
MIT Open Access Articles

A Search Cost Model of Obfuscation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ellison, Glenn, and Alexander Wolitzky. “A Search Cost Model of Obfuscation.” The 
RAND Journal of Economics 43.3 (2012): 417–441.

Publisher: Rand Corporation

Persistent URL: http://hdl.handle.net/1721.1/73904

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73904
http://creativecommons.org/licenses/by-nc-sa/3.0/


A Search Cost Model of Obfuscation1

Glenn Ellison
MIT, Microsoft Research and NBER

and

Alexander Wolitzky
Stanford University and Microsoft Research

January 2012

1e-mail: gellison@mit.edu, wolitzky@mit.edu. This paper was supported by NSF grant SES-
0550897 and the Toulouse Network for Information Technology. The second author also received
support through a NSF Graduate Research Fellowship.



Abstract

This paper develops search-theoretic models in which it is individually rational for firms to
engage in obfuscation. It considers oligopoly competition between firms selling a homoge-
neous good to a population of rational consumers who incur search costs to learn each firm’s
price. Search costs are endogenized: obfuscation is equated with unobservable actions that
make it more time-consuming to inspect a product and learn its price. One model involves
search costs that are convex in the time spent shopping. Here, we show that even slight
convexity can dramatically change the equilibrium price distribution. A second model ex-
amines an informational linkage between current and future search costs: consumers are
initially unaware of the exogenous component of search costs. Here, a signal-jamming
mechanism can also lead to equilibrium obfuscation.



1 Introduction

Anyone who has shopped for a mattress, tried to compare the full sets of fees charged by

multiple banks or mortgage lenders, or gotten quotes from contractors for a home renovation

will find it easy to question the universality of the classic economic argument that firms will

disclose all relevant information.1 Ellison and Ellison (2009) describe practices in which

firms intentionally make shopping complicated, difficult, or confusing as “obfuscation” and

provide empirical evidence from online shopping. It is easy to think of reasons why it would

be collectively rational for firms to practice obfuscation: equilibrium prices are increasing in

consumer search costs in many search models, and price discrimination arguments can also

be given.2 Arguments based on collective rationality, however, bring up a natural critique:

why collude on obfuscation rather than just colluding directly on price? In this paper, we

discuss a search-based model in which it is individually rational for firms to raise consumer

search costs.

Diamond (1971) first formalized the connection between search costs and price levels,

noting that even an ε search cost could increase prices from the competitive level to the

monopoly level because consumers will have no incentive to search if they expect all firms

to charge monopoly prices. Several subsequent papers developed two other important

insights: there is a more natural search problem when price dispersion is present, and price

dispersion will exist in equilibrium when consumers are differentially informed.3 Our model

closely follows that of Stahl (1989), who considers a continuum of consumers shopping for

a homogenous good offered by N firms. A fraction µ of the consumers have no search costs

and learn all firms’ prices. The other 1 − µ pay a search cost of s every time they obtain

a price quote. Consumers have identical downward sloping demands D(p). Stahl shows

that this produces an elegant, tractable model. All consumers with positive search costs

search exactly once. Firms choose prices from a nonatomic distribution on an interval [p, p]

1See Grossman (1981) and Milgrom (1981).
2Diamond(1971) and many subsequent papers connect search costs and equilibrium price levels. Ellison

(2005) shows that the joint adoption of add-on pricing strategies can increase prices in a competitive price
discrimination model.

3Classic papers include Butters (1977), Salop and Stiglitz (1977), Varian (1980), Rosenthal (1980), and
Burdett and Judd (1983). See Baye and Morgan (2001) for a recent model applied to online markets and
Baye, Morgan, and Scholten (2006) for a nice survey including recent developments.
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following mixed strategies like those in Varian (1980) and Rosenthal (1980). The model’s

comparative statics clearly bring out the collective incentive to increase search costs: prices

and firm profits increase as the search cost s increases.

Section 2 of our paper introduces our model and derives some preliminary results that

are common to the different versions we eventually consider. We model obfuscation in a

very simple way: consumers are assumed to have a disutility that depends on the total time

spent shopping, and each firm is allowed to choose the length of time that is required to

learn its price. This time is not observable to consumers until after they have visited the

firm. The results here are primarily that a number of the basic features of Stahl’s model

carry over to our environment: in equilibrium, firms make positive profits and choose prices

from a nonatomic distribution with support [p, p]; and consumers search until the expected

gain from taking another draw from the price distribution exceeds the expected search

costs.

