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Abstract

This thesis presents a general model for the carbon footprints analysis of wastewater

treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous

research, the issue of global warming is often related to traditional industries with high

carbon dioxide (C0 2) emissions, such as power plants and transportation. However, the

analyses of wastewater treatment plants (WWTPs) have drawn increasing attention, due

to the intensive greenhouse gas emissions (GHG) from WWTPs. WWTPs have been

listed in the 7 th place for both methane (CH 4) and nitrous oxide (N2 0) total emissions. In

addition, WWTPs indirectly contribute to a huge amount of CO 2 emissions.

The final results have shown that more than half of the carbon footprints from the La

Gavia WWTP are from the indirect emissions of C0 2, which is caused by the intensive

energy consumption. The direct emissions of CH4 and N 20 combined contribute more

than 30 percent of GHG emission. The finally section of the thesis compares the

environmental impacts of the La Gavia WWTP with case of no WWTP at all. It has been

concluded that although the La Gavia WWTP increased the total carbon footprints, it has

much better control of eutrophication potential (EP).

Thesis Supervisor: Eric Adams
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1. INTRODUCTION

1.1. Background

Global climate change, also known as global warming, is caused by the atmospheric

build-up of greenhouse gas. The increased concentration of greenhouse gas in the

atmosphere directly leads to global temperature rise, which in turn causes sea level rise,

flooding, and extreme weather. The three major greenhouse gases are generally

considered as carbon dioxide (CO2 ), methane (CH 4) and nitrous oxide (N20, also known

as laughing gas). CO 2 is no doubt the largest amount of all greenhouse gases, followed by

CH 4, which has a 21 times greater global warming potential (GWP) than CO 2. Although

N 20 is the least abundant among these three gases, contributing up to 4.5 percent of total

GHG emissions (USEPA, 2011), the high GWP (310 C0 2-eq.) of N 20 has drawn

increasing attention.

While people have focused on CO2 emissions from construction, transportation and

power generation, wastewater treatment plants (WWTPs) also play a significant role.

USEPA (2011) have listed WWTPs as the 7th largest contributors to both CH 4 and nitrous

N2 0 emissions. Therefore, in order to reduce GHG emissions, more and more regulators

worldwide began to require and enforce mandatory reports and measurements on GHG

emissions from WWTPs.

A typical WWTP consists of a series of unit processes including primary treatment,

biological secondary treatment, occasional tertiary treatment and sludge treatment. There

are multiple sources of GHG emissions (direct and indirect) from WWTPs. The major

source of CO 2 emission associated with WWTPs is from electricity consumed to operate

different treatment processes. CO2 is also a product of aerobic digestion in biological

secondary treatment. CH 4 is a typical product of anaerobic digestion employed in some

forms of secondary treatment and in sludge digestion. N 20 is the intermediate product

resulting from incomplete reactions in the biological nutrient removal process. Among

the three GHGs, there is great uncertainty about the amount of N2 0
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To properly account for all these emissions over the entire lifetime of a WWTP, a life

cycle assessment (LCA) is often conducted. There are various commercial LCA packages

on the market; and the GaBi 5 developed by PE International was used in this project.

1.2. Project Description

This project is sponsored by Cadagua S.A., a water and wastewater utility company in

Spain seeking sustainable development and commitment to environmental regulations. In

order to better understand the real contributions to global warming from wastewater

treatment plants in Spain. It has been requested to evaluate the GHG emissions from

WWTPs, investigate potential methods to reduce such gas emissions, and identify the

N 20 emission in particular.

In response to Cadagua's request, LDX Environmental formed a team of three members

from MIT's Department of Civil and Environmental Engineering's Master of

Engineering Program: Bo Dong, Xin Xu and Jong Hyun Lim. The three students visited

Spain during January 2012. Based on the visit, the La Gavia WWTP in Madrid was

selected as the plant of interest, due to the data availability and the advanced treatment

processes.

1.3. Objectives

Previous studies quantified various emissions from WWTPs, but they are either on the

laboratory-scale or site specific. Hence, these studies cannot be applied to any WWTP in

Spain. Therefore, the primary goal of this project was to quantify the contribution of

WWTPs to global climate change and to estimate the amount of emissions from each

individual process within WWTPs.
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2. LITERATURE REVIEW

2.1. Green House Gas (GHG)

2.1.1. Emission Sources

The three major greenhouse gases are generally considered as carbon dioxide (C0 2),

methane (CH 4) and nitrous oxide (N20). The estimation of the amount of greenhouse gas

emissions can be made by several methods. For example, Figure 2.1 shows the total

greenhouse gas emissions by types of greenhouse gases, while Figure 2.2 shows

emissions estimated by sectors.

N20
4.5%N

HFCs, PFCs,
f & SF6

/12.2%

Figure 2.1 Greenhouse Gas Emissions by Types of GHG (USEPA, 2011)

__Waste and
wastewater

hL3%

Residential
and

commercial
buildings

8%

Figure 2.2 Global Anthropogenic Greenhouse Gas Emissions in 2004 (IPCC, 2007)

10



2.1.2. Global Warming Potential (GWP)

The concept of global warming potential (GWP) is defined as the ratio of the radioactive

forcing of an instantaneous release of 1 kilogram (kg) of a trace substance relative to that

of 1 kg of a reference gas (IPCC 2001). The reference gas used here is C0 2, with the unit

of carbon dioxide equivalent (C0 2-Eq). Moreover, difference gases have different

residence times in the atmosphere. The GWP is normally reported on a 100-year basis.

For example, CO 2 itself has a GWP of 1 C0 2-Eq on a 100-year basis. The GWP of CH 4 is

21 times more powerful than that of CO2 . Hence, the GWP of CH 4 is 21 C0 2-Eq.

Similarly, the GWP of N 20 is 310 C0 2-Eq. Table 2.1 shows the GWP of the three major

greenhouse gases.

Table 2.1 Global Warming Potential of CO 2, CH 4 and N 20 (USEPA, 2011)

Gas GWP (C0 2-Eq)
(100 year)

CO 2  1

CH 4  21
N 2 0 310

The term carbon footprint is, defined as the sum of all greenhouse gas emissions and

expressed as global warming potential (GWP) in the units of kg C0 2-Eq.

2.1.3. Direct Emissions

Under the concept of LCA, various emissions to the environment can be further grouped

into two categories - direct emissions and indirect emissions. Direct emission is easy to

visualize. It includes emissions within the treatment plant, such as non-biogenic carbon

dioxide (C0 2 ), nitrous oxide (N20) and methane (CH 4). These gases come from both

stationary sources, like biological treatment processes, and mobile combustion sources,

like cars and trucks. The CO 2 emission from secondary biological treatment process

should not be counted as direct emission, due to its biogenic source. Section 2.1.5

provides a detailed discussion of CO 2 .
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2.1.4. Indirect Emissions

Different from direct emissions, indirect emissions refer to emissions outside plants.

However, these emissions are directly caused by the product or process studied. Indirect

emissions may include emissions from the electricity purchased from power plants,

during transportation and from the production of chemicals. Past researches (Knosby et.

al, 2010) have demonstrated that indirect emissions could contribute more than 60

percent of the total greenhouse gas emissions in WWTPs.

