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SYSTEM-OPTIMAL ROUTING OF TRAFFIC FLOWS WITH USER

CONSTRAINTS IN NETWORKS WITH CONGESTION

OLAF JAHN†, ROLF H. MÖHRING‡, ANDREAS S. SCHULZ∗, AND NICOLÁS E. STIER MOSES∗∗

Abstract. The design of route guidance systems faces a well-known dilemma. The approach that
theoretically yields the system-optimal traffic pattern may discriminate against some users in favor
of others. Proposed alternate models, however, do not directly address the system perspective
and may result in inferior performance. We propose a novel model and corresponding algorithms
to resolve this dilemma. We present computational results on real-world instances and compare
the new approach with the well-established traffic assignment model. The essence of this study is
that system-optimal routing of traffic flow with explicit integration of user constraints leads to a
better performance than the user equilibrium, while simultaneously guaranteeing superior fairness
compared to the pure system optimum.

1. Introduction

Route guidance and information systems are designed to assist drivers in making route decisions.
Such devices can provide information (e.g., about conditions drivers are likely to experience) or give
recommendations (e.g., “leave the highway at the next exit and turn right”). We will concentrate
on in-vehicle route guidance devices that provide recommendations to drivers. Drivers enter their
destinations at the beginning of the trip, and the system computes routes based on digital maps, up-
to-date traffic data and current vehicle positions determined with the help of the Global Positioning
System (Henry, Charbonnier, and Farges 1991). These devices normally use visual and acoustic
indicators to aid drivers in following the proposed route.

Currently, many cars are already equipped with simple versions of these devices, and with prices
going down many more are likely to have one in the not-so-distant future. For that reason, it
is widely hoped that route guidance systems can help to alleviate congestion caused by the still
increasing amount of road traffic. Even small improvements can have a significant impact given that
the “congestion bill” in the U.S. alone was $67.5 billion in the year 2000, consisting of 3.6 billion
hours of delay plus 5.7 billion gallons of gas (Texas Transportation Institute 2002).

Several kinds of in-car navigation systems have been proposed. The simplest devices perform
static guidance; i.e., they work with information that is infrequently updated. Most of the in-car
guidance consoles deployed today are of this type. Their main goal is to provide information to
drivers who do not know the area well. From an algorithmic point of view, they are straightforward:
they only compute shortest paths (or approximations thereof) to the destinations with respect to
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2 O. JAHN, R.H. MÖHRING, A.S. SCHULZ, AND N.E. STIER MOSES

travel time, geographic distance, or other appropriate measures. Computational challenges for
these approaches arise “solely” from the huge size of the underlying road networks.

More sophisticated route guidance systems make use of information on current conditions in
the traffic network. That knowledge is the basis of reactive guidance systems (Papageorgiou 1990;
Ben-Akiva, de Palma, and Kaysi 1996). In other words, the recommendation provided to drivers at
any given time is based on a snapshot of the traffic at that time. One of the advantages of reactive
guidance is that it can respond quickly to demand changes or incidents because no predictions are
used.

The most advanced approach, called anticipatory guidance, predicts future demands and traffic
conditions and gives recommendations accordingly (Chen and Underwood 1991; Kaysi 1992). The
issue is how future conditions should be predicted. When market penetration is low, guidance
systems can basically ignore their own effect. On the other extreme, when most users are guided
and they comply with the guidance, reality is likely to be as predicted. The problematic cases are
in between the two extremes. These route guidance systems must predict how users will behave
(e.g., follow the recommendation or not) to guide traffic in a way that is consistent with the
predictions (Bottom 2000). Otherwise, guidance can fail to achieve the desired objective because
recommendations were given making assumptions about the future that may not materialize.

According to Bottom (2000), there is no consensus in the community on which of the latter two
approaches should be used in practice. For the present paper, we adopt reactive guidance because
it is conceptually simpler.

Regardless of the source of network data, route guidance devices still have to compute concrete
routes to be proposed to users. Several systems compute shortest paths, the k shortest paths for
some properly chosen parameter k, or Pareto-optimal paths (when multiple criteria are considered
simultaneously). Some systems perform these computations online while others include them in a
preprocessing step. For example, DynaMIT (2002), a simulation-based real-time system to provide
travel information, computes shortest paths beforehand with respect to several static impedance
functions. Among other measures, it considers free-flow travel times, peak-period travel times,
geographic lengths, and the number of signalized intersections.

Another possibility is to assign users to the paths of smallest individual impedance under the
current conditions, giving rise to what is commonly known as a user equilibrium (or user-optimal
solution). Alternatively, one can opt to minimize the total impedance in the system, a solution
known as the system optimum. Current route guidance systems implement both user and system
optimality, although the bias has always been towards user-optimal traffic patterns (e.g., Mah-
massani, Hu, Peeta, and Ziliaskopoulos 1994; Ben-Akiva, Bierlaire, Bottom, Koutsopoulos, and
Mishalani 1997; Dynasmart 2002). Although system optimality is included in such systems for
computing good upper bounds on traffic efficiency, it is not accepted as a realistic option for actual
guidance. Indeed, it is well-known that under system-optimal patterns some users may end up
traveling longer to allow the system to achieve global efficiency. Of course, it is not likely that
many users accept recommendations that are too inefficient with respect to their personal optimal
choices. We measure the detriment for users as the ratio of the impedance of the recommended path
to that of the shortest possible path the user could have taken. This concept, called unfairness,
will play a central role in this paper.

