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Abstract. The paper presents a novel and efficient method to generate true ran-
dom numbers on FPGAs by inducing metastability in bi-stablecircuit elements,
e.g. flip-flops. Metastability is achieved by using precise programmable delay
lines (PDL) that accurately equalize the signal arrival times to flip-flops. The
PDLs are capable of adjusting signal propagation delays with resolutions higher
than fractions of a pico second. In addition, a real time monitoring system is uti-
lized to assure a high degree of randomness in the generated output bits, resilience
against fluctuations in environmental conditions, as well as robustness against
active adversarial attacks. The monitoring system employsa feedback loop that
actively monitors the probability of output bits; as soon asany bias is observed
in probabilities, it adjusts the delay through PDLs to return to the metastable op-
eration region. Implementation on Xilinx Virtex 5 FPGAs andresults of NIST
randomness tests show the effectiveness of our approach.

1 Introduction

True Random Number Generators (TRNG) are important security primitives that can
be used to generate random numbers for various essential tasks including the genera-
tion of (i) secret or public keys, (ii) initialization vectors and seeds for cryptographic
primitives and pseudo-random number generators, (iii) padding bits, and (iv) nonces
(numbers used once). Since modern cryptographic algorithms often require large key
sizes, generating the keys from a smaller sized seed will significantly reduce the en-
tropy of the long keys. In other words, by performing a brute-force attack only on the
seed that generated the key, one could break the crypto system. In addition, for ap-
plications that demand a constant high-speed and high-quality generation of keys, e.g.
secure web servers, algorithmic approaches to pseudo-random number generation are
typically inefficient, and hardware accelerated mechanisms are highly desired. True
random numbers also find applications in gaming, gambling and lottery drawings.

To date, numerous TRNG designs have been proposed and implemented. Each de-
sign uses a different mechanism to extract randomness from some underlying physical
phenomena that exhibit uncertainty or unpredictability. Examples of sources of ran-
domness include thermal and shot noise in circuits, secondary effects such as clock



jitter and metastability in circuits, Brownian motion, atmospheric noise, nuclear decay,
and random photon behavior.

Because of its flexibility and fast time to market, FPGA has become a popular
platform for implementing many cryptographic systems thatinclude TRNGs as an es-
sential block. It is important to develop new FPGA TRNG solutions because: (i) not
all hardware TRNG methods available for ASICs or other platforms are amenable to
FPGA implementation; (ii) the existing FPGA TRNGs have limitations in terms of
the throughput-per-unit-area and could be improved; and (iii) active adversarial attacks
as well as variations in operational conditions such as fluctuations in temperature and
voltage supply may bias and disturb the randomness of TRNGs output bitstream. Since
most of the state-of-the-art TRNGs operate in an open-loop fashion, it is important to
incorporate a mechanism to constantly provide a feedback signal to adaptively adjust
the TRNG system parameters to increase its output bit randomness.

In this work, we propose a novel technique to generate true random numbers on
FPGA using the flip-flop metastability as a source of randomness. The introduced
TRNG core operates within a closed-loop feedback system that actively monitors the
output bit probabilities over windows of bit sequences and generates a proportional
feedback signal based on any observed bias in the bit probabilities. The feedback mech-
anism is made possible by performing fine delay tuning using high precision PDLs with
picosecond resolution. The delay tuning ensures that the signals arrive simultaneously
at the flip-flop to drive it into a metastable state. Our contributions are as follows.

– We introduce an FPGA-based TRNG system that utilizes flip-flop metastability as
the source of randomness.

– A novel feedback mechanism is introduced that performs auto-adjustment on de-
lays in order to make the metastability condition more likely to happen.

– We demonstrate the use of a PDL to perform fine tuning with a precision of higher
than a fraction of a pico-second.

– Highly accurate delay measurement results for PDL are demonstrated.
– The proposed TRNG system is implemented on Xilinx Virtex 5 FPGA; the hard-

ware evaluation results demonstrate the high throughput-per-areaand the high qual-
ity (i.e., true randomness) of the produced output bits.

2 Related work

The work in [15] uses sampling of phase jitter in oscillator rings to generate a sequence
of random bits. The output of a group of identical ring oscillators are fed to a parity
generator function (i.e., a multi-input XOR). The output isconstantly sampled by a
D-flipflop driven using the system clock. In absence of noise and identical phases, the
XOR output would be constant (and deterministic). However,in presence of a phase
jitter, glitches with varying non-deterministic lengths appear at the output. An imple-
mentation of this method on Xilinx Virtex II FPGAs was demonstrated in [12].