Biosolids, as the final product of the sludge treatment, need to be carefully studied in

terms of indirect GHG emissions. The transportation of waste biosolids is an important

source of emissions due to fossil fuel combustion. Moreover, the ultimate disposal of

biosolids can also be a source of fugitive N2 0 and CH 4 emissions, especially when waste

is placed in landfills or used for composting and agriculture applications.

2.1.5. Carbon Dioxide

As shown in Figure 2.1, carbon dioxide (C0 2) contributes to more than 80 percent of

total greenhouse gas emissions. It is also the largest contributor to the carbon footprints

of WWTPs. Emissions from both direct sources and indirect sources add up to total CO 2

emission.

Some CO2 comes from the secondary biological treatment process as a result of

respiration of organic matter (BOD). However, this amount of carbon dioxide is often

neglected from greenhouse gas accounting due to its biogenic origins (USEPA, 2006).

Tillman el al. (1998) adopted a similar approach in the LCA case study of municipal

wastewater systems, meaning that the biogenic CO 2 is excluded from greenhouse gas

emission from WWTPs.

2.1.6. Methane

According to USEPA (2011), CH 4 results in ten percent of the total greenhouse gas

emissions. Figure 2.3(a) shows that WWTPs are the seventh largest sectors that

contribute to methane emissions.
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Figure 2.3 (a) Methane Emissions by Sectors and (b) Nitrous Oxide Emissions by Sectors

(USEPA, 2011)

Methane (CH 4) can be released throughout the systems where anaerobic conditions exist.

Most of the CH 4 emissions come from open anaerobic reactors, lagoons and the sludge

handling processes. Limited amounts of CH 4 can also be emitted from aerobic processes

when it is poorly managed. In real practice, CH 4 can be neutralized if burned (flared or

employing other forms of combustion). Energy, as a byproduct from this neutralization

process, can be in turn used to heat the anaerobic digester. Inefficiencies in the CH4 gas

collection systems combined with the incomplete combustion of the digester gases can

still result in CH 4 emissions.

2.1.7. Nitrous Oxide

As Figure 2.3(b) shows, nitrous oxide results in 4.5 percent of the total greenhouse gas

emissions, which are often overlooked due to the relatively small amount in the

atmosphere. It is still a fact that WWTP is ranked the 7 th place in nitrous oxide emissions

by sectors.

Nitrous oxide (N 20) can be generated from a WWTP with a biological nutrient removal

process, which is designed to reduce the concentration of total nitrogen in the treated

wastewater. N 20 is normally considered as a byproduct of the nitrification process and an
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intermediate product of the denitrification process. The amount of N 2 0 released depends

on the operational conditions of the biological nutrient removal processes. In addition,

N2 0 emission can be found in the receiving water, where treated effluent is discharged.

Although there is a lack of reference for a good estimation of nitrous oxide emissions

from WWTPs, the fact is that the N2 0 emission is bound to increase significantly as

stringent effluent nitrogen controls come into force. However, if the biological nutrient

removal process is not adopted and excess ammonia continues to pollute the waterways,

there would be less N2 0 emission to the atmosphere and thus lower global warming

potential. Another environment impact of receiving water would inevitably arise, i.e.

eutrophication, which would result in excessive plant growth and depletion of oxygen in

the water. This impact is of greater concern for wastewater treatment plants whose

effluents are discharged directly into small rivers or lakes than those into the oceans. This

trade-off between the global warming potential and the eutrophication potential produces

a challenge: how to reduce greenhouse gas emissions and at the same time minimize the

ecological effects caused by eutrophication.

2.2 Life Cycle Assessment (LCA)

2.2.1 Concept of LCA

Life Cycle Assessment (LCA) is a tool that is used to evaluate the potential

environmental impacts of a product, a process or a service. LCA is also the synonym for

'Life Cycle Analysis' or 'Cradle-to-grave Analysis' (Crawford, 2011). As the name

'cradle-to-grave' suggests, LCA involves the assessment of the entire life cycle of the

product, from the preparation of raw materials, through the manufacture of the product to

the disposal of waste. LCA provides both a holistic picture of a product's environment

impacts and comparisons between stages of product life.

LCA Application to WWTPs

As a technical approach, LCA has been applied to WWTPs since the late 1990s. The

links between the environmental impacts and treatment process are the relevant inputs

and outputs of the product system (Crawford, 2011). The inputs normally include raw

materials and energy. However, outputs may vary widely, including products, emissions
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to air, emissions to water, solid wastes and other byproducts. As in the case of wastewater

treatment plants, the major inputs are wastewater from sewage collection systems,

electricity used for pumping and mixing, and other chemicals added. In contrast, outputs

include treated effluent to the receiving water, sludge and various gas emissions.

There are several different ways to assess the environmental impact of WWTPs under the

concept of LCA. According to Enmerson et al. (1995), the life cycle of WWTPs

generally involves the construction phase of WWTPs, production of wastewater phase (or

use phase) and the final demolition phase. They also pointed out that both the

construction phase and demolition phase have only a trivial impact on the environment

within the life cycle of the plant. Later research focuses more on the operational phase.

Tillman et al. (1998) have studied alternatives for WWTPs in Sweden using the LCA

approach. Lassaux et al. (2007) conducted case study on the anthropogenic water cycle

("from the pumping station to the wastewater treatment plant"). Other analyses of this

increasingly popular topic also include the comparison of environmental impacts between

different WWTPs (Hispido et al., 2008), the comparison between different LCA methods

for WWTPs, and the assessment of WWTPs with seasonal variations (Hospido, 2004).

As explained in Section 2.1, both direct emissions and indirect emissions are counted as

anthropogenic greenhouse gas emissions. Therefore, in the LCA application to WWTPs,

both emission sources should be considered.

2.2.2 The LCA Framework

A life cycle assessment is a complex process that involves several different stages. The

International Organization for Standardization (ISO) has standardized a framework for

LCA. According to the most updated ISO 14040:2006, LCA contains four phases:

- goal and scope definition

- inventory analysis

- impact assessment

e interpretation

15



The relationship between the different phases is shown in Figure 2.4. The Goal and scope

definition, inventory analysis and impact assessment are performed in sequence, while

interpretation occurs throughout the processes.

Goal and Scope Definition

I 'I
Inventory Analysis Interpretation

Impact Assessment

Figure 2.4 Four Phases of LCA (ISO 14040:2006)

2.2.3 Goal and Scope Definition

Defining the goal and scope are in the first stage of LCA. The goal statement of an LCA

application defines the purpose of the study. It includes some or all of the following

elements: reasons for the study, type of approach, targeted audience and use of final

results. The scope definition normally explains which stage of the product life cycle and

what boundaries are considered. ISO 14040:2006 lists twelve items for scope definition,

including:

* the product system to be studied

* the functions of the product/system

* functional unit

* impact category selected and methodology of impact assessment and

interpretation to be used

* initial data requirement and quality

* assumptions

* limitations
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0 types of critical review, if any

Scope definition is an important step that defines the breadth, depth and details of the

study.