1.1. Drawbacks of current route guidance systems. None of the current guidance systems
takes directly into account the efficiency of the solution they propose (with the exception of system-
optimal solutions, which are not implementable because of their unfairness). Thus, the need for
integrated algorithms that actually pay attention to the system-wide performance has been rec-
ognized (Henry, Charbonnier, and Farges 1991; Beccaria and Bolelli 1992; Kaysi, Ben-Akiva, and
de Palma 1995).
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As mentioned earlier, the most popular approach is to route drivers according to a user equilib-
rium. In that way, drivers are routed along their respective lowest-impedance paths so there are
no paths they would prefer to the ones they are given. The resulting flow pattern was originally
introduced by Wardrop (1952) in order to model natural driver behavior, and it has been studied
extensively in the literature. In fact, transportation engineers have used it to predict network uti-
lization for planning purposes. Magnanti (1984), Sheffi (1985), Patriksson (1994), and Florian and
Hearn (1995) provide a comprehensive treatment of mathematical formulations and algorithms for
computing the static user equilibrium.

While a user equilibrium should satisfy the drivers, it does not necessarily minimize the total
impedance (or latency) in the system, which is defined as the sum of all individual travel times.
Roughgarden and Tardos (2002) provide examples that show that the total travel time in equilib-
rium can be arbitrarily large compared to that of the system optimum, although it is never more
than the travel time incurred by optimally routing twice as much traffic.

Another unfavorable property of the user equilibrium is its non-monotonicity with respect to
the network’s capacity. This is illustrated by the Braess paradox, where adding a new road to a
network with fixed demands actually increases the total travel time of the updated user equilib-
rium (Braess 1968; Sheffi 1985; Hagstrom and Abrams 2001).

Merchant and Nemhauser (1978) recognized that the assumptions of the traffic assignment prob-
lem are unrealistic and proposed to consider a dynamicmodel. Since then, there has been significant
effort towards the dynamic analysis of traffic networks (e.g., Ben-Akiva 1985; Friesz 1985). Unlike
static traffic assignment, where models and solution methods are well established, the dynamic
traffic assignment problem has been studied from several different perspectives with no single gen-
erally accepted model or methodology. We refer the reader to the article by Mahmassani and
Peeta (1995), which provides a discussion of the inherent difficulties and corresponding solution
attempts.

1.2. A different approach. From a global perspective, e.g., the traffic authority’s point of view,
it is certainly desirable to explicitly minimize the total travel time (i.e., to compute a system
optimum). In particular, the existing road network could then carry more traffic (Lafortune,
Sengupta, Kaufman, and Smith 1991; Ferris and Ruszczyński 1997). Yet, users’ needs have to be
taken into account: directly implemented, this policy could route some drivers on unacceptably long
paths in order to use shorter paths for many other drivers. In fact, the length of a route in the system
optimum can be higher than in user equilibrium, even in the pathological case of a single origin-
destination pair (Roughgarden 2002). This is critical because routes can only be recommended to
drivers. It is reasonable to assume that only very few of them would be willing to sacrifice their
own short routes for the benefit of the “community”. On the other hand, user acceptance of a route
guidance system is important if it is supposed to help in reducing traffic congestion. Therefore,
Beccaria and Bolelli (1992) have suggested to “find the route guidance strategy which minimizes
some global and community criteria with individual needs as constraints.”

We adopt a system optimum approach but honor the individual needs by imposing additional
constraints to ensure that drivers are assigned to “acceptable” paths only. More precisely, we
introduce the concept of the normal length of a path, which can be either its traversal time in the
uncongested network, its traversal time in user equilibrium, its geographic distance, or any other
appropriate measure. The only condition imposed on the normal length of a path is that it may
not depend on the actual flow on the path. Equipped with this definition, we look for a constrained
system optimum in which no path carrying positive flow between a certain origin-destination (OD)
pair is allowed to exceed the normal length of a shortest path between the same OD pair by more
than a tolerable factor. By doing so, we achieve our primary goal of finding solutions that are fair
and efficient at the same time.
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The novelty of our work consists in defining a constrained system optimum with the “right”
set of allowable paths. We demonstrate that this model leads to a significantly better utilization
of a traffic network than the standard traffic assignment (user equilibrium) and still guarantees
fairness similar to that in the user equilibrium. To the best of the authors’ knowledge, no other
work introduces a constrained system optimum approach that guarantees fairness comparable to
that of the ordinary traffic assignment. While this paper studies the method from a computational
perspective, Schulz and Stier Moses (2003) analyzed this idea theoretically and provided estimates
of the efficiency gain when using constrained system optima instead of user equilibria. In a related
paper, Schulz and Stier Moses (2004) extend this study and present theoretical results on the
fairness of constrained system optima.

After specifying the problem and the proposed model in Section 2, we present an algorithm for its
solution in Section 3. It is based on a method called Partan, which is a revised version of the Frank-
Wolfe algorithm. In Section 4, we give computational results obtained with our implementations.
Many of the real-world instances that we used were kindly provided by DaimlerChrysler AG,
Berlin. Additional instances were retrieved from an online library called Transportation Network
Test Problems (Bar-Gera 2002).

2. The Model

We consider a model of reactive route guidance that allows us to work with static flows. While
not considering dynamic flows may preclude the direct application to real-world situations, our
approach can provide traffic planners with bounds on the total travel time that are more accurate
(compared to the ordinary system optimum). Moreover, Sheffi (1985) points out that there are
times when traffic exhibits steady-state behavior; e.g., during rush hours. If nothing else, this
research is a first step in explicitly incorporating system-wide effects into route guidance systems.

We assume that all drivers use the route guidance system and that they actually follow the rec-
ommended routes. Admittedly, this assumption is relatively strong, but this should be considered a
first step. Future research will explore the design of consistent route guidance systems that optimize
efficiency without comprising user acceptance. One way to model a non-perfect market penetration
is by considering two classes of users. Some users have access to route guidance devices and follow
the recommendations, while the remaining users act selfishly. In this extension, a central question
is that of creating a traffic pattern for the guided users that is fair and minimizes the total travel
time (for all users, including those without guidance). Along this direction, Roughgarden (2001)
studied how to compute an optimal strategy in a network consisting of a set of parallel links.