The “obfuscation” in our model is intended to potentially capture a number of real-world

phenomena. In the online shopping application, for example, the firm may be choosing both

the number of screens that a consumer must click through before she learns the final price,

including recommended upgrades, shipping costs, taxes, service fees, etc., as well as the time

that it takes each screen to load. In face-to-face retail, the firm may be choosing to tell its

salespeople for how long they should talk to customers for before quoting them the final

price. In other applications, the firm will not choose waiting times directly, but may instead

chooses how clearly to convey information about prices, which then maps into waiting time.

For example, in the bank application, the firm may be choosing the complexity of its fee

structure, which determines how long it would take a consumer to read through the full

list of fees for overdrafts, low balances, ATM use, wire transfers, etc. and estimate what

he or she will end up paying each month. The time cost of learning the firm’s price can

also be interpreted as the time required to learn the product’s quality and thereby learn

a quality-adjusted price. For example, in the case of mattress shopping the price of each

mattress at a store, e.g. “Sealy Posturepedic Ruby,” may be readily observable but time

will be required to inquire about product attributes and learn which name corresponds to

the mattress the consumer had seen at another store and/or to make mental adjustments
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to account for differences in the attributes of different stores’ offerings.4

Section 3 analyzes our simplest model of obfuscation. On the firm side, obfuscation is

assumed to be costless. On the consumer side, we assume that consumers have a strictly

convex disutility g(t) for the time t they spend shopping. We view this as a small departure

from the traditional assumption in a realistic direction. We think it is realistic because

disutility would be convex in a standard time-allocation model with decreasing returns to

leisure.5 It is small because for all of our main results g′(t) need only be ε greater than

g′(0) even in the t → ∞ limit, in which case no amount of obfuscation could ever have

more than an ε effect on consumers’ future search costs. Yet, it is a departure that can

greatly alter the equilibrium set. Holding obfuscation levels fixed, our model is much like

Stahl’s—the firms’ pricing strategies will coincide with those of Stahl’s model, with the

search cost parameter set equal to the incremental cost of a second search. The fact that

obfuscation is endogenous, however, dramatically affects on what is possible in equilibrium.

Specifically, equilibria in which the upper bound of the price distribution is strictly less

than the monopoly price become impossible because a firm can simultaneously make small

deviations in two dimensions: increase its price to slightly above p and also slightly increase

its obfuscation level. Hence, in all equilibria of our model the upper bound of the price

distribution is the monopoly price.6 Such an upper bound on the equilibrium distribution

is only possible if equilibrium search costs are above some lower bound. Therefore, there is

a lower bound on the level of equilibrium obfuscation. The lower bound can be zero, but

can also be substantial. Obfuscation hurts consumers in two ways: consumers incur higher

search costs and pay higher prices. We also derive tractable comparative statics results.

For example, in equilibrium obfuscation adjusts so as to offset changes in the exogenous

component of consumer search costs.7

4See Hendricks, Sorensen, and Wiseman (2009) for a model emphasizing that it may be costly for
consumers both to learn product attributes and their own preferences.

5Another interpretation of the convexity of g (·), suggested to us by a referee, is that consumers fall
victim to the sunk-cost fallacy, and therefore wish to avoid paying a large total search cost even if they have
already paid a portion of it.

6This “slight upwards deviation” argument is somewhat reminiscent of the Diamond paradox, but of
course the idea of a “double deviation” in price and obfuscation is new. In particular, arguments of this
kind do not eliminate equilibria with prices bounded away from the monopoly price in standard search
models with some informed consumers, such as Stahl’s model.

7In this model, and in all of the variants considered in the paper, a monopoly seller would have no
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Section 4 introduces the possibility that obfuscating may be costly for firms. This makes

obfuscation levels more deterministic, because in equilibrium each firm must be choosing

the minimum level of obfuscation consistent with the equilibrium level of consumer search.