Functional Unit

The definition of functional unit is the first key step in goal definition. A product system

normally has several functions that represent different fates of raw materials. The

functional unit defines both the type and quantification of the selected product function. It

is used as a reference unit and enables the quantitative analyses between inputs and

outputs. The concept of functional unit becomes particularly critical when the

performances of different product systems are studied. The same functional units allow

meaningful comparisons on a common basis. For example, a functional unit could be a

ton of concrete or a vehicle seating five passengers.

In wastewater treatment literature, functional units are chosen based on different purposes

of study. According to Suh and Roisseacux (2001), it is better to adopt flow rate (volume

of wastewater treated within a certain period of time) as the functional unit, because it is

clear and easy to establish inventory. Hospido et al. (2008) choose person equivalent as

the functional unit for the comparison between different plants. Lassaux el al. (2007)

used one cubic meter of water at consumer tap. However, under certain circumstances,

some functional units are interchangeable through a scaling factor. For example, a

WWTP has a capacity of treating 10,000m 3/d. We can set functional units either as

10,000m 3/d or 1 in3 . Therefore, the final results will have a ten-thousand-time difference.

Although a functional unit could be a very small volume or a flow rate in a short time

period, it should represent the long-term averaged performance of a WWTP. Details of

data collection and quality are discussed in Section 4.1 .1.

System Boundaries

In general, a product system consists of several unit processes; and each unit process

could have one or more inputs and outputs. Therefore, the system boundary defines

which unit processes to include and, hence, which inputs and outputs to include. The
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system boundary may also be affected by the access to data, relative assumptions, project

budget and other constraints. According to ISO14040:2006, some processes, inputs and

outputs have only minor effects on the final results, and can be excluded from the system

boundary.

By the definition from Sonnemann et al. (2004), LCA can be focused on either the life-

cycle time boundaries of WWTPs (i.e., construction phase, operational phase and

demolition phase) or the geographical boundaries of the anthropogenic water cycle.

Based on the discussion of time boundaries, Lundie el al. (2004) and Lassaux et al. (2006)

have demonstrated that the environmental impacts of the construction phase are much

smaller than those of the operational phase. The reasonable assumption for the demolition

phase is that its environmental impact is smaller than those of the operational phases and

construction phases.

From the geographical point of view, conventional municipal WWTPs often include

primary treatment, secondary treatment and sludge treatment. These basic processes

should be included in the LCA, due to their important impacts on the environment. The

availability of other treatment processes, such as tertiary treatment, nutrient removal and

disinfection, differ from plant to plant. However, these plant-based processes should be

carefully considered, due to their different impacts on the final results.

2.2.4 Inventory Analysis

Life Cycle Inventory (LCI) Analysis, the second phase of LCA, involves data collection

and processing and allocation of resources. Sonnenmann et al. (2004) summarized a four-

step methodology in inventory analysis. These steps are:

* data collection

* normalization

* allocation

* data evaluation

However, the literatures report the use of slightly different methodologies. For example,

ISO14040 standard includes normalization in the life cycle impact assessment phase. The

18



data evaluation step is not unique in Life Cycle Impact Assessment (LCIA). Instead, data

should be evaluated throughout the entire LCA.

Data collection

Once the system boundary is well defined, data can be collected according to the inputs

and outputs of each unit process. Figure 2.5 describes a generic overview of data

collection regarding the system boundary. Similar approaches also apply to the individual

unit process data collection. In some analyses, data collection could involve intensive

labor, time and money.

Emission to Air Discharge to water Disposal to soil

I I I
Raw material inputs

I $Products

Energy Inputs

Ancillary inputs w==== ===* 1 Process 1 mProcess 2 1 Co-products

Physical Inputs NMMMMMMMMMMMe
memj*Wastes

System Boundary

Other environmental aspects

Figure 2.5 Generic Data Collection

Raw data needs to be further processed before the final life cycle inventory. In addition,

the initial data quality must be checked with the following requirements (Sonnemann,

2004):

" time-related coverage

" geographical coverage

* technology coverage

These requirements guarantees the final LCA results are valid over a relative long time

scale, a wide range of geological locations and a variety of technology mixes.

For the LCA of a WWTP, data is gathered mainly from the daily plant operation. The

flow rate varies between seasons and even years. An adequate time frame (e.g. five years)

is necessary to eliminate seasonal and meteorological variances. Geographical coverage
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depends on the goal and scope of study. For a single plant analysis, only local

information should be used. Technology coverage reflects the types of technology used,

whether a single operation or a technology mix. The wastewater treatment processes

could have various treatment technologies for a single stage. For example, sludge

digested gas can be ignited, recycled or a mix of both.

Normalization

As discussed in Section2.2.4, raw data need to be further processed before allocation.

This step is called normalization in some of the literature. Raw data needs to be

normalized according to the functional unit defined in the goal and scope phase. For

example, in WWTP, if flow rate is used as the functional unit, all other raw data collected

should be recalculated based on this flow rate.

Allocation

Allocation means the distribution of resources, wastes and emission for each single unit

process to relative environmental impacts. The functional unit is the key that connects

inputs and outputs and connects unit processes.

2.2.5 Impact Assessment

The main purpose of Impact Assessment is to translate the results from inventory analysis

to a more understandable and precise interpretation of the environmental impacts of a

product system. Despite the requirements for LCI, the three mandatory elements for

impact analysis are

" selection and definition of impact categories

* classification

" characterization

Selection and Definition of Impact Categories

The selection and definition is closely related to the goal of the LCA study. Different

impact categories may include global warming, eutrophication, human toxicity, and
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ozone depletion. The results from inventory analysis can then be assigned to the

respective impact categories.

Classification

Continued from the impact categories selection step, this step is to assign the LCI results

into different environmental impacts. However, it becomes confusing when two or more

flows have the same impacts. A characterization factor is defined for each impact

category. For example, carbon dioxide (CO 2), methane (CH 4) and nitrous oxide (N20) all

have impacts on global warming, but their relative contributions to global warming are

different. Therefore, global warming potential (GWP) is used as the characterization

factor, with the unit of CO 2 equivalent (CO 2-Eq). From IPCC report, the GWP for CH 4 is

21 CO 2-Eq. Similarly, the GWP for N20 is 310 C0 2-Eq.

Characterization

Characterization refers to the calculation of category indicator results. The results from

LCI are calculated using the common factors defined in classification. This step can be

achieved in various ways, for example using matrices. Computer software can also be

used to assist in calculations.

2.3 Cadagua and the La Gavia WWTP

2.3.1. Company Profile

Cadagua, S.A., the sponsor of this project and one of the Ferrovial's subsidiaries, is a

well-recognized Spanish company. It is a leading force in the field of engineering and

construction of water purification and treatment plants.

