary%20in%20May%202010.pdf
http://www.moma.org/collection/browse_results.php?object_id=2908
http://www.moma.org/collection/browse_results.php?object_id=2908
http://cube20.org
http://solutions.v-cubes.com/solutions2/
http://www.v-cubes.com/
http://www.shapeways.com/model/96696/overlap_cube_2x2x23.html
http://www.shapeways.com/model/96696/overlap_cube_2x2x23.html

	Algorithms for Solving Rubik's Cubes