Another type of TRNG is introduced in [11] that exploits the arbiter-based Physi-
cal Unclonable Function (PUF) structure. PUF provides a mapping from a set of input
challenges to a set of output responses based on unique chip-dependent manufacturing
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Fig. 1: TRNG based on sampling the ring oscillator phase jitter.

process variability. The arbiter-based PUF structure introduced in [3], compares the ana-
log delay difference between two parallel timing paths. Thepaths are built identically,
but the physical device imperfections make their timing different. A working imple-
mentation of the arbiter-based PUF was demonstrated on bothASICs [5] and FPGA [8,
13]. Unlike PUFs where reliable response generation is desired, the PUF-based TRNG
goal is to generate unstable responses by driving the arbiter into the metastable state.
This is essentially accomplished through violating the arbiter setup/hold time require-
ments. The PUF-based TRNG in [11] searches for challenges that result in small delay
differences at the arbiter input which then cause unreliable response bits.

To improve the quality of the output TRNG bitsteam and increase its randomness,
various post-processing techniques are often performed. The work in [15] introduces
resilient functions to filter out deterministic bits. The resilient function is implemented
by a linear transformation through a generator matrix commonly used in linear codes.
The hardware implementation of resilient function is demonstrated in [12] on Xilinx
Virtex II FPGAs. The TRNG after post processing achieves a throughput of 2Mbps us-
ing 110 ring oscillators with 3 inverters in each. A post-processing may be as simple as
von Neumann corrector [10] or may be more complicated such asan extractor function
[1] or even a one-way hash function such as SHA-1 [4].

Besides improving the statistical properties of the outputbit sequence and remov-
ing biases in probabilities, post-processing techniques increase the TRNG resilience
against adversarial manipulation and variations in environmental conditions. An active
adversary may attempt to bias the output bit probabilities to reduce their entropy. Post-
processing techniques typically govern a trade-off between the quality (randomness)
of the generated bit versus the throughput. Other online monitoring techniques may be
used to assure a higher quality for the generated random bits. For instance, in [11],
the generated bit probabilities are constantly monitored;as soon as a bias in the bit se-
quence is observed, the search for a new challenge vector producing unreliable response
bits is initiated. A comprehensive review of hardware TRNGscan be found in [14]. The
TRNG system proposed in this paper simultaneously providesrandomness, robustness,
low area overhead, and high throughput.

3 Programmable delay lines

Programmable delay lines (PDLs) alter the signal propagation delay in a controlled
fashion. The common mechanisms used to change the delay includes (i) varying



the effective load capacitance, (ii) modifying the device current drive (by increas-
ing/decreasing the effective threshold voltage by body biasing), or (iii) incrementally
altering the length of the signal propagation path. The firsttwo methods are often em-
ployed in either analog fashion and/or in application specific integrated circuits (ASICs)
and are not amenable to FPGA implementation.

On reconfigurable digital platforms such as FPGAs, PDLs can be implemented by
only changing the signal propagation path length or by altering the circuit fanout that
modifies the effective load capacitance. The latter is only feasible if dynamic reconfigu-
ration is available. In other words, changing circuit fanout requires topological changes
to the circuit which in turn needs a new configuration. In [2],a technique is proposed
to alter the propagation path length by letting the signal bounce a few times inside the
switch matrices of FPGA instead of a direct and straight connection. The concept is
illustrated in Figure 2. In the switch matrix on the left side, the signal bounces three
times off the switch edges before it exits the switch. In the right switch, the signal only
bounces once and as a result a shorter propagation path length and a smaller delay is
achieved. However, changing the switch connections pointsand routings require a new
configuration, and doing so during the circuit operation is only possible by dynamic
reconfigurability.

Three bounces

D1 Dynamically 

Reconfigure

One bounce

D2

Fig. 2: A PDL implemented by altering the signal routing inside FPGA switch matrix.