Founded in 1971 and with 40 years' experience, Cadagua has been very active in the

development of water treatment and desalination. It has successfully designed and built

more than 200 water treatment plants all over the world (drinking water, wastewater, and

desalination installations, as well as industrial facilities), achieving a total treatment

capacity of over 14,500,000 m3/d. Over 17,000,000 inhabitants benefit from the

company's operation and maintenance services. Figure 2.6 is a chart showing Cadagua's

main service areas and installed treatment capacity (Cadagua, 2011)
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Figure 2.6 Treatment Capacity of Cadagua

Research, Development and Innovation (R&D&i) Department in Cadagua aims at

providing better measure-made solutions for each of the installations, in order to improve

global efficiency and lower operation and maintenance costs. Recent Cadagua projects

include process study to minimize sludge production, nutrients recovery and optimization

of power consumption in treatment plants. The project Assessment of the Carbon

Footprint in Wastewater Treatment Plants and Sustainability Analysis for Process

Selection is also one of the ongoing projects, with collaboration with our consulting

group LDX Environmental at MIT.

Four WWTPs were visited by our team in January 2012: La Gavia and Boadilla near

Madrid, and Ribadesella and Villaperez near Oviedo, Spain. While all four WWTPs were

visited data was only collected, and potential measurements are only considered for the

La Gavia and Boadilla WWTPs.

Since all four WWTPs employed similar treatment processes, a comprehensive life cycle

assessment is carried out on La Gavia WWTP based on the data acquired from Cadagua.

The GaBi 5 software is used to assist the LCA. Later, the LCA on Boadilla WWTP will

be conducted in a similar manner.
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2.3.2. The La Gavia WWTP

Inaugurated in June of 2005, the La Gavia WWTP is located in the district of Villa de

Vallecas, southeastern Madrid. The plant resides on the left bank of the Manzanares

River and it treats sewage from the La Gavia I and II sewer mains as well as the surplus

from the La China WWTP. Figure 2.7 is a plane view of the La Gavia WWTP, and

Figure 2.8 depicts the treatment plant's service areas (encompassed by red line).

Figure 2.7 The La Gavia WWTP Plan View

(http://www.acciona.com.au/press/photoGallery/index.php/Water/Waste%20Water%20Treatment

%20Plants/)
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Figure 2.8 The La Gavia WWTP Service Areas

The La Gavia WWTP treats wastewater from about a million people (residential and

industrial) and has a design capacity of 2m 3/s average flow. Using advanced biological

treatment processes incorporated with nutrient removal, La Gavia WWTP is able to

eliminate 97% of organic matter and suspended solids and about 85% of total nitrogen

and total phosphorous from the wastewater (Table 2.1), thus meeting the strictest sewage

treatment standards. The plant is also in line with the National Sewerage and Wastewater

Treatment Plan (1995-2005), which was enforced by the Ministry of the Environment in

Spain to improve the water quality in the Manzanares River.

Table 2.1 Removal Efficiency at the La Gavia WWTP

Influent Effluent Percentage Removal

Units mg/L mg/L %
BOD 350 12 97

SS 340 12 96
Total N 62 10 84
Total P 8 1 87
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In addition, the plant is designed to allocate approximately 10% of the treated water to

watering green areas using a tertiary treatment process. This is part of the Madrid Water

Re-Use Plan, a large-scale strategy to use recycled water for park irrigation and street

cleaning services.