2.1. Preliminaries. We represent the road network by a directed multigraph G = (V,A) with
two attributes on each arc a ∈ A: the normal length `a > 0 serves as an a priori estimate for its
traversal time in the solution we seek; the link delay function τa : R>0 → R>0 maps xa, the rate of
traffic on arc a, to its actual traversal time τa(xa). Normal lengths can be chosen to be any metric
for the arcs that is fixed in advance. However, their proper choice will allow us to produce solutions
with desirable features; we refer to Section 4 for details.

Link delay functions τa measure the impedance of arcs for different congestion levels. We require
them to be nondecreasing and differentiable, and τa(xa)xa to be convex. These requirements are
naturally met by common link delay functions used to reflect congestion effects (Branston 1976;
Sheffi 1985; Cohen 1991). Figure 1 illustrates their typical shape: after they reach the practical
capacity ca (Patriksson 1994), they grow very fast. In our computations, we use the function put
forward by the U.S. Bureau of Public Roads:

τa(xa) := τ0a

(

1 + α
(xa

ca

)β
)

,



SYSTEM-OPTIMAL ROUTING OF TRAFFIC FLOWS WITH USER CONSTRAINTS 5

PSfrag replacements

xa

τa(xa)

0

Figure 1. Typical link delay functions. Here, xa is the flow on arc a, and τa(xa)
is the associated travel time.

where τ 0a > 0 is the travel time in the uncongested network (also called free-flow travel time), and
α > 0 and β > 0 are tuning parameters.

We model vehicles with the same origin and destination as one commodity; K is the set of
all commodities. For each commodity k ∈ K, (sk, tk) ∈ V × V denotes the associated origin-
destination (OD) pair. The demand rate dk > 0 for k ∈ K represents the amount of flow to be
routed for commodity k (vehicles per time unit). We denote the set of paths connecting OD pair k by
Pk := {P : P is a directed path from sk to tk}, and the complete set of paths by P :=

⋃

k∈K Pk.
For a given flow x and a path P ∈ P, its actual traversal time is τP (x) :=

∑

a∈P τa(xa), while
`P (x) :=

∑

a∈P `a is its normal length.
We assess the quality of a particular traffic assignment using two criteria. Its (un)fairness is of

direct importance to users, while the total travel time in the system matters to the traffic authority.
Let us discuss unfairness first.

2.2. Measures of unfairness. Without any centralized control, one would expect that different
users traveling between the same OD pair experience similar travel times. In fact, if this were not
the case, users would have an incentive to switch routes. In a seminal contribution, Wardrop (1952)
stated the following principle that formalizes this notion:

The journey times on all the routes actually used are equal, and less than those
which would be experienced by a single vehicle on any unused route.

A traffic pattern satisfying this principle is commonly called a user equilibrium (Dafermos and
Sparrow 1969). It is “fair” in the sense that users between the same OD pair encounter the same
delay. However, it is well known that a user equilibrium does in general not minimize the total
travel time in the system. Our goal is to select more efficient traffic patterns without loosing the
fairness property. To make this more precise, let us introduce several notions of unfairness of a
solution. For a given flow, we define the unfairness of a particular traveler as follows:

Loaded unfairness: ratio of her experienced travel time to the experienced travel time of
the fastest traveler for the same OD pair, where “experienced travel time” means travel
time measured in terms of the current congestion level.

Normal unfairness: ratio of the length of her path to the length of the shortest path for
the same OD pair, both measured with respect to normal arc lengths.

User equilibrium (UE) unfairness: ratio of her experienced travel time to the travel time
for the same OD pair in a user equilibrium (which is the same for all users of that OD pair).

Free-flow unfairness: ratio of her experienced travel time to the length of the fastest path
for the same OD pair w.r.t. free-flow travel times.
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The respective notion of unfairness for a particular flow is the maximum over all OD pairs of the
maximum unfairness of a traveler between that OD pair. More formally, for a given flow x and an
equilibrium flow f ,

Loaded unfairness(x) := max{τP1
(x)/τP2

(x) : P1, P2 ∈ Pk, xP1
, xP2

> 0, k ∈ K};

Normal unfairness(x) := max{`P1
/`P2

: P1, P2 ∈ Pk, xP1
> 0, k ∈ K};

UE unfairness(x) := max{τP1
(x)/τP2

(f) : P1, P2 ∈ Pk, xP1
> 0, fP2

> 0, k ∈ K};

Free-flow unfairness(x) := max{τP1
(x)/τP2

(0) : P1, P2 ∈ Pk, xP1
> 0, k ∈ K}.

The notions of loaded and normal unfairness are similar. Both compare, using different metrics,
the travel times of users to the shortest travel times they could have had. The UE unfairness,
introduced by Roughgarden (2002) in the single-commodity context, indicates how the travel times
of the solution relate to those in user equilibrium. In practice though, drivers typically do not
know the travel times in equilibrium; it is arguably more important to them how their travel times
compare to the actual travel times of others. The free-flow unfairness measures the degradation
of performance that users experience due to the prevalence of congestion effects. Note that the
normal unfairness and the loaded unfairness are always greater than or equal to 1, while the UE
unfairness and the free-flow unfairness can be any nonnegative number.

2.3. Problem formulation. As it is difficult to directly control the loaded unfairness, we will
instead impose an upper bound on the normal unfairness and show that by doing so the other
notions of unfairness will be small as well. In particular, we consider solutions for which the normal
length of any used path between OD pair k is not much greater than that of a shortest sk-tk-path
(with respect to normal lengths), for all k ∈ K. More specifally, we fix a tolerance factor ϕ > 1
and restrict the normal unfairness to be smaller than ϕ. In other words, a path P ∈ Pk is feasible
if `P 6 ϕLk. Here, Lk := minP∈Pk

`P is the normal length of a shortest path between sk and tk. If
we let Pϕ

k denote the set of all feasible paths for OD pair k, we can define the entire set of feasible
paths as Pϕ :=

⋃

k∈K Pϕ
k .