In this paper, we use a novel technique to vary the signal propagation path length
in minute increments/decrements by only using a single lookup table (LUT). The tech-
nique changes the propagation path inside the LUT. We use an example to illustrate
the concept. Figure 3 shows a 3-input lookup table. The LUT consists of a set of
SRAM cells that store the intended functionality and a tree-like structure of multiplex-
ers (MUXs) that enables selection of each individual SRAM cell content. The inputs to
the MUXs serve as an address that points to the SRAM cell whosecontent is selected
to appear at the output of LUT. The LUT in Figure 3 is programmed to implement an
inverter, where the LUT output is always an inversion of its first input (A1). The other
inputs of LUT, namelyA2 andA3 are functionally “don’t-cares”, but their value affect
the signal proposition path fromA1 to the output. For instance, as shown in Figure
3, for A2A3 = 00 andA2A3 = 11 the signal propagation path length (and thus the
propagation delay) fromA1 to O are the shortest and the longest respectively. Xilinx
Virtex 5, Virtex 6, and Spartan 6 devices utilize 6-input LUTs. Therefore, by using one
single LUT, a programmable delay inverter/buffer with five control inputs can be imple-



mented. The five inputs provide25 = 32 discrete levels for controlling the delay. The
measurement data presented in Section 6 obtained from Xilinx Virtex 5 FPGAs suggest
that the maximum delay difference from each LUT is approximately 10 pico seconds.
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Fig. 3: Precision PDL using a single LUT.

4 Metastability

The proposed TRNG induces metastable conditions in bi-stable logic circuit elements,
i.e., flip-flops and latches. The metastable state eventually resolves to a stable state, but
the resolution process is extremely sensitive to operational conditions and circuit noise,
rendering the result highly unpredictable.

A ‘D’ flip-flop samples its input at the rising edge of the clock. If sampling takes
place within a narrow time window before or after the input signal transitions, a race
condition occurs. The race condition takes the flip-flop intoa metastable oscillat-
ing state. The time window around the sampling moment is typically referred to as
setup/hold time. The oscillation eventually settles onto astable final state of either one
or zero. This phenomenon is demonstrated in Figure 4. Note that the probability of set-
tling onto ‘1’ is a monotonic function of the time difference(∆) between the moment
sampling happens and the moment transition occurs at the input. In fact, as shown in
[16, 9, 7], the probability can be accurately modeled by a Gaussian CDF. If the delay
difference of the arriving signals is represented by∆ andσ is proportional to the width
of the setup/hold time window, then the probability of the output being equal to one can
be written as:

Prob{Out = 1} = Q(
∆

σ
), (1)

whereQ(x) = 1√
2π

∫∞

x
exp(−u2

2 )du. This model can be explained by Central Limit
Theorem. Figure 4 demonstrates four scenarios for different signal arrival times. The



corresponding probabilities for the scenarios are marked by the scenario number on
the probability plot. For instance, in scenarios 1 and 4, since the delay difference is
larger than the setup/hold time of the flip-flop, the output iscompletely deterministic.
In order to obtain completely non-deterministic and unpredictable output bits with equal
probabilities (Prob{Output=1} = Prob{Output=0} = 0.5), our method forces the flip-
flop into metastability by tuning sampling and signal arrival times so they occur as
simultaneously as possible (driving∆ → 0) using the PDLs.
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Fig. 4: (a) Flip-flop operation under four sampling scenarios, (b) probability of output
being equal to ‘1’ as a function of the input signals delay difference (∆). The numbers
on the probability plot correspond to each signal arrival scenario.

5 TRNG System Design

To drive the flip-flop into its metastable state, we use an at-speed monitor-and-control
mechanism that establishes a closed loop feedback system. The monitor module keeps
track of the output bit probabilities over repeated time intervals. It then passes on the
information to the control unit. The control unit based on the received probability infor-
mation decides to add/subtract the delay to/from top/bottom paths to calibrate the delay
difference so that it gets closer to zero. For instance, if the output bits are highly skewed
towards 1, then the delay difference (∆) must be decreased by increasing the top path
delay to balance the probabilities. Figure 5 (a) demonstrates this concept.

A straightforward implementation of the monitoring unit can be realized by using
a counter. The counter value is incremented every time the flip-flop outputs ‘1’ and is
decremented whenever the flip-flop generates a ‘0’. This is analogous to performing
a running sum over the sequence of output bits where zeros arereplaced by ‘−1’. If
zeros and ones are equally likely, the value of the counter will stay almost constant.
A feedback signal is generated proportional to any deviation from this constant steady
state value. The generated error signal is fed back to the signal-to-delay transducer, i.e.,
the PDL. The delay difference (∆) is updated/corrected based on the feedback signal.