It also allows us to discuss cross-sectional relationships between prices and obfuscation. For

example, with costly obfuscation firms with the lowest markups will not obfuscate at all,

whereas firms with the highest markups do the most obfuscation. We also note that the

combination of convex search costs and costly obfuscation can produce models with more

complex patterns of search and obfuscation in which some costly searchers visit multiple

stores and obfuscation strategies are nonmonotone in price.

Section 5 considers an alternate model of obfuscation. We return to the traditional

assumption that consumers have a linear disutility of search time, dropping the strict con-

vexity assumption used in Sections 3 and 4. Instead, we depart from Stahl’s model in

another direction we find realistic: we assume that there is common uncertainty about how

much time is required to learn a firm’s price in the absence of obfuscation. A key feature of

this model is that consumers’ expectations about future search costs increase in the amount

of time it takes them to learn the price of the first firm they visit. For example, one could

think of this as a model in which consumers are not born knowing how long it takes to

get a price quote from a home improvement contractor and in which consumers who spend

a long time discussing a project with the first contractor they contact assume that the

process of getting a bid from another contractor will also be time-consuming. A natural

consequence of such an effect is that obfuscation can occur for signal-jamming reasons.

Some predictions of the signal-jamming model are similar to the convex costs model: firms

have a strict incentive to obfuscate, and the equilibrium price distributions are a selection

from the set of equilibrium distributions of Stahl’s model. But the mechanism behind the

obfuscation is different and this leads to some interesting differences in predictions. One is

an “excess obfuscation problem”: obfuscation is almost always above what is necessary to

deter search. This leads to lower prices, making firms worse off, but also makes consumers

worse off due to high obfuscation. Another is that the selection among the equilibria of

Stahl’s model is different, largely due to the excess obfuscation problem.

incentive to engage in obfuscation. Thus, obfuscation is a consequence of competition.
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Our paper is related to a number of others. Ellison and Ellison (2009) provide informal

descriptive evidence on obfuscation among a group of e-retailers and present empirical

evidence that suggests that at least two mechanisms are involved: consumers appear to

have substantially incomplete knowledge of prices, and firms’ add-on pricing strategies

appear to create an adverse-selection effect that would be expected to increase equilibrium

markups. A number of subsequent papers have explored obfuscation mechanisms.8 Ellison

(2005) discusses add-on pricing in the context of a competitive price discrimination model.

It notes that add-on pricing is not individually rational in the base model, but could be

made individually rational by adding a subpopulation of irrational consumers who were

exploited by the add-on strategy. Gabaix and Laibson (2006) work out an explicit model

along these lines.

Spiegler (2006) provides an alternate boundedly-rational approach. In his model, con-

sumers are only capable of evaluating products on one of many dimensions. Firms “obfus-

cate” by randomizing and making the product more attractive on some dimensions (e.g.

making fees lower if some contingency arises) and less attractive on others. He notes that

an increase in the competitiveness of the market (more firms) leads to an increase in ob-

fuscation but no change in average prices. This is somewhat similar in spirit to our finding

that decreases in exogenous search costs don’t change average prices because they are fully

offset by a change in obfuscation. Other comparative statics differ, however, and the mean-

ing of obfuscation and the mechanisms are completely different. Eliaz and Spiegler (2008)

address some related topics, e.g. whether firms with higher prices do more or less to inform

consumers, in another elegant model with boundedly rational consumers. Their model is

more similar to the traditional information revelation literature than to our paper in that

informing consumers is the costly action.

Carlin (2009) and Wilson (2010) are most closely related to our paper. Each also

models obfuscation as a strategic decision by firms that increases search costs in a model

with optimal consumer search. Carlin’s model differs from ours both in the focus and in the

type of search model it uses. The search model is an all-or-nothing model along the lines of
8Ellison (2006) includes a survey of some of this literature.
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Salop and Stiglitz (1977) and Varian (1980).9 More importantly, Carlin’s focus is primarily

on how obfuscation affects market prices, whereas some of our main motivations are to

explore why it is individually (as opposed to collectively) rational to obfuscate and how

obfuscation varies in the cross-section. Carlin does make obfuscation individually rational

and not just collectively rational, but this is done in a fairly straightforward manner so

that the paper can focus on other things: consumers observe a summary statistic (like the

average obfuscation level) before deciding whether to conduct an all-or-nothing search and

do not observe any individual firm’s obfuscation level, so an increase in obfuscation by any

one firm leads to exactly the same outcome as would a smaller coordinated increase by all

firms.10 In particular, obfuscation by a firm in Carlin’s model affects the search incentives

of the entire pool of consumers, while in our model it only affects those consumers that

visit the firm; in this regard, Carlin’s model is more similar to Robert and Stahl (1993),

who model advertising as informing a fraction of the population about a firm’s price.