Because route guidance systems eventually have to propose paths to the drivers, our formulation
is path-based: there is a decision variable xP for each path P ∈ Pϕ. In fact, it is virtually impossible
to model the restriction to feasible paths with the help of a formulation based on arc variables only.
Moreover, even if one were (somehow) given an arc flow that has a decomposition into feasible
paths, it is NP-hard to compute such a decomposition (Correa, Schulz, and Stier Moses 2003,
Corollary 4). In contrast, user equilibria and ordinary system optima can be computed using
arc-based formulations; any flow decomposition results in path flows with the desired property.

The constrained system optimum that we propose to use in route guidance systems is an optimal
solution to the following min-cost multicommodity flow problem with separable convex objective
function and path constraints:

CSO : min C(x) :=
∑

a∈A

τa(xa)xa

s.t.
∑

P∈P
ϕ
k

xP = dk k ∈ K,

∑

P∈Pϕ:a∈P

xP = xa a ∈ A,

xP > 0 P ∈ Pϕ.

Note that the flow variables are not required to be integral since they describe abstract flow rates.
If paths were not restricted to be feasible (i.e., in Pϕ), an optimal solution to this formulation would
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coincide with an ordinary system optimum. We denote by CSOϕ an optimal solution to the problem
with tolerance factor ϕ.

Figure 2 demonstrates the effect of path constraints on the system optimum. One commodity is
routed through the road network between two clearly marked nodes. In the picture on the left, we
display the (unconstrained) system optimum. The flow is distributed widely over the network in
order to avoid high arc flows, which would incur high arc travel times. In the picture on the right,
the same amount of flow is routed, but this time with the restriction that the normal length of any
used path is at most 10% longer than that of the shortest path (i.e., ϕ = 1.1). In this example, the
normal length has been chosen to be the geographic distance. Line thickness reflects arc capacity
(light gray) and arc usage (black), respectively.

Figure 2. System optimum without and with restrictions on the normal length of
paths, resp.

Before we discuss the computational complexity of problem CSO and algorithms to find a con-
strained system optimum, let us emphasize that this model is different from previous traffic assign-
ment formulations with side constraints. The most commonly considered type of side constraints
are explicit bounds on arc flows. In fact, capacity constraints on individual arcs have been used
since the work of Charnes and Cooper (1961) to improve the modeling of congestion effects (see also
Hearn 1980); some traffic control policies give rise to arc flow capacity constraints as well (Yang
and Yagar 1994); arc capacities can also be used to derive tolls for the reduction of flows on over-
loaded links, we refer to Bernstein and Smith (1994) for references. Moreover, several authors
have discussed the algorithmic consequences of modeling arc capacities explicitly (Daganzo 1977a;
Daganzo 1977b; Hearn 1980; Hearn and Ribera 1980; Hearn and Ribera 1981; Larsson and Pa-
triksson 1994; Larsson and Patriksson 1995). Larsson and Patriksson (1999) have summarized and
extended this work to general convex side constraints on the vector of arc flows.

Nonetheless, such constraints cannot be used to render certain paths infeasible, as we have argued
earlier. Still, path-based multicommodity flow models similar to ours with explicit constraints on
the set of allowable paths are frequently used in other application areas. A recent example is the
work by Holmberg and Yuan (2003), who study routing problems in telecommunication networks
and solve the resulting models by column generation. However, nobody has tried to capture aspects
of system optimality and user fairness in a network with congestion effects, as we do.

3. Algorithms and Complexity

To solve problem CSO, we use a variant of the convex combination algorithm of Frank and
Wolfe (1956). As it is well-known that the standard Frank-Wolfe algorithm sometimes shows poor
convergence (see, e.g., Sheffi 1985; Patriksson 1994; Florian and Hearn 1995), we consider an
improved version called Partan that was proposed by LeBlanc, Helgason, and Boyce (1985) and
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further studied by Florian, Guélat, and Spiess (1987) and Arezki and Van Vliet (1990), among
others. As we cannot explicitly work with all variables xP associated with paths P ∈ Pϕ, because
there may be exponentially many, we only generate them when needed. For that reason, our algo-
rithm can be considered to be a column generation method. The application of column generation
to the computation of system optima and user equilibria was first studied by Gibert (1968) and
Leventhal, Nemhauser, and Trotter (1973).

For the sake of completeness, let us briefly describe the Frank-Wolfe method.1 Given a current
solution, the algorithm solves in every iteration a linearized version of CSO to determine a feasible
descent direction. As the linearization permits the decomposition of the problem by commodities,
it is enough to call a subroutine for finding a shortest path in Pϕ

k for each commodity k ∈ K. In
the subsequent line search, the original nonlinear problem is solved restricted to the line defined
by the feasible direction of descent. The algorithm terminates when a certain precision is achieved.
To determine when this is the case, the convexity of the objective function is used to derive a lower
bound on the value of an optimal solution. It is well known that this algorithm always converges
to a global minimum (for convex programs). Partan is based on the same idea, but it performs a
more intelligent line search. It determines the descent direction using the results of two consecutive
iterations, thereby diminishing the zigzagging effect.

The substep of computing a shortest path in Pϕ
k is exactly the so-called constrained shortest path

problem; see Section 3.1 below. The only difference between the algorithm we just described and
the version of Frank-Wolfe (or Partan) employed for computing user equilibria or system optima is
the use of constrained shortest paths instead of regular shortest paths in the solution of the linear
subproblems.

Note that other methods like partial linearization algorithms or simplicial decomposition can also
be adapted to our problem. Since we want to make the point that constrained system optima are
useful, it was not necessary to implement potentially more efficient algorithms as we can solve rel-
atively large instances within acceptable time limits by using Partan. As others concluded before,
for our purpose “. . . the [Frank-Wolfe] algorithm is considered sufficiently good for practical use”
(Patriksson 1994). Nevertheless, if one wants to deploy these ideas in a real-time setting, more care-
ful and efficient implementations are needed. We refer the reader to the books by Sheffi (1985) and
Patriksson (1994) as well as the chapter by Florian and Hearn (1995) for comprehensive discussions
of these algorithms as well as many others.