The described system is in effect a proportional-integral (PI) controller. The system
is depicted in Figure 5 (b). In this figure,∆b is the constant bias/skew in delays caused
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Fig. 5: The TRNG system model.

by the routing asymmetries.∆p is the delay difference induced by changes in environ-
mental and operational conditions such as temperature and supply voltage, and/or delay
difference imposed by active adversarial attacks.∆f is the correction feedback delay
difference injected by the PDL based on the counter value. Equation 2 expresses the
total delay difference at the input of the flip-flop.G represents transformation carried
out by the PDL from the counter binary value to an analog delaydifference. The arbiter
and integrator refer to the flip-flop and counter respectively. Therefore, the following
relationship holds;

∆ = ∆p +∆b −∆f . (2)

An example PDL-based implementation of the TRNG system is shown in Figure 6.
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Fig. 6: The TRNG system implementation with a PI controller on FPGA.

The PDLs are depicted as gray triangles which provide the finest and most granular
level of control over the delays. If the resulting delay difference from one PDL is equal
to δ, the effective input/output delay of a PDL,D(i), for the binary inputi would be:

D(i) = i× dc + (1− i)× (dc + δ). (3)

wheredc is a constant delay value. Each programmable delay block consists of two
PDLs. The control input of top PDL inside each block is the complement of the bottom
PDL control input in order to make a differential programmable delay structure. Based
on Equation 4, the differential delay is:

Ddiff(i) = (1− 2i)× δ = (−1)iδ, i = 0 or 1. (4)



In this example, the programmable delay blocks are packed ingroups with sizes of
multiples of two to efficiently generate any desirable delaydifference using a binary
control input. In other words, the first programmable delay block consists of two PDLs,
the second one contains 4 PDLs, and so on. With this arrangement, the total incurred
delay difference can be written as:

∆f = G(C) =

K
∑

i=0

(−1)Ci2iδ, (5)

whereCi ∈ C is the ith counter bit with i = 0 being the least significant bit
(LSB) and i = K being the most significant bit (MSB), andC represents the
counter value.δ is the smallest possible delay difference produced by one PDL.

Counter It Ib w

111 11110000+4
110 01110000+3
101 00110000+2
100 00010000+1
000 00000001−1
001 00000011−2
010 00000111−3
011 00001111−4

Fig. 7: Decoding opera-
tion.

Let us assume that in the beginning the counter is reset
to zero. The resulting feedback delay difference is∆f =
(2(K+1) − 1) × δ according to Equation 5. This large de-
lay difference skews the output of flip-flop toward ‘1’. This
keeps raising the counter value, lowering the delay differ-
ence (∆). As ∆ approaches zero, the flip-flop begins to
output ‘0’s more frequently and lowers the rate at which
the counter value was previously increasing. At the steady
state, the counter value will settle around a constant value
with a slight oscillatory behavior. Any outside perturbation
on delays will cause transient fluctuations in bit probabili-
ties; however, the automatic adjustment mechanism brings
the system back to the equilibrium state.

Although the performance of the system in Figure 6
seems ideally flawless, a straightforward hardware implementation was not successful.
This is because the design is based on the assumption thatδs from PDLs are equal.
However, due to manufacturing process variability, theδs slightly vary from one PDL to
another. As a result, it is not feasible to generate any desirable delay difference, because
the intended weights are not exactly multiples of two anymore. In particular, the input
to the largest programmable delay block dominates the system’s output behavior.

Instead, we took an alternative approach and used two sets offine and coarse delay
tuning blocks as shown in Figure 8. Withn fine tuning delay lines with a resolution of
δfn, andm coarse tuning delay line with resolution ofδcs, any delay difference in the
range ofR = [nδfn +mδcs,−nδfn −mδcs] that satisfies Equation 6 can be produced.

∆f = wfnδfn + wcsδcs (6)

wherewfn andwcs are integer weights (or levels) such that−n < wfn < n and
−m < wcs < m. By carefully selectingn,m, δfn, andδcs, any delay difference with a
resolution ofδfn can be produced within the rangeR.