Wilson (2010) does focus on the question of why obfuscation is individually rational

and develops a very nice argument (which is also very different from ours). The primary

difference between Wilson’s model and ours is that Wilson assumes that the firm-specific

search costs are observable to consumers when they choose which stores to visit. One’s

first thought might be that this will make obfuscation impossible, because consumers will

always choose to visit firms with the lowest search costs first. Wilson’s clever observation is

that while it is true that many or all consumers will visit the low-search-cost firm first, this

does not necessarily render obfuscation unappealing. Obfuscation can provide strategic-

commitment benefits: by making itself less attractive to the consumers with positive search

costs, the obfuscating firm induces its rival to focus more on these consumers and raise

prices, which can benefit both firms. Our paper differs from his in the assumptions on

observability, in the mechanisms that drive obfuscation, and in the details of many results.

For example, in his paper obfuscating firms tend to charge lower prices, whereas obfuscation

is associated with charging high prices in our model.
9Baye, Morgan, and Scholten (2006) refer to these as clearinghouse models.

10White (2009) studies the incentives of a search engine to improve search quality. This also is similar in
some ways to the coordinated increase problem.
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2 Model and Preliminary Results

In this section we present our model and derive some basic results. Our model is similar to

that of Stahl (1989) with two additions: search costs are allowed to be a nonlinear function

of the number of searches carried out; and the per-search cost is an endogenous choice of

the firms. The results in this section show that some standard results carry over: consumer

search strategies can be characterized using cutoff rules, firms earn positive profits in a

dispersed price equilibrium, and equilibrium price distributions are atomless.

Model

Suppose N firms indexed by i = 1, 2, . . . , N are selling undifferentiated goods to a unit mass

of consumers. We suppose consumers are of two types: proportion µ are “costless searchers”

who automatically learn all firms’ prices and proportion 1 − µ are “costly searchers” who

must incur search cost g(t) to spend a total time t searching. Ascertaining firm i’s price

requires time τ + ti, where τ > 0 is exogenous and ti is the obfuscation level chosen by firm

i. For example, τ might be the amount of time it takes for unavoidable tasks like driving

to a store or loading a webpage and reading product descriptions to verify that the item is

what the consumer wants, whereas ti might be the amount of additional time required to

find the product given where the firm has placed it or the time it takes to find information

that the firm has not posted as prominently, e.g. product attributes, over-credit-limit fees,

shipping charges, etc.1112 Therefore, a costly searcher would incur cost g(τ + t1) to learn

the price of a firm that chooses obfuscation level t1 if this is her first search and would

incur total cost g(2τ + t1 + t2) if she chose to continue her search and also learn the price

of a second firm that chooses obfuscation level t2. We assume that g (0) = 0 and that

g(·) is twice continuously differentiable, strictly increasing, and weakly convex. Consumers
11We assume throughout that consumers can choose to go back to a previously visited firm at zero cost.

This would fit the example of Internet search if consumers leave open a browser window containing the best
price they have found. The driving example does not fit this property well if consumers must drive back to
a previously visited store to purchase from it, but fits it better if consumers can call the store back on the
phone to order a previously researched product.

12Costless searchers are assumed to not be affected by obfuscation. Different reasons might make this
appropriate for different applications. One possibility is that the costless shoppers are experts who learn
all prices as part of their other activities or search via a different technology not subject to obfuscation.
Another is that they may be consumers who enjoy the shopping process or take pride in having gotten the
best deal even though it is time consuming.
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cannot observe a firm’s obfuscation level before they visit it and learn its price, but do have

rational expectations about the distribution of obfuscation levels.