3.1. The constrained shortest path problem. Let us sketch how the computation of con-
strained shortest paths—the pricing component of our column generation approach—is carried
out. In this subproblem, every arc a ∈ A has two parameters, a traversal time τa and a length `a.
Given an origin-destination pair (s, t), the objective is to compute a quickest path from s to t whose
length does not exceed a given bound L. That is, one wants to solve the following problem:

min{τP : P is a path from s to t such that `P 6 L},

where τP :=
∑

a∈P τa and `P :=
∑

a∈P `a . This problem is NP-hard (Garey and Johnson 1979).
For solving this problem, Aneja and Nair (1978) proposed to use Lagrangean relaxation; Ribeiro

and Minoux (1986) added a branch-and-bound scheme. Aneja, Aggarwal, and Nair (1983) extended
Dijkstra’s algorithm to the case of two objective functions, and Climaco and Martins (1982) used
path ranking.

Because of its superior computational efficiency, we implemented the label correcting algorithm
of Aneja et al. (1983).2 The algorithm fans out from the start node s and labels each reached node

1For an in-depth description of the implemented algorithms, we refer to Jahn, Möhring, Schulz, and Stier Moses (2002).
2Another promising approach has recently been suggested by Mehlhorn and Ziegelmann (2000). It is based on the
Lagrangean relaxation of the dual of an integer linear programming formulation of the constrained shortest path
problem.
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v ∈ V with labels of the form (dτ (v), d`(v)). For each path from s to v that has been detected so
far, dτ (v) represents its traversal time and d`(v) its distance. During the course of the algorithm,
several labels may have to be stored for each node v, namely the Pareto-optimal labels of all paths
that have reached it. This labeling algorithm can be interpreted as a special kind of branch-and-
bound with a search strategy similar to breadth-first search. Starting from a certain label of v,
one obtains lower bounds for the remaining paths from v to t by separately computing ordinary
shortest path distances from v to t with respect to travel times τa and lengths `a, respectively. If
one of these bounds is too large, the label can be dismissed.

3.2. Computational complexity. For the sake of completeness, let us also quickly discuss the
computational complexity of problem CSO. Note that it includes as a specical case the situation in
which all link performance functions are constant; i.e., τa(xa) = τa for all a ∈ A. Moreover, the set
of feasible paths is only given implicitly. Hence, the input dimension is |A|+ |K|. In fact, CSO is
already NP-hard for |K| = 1, as this case amounts to solving a constrained shortest path problem.

4. Computational Study

The computational study is divided into three parts. First, we discuss which normal length
should be used in practice. Next, we analyze efficiency vs. fairness of solutions for instances that
arise from real-world networks. Finally, we briefly report on the performance of the algorithm itself.

The seven instances we used in this study come from two different sources. Four of them represent
different parts of the actual road network of the city of Berlin, Germany, and were provided by
DaimlerChrysler AG. Their demand rates stem from origin-destination polls conducted in Berlin.
The other three come from the Transportation Network Test Problems website (Bar-Gera 2002).
Table 1 shows the specifics of each instance. Instances are listed in increasing order of the product
of the number of arcs and the number of commodities. This measure of complexity has been used
in the literature (e.g., Holmberg and Yuan 2003), and it indeed corresponds to the ordering with
respect to solution times. Instances range from rather small ones, which were included because
they are standard in the literature, to fairly large ones.

Table 1. Problem instances used in the computational study

Instance Name Short Name Source |V | |A| |K| |A| · |K|

Sioux Falls SF TNTP 24 76 528 40K
Friedrichshain F DC 224 523 506 265K
Winnipeg W TNTP 1,067 2,975 4,344 13M
Neukölln N DC 1,890 4,040 3,166 13M
Mitte, Prenzlauerberg

& Friedrichshain MPF DC 975 2,184 9,801 21M
Chicago Sketch CS TNTP 933 2,950 83,113 245M
Berlin B DC 12,100 19,570 49,689 972M

The algorithm described in Section 3 was implemented in C++ using the GCC compiler un-
der Linux; the computing platform was a Pentium IV based computer running at 2.4 GHz with
1 GB RAM.

4.1. Choice of normal length. We initially considered three possible ways to define the normal
length of an arc: geographic distances, free-flow travel times, and travel times when the network is
in user equilibrium. Recall that normal lengths can only be static; for instance, it is not possible to
consider travel times under the current solution with the methodology described in this paper. The
advantage of keeping the model simple is a fast algorithm that still produces solutions with small
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total travel time and low unfairness. It is important to remark that users do not need to know the
normal lengths; they are just an artifact of our algorithm to select solutions that are approximately
fair.

Geographic distances and free-flow travel times are highly correlated; therefore, one cannot
expect significant differences between solutions resulting from choosing either one as the normal
length. For free-flow travel times, Schulz and Stier Moses (2003) showed, and our runs confirm,
that the total travel time of user equilibria is smaller than that of constrained system optima
when the factor ϕ is too small. Consequently, to obtain an improvement in the total travel time,
bigger factors must be considered. However, this gives rise to relatively high unfairness, which is
undesired. As an example, consider instance Neukölln. The graph on the left in Figure 3 shows
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Figure 3. Objective values and unfairness distributions for instance Neukölln and
normal lengths equal to free-flow travel times

the value of the objective function for different tolerance factors ϕ, for the user equilibrium (UE),
and for the system optimum (SO). Factors smaller than 1.4 are not helpful because the total travel
time of the corresponding solutions is greater than the total travel time in user equilibrium. The
other two graphs in Figure 3 depict the distribution of unfairness across users for varying tolerance
factors; for instance, for factor ϕ = 1.5, 80% of all users will experience a loaded unfairness of
less than 1.1. This value increases to 1.2 if one considers 90% of all users. For factors greater
than 1.5, the distributions are quite similar to that of the system optimum. In the graph on the
right, note that for small tolerance factors most users end up traveling longer than they would in
user equilibrium. This happens because there are not enough alternative paths between any one
OD pair, which explains the poor quality of the solutions under this choice of normal length.