The system in Figure 8 is designed such that the weights (or tuning levels) in Equa-
tion 6 are a function of the difference in the total number of ‘1’s at PDL inputs on the



top and bottom paths;

wfn =

n
∑

i=1

It[i]−

n
∑

i=1

Ib[i], wcs =

m
∑

i=1

It[i]−

m
∑

i=1

Ib[i] (7)

whereIt[i] ∈ {0, 1} andIb[i] ∈ {0, 1} are the input signals to PDLs as demonstrated in
Figure 8. Thus, decoder block in Figure 8 needs to perform a mapping from the counter
value to the number of ‘1’s at PDL inputs. For example, ifn = 4, the counter value of
‘111’ corresponds to -4 and ‘000’ corresponds to +4. Table 7 shows an example of de-
coding operation and corresponding tuning weights for a 3-bit counter. The conversion
from the counter value to the effective tuning weight is expressed by Equation 8.

wfn = (−1)CK ×

(

1 +

K−1
∑

i=0

Ci2
i

)

, K = ⌊log2n⌋. (8)

The fundamentals of the system’s operation shown in Figure 8are the same as the
system in Figure 6 with the only difference lying in how the feedback signal is generated
based on the counter states.
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Fig. 8: The complete TRNG system.

Notice that the controller type determines the response time to changes in delays as
well as the error in the steady state response. Proportionalintegral (PI) controllers as
opposed to proportional integral derivative (PID) controller due to the lack of derivative
function can make the system more stable in the steady state in the case of noisy data.
This is because derivative action is more sensitive to higher-frequency terms in the
inputs. Additionally, a PI-controlled system is less responsive to inputs (including noise)
and so the system will be slower to respond to quick perturbations on the delays than a
well-tuned PID system.

The following two observations are important from a security standpoint. First, in
the steady state, the counter value oscillates around a constant center value (Ccenter).
Let us define the oscillation amplitude as the peak-to-peak range of the oscillations, i.e.
the maximum counter value minus the minimum counter value (Cmax − Cmin). The
oscillation is not as periodic as one might think. It is rather a random walk around the



center value. Each step in the random walk involves going from one counter value to a
one lower or higher value:

Step: Ccurrent → Ccurrent ± 1

The probability of each step (move) is a function of the current location. Intuitively the
probability of going outside the range is almost zero:

Prob{Cmax → Cmax + 1} ≃ 0

Prob{Cmin → Cmin − 1} ≃ 0 (9)

Also assuming a smooth monotonically increasing probability curve as shown in
Figure 4 for the flip-flop, the farther the current counter value is from the center
(Ccenter), the lower the probability of moving farther away from the center:

Prob{Ci → Ci + 1} < Prob{Cj → Cj + 1} for Cj < Ci

Prob{Ci → Ci − 1} < Prob{Cj → Cj − 1} for Cj < Ci (10)

Each generated output bit corresponds to a counter value. The probability of the
output being to ‘1’ is a function of the feedback counter value. The maximum counter
value almost always results in a ‘0’ output, since a ‘0’ valuedecrements the counter
value. Based on Equation 9, transitionCmax → Cmax + 1 is unlikely, thusr(Cmax)
can almost never be ‘1’. The following deductions can be explained similarly:

Prob{r(Ccenter) = 1} ≃ 0.5

Prob{r(Cmin) = 1} ≃ 1

Prob{r(Cmax) = 1} ≃ 0 (11)

In other words, during the random walk only those steps that pass close at the center
point will result in high entropy and non-deterministic responses. A smaller error in
the steady state response means oscillations happen closerto center of the probability
transition curve which in turn leads to higher randomness ingenerated output bits.

In addition, it is desired that the system responds as quickly as possible to external
perturbations since the during the recovery time the TRNG generates output bits with
highly skewed probabilities.

6 Experimental results

In this section, we present the LUT-based PDL delay measurement evaluations and
TRNG hardware implementation results obtained from XilinxVirtex 5 LX50T FPGA.

Before moving onto the TRNG system performance evaluation,we shall first dis-
cuss the results of our investigation on the maximum achievable resolution of the PDLs.
We set up a highly accurate delay measurement system similarto the delay characteri-
zation systems presented in [9, 7, 6].