Treatment Processes

core inlet pump sti tine aerated gri Pnan
screen _ screen chamber setting tank

nitrate recirculation

paaa anaerobic anoxic aerobic -tlew eater terteary

1) Preeaeatment

aviheaentranceof WWTP.Ba ,the plant c , wastewater is l w a l volum o olids at us

~~~~~wscsludge n Fgr . sosmsl h water ln) hr r yial orsae

byprsed sot the imarys and m i irh treatments .o esi paraete of

each stage will be discussed in details as follows.

1) Pretreatment

At the entrance of the plant, wastewater is loaded with a large volume of solids that must

be removed so that they won't obstruct the pumps and machinery in further treatments.

This stage is called pretreatment, which can be divided into several parts.
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Coarse/wide screens (see Figure 2.10 a) separate large solids. They consist of a deep tank,

located at the inlet to the treatment plant, where the walls are angled to facilitate the

descent of the solids and the sands decanted to a specific area. This treatment typically

removes materials larger than 10 cm.

Fine screens (see Figure 2.10 b) are installed after wide screens. Water passes through a

gate that prevents materials (normally of a size greater than 6 cm) from passing by. The

bars must be purged continuously, or they will become blocked. This is achieved by

means of automatic movable elements that are driven by chains or curved grids with

rotating combs.

(a) (b)

Figure 2.10 (a) Coarse Screen and (b) Fine Screen

Aerated grit chamber (Figure 2.11) is where grit is removed by aerating and stirring the

water with a blower which causes the grit to settle down to the bottom of the chamber

while keeping lighter organic matters in suspension to be processed further downstream.

The lightest grease on the water surface is then skimmed out with combs.
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Figure 2.11 Aerated Grit Chamber

Most waste generated in the pretreatment (sand, grease and large solids) are compacted

and collected in containers. Finally, they are sent to sludge treatment processes or directly

to landfills.

2) Primary Treatment

Primary treatment usually refers to primary settling tanks or primary clarifiers. It is

designed to remove both organic and inorganic solids by the physical process of

sedimentation. There are 6 circular primary tanks in the La Gavia WWTP, which allow

water to stand for 1.43 hours. Approximately 40 to 60 percent of the total suspended

solids are removed from the wastewater. The remaining solids, either in suspension or

dissolved, are usually be biologically treated in subsequent processes. The primary sludge

is the debris that settles at the bottom of the tanks.

3) Secondary Treatment

Secondary treatment in the La Gavia WWTP is an advanced biological activated sludge

nutrient removal reactor (BNR). It contains four zones connected in series (preanoxic-
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anaerobic-anoxic-aerobic). Each zone plays a different role in the removal of nutrients.

There are totally 6 parallel reactors, with a total volume of 100,800 m3, and the total

retention time of 14 hours.

The preanoxic zone is designed for denitrification and the enhanced growth of

phosphorus-accumulating microorganisms. The activated sludge from the secondary

clarifier is pumped back to this zone (external recycle). In the absence of dissolved

oxygen, bacteria utilize BOD in the influent, reducing the nitrates to gaseous nitrogen,

thus alleviating the nitrate loading from the return sludge in the subsequent anaerobic

zone.

Wastewater treated by the preanoxic zone is then introduced to the anaerobic tank (shown

in Figure 2.12a) in which phosphorous release reactions by microorganisms occur under

anaerobic conditions.

In the anoxic zone, wastewater is mixed with the nitrified mixed liquor recycled from the

aerobic zone (internal recycling). The recycle rate is 300% of the influent flow. This is

the zone where the denitrification occurs, and where N 20 is released to the atmsphere.

(Sedlak, 1991)

In the aerobic zone (Figure 2.12 b), nitrification takes place where ammonia is reduced to

nitrate and nitrite, and luxury uptake of phosphorous also occur. The aerobic zone also

facilitates the growth of bacteria that feeds on organic matters. In order to assimilate

organic matters, these microorganisms require a significant amount of oxygen, which is

added through 12,420 submerged membrane diffusers at the bottom of the aerobic tanks.

The air added to the water has been condensed to improve the efficiency.
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(a) (b)
Figure 2.12 Secondary Treatment process: (a) Anaerobic Zone (b) Aerobic Zone

4) Tertiary Treatment

The design of the La Gavia WWTP initially contemplated the incorporation of a water

reuse system in response to the objectives set by the Madrid Water Re-Use Plan.

Therefore, new tertiary treatment was built which employed a system of microfiltration

(MF) and ultraviolet (UV) disinfection (shown in Figure 2.13). The designed flow rate is

21,600m3/day, which is to be doubled in a future enlargement. This project will

ultimately make it possible to reutilize 25% of the purified water from the WWTP

currently in operation. At this time, about 10% of the purified water is treated for reuse.

(Hemanz, 2007)
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Figure 2.13 Tertiary Treatment: Filtration Tanks and UV Disinfection

5) Sludge treatment

Both primary and secondary processes generate sludge, which consists of mostly water

(approximately 97%) and solids. Therefore, before further treated biologically, sludge is

thickened to reduce mass and volume by the partial removal of water. In the La Gavia

WWTP, two types of thickening are employed: gravitational thickener for primary sludge

and centrifugal thickeners for secondary sludge.

After passing through the thickener, the sludge is taken to anaerobic digesters. Anaerobic

digestion is a biological process that allows a significant decomposition of organic matter

through fermentation in the absence of air. Greenhouse gases, particularly methane and

carbon dioxide, are produced during this process.

The sludge must be contained within the digesters at a suitable temperature (about 35 'C).

External sources of heat are required in cold seasons. In the La Gavia, part of the digester

gas is used as feed for cogeneration, providing heat for digestion in return. The excess

biogas is then stored in a storage tank called a gasholder (shown in Figure 2.14) and

superfluous gas is burned and released into the atmosphere.
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Figure 2.14 Gasholder for Biogas Produced from Sludge Digesters

Up to this point of the treatment of sludge, the reduction of water is minimal, which

means the sludge still has a large volume. Dehydration is responsible for eliminating, in

large part, the water in the sludge. There are four centrifuges serving for this purpose in

the La Gavia plant. After this process, the outgoing sludge contains about 75% water, and

is transported to another thermal drying plant for further treatment.

One thing that should be mentioned about the sludge treatment at the La Gavia WWTP is

cogeneration, which is the simultaneous production of electricity and utilization of heat.

There are 3 motor generators (Figure 2.15 shows two of them) in the plant, producing

more than 7,000,000 kWh of electricity every year.
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Figure 2.15 Motor Generators
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3. METHODOLOGY

3.1. Goal

In response to the request for carbon footprint analysis by Cadagua S.A., the purpose of

the life cycle assessment (LCA) is to study the potential environmental impacts of the La

Gavia wastewater treatment plant (WWTP), based on the data provided by Cadagua.

Particularly, the global warming potential (GWP) and the eutrophication potential are two

key impacts of interest. The scenario of no treatment plant will be compared with the

results from the La Gavia WWTP.

The target audiences of this study are Cadagua S.A., MIT department of Civil and

Environmental Engineering, LCA practitioners and scientists, and the general public. The

experts from Cadagua S.A. could use the results from this study to improve the treatment

processes in La Gavia WWTP, regarding carbon footprints. Other experts can also apply

the model proposed in this study to other treatment plants with similar processes.

3.2. Scope

The scope definition normally explains which stage of the product life cycle and what

boundaries are to be considered.

3.2.1. The La Gavia WWTP System

The La Gavia WWTP has collectively five treatment processes: pretreatment, primary

treatment, secondary treatment, tertiary treatment and sludge treatment. The functions of

each treatment have been carefully studies in Section 2.3.2.

3.2.2. Functional Unit

Flow rate is used as the functional unit for this study. It is defined as 76040 cubic meter

per day (m3 /d) of wastewater at the inlet point of the WWTP. This number is the daily

averaged flow rate of the La Gavia WWTP. However the functional unit can also be