We therefore propose to make use of the travel times in user equilibrium when defining normal
arc lengths, which results in high-quality solutions. Indeed, for any factor ϕ, the user equilibrium
itself is a feasible solution to the constrained system optimum problem. Therefore, for all ϕ > 0,

C(CSOϕ) 6 C(UE ),

which guarantees that the optimal solution to problem CSO is never worse than the user equilibrium
in terms of the total travel time in the system. The advantage of this normal length definition is that
it is flow-dependent; it provides a better indication which paths should be selected. Let us repeat
that users do not need to know the user equilibrium; it is just an ingredient for the computation
of the constrained system optimum.

Figure 4 displays graphs similar to the ones in Figure 3 for this choice of normal length. Most
notably, total travel times are distinctively smaller than in equilibrium, while the fraction of users
traveling longer than in equilibrium is substantially smaller. We therefore limit our analysis in the
sequel to this version of normal length; that is, we assume user equilibrium travel times are used
to define normal lengths.
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Figure 4. Objective values and unfairness distributions for instance Neukölln and
normal lengths equal to travel times in user equilibrium

4.2. Quality of constrained system optima. Tables 2 and 3 exhibit the output of the algorithm
for the instances presented in Table 1 and varying tolerance factors. Every row represents one run
for the factor reported in the first column. The column objective value is the total travel time of
the solution; the column number of paths contains the number of paths with positive flow, which is
an indication of the complexity of the solution. In addition, the tables include the 99th percentiles
of the different unfairness distributions, the number of iterations (one iteration consists of solving
the linearized problem and performing the line search; see Section 3), and the time (in seconds)
needed to reach the target optimality gap of 0.5%.

For example, the third row for instance Friedrichshain portrays the attributes of the constrained
system optimum with tolerance factor ϕ = 1.02. The total travel time is 621, and the users between
the 506 different OD pairs are assigned to 1, 290 different paths. The actual travel time for 99% of
all users is not more than 65.7% than that of the fastest route between their OD pair. Compared
to the user equilibrium, their individual travel times are at most 11.7% higher. Note that the
corresponding quantities for the system optimum (10th row) are 106.3% and 25%, respectively.

Before we interpret the computational results, let us call attention to an apparent anomaly in
the rows of Tables 2 and 3 that correspond to user equilibria. In theory, the normal unfairness,
the loaded unfairness, and the UE unfairness should be equal to 1; however, in practice they are
obviously not. The reason is that each user equilibrium is computed as the optimal solution of an ap-
propriately defined convex optimization problem as per Beckmann, McGuire, and Winsten (1956).
As the algorithm terminates as soon as the value of the current solution is within 0.5% of that
of an optimal solution, the solution reported here is merely an approximate user equilibrium. In
some sense, the normal unfairness, the loaded unfairness, and the UE unfairness give information
about its actual deviation from a user equilibrium. Incidentally, in the derivation of the normal
arc lengths, we computed the user equilibrium with higher precision, namely a target optimality
gap of 0.01% instead of 0.5%. This explains why the 99th percentiles of normal unfairness, loaded
unfairness, and UE unfairness of the user equilibrium are not necessarily equal to one another.

Clearly, the larger the tolerance factor ϕ the closer is the objective function value of an associated
constrained system optimum to that of the unconstrained system optimum, and the higher is its
unfairness. On the other hand, smaller tolerance factors lead to “fairer” solutions but also result
in larger gaps of the total travel time compared to the unconstrained system optimum. However,
we will argue that a carefully chosen tolerance factor strikes a good balance between these two
conflicting effects. For the sake of argument, let us consider instance Neukölln with ϕ = 1.02.

The gap between the total travel time of CSO1.02 and that of the system optimum is about a
third of the gap between the user equilibrium and the system optimum. In fact, the travel time
of the system optimum is 2, 653 compared to 2, 903 in user equilibrium and 2, 732 for CSO1.02 .
Moreover, the travel time of 99% of all users in CSO1.02 is at most 30.4% higher than that of any
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Table 2. Characteristics of constrained system optima with different tolerance fac-
tors, Part I

factor objective number 99th unfairness percentile number of runtime
value of paths normal loaded UE free-flow iterations (sec.)

Sioux Falls

UE 7448 989 1.001 1.040 1.031 5.098 31 0
1.01 7263 749 1.001 1.282 1.187 4.908 27 0
1.02 7256 754 1.001 1.258 1.184 4.901 38 0
1.03 7251 758 1.001 1.265 1.195 4.789 34 0
1.05 7239 812 1.035 1.290 1.210 4.749 32 0
1.10 7216 893 1.060 1.283 1.178 4.712 56 0
1.20 7207 984 1.078 1.295 1.168 4.573 46 0
1.30 7201 1129 1.092 1.296 1.170 4.598 64 0
SO 7199 1326 1.092 1.295 1.169 4.599 78 0

Friedrichshain

UE 682 1713 1.011 1.036 1.062 4.382 27 0
1.01 628 1283 1.008 1.657 1.087 4.163 45 1
1.02 621 1290 1.017 1.652 1.117 4.132 30 1
1.03 613 1515 1.029 1.711 1.094 4.124 42 1
1.05 612 1594 1.046 1.733 1.092 4.130 43 1
1.10 594 1598 1.096 1.929 1.109 3.565 40 1
1.20 591 2080 1.170 2.060 1.177 3.932 74 1
1.30 591 2251 1.213 2.058 1.229 3.948 59 1
SO 591 2631 1.213 2.063 1.250 3.947 63 1