The circuit under test consists of four PDLs each implemented by a single 6-input
LUT. The delay measurement circuit as shown in Figure 9 consists of three flip-flops:



launch, sample, and capture flip-flops. At each rising edge ofthe clock, the launch flip-
flop successively sends a low-to-high and high-to-low signal through the PDLs. At the
falling edge of the clock, the output from the last PDL is sampled by the sample flip-
flop. At the last PDL’s output, the sampled signal is comparedwith the steady state
signal. If the signal has already arrived at the sample flip-flop when the sampling takes
place, then these two values will be the same; Otherwise theytake on different values. In
case of inconsistency in sampled and actual values, XOR output becomes high, which
indicates a timing error. The capture flip-flop holds the XOR output for one clock cycle.

To measure the absolute delays, the clock frequency is sweptfrom a low frequency
to a high target frequency and the rate at which timing errorsoccur are monitored and
recorded. Timing errors start to emerge when the clock half period (T/2) approaches the
delay of the circuit under test. Around this point, the timing error rate begins to increase
from 0% and reaches 100%. The center of this transition curvemarks the point where
the clock half period (T/2) is equal to the effective delay ofthe circuit under test.
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Fig. 9: The delay measurement circuit. The circuit under test consists of four LUTs each
implementing a PDL.

To measure the delay difference incurred by the LUT-based PDL, the measurement
is performed twice using different inputs. In the first roundof measurement, the inputs
to the four PDLs are fixed toA2−6 = 11111. In the second measurement the inputs to
the last PDL are changed toA2−6 = 00000. In our setup, a 32×32 array of the circuit
shown on Figure 9 is implemented on a Xilinx Virtex 5 LX110 FPGA, and the delay
from our setup is measured under the two input settings. The clock frequency is swept
linearly from 8MHz to 20MHz using a desktop function generator and this frequency
is shifted up by 34 times inside the FPGA using the built-in PLL.

The results of the measurement are shown on Figure 10. Each pixel in the image
corresponds to one measured delay value across the array. The scale next to the color-
map is in nano-seconds. Figure 10 (c) depicts the differencebetween the measured
delays in (a) and (b). As can be seen, the delay values in (b) are on average about 10
pico-seconds larger than the corresponding pixel values in(a). This is in fact equal to the
amount of delay difference caused by the coarse PDLs, i.e.,δcs. The delay difference
induced by the fine PDL of Figure 11 (a),δfn is approximately equal to 1/16 ofδcs.

To evaluate the performance of the TRNG system, we implementthe system shown
in Figure 8 using 32 coarse and fine programmable delay lines (n = m = 32). A 12-
bit counter performs the running sum operation on the outputgenerated bits. The first
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Fig. 10: The measured delay of 32×32 circuit under tests containing a PDL with PDL
control inputs being set to (a)A2−6 = 00000 and (b)A2−6 = 11111 respectively. The
difference between the delays in these two cases is shown in (c).

six (LSB) bits control the finely tunable PDLs, and the next six (MSB) bits control the
coarsely tunable PDLs. Both fine and coarse PDLs are implemented by using one LUT
as shown in Figure 11. As illustrated in Figure 11, to implement the fine PDL, the LUT
inputsA3 to A6 are fixed to zero and the only input that controls the delay isA2. For
the coarse PDL, all of the LUT inputs are tied and controlled together.
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Fig. 11: Coarse and fine PDLs implemented by a single 6-input LUT.

In the first experiment, we only examine the forward system, which consists of
the PDLs, the flip-flop, and the decoders. The tuning weights/levels are swept from
the minimum to maximum, and the probability of the flip-flop producing a ‘1’ output
is measured at each level. This probability is measured by repeating each experiment
over 100 times and counting the number of times the flip-flop outputs a ‘1’. Since
n = m = 32, both the fine and coarse tuning levels can go from−32 to 32. Recall that
the tuning level represents the difference in the total number of ones at PDL inputs on
the top path minus those on the bottom path (see Equation 7). As can be observed from
Figure 12, increasing both the coarse and fine tuning levels increase the probability
of output being equal to ‘1’. The non-smoothness of the probability curve is due to
variability in the manufacturing process which creates local non-monotonicity. With
these observations, we expect the feedback system behaviorto stabilize somewhere
close to the center of the transition point. Next, we close the feedback loop and initialize
the operation. At the beginning, the counter is loaded with all ‘1’s (which results in a
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Fig. 12: The probability of flip-flip generating a ‘1’ output as a function of the fine and
coarse tuning levels.

decimal value of212-1 = 4095). Figure 13 shows the counter value as the operation
progresses. The x-axis is the number of clock cycles. Once the operation starts, the
counter value keeps decreasing until it reaches the value ofapproximately 700 after
about 3,400 clock cycles. From this point further, the counter value reaches a steady
state with a slight oscillatory behavior around a constant value. A close-up of the steady
state behavior is depicted in the lower plot of Figure 13. Theclose-up zooms into the
segment between 25,000 to 30,000 clock cycles. As can be observed in the steady state,
the counter value oscillates between 559 and 564.