As in Stahl (1989), consumers have downward-sloping demand functions D(p) that

satisfy
∫∞

0 D(x)dx < ∞ and R(p) ≡ pD(p) is the revenue a firm obtains from selling to

consumer with demand D(p) at price p. We assume that R(p) is continuously differentiable

with unique maximum pm and that R′(p) > 0 if p < pm. Each firm i out of N ≥ 2 firms

chooses price pi and obfuscation level ti. Firms produce at zero marginal cost. However,

firm i incurs a fixed obfuscation cost of c(ti) when it chooses obfuscation level ti; we assume

that the obfuscation cost function is differentiable with c(0) = 0 and c′(t) ≥ 0 for all t.

In some sections we will focus on the case of costless obfuscation, c(t) = 0 for all t, which

allows for the simplest results.

Observe that if consumers have unit demand up to a choke price pm then all of our

assumption are satisfied with the exception that R(p) would be continuously differentiable

everywhere except for pm (rather than being continuously differentiable everywhere). All

of our results and proofs would go through under this alternative assumption with the

exception the statement in Proposition 7 that when obfuscation is costly firms will never

use enough obfuscation to drive the highest prices all the way up to pm. In addition, the

second part of Proposition 1, while still true, may only hold vacuously. We discuss these

issues more when presenting the propositions in question.

The game proceeds as follows. First, firms simultaneously and noncooperatively choose

obfuscation levels and prices. Then, costless searchers automatically learn all firms’ prices

and can buy from any firm, while costly searchers search strategically: they draw a new

randomly selected firm with each search and may stop searching and buy from any firm

they have visited at any point. We will look for symmetric sequential equilibria of this

game; henceforth by “SE” we mean symmetric sequential equilibrium.13

13There is not a standard definition of sequential equilibrium in games with a continuum of strategies.
What we mean by sequential equilibrium here is a sequentially rational strategy profile with the restriction
on consumer beliefs that a consumer who observes a deviation by one firm continues to believe that all other
firms are using their equilibrium strategies.

8



Search strategies

In this section we show that standard results on optimal search strategies carry over to

our model. To state this formally, note first that every symmetric strategy profile induces

a price distribution F (p). If the price distribution is given by F (p) and a consumer has

already spent total time t0 searching and has observed price p0 but no lower prices, then

the consumer’s expected cost to searching again is Et [g(t0 + τ + t)− g(t0)], whereas her

expected benefit from searching again and then buying from the lowest-price firm she has

observed is

V (p0) ≡
∫ p0

p

(∫ ∞
x

D(p)dp−
∫ ∞
p0

D(p)dp
)
f(x)dx

=
∫ p0

p

(∫ p0

x
D(p)dp

)
f(x)dx

=
∫ p0

p

(∫ p

p
f(x)dx

)
D(p)dp

=
∫ p0

p
D(p)F (p)dp

where p is the infimum of the support of F (p).

We begin by showing that optimal consumer search is given by continuing search if

Et [g(t0 + τ + t)− g(t0)] < V (p0) and by stopping search if Et [g(t0 + τ + t)− g(t0)] >

V (p0).14

Lemma 1 In any SE, a costly searcher stops searching if V (p0) < Et [g(t0 + τ + t)− g(t0)]

or if all N firms have been visited and continues searching if V (p0) > Et [g(t0 + τ + t)− g(t0)].

We present a formal proof in the appendix. It proceeds by induction on the number of

stores remaining using a two case argument: if the incremental cost of the next search is less

than V (p0), then searching must be optimal because searching exactly once is better than

not searching; and if the incremental cost is greater than V (p0), then not searching must be

optimal because convexity of g (·) implies that continuing to search is less appealing than it
14This is not a direct corollary of standard results since here the expected search costs faced by consumers

depends on the entire history of the obfuscation levels they have encountered.
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would be if incremental search costs were constant (i.e., if g (·) were linear), and standard

results imply that continuing is not optimal in that case.

Lemma 1 suggests why firms have an incentive to obfuscate. Note that Et [g(t0 + τ + t)− g(t0)]

is increasing in t0, by the convexity of g(·). Hence, by increasing its obfuscation level a

firm increases its customers’ future search costs. If limt→∞ g
′(t) = ∞, then the argument

would be very simple: by using enough obfuscation a firm could completely deter future

search by its customers. Our main results, however, hold even if g′(t) is only slightly greater

than g′(0) even in the t → ∞ limit. Here, even a large deviation may not be enough to

deter future search depending on how other firms are pricing. But firms can always slightly

increase future search costs and our subsequent argument shows that this has a big effect

of what can occur in equilibrium.