Winnipeg

UE 857 14633 1.029 1.050 1.047 1.503 16 7
1.01 844 10224 1.009 1.119 1.027 1.429 15 8
1.02 842 11901 1.017 1.123 1.019 1.402 16 8
1.03 842 13123 1.027 1.142 1.027 1.389 18 8
1.05 842 15374 1.043 1.164 1.044 1.409 23 10
1.10 841 17846 1.068 1.192 1.054 1.411 30 12
1.20 841 18619 1.075 1.203 1.058 1.429 33 13
1.30 841 18755 1.078 1.210 1.068 1.458 30 12
SO 841 19331 1.076 1.211 1.066 1.449 33 14

Neukölln

UE 2903 6744 1.025 1.063 1.053 3.806 21 17
1.01 2794 4380 1.008 1.332 1.084 3.182 15 7
1.02 2732 4700 1.015 1.304 1.072 3.054 17 8
1.03 2721 5665 1.028 1.420 1.070 3.079 18 8
1.05 2690 6427 1.045 1.450 1.099 2.987 22 10
1.10 2672 8755 1.091 1.493 1.125 2.944 47 17
1.20 2653 10018 1.168 1.527 1.179 2.292 54 17
1.30 2653 7983 1.183 1.539 1.193 2.327 48 15
SO 2653 8631 1.187 1.555 1.197 2.335 58 48
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Table 3. Characteristics of constrained system optima with different tolerance fac-
tors, Part II

factor objective number 99th unfairness percentile number of runtime
value of paths normal loaded UE free-flow iterations (sec.)

Mitte, Prenzlauerberg & Friedrichshain

UE 1845 28091 1.015 1.040 1.032 2.236 16 9
1.01 1771 32476 1.008 1.304 1.051 2.086 25 30
1.02 1762 34618 1.017 1.291 1.045 1.993 25 30
1.03 1755 35392 1.026 1.303 1.045 2.008 24 27
1.05 1733 39320 1.046 1.358 1.060 1.808 26 22
1.10 1727 48968 1.086 1.451 1.083 1.881 29 14
1.20 1726 56687 1.122 1.478 1.122 1.918 37 17
1.30 1726 56304 1.123 1.477 1.124 1.910 35 15
SO 1726 64431 1.127 1.471 1.126 1.921 40 24

Chicago Sketch

UE 18383 194564 1.017 1.039 1.046 1.592 9 46
1.01 18123 119696 1.007 1.101 1.052 1.543 4 27
1.02 18047 155800 1.016 1.123 1.047 1.509 8 46
1.03 18016 192152 1.025 1.148 1.044 1.492 11 57
1.05 17993 242188 1.043 1.193 1.055 1.499 14 69
1.10 17971 289999 1.072 1.211 1.074 1.504 19 89
1.20 17970 334364 1.081 1.227 1.090 1.496 25 118
1.30 17976 344830 1.085 1.224 1.092 1.498 24 118
SO 17981 331146 1.087 1.238 1.093 1.496 25 117

Berlin

UE 16223 150922 1.038 1.057 1.058 2.400 15 1584
1.01 16254 98271 1.008 1.135 1.906 3.191 9 904
1.02 15806 142944 1.018 1.214 1.112 2.181 14 1274
1.03 15671 171452 1.028 1.247 1.066 2.058 19 1626
1.05 15632 216328 1.045 1.270 1.060 2.003 29 2247
1.10 15587 257707 1.084 1.333 1.083 2.000 39 2689
1.20 15572 295138 1.126 1.372 1.120 2.016 49 3614
1.30 15565 307050 1.137 1.398 1.128 2.022 52 4184
SO 15544 322687 1.148 1.438 1.135 2.066 56 5512

other traveler (between the same OD pair), compared to 55.5% in the system optimum. In other
words, the reduction of unfairness amounts roughly to 45%. The numbers are similar for most of
the other instances.

Figures 5 and 6 depict the complete unfairness distributions for all instances. Let us again pick
Neukölln to highlight typical effects. In CSO1.02 , the travel time of just 4.5% of all users is more
than 10% than that of the fastest paths of their OD pairs. In contrast, this number is 15.3% for
the ordinary system optimum; i.e., one sixth of all drivers experience delays that are significantly
above and beyond that of their fellow drivers. Moreover, most users (around 80%) spend less time
on the road than they would in equilibrium. Actually, for factor 1.02, only 0.3% of the users travel
10% more than in equilibrium. Compare this number to the 4.6% that travel at least 10% longer
under the system optimum.
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Figure 5. Unfairness distributions for various tolerance factors, Part I

To facilitate a comparison of the characteristics of constrained system optima with different
tolerance factors, Figures 7–13 plot various percentiles of the different notions of unfairness. The
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Figure 6. Unfairness distributions for various tolerance factors, Part II

two diagrams on top of each figure represent the 95th and 99th percentile, respectively, of the four
notions of unfairness. The four remaining graphs correspond to each unfairness definition and show
the 95th, 97.5th and 99th percentiles, respectively.