Next, we investigate the frequencies at which counter values appear in the steady
state. In this experiment, we collect 1,000,000 counter values in the steady state and
plot the histogram of the observed values as shown in the middle plot (b) in Figure
14. The normalized histogram suggests that the counter holds the value of 561 more
than 40% of the time. Next, it is critical to investigate the probabilities associated with
each courter value. In other words, we would like to know for the given counter values
− which produce a feedback input to the TRNG core− the probability of the flip-
flop output being equal to ‘1’. The top plot (a) in Figure 14 presents this result. It is
interesting to see that most of the counter values produce highly skewed probabilities.
Among these counter values, 561 leads to a ‘1’ output slightly more than 40% of the
time. We define a metric which is the multiplication of the counter values’ frequency
of occurrence with the probability of output being equal to one for each counter value.
This metric represents the contribution of each counter value to the total number of ‘1’
in the output sequence. The metric values are shown in bottomplot (c) in Figure 14.

To remove the bias in the output sequence in a systematic way as well as to elim-
inate predictable patterns, we propose a filtering mechanism based on the steady state
counter values. The filter unit analyzes the output bit probabilities for each counter value
within a window of specific size and flags the counter values that lead to outputs bits
with skewed probabilities. Next, it filters out the output bits associated with the flagged
counter values. For example, in our implementation, the filter only allows output bits
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Fig. 13: The transient counter value (decimal) versus the clock cycles.

associated with the counter value of 561 to pass through. As aresult, the bit-rate is
lowered to almost half of the original bit-rate. However, the output bits may still suffer
from bias in the bit probabilities. Therefore, a post-processing unit after the filter unit
is used to remove any localized biases from the bitstream. Inour implementation, we
use a von Neumann corrector to perform the post-processing task. The results of the
NIST randomness test from running on megabytes of data is shown in Table 1. The
comprehensive test results are available online at http://www.ruf.rice.edu/ mm7/trng/.

Table 1 includes the results of the NIST statistical test suite on megabytes of col-
lected data after counter-based filtering and von Neumann correction are performed on
the TRNG output bitstream. Due to the large bias in the probabilities, most of the ran-
domness failed when the test was run on the output bitstream before the filtering and
correction were carried out.

Finally, according to the ISE Synthesis report, the propagation delay through the
TRNG core is equal to 61.06ns which achieves a bit-rate of 16Mbit/sec. The bit-rate
drops to 1/8 of the original bit-rate (to 2Mbit/sec) after filtering and von Neumann
correction. The TRNG core consumes 128 LUTs that are packed into 16 Virtex 5 CLBs.
Note that in practice multiple TRNG cores can run in parallelto offer a higher bit-rate.

7 Conclusion

A novel FPGA-based technique to generate true random numbers through flip-flop
metastability was introduced. The presented method took advantage of highly precise
programmable delay lines (PDL) to accurately equalize the signal arriving times to
flip-flops, thus enforcing a metastable behavior. PDLs as demonstrated in the paper are
capable of adjusting signal propagation delays with sub pico-second resolution. With
the help of a closed-loop proportional integral (PI) control system, the output bit proba-
bilities are constantly monitored and as soon as any skews inprobabilities are observed,
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Fig. 14: Distribution of the steady state counter values andassociated bit probabilities.

feedback signal instantly adjusts the delay taps to revert to the metastable condition.
The feedback systems provides resilience against fluctuations in environmental condi-
tions, as well as robustness against active adversarial attacks. Implementation on Xilinx
Virtex 5 FPGAs and results of NIST randomness tests show the effectiveness of our true
random number generator. The proposed TRNG is capable of producing a throughput of
2 Mbit/sec after post-processing and filtering with a low overhead, using only 5 CLBs.
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