converted to 1 cubic meter of wastewater treated by a scaling factor of 1/76040.
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3.2.3. System Boundaries

Time boundary

The three phases of the La Gavia WWTP have been defined as the construction phase,

the operational (use) phase and the demolition (end-of-life) phase. During the life cycle

of a WWTP, the operational phase has the dominant impact of all phases. In addition,

access to the data for the construction and demolition phases is limited. Therefore, within

the scope of this project, only the operational (use) phase will be included.

Spatial Boundary

Within the operational phase of the La Gavia WWTP, all of the five treatment processes

should be included. However, ISO 14040:2006 also suggests that resources need not be

expended on the quantification of processes that will not cause significant change in the

final outcome. Based on the operational data given by Cadagua S.A., the operation of

tertiary treatment is season-dependent. On a yearly average, it handles only about 0.5

percent of the total wastewater inflow (400m3 /day out of 75300m 3/day). Hence, tertiary

treatment was not discussed in this study. Similarly, we are omitting analysis of the

bypass flow after the primary treatment process, which happened only twice in year 2011

(Oct 2 0 th and Oct 2 3 rd). The bypassed flow rate is less than 0.1 percent (71m 3/day out of

75000m 3/day).

Figure 3.1 shows the system boundary of the LCA study of the La Gavia WWTP. The

five processes are primary treatment, secondary treatment, sludge collection, anaerobic

digestion and thermal drying. For simplicity, the pumping, pretreatment and primary

treatment processes have been combined into one single process. The blue arrows

represent the water line, while the brown arrows stand for the sludge line. The dash-line

box is the system boundary. Figure 3.1 does not represent all the environmental flows

that go in or out of the system. Other inputs and outputs include electricity, chemicals and

gas emissions.

As shown in Figure 3.1, wastewater is introduced from the sewer system to primary

treatment. It is further treated in the biological secondary treatment process with nutrient
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(N and P) removal. Finally, the secondary effluent is discharged into the receiving water.

The impact of the WWTP in the river has been included.

For the sludge line, the primary and secondary sludge are combined in the sludge

collection process. The sludge is further treated in the anaerobic digestion and the thermal

drying processes. The dried sludge, either sent to landfills or used as fertilizer, is not

discussed in this LCA report.

Water Line System Boundary

Sludge Line -

Figure 3.1 System Boundary of the La Gavia WWTP

3.3. GaBi 5 Software

The GaBi 5 is the most updated version of the GaBi software, developed by PE

International. The GaBi 5 software system offers access to comprehensive and user-

friendly functionality to analyze product life cycles or process technologies. The software

is able to deal with life cycle assessment (LCA), product carbon footprints, life cycle

costs and other social and environmental applications. The software also allows access to

the GaBi database, which contains thousands of processes and hundreds of processes. (PE

America, 2012)

Within the GaBi 5 software, the treatment plant can be viewed as a huge 'plan', which

includes several processes. In addition, the inputs and outputs for each process are
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modeled as 'flows'. Figure 3.2 is from GaBi 5. It shows the La Gavia WWTP model in

the softwaare interface. Each rectanglar box represents a process. Besides the wastewater

treatment processes mentioned above, there are the electricity generation process, sludge

transportation and yhe effluent discharging process. In the figure, each arrow-head line

represents a flow. The blue lines represent water line. The brown line represent the sludge

line. And the grey lines stand for either electricity or disel.
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4. RESULTS

4.1. Life Cycle Inventory

The life cycle inventory analysis includes data collection, normalization, allocation and

data evaluation. In this analysis, the normalization and allocation will be done by the

GaBi 5 software.

4.1.1. Data Quality

With coordination from Cadagua S.A., the raw data are obtained from daily operation of

the La Gavia WWTP in year 2011. The daily operational data are reported in the

following categories: water flow, sludge, gas, energy, incidents and hours of operation.

The detailed explanations for each category are shown Table 4.1 below:

Table 4.1 Reported Data Categories

Category Explanation

Flow rate for each treatment process (primary, secondary, tertiary...) is
Water Flow recorded in volume (10 in)

Sludge is reported in volume (in3 ). It includes volumes for every sludge

production and treatment process

Gas is generated from the anaerobic digestion process. It is used in

Gas boilers, cogenerators and torch. The amount of gas is reported for every

source and sink. The reported unit is normal cubic meter (Nm 3)
Electricity consumptions for La Gavia come from two part, self-

Energy production and purchase. The reported unit is kWh.

.n This category includes weather and operational incidents, such as rainfall

and foaming

Hours of The WWTP operates continuously in a year. The hours of operation

Operation records operational hours of each engine (pump, boiler and etc.)

The raw data is further treated by taking a daily average. It represents the daily average

quantity for treating 76040m3 /day (functional unit) of wastewater.

4.1.2. Mass Balance

In order to gain comprehensive understanding of the plant operational conditions, mass

balances have been done on flow rate, total nitrogen and total phosphorus. The mass
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balance of carbon is not necessary and somehow complicated. Hence, the mass balance

of carbon is not performed. In addition, the balance total energy consumptions has also

been done in this section.

Flow rate

Figure 4.1 shows the overall mass balance of flow rate. For example, the primary

treatment process receives 70640m 3/day of wastewater from the sewer system. After the

treatment, 3200 m3/day of sludge is generated, leaving 72840m 3/day of wastewater in the

primary effluent.

These flow rates are the daily average for 2011. The original flow information is recorded

on a daily basis (weekdays) from the end of December 2010 to the start of January of

2012. The arithmetic average is taken to offset seasonal variances. The numbers are all in

m3/day, except for the dried sludge, which is expressed as tonne/day.

Flow rate cannot be balanced perfectly, due to the discrepancies from measurements and

other unknown sources and sinks (rainfall, leakage and overflow). However, the errors

are less than two percent of total flow. In practice, the flow rates have been adjusted

accordingly to ensure arithmetic consistency.

As discussed in Section 3.2.3., in La Gavia WWTP, tertiary treatment is a part of

wastewater reuse. The flow rate for tertiary treatment (not shown in Figure 4.1) is about

0.5% of the total flow on average. Besides, the total environmental impacts from the

tertiary treatment are reasonably small, due to the small amount of flow rate. Therefore,

the impact assessment for tertiary treatment is excluded at this stage. Similar

approximations have also been made on the bypassed flow.
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Figure 4.1 Mass Balance of Flow Rate

Nitrogen

Nitrogen is reported by the total nitrogen concentration and its relative content, namely,

nitrate (NO3 ~), nitrite (NO2), ammonia (NH), and total Kjedahl nitrogen (TKN). Figure

4.2 shows the mass balance of total nitrogen. The unit is 'tonnes per day'. In general,

total nitrogen can be calculated by the following formula:

Mass flow rate (mass/d) = Flow rate (volume/d) x Concentration (mass/volume)

For example, the total influent nitrogen, 4.72 ton/d, is the product of 76040 m3/d and 62

mg/L.

The only exceptions are nitrous oxide (N 20) and nitrogen gas (N 2). Since there is no

direct way to calculate N 2 0, the EPA formula (USEPA, 2011) is used:

N20 = Population x EF x FIND-COM

where,

N2 0: N2 0 emissions from centralized wastewater treatment plants with

nitrification /denitrification (g/year)

Population: Population of the service area

EF: Emission factor (7 g N20/person-year) - plant with intentional

denitrification

FIND-COM: Factor for industrial and commercial co-discharged protein into the sewer

system (1.25)
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The total population in La Gavia service area is estimated as 950,000. Therefore, N2 0

direct emission is roughly 0.022ton/d. We can also express N20 in total nitrogen (N-

N20), which is 0.0126ton/day.

During secondary treatment, the nitrogen sources are from the primary effluent and the

recycled sludge. The sinks, on the other hand, include secondary effluent, secondary