Let us draw attention to some typical effects, and we will once again use instance Neukölln

when we need to mention concrete numbers. We first compare the travel times of users in any
of the computed route guidance solutions to the length of their shortest paths in the uncongested
network (free-flow unfairness). It is remarkable that for virtually all tolerance factors in our study,
the increase of travel time due to congestion effects is significantly smaller than the corresponding
increase in the (approximate) user equilibrium. For instance, for Neukölln and the 99th percentile,
the free-flow unfairness for all constrained system optima is about 3 or lower, while the free-flow
unfairness of the user equilibrium is 3.8. The significance of this observation is only reinforced by
the fact that at equilibrium all users between the same OD pair experience the same delay, while
this is not necessarily the case in a constrained system optimum. The second important observation
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Figure 7. Unfairness over the different factors and percentiles for instance Sioux Falls
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Figure 8. Unfairness over the different factors and percentiles for instance Friedrichshain
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Figure 9. Unfairness over the different factors and percentiles for instance Winnipeg
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Figure 10. Unfairness over the different factors and percentiles for instance ‘Mitte,
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Figure 11. Unfairness over the different factors and percentiles for instance Neukölln
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Figure 12. Unfairness over the different factors and percentiles for instance Chicago Sketch
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Figure 13. Unfairness over the different factors and percentiles for instance Berlin
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to be made is the strong correlation between the loaded unfairness and the normal unfairness, which
is illustrated by the two diagrams in the middle of each figure. Bounding the normal unfairness (a
static measure) results in bounded loaded unfairness (a dynamic measure), which explains why our
approach is successful.
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Figure 14. Efficiency and loaded unfairness of constrained system optima across
all instances. The plot on the left shows the efficiency (the cost of the solution over
the cost of the system optimum) of select constrained system optima vs. that of the
associated user equilibria; the plot on the right compares the loaded unfairness of
the same solutions with that of the corresponding system optima.

Figures 14 and 15 provide conclusive evidence of the benefits of the solutions we propose; con-
strained system optima with appropriately chosen tolerance factors bring together the favorable
attributes of user equilibria and system optima. In Figure 14, we display constrained system op-
tima with tolerance factors close to 1.02 and compare them with the user equilibrium and the
unconstrained system optimum, both in terms of efficiency and fairness. Figure 15 illustrates the
tradeoff between efficiency and fairness achieved by constrained system optima. The graph shows,
for each of the instances we studied, system optima (on the left), user equilibria (at the bottom)
and the intermediate solutions represented by constrained system optima (in the center). The cir-
cled data-points correspond to CSO1.02 , for the various instances. In summary, constrained system
optima with user equilibrium travel times as normal lengths provide a handle to effectively control
the tradeoff between fairness and efficiency.

4.3. Performance of the algorithm. Let us briefly discuss our findings with respect to the
running time needed by the algorithm described in Section 3. Figure 16 shows a detailed study
of the effects of varying the tolerance factor and the target optimality gap. We only present the
results for instances Chicago Sketch and Berlin because they are the largest and hence arguably the
most difficult ones. For each selected instance, the figure contains a graph describing the objective
function value, another one illustrating the number of iterations, and finally one displaying the
computation time (in seconds).

Most notably, the time needed by our algorithm to compute a constrained system optimum is
typically not larger than that for computing an unconstrained system optimum, and it is only some-
what larger than that for getting a user equilibrium. In fact, the problem of finding a constrained
system optimum becomes computationally more costly with increasing values of the tolerance fac-
tor ϕ. The reason is that the number of allowable paths increases. However, the constrained shortest
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Figure 15. Tradeoff between efficiency and unfairness. For all instances, we plot
the tradeoff curve between the efficiency (the cost of the solution over the cost of the
system optimum) vs. the loaded unfairness. The left area of the graph corresponds
to system optima (SO), the lower area corresponds to user equilibria (UE), and the
circled data-points (denoted with ‘◦’) correspond to constrained system optima with
ϕ = 1.02 (CSO1.02 ).

path subproblems become easier because the normal lengths are less binding. In this trade-off sit-
uation, the total work and the number of iterations increase, but the work per iteration decreases.
Generally, most of the time is spent on computing constrained shortest paths (which implies that
improved algorithms for this subproblem would yield greatly improved overall performance).

From our experience, instances with a few thousand nodes, arcs and commodities can be solved
on an average PC within minutes. Bigger instances like Berlin take longer but can also be solved
without difficulty in less than an hour. Very large instances (e.g., networks with twice as many
nodes and arcs as Berlin and with over one million OD pairs) could not be handled mostly due to
memory problems resulting from the path-based formulation.

With respect to Partan, we found that the running time is reduced by 30% on average for our
target optimality gap of 0.5% when compared to the original version of the Frank-Wolfe method.
The reduction is even bigger if just the most difficult instances are considered.

5. Summary and Conclusion

When designing a route guidance system, it is desirable to explicitly aim at reducing the total
(and therefore the average) travel time by putting it into the objective function of the underlying
optimization problem. Yet, without further constraints, this would include the possibility that
some vehicles are assigned to fairly long paths in order to make the shorter paths available to other
drivers. Obviously, this phenomenon would render such a system unacceptable for several drivers,
jeopardizing the desired effect of improved system performance.

We propose to capture this aspect of human behavior by imposing constraints on paths to elimi-
nate lengthy detours. While it may be ideal to explicitly enforce that travel times of recommended
routes between the same origin-destination pair do not deviate significantly from each other, our
computational results justify the use of a computationally simpler model, in which the deviation
is not measured with respect to the actual flow but with respect to a “normal length”. Another
plus of the latter tactic is that drivers with different origin-destination pairs can be treated equally.
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Figure 16. Specifics of the algorithm for various optimality gaps and tolerance
factors for instances Chicago Sketch and Berlin
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Our computational study suggests that the travel time in user equilibrium is an excellent choice
for defining the normal length.

In fact, it turns out that this approach offers significant advantages over both the traditionally
considered user equilibrium and the system optimum. On the one hand, it guarantees superior
fairness for the individual user compared to the system optimum, in which individual travel times
between the same origin-destination pair may deviate substantially from each other. On the other
hand, the total travel time of a constrained system optimum is still close to that in the (uncon-
strained) system optimum and thus much better than in user equilibrium. This shows that optimal
route guidance with fairness guarantees is in principle feasible.

Apart from the proof of concept, we consider our algorithm practical for problems with several
thousand nodes, arcs, and commodities. Future work should incorporate the dynamic aspect of
traffic and the behavior of unguided users.
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