Price equilibrium

In this section we recall some standard results for the case where t is a parameter rather

than a choice variable and show that properties of these equilibria carry over to our model.

Before doing so, we should note that our model sometimes has equilibria in which the

costly searchers are inactive. If exogenous or endogenous search costs are sufficiently high,

then costly searchers will not get even a single price quote. We will mostly ignore these

equilibria and use the phrase “nontrivial SE” to mean a SE in which the costly searchers

all get at least one price quote, which we refer to as “entering.”15

Proposition 1 (Stahl 1989) Suppose that every firm’s level of obfuscation is fixed exoge-

nously at t. Then the price distribution for any nontrivial SE takes one of two possible

forms:

1. If there exists an r ∈ (0, pm) for which∫ r

p
D(p)

(
1−

[(
1− µ
Nµ

)(
R(p)
R(p)

− 1
)] 1

N−1

)
dp = g(2(τ + t))− g(τ + t),

15In a trivial SE the fact that only costless searchers are in the market implies that firms are Bertrand
competitors, so firms must price at cost. Obfuscation levels need to be high enough so that costly searchers
nonetheless do not want to enter. There may also be SE in which costly searchers mix between entering
and not; Janssen, Moraga-Gonzalez, and Wildenbeest (2005) study equilibria in which costly searchers mix
in this way in Stahl’s model (without obfuscation).
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then the equilibrium price distribution is F (p) = 1 −
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 , with

p = r, and R
(
p
)

=
[

1−µ
1+(N−1)µ

]
R (p).

2. If there does not exist such a value of r, then the equilibrium price distribution is

F (p) = 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 , p = pm, and R

(
p
)

=
[

1−µ
1+(N−1)µ

]
R (p).

Proof. By Lemma 1, costly searchers search for a second time after observing price p0 if

V (p0) > g(2(τ+t))−g(τ+t) and do not search for a second time if V (p0) < g(2(τ+t))−g(τ+

t). The result then follows immediately from Stahl’s analysis for s = g(2(τ + t))− g(τ + t).

�

Note that Proposition 1 can be thought of as showing that two slightly different types of

mixed equilibria arise. The first type arises when search costs are small. In these equilibria,

the constraint that consumers must be willing to buy from a firm offering price p rather

than searching again is binding and pins down the upper bound of the support of the price

distribution. The upper bound of the support and the distribution of prices vary with the

search cost in these equilibria. The second type arises when search costs are larger. In these

equilibria, consumers strictly prefer buying from the first firm they visit to getting another

price quote. The upper bound of the price distribution is always the monopoly price. The

price distribution is independent of the search cost over the range of search costs for which

this case applies.

As noted earlier the second conclusion of Proposition 1 may only hold vacuously in a

model with unit demands: if g(t) is linear then the incentive to search for a second price

quote after observing p = pm is exactly the same as the incentive to obtain an initial price

quote, so except for a single value of t no consumers will buy from a firm that sets p = pm

and there cannot be an equilibrium of this form.16 Equilibria of the second type exist

for a broader range of t when search costs are strictly convex because convexity makes

second searches more costly than first searches. When we endogenize obfuscation equilibria

of this type will exist under very weak conditions: intuitively firms can choose a level of

obfuscation that makes equilibrium search costs fall in the required range.
16Stahl (1989, 1996) does not consider unit demands, but the corresponding propositions are more robust

to unit demands because of a difference in the model specification – Stahl assumes that costly searchers get
their first price quote for free and only pay for subsequent price quotes.

11



We now turn our attention to the case where t is endogenous. With an exogenously

fixed t and two types of consumers it is well-known that every SE price distribution is

atomless, that every firm makes positive profits, and that every costly searcher buys from

the first firm she visits. The first two results continue to hold generally when t is a choice

variable, while the last result requires the additional assumption that obfuscation is costless

for firms (which is the case explored in Section 3).

Lemma 2 Every firm makes positive profits in any nontrivial SE.

Lemma 3 If F (p) is a nontrivial SE price distribution, then it is atomless.

Lemma 4 If c(t) = 0 for all t, then on the equilibrium path of any SE every costly searcher

searches at most once.