sludge, nitrous oxide and the nitrogen gas (N2). Nitrogen gas can be then calculated by

mass balance.

N2O N2
.. 1tEn/da . 3.41t /da

0.77ton/day
4.72ton/day 4.22ton/day Secondary

Treatment Treatment 

.5ton/day 0.03ton/day Receicng

Sludgewae
Collection

W ae1 L n 
0 .53ton/day

Sludge Uine )Anaerobic 0.53ton/day Thermal 0 53ton/day

E Digestion T T Drying

Figure 4.2 Mass Balance of Nitrogen

Phosphorus

Compared with nitrogen, phosphorus is easier and analyze. Figure 4.3 shows the mass

balance of total phosphorus. Phosphorus is removed by the addition of ferrie chloride

(FeCl 3). The total phosphorus is reported by the amount of inorganic phosphorus (P0 4 )

and organic phosphorus.
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0.07ton/day

Figure 4.3 Mass Balance of Phosphorus

Energy

The total energy consumption is reported by the total amount of electricity purchased per

year and the amount of electricity generated within the plant (through energy recovery

from digester gas). However, to study the contribution of the energy consumption for

each process, we can estimate the amount of electricity by the product of the machine

size and the hours of operation. Table 4.2 is the summary for electricity. The first column

shows the theoretical electricity consumption. These numbers represent the total

electricity usage in plant operation, including primary treatment, secondary treatment,

and sludge treatment.

In order to calculate how much electricity is purchased for each process. The conversion

factor is defined. For example, the primary treatment process used 8719 kWh electricity

in total, which is 25.9 % (8719/33650) of total electricity usage. Therefore, the purchased

electricity for the primary treatment process is: 25040 kWh x 25.9% = 6488kWh.

In fact, besides the three items listed in Table 4.2, the La Gavia WWTP may also include

other electricity consumption sources, such as electricity in office utilities. However, the

electricity from office utilities is only a very part. Hence, in this analysis, this amount of

electricity is not calculated separately, but incorporated into the total electricity purchased.
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Table 4.2 Electricity Summary

Theoretical Total Weighted
electricity Electricity Conversion factor electricity

consumption purchased purchased
(kWh) (kWh) (kWh)

Primary 8719 (8719/33650)* 25040 6488
Secondary 21099 - (21099/33650)* 25040 15700

Sludge 3832 (3832/33650)* 25040 2852
Total 33650 25040 (33650/33650)* 25040 25040

Carbon

The direct emissions of carbon related gases, such as CO 2 and CH4, have been included

in the LCA model, using various approximations. Figure 4.4 shows the direct emissions

of CO 2 and CH4 from the La Gavia WWTP. It is not necessary to perform the mass

balance of carbon. Besides, the mass balance of carbon also requires additional data, such

as the chemical composition of wastewater in the Cadagua service area and the amount of

direct CO2 emission.

Figure 4.4 Direct Emissions of CO 2 and CH 4

The direct emission of CO2 includes aerobic degradation from the primary and secondary

treatment processes, as well as in the downstream receiving water. According to USEPA

(2011), the biogenic CO2 from waste management system would not affect the timing and

location of the CO 2 emission, because these carbon sources would have been returned to
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the atmosphere as CO 2 due to natural decay. These direct emissions of CO 2 would not

change carbon in the short carbon cycle, which is quite different from the CO 2 emission

from fossil fuel combustion. Previous research (e.g. Tillman et.al, 1998) has also adopted

this framework, so by convention biogenic C02 emission is not considered.

Methane gas, generated in anaerobic digestion of sludge, is another carbon related direct

emission, other than CO 2. Cadugua S.A. reports on the total amount of digester gas in

Nm 3. La Gavia WWTP has good management of methane, which is used in cogeneration.

However, there is still emission of CH 4 from incomplete combustion. USEPA (2011) has

given recommendations on the quantification of the CH 4 direct emissions. The EPA

formula is shown below:

CH 4 = methane production rate x (1 - DE) x density of methane

where,

CH 4 : CH4 emissions from anaerobic sludge treatment process

(g/day)

Methane production rate: Amount of methane produced in the anaerobic digestion

process (Nm3)

DE: Methane destruction efficiency (0.99 for enclosed flares)

Density of methane: 662 g/m 3

The calculation is based on the total amount of methane production and the combustion

destruction rate of 99%, recommended by EPA. From the formula, it is clear that CH 4 is

based on (1 - DE), with DE = 0.99. Hence, the amount of CH 4 is quite sensitive the DE

value. For example, if DE is changed from 99% to 98%, then (1 - DE) would change

from 1% to 2%. Therefore, the amount of CH 4 would also double.

4.1.3. Life Cycle Inventory of the La Gavia WWTP

In order to conduct LCA using GaBi 5, it is necessary to analyze the inputs and outputs

for each individual process. The inputs and outputs data are mainly based on the mass

balance results and estimation using empirical formulas. The table below is the complete

list of inputs and outputs for the La Gavia WWTP.
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Table 4.3 List of Inputs and Outputs for the La Gavia WWTP

Primary Treatment

Inputs

Waste water [primary inflow] 76040 m3

Electricity [Electric power] 6511.7 kWh

Outputs

sludge [primary] [Waste for recovery] 3200 m3

waste water [primary outflow] 72840 m3

Secondary Treatment

Inputs

waste water [primary outflow] 78300 m3

Electricity [Electric power] 15703 kWh

Outputs

sludge [secondary] [Waste for recovery] 2800 m3

waste water [secondary effluent] 75500 m3

Nitrous oxide [Inorganic emissions to air] 22.8 kg

Effluent discharge

Inputs

waste water [secondary effluent] 75500 m3

Outputs

waste water [Waste for disposal] 75500 m3

Sludge collection

Inputs

sludge [secondary] 2800 m3

sludge [primary] 3200 m3

Outputs

Sludge for recovery

waste water [primary outflow]

540 m3

5460 m3
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Anaerobic digestion

Inputs

Sludge for recovery 540 m3

Outputs

Digested sludge 540 m3

Methane [Organic emissions to air] 37.1 kg

Sludge Handling

Inputs

sludge for treatment 540 m3

Electricity [Electric power] 2830 kWh

Outputs

Sludge [Hazardous waste] 60000 kg

Transportation

Inputs

Diesel [Refinery products] 408.6 kg

Sludge [Hazardous waste] 60000 kg

Outputs

Sludge [Hazardous waste] 60000 kg

4.1.4. Gabi 5 Modeling

As discussed in Section 3.3, the La Gavia WWTP has been modeled as a huge 'plan'.

Similarly, each treatment process is modeled as a 'process' and inputs and outputs are

treated as 'flows'. Figure 4.5 shows how primary treatment is modeled in GBi 5 interface.

The process interface is divided into four main sections: free parameters, fixed

parameters, inputs and outputs. It is easy to translate inputs and output data from the LCI

results from Section 4.1.2 to GaBi flows. For example, the inputs for primary treatment

are raw wastewater and electricity, while the outputs are primary effluent and primary
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sludge. One column is named 'tracked flow'. It is used to determine the fate of each flow.

'X' means the flow is tracked, which either comes from a previous process or goes to the

next process. '*' means the flow is a waste flow. And a space (' ')means an elementary

flow, such as carbon dioxide, water, and etc.

The free parameters, which are allowed to change for each instance, are used to describe

both the quality and quantity of flows. For example, wastewater could contain

biochemical oxygen demand (BOD) and total nitrogen. The information is recorded in

the parameters, which are carried along the whole plan. The fixed parameters are also

used to describe flows, but they are not allowed to change for each instance.
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4.2. Impact Assessment

4.2.1. Selected Impact Categories

Within the scope of this LCA, global warming potential (GWP) and eutrophication

potential (EP) are the two impact categories of interest. It is general practice to include

these two categories in WWTPs. This is because GWP provides the information for total

carbon footprints, while EP is a good indicator for the performance of WWTPs. Although

the GaBi 5 also provides the database for other impact categories, such as ozone

depletion and natural source depletion, they are available only for certain processes and

of less concern. Hence, these impact categories are not included in the final discussions.

As defined in Section 2.1.2, the standardized unit for global warming potential is kg C0 2-

Eq. Similarly, the unit adopted for eutrophication potential kg phosphate-Eq.

4.2.2. Results from GaBi 5

Table 4.4 shows the results from GaBi 5. The impact categories are global warming

potential and eutrophication potential. Each environmental impact is reported by the

impact of each process and the total impact. The results are based on the functional unit

of 76040m 3/day of wastewater treated. Hence, another way to interpret these numbers is

to treat them as the daily impact from the La Gavia WWTP.
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Table 4.4 LCIA Results from GaBi 5

CML2001 - Nov. 2010 Global CML2001 - Nov. 2010
Warming Potential (GWP 100 Eutrophication Potential
years) (EP)
kg CO2 - Eq kg phosphate-Eq

Total 20316.82 225.65
Anaerobic 927.56 0.00
Digestion

Effluent Discharge 0.00 214.40
Electricity 11169.20 2.88
Transportation 1433.41 2.22
Primary Treatment 0.00 0.00
Secondary 6786.64 6.15
Treatment
Sludge Collection 0.00 0.00
Sludge handling 0.00 0.00

Figure 4.6 and Figure 4.7 show the degree to which each process contributes to global

warming.

20316.82

11169.20

6786.64

1433.41 927.56
0.00 0.00 0.00 0.00

A~O 4> &

<CA5

Figure 4.6 Global Warming Potential of the La Gavia WWTP
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Figure 4.7 Eutrophication Potential of the La Gavia WWTP

In Figure 4.6, it is clear that more than 50% of the total greenhouse gas is from electricity

consumption. This emission is caused by the indirect emissions of CO 2 from the fossil

fuel combustion in power plants. Following electricity, secondary treatment is the second

largest source, which contributes about 33% of the total emission. In this LCA, this

emission comes from mainly the direct emission of N20 from the secondary treatment

process (nutrient removal).

The emissions from transportation consist of two parts: the CO 2 emission from the truck

and other emissions from oil refinery. Finally, the emission from the anaerobic digestion

is caused by the incomplete combustion of CH 4 .

From Figure 4.7, it is clear that the eutrophication is mainly caused by the effluent

discharge, which contains the total nitrogen and the total phosphorus residuals from the

secondary effluent. The total eutrophication could be more significant for treatment

plants without nutrient removal processes.

In addition to effluent discharge, about three percent of the eutrophication potential is

contributed by the secondary treatment process, which emits nitrous oxide to the
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atmosphere. A certain amount of the nitrous oxide in the atmosphere is finally returned to

surface water through precipitation. This part of nitrous oxide is counted in the

eutrophication potential.
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5. DISCUSSIONS

5.1. Sensitivity Analysis

As shown in the results section, the data sources vary by the type of gas. For example, the

indirect emission of CO 2 is based on electricity consumptions, while the direct emissions

of N 2 0 and CH 4 are from empirical formulas. The following paragraphs summarize

conclusions and gives recommendation for each greenhouse gas.

The results for indirect CO 2 emission are from the electricity. In this LCA study, CML

(Institute of Environmental Sciences) methodology is used for standardization, while

other protocols are also available for different places of interest. The final results could

change if different standards are adopted. However, in general, the final results should be

very similar.

The emission of N2 0 has huge variations and it is plant specific. International Panel on

Climate Change (IPCC) and other researchers (Kampschreur et. al, 2009) have proposed

different ranges on N2 0 emission based on total nitrogen loading. The nitrous oxide

emission for this LCA used the EPA formula, which is based on population. The real

value could vary on an order of ten percent. Hence, for a more precise analysis, further

studies on N 20 and direct measurements are needed. More discussions on the N2 0 direct

emissions from the secondary treatment process can be found in Xin Xu's report

Similar to the quantification of N 20, CH 4 emission from the anaerobic digestion is also

based on an empirical formula, which is derived from methane destruction rate. The

results have shown that this amount of methane counted for five percent of total

greenhouse gas emissions. The results could be improved if the daily analysis of gas from

the cogenerator is available.
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5.2. La Gavia WWTP vs. No WWTP

One of the goals for this LCA is to analyze the impact of the La Gavia WWTP. Therefore,

it is necessary to compare the La Gavia WWTP with the case of no WWTP at all.

Figure 5.1 shows the different boundaries of the two scenarios. The above scenario is the

case of the La Gavia WWTP, which is the same as previous analyses. The box below

shows the case without any treatment. Wastewater from the sewage collection system is

directly discharged into the receiving water (Manzanares River), without any treatment.

the La Gavia WWTP

Treatent Tr amnt

| Receiving
Sludge water

Collection

Anaerobic Thermal
Digestion Drying

No WWATP

Receiving
water

Figure 5.1 Comparisons between the La Gavia WWTP and No WWTP

Several assumptions have been for the case of without any treatment:

" No indirect GHG emission for the case without any treatment, because no

electricity consumptions or transportation required;

e No direct emission is included for the case without any treatment, because it is

assumed that aerobic condition will always hold in Manzanares River. The La

Gavia WWTP has flow rate of 76040m 3/day, while Manzanares River has flow

rate of 1036800 m3/day. Therefore, if wastewater, with BOD concentration of 353

mg/L, is discharged into Manzanares River with zero upstream BOD, the mixed
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BOD concentration would be 24.1 mg/L. This assumption might be reasonable

with a very high reaeration rate;

* The nutrients in the untreated wastewater are discharged into Manzanares River.

They are counted toward eutrophication potential.

20316.8
1929.6

0 Global Warming
Potential (GWP) kg
C02 - Eq

w Eutrophication
Potential (EP) kg
Phosphate-Eq

225.7

0

La Gavia WWTP W/O WWTP

Figure 5.2 Comparison between GWP and EP

The final results of GWP and EP for both scenarios are shown in Figure 5.2. For GWP,

the La Gavia WWTP emitted 20000 kg C0 2-Eq of GHG, while zero emission for the case

without any treatment. However, for eutrophication, the La Gavia WWTP has better

performance. It has the EP of 226 kg phosphate-Eq, compared with the EP of 2000 kg

phosphate-Eq for the case without any treatment.

The model for the case of no WWTP is made with the assumptions that aerobic

conditions would hold along the stream. However, as suggested above, it may not

accurate in the real world. The following discussions show the drawbacks of the previous

model:
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* For the case of no WWTP, the model assumes instantaneous mixing once

wastewater is discharged into Manzanares River. The BOD concentration could

be higher than 24 mg/L if incomplete mixing occurs.

" The average concentration of 24 mg/L is calculated by mass balance, with zero

BOD from upstream. However, there are several WWTPs located in the upstream

of Manzanares River. Thus the real average BOD concentration after mixing

could be higher than 24 mg/L

The rise in BOD would likely lead the stream to an anaerobic condition, which further

causes anaerobic methane production. This amount of methane should be added to the

global warming potential for the case of no WWTP. However, the exact amount of GWP

is determined by many factors, such as BOD reduction rate and reaeration rate.

Another issue for interpreting the final results is how to normalize two different

environmental impact categories. The GWP is more on a global scale, while EP is

localized within the stream. On the one hand GWP would raise the issue of global

warming, sea level rise and climate change. These effects would affect the living

environment of Madrid area slowly and indirectly. On the other hand, EP would have

rapid and direct effects on local environment, such as eutrophication, water quality, odor

and aesthetics.

The results shown above have provided analyses of GWP and EP of WWTPs. It has also

built the foundations for further research, such as whether a higher level of wastewater

treatment (i.e., biological nutrient removal) is necessary for the sake of total

environmental impact, i.e. should eutrophication potential be sacrificed for the total

carbon footprints, or vice versa.
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APPENDIX A

Summary of Electricity Usage

Primary Secondary Sludge treatment

Size NO. of Houirs Electricity Size NO. of Hours Electricity Size NO. of Hours Ecstiont
Pump Nam Consumption Pump Name Consumption Pump Name CosutptionPmNae (kW) pumps (hr/d) (Kwh/d)(k)pms (rd Khd(W) ups h/) (w)

Pump 1TubMut-ag
(collector 85 2+1 18 4590 Turbo 560 3+1 8.4 18816 Multi-stage 50 2+1 7.8 1170

sur) compressor 1 Comppressor

pump 2
80 6+1 4.9 2744 (phosphorus 0.81 6+1 5 28.35 dewatering 55 4 12.1 2662

removal)

Pump3 pump 3
(Desarenado 20 4+1 10 1000 (recirculacion 30 6+1 10 2100
desengrado) fangos)

Pump4 pump4
(Purga de 5.5 6+1 10 385 (wasted 3.1 4+1 10 155
primarios) sludge)

8719 21099.35 3832
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