We defer the proofs of these lemmas to the appendix. The only one that is nonstandard is

Lemma 4. A quick summary of the argument is that we first show that the firm that sets the

highest price must choose sufficient obfuscation to prevent consumers for searching again—

Lemma 3 implies that the firm would otherwise earn zero profits, violating Lemma 2—and

then note that firms setting lower prices must also prevent consumers from shopping again

because otherwise they would do better to emulate the highest-priced firm’s obfuscation

level. Proposition 8 in Section 4 shows that the added assumption that obfuscation is

costless is necessary for this result: it presents an example with costly obfuscation where

some costly searchers visit two firms before purchasing.

3 An Obfuscation Model: Costless Obfuscation and Convex
Disutility of Search

In this section we analyze our model under the assumption that obfuscation is costless and

consumer disutility for shopping, g(t), is strictly convex. The costless obfuscation assump-

tion seems natural for applications where obfuscation consists of not taking a straightfor-

ward action that would help consumers. For example, banks can be thought of as practicing

obfuscation when they fail to post complete lists of their account fees in a prominent lo-

cation, and the online retailers discussed in Ellison and Ellison (2009) practice obfuscation

12



when they do not design product description pages to contain all of the information con-

sumers would like. The convex search costs assumption is a departure from much of the

previous literature, but we think it is a departure in a realistic direction.17 Readers who are

skeptical that real-world search costs are highly convex should note that our results only

require a slight degree of convexity. For example, they will hold even if g′(t) is uniformly

bounded above by g′(0) + ε for a small positive ε. Note that with such slight convexity any

obfuscation that firm i does will have at most an order ε effect on the incremental search

costs that consumers will incur if they choose to visit another firm.

Our assumption that obfuscation is costless has some drawbacks. One is that there

will be substantial indeterminacy as to the actual obfuscation levels chosen in equilibrium.

Another is that equilibria will not be strict and it would be a weakly dominant deviation

from the equilibrium to set t = ∞. Nonetheless, we begin with the model with costless

obfuscation because it is the setting in which our main insights come through most cleanly.

The first subsection below discusses the impact of convex search costs on the possible

distributions of equilibrium prices. Our main conclusion is that the possibility of obfus-

cation sometimes has a dramatic effect on the equilibrium price distribution. The second

subsection discusses equilibrium obfuscation levels. Here, we derive lower and upper bounds

on the amount of obfuscation that can occur in equilibrium. The lower bound points to a

second channel through which consumer welfare can be substantially affected. The third

subsection presents comparative statics. For example, it shows that equilibrium obfuscation

adjusts to offset changes in the exogenous component of consumer search costs.

Equilibrium price distributions

We may now state our first main result characterizing price distributions with endogenous

search costs: if costly searchers search, F (p) is a SE price distribution of the model with

endogenous obfuscation if and only if it is the SE price distribution of Stahl’s fixed-search

cost model that has the upper bound of its support equal to pm. In other words, equilibrium

price distributions of the first possible form in the characterization of Proposition 1 cannot
17A notable exception is Stiglitz (1987), which considers both convex and concave search costs in a model

where consumers observe the market price distribution, though not which firms charge which prices, and
focuses on existence of pure-strategy equilibrium and on when firms’ demand curves are kinked.
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arise in our endogenous obfuscation model, and the (unique) price distribution of the second

possible form is the only possible nontrivial SE price distribution of our model. This price

distribution is a nontrivial SE price distribution if and only if exogenous search costs are

low enough that consumers are willing to enter when prices are given by this distribution

and no firms obfuscate.

Proposition 2 F (p) is a price distribution for a nontrivial SE only if

F (p) = 1−
[(

1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1

(1)

for all p ∈
[
p, pm

]
, where p is given by R(p) =

[
1−µ

1+(N−1)µ

]
R(pm). In particular, F (p) is

independent of τ , the exogenous component of consumer search costs. Nontrivial SE exist

if and only the search costs satisfy g (τ) ≤ V (∞) , where V (∞) is the value of search when

a single price quote is drawn from the distribution F (p) described in equation (1). The set

of nontrivial SE equals the set of joint distributions over p and t such that the marginal

distribution over p equals F (p), and the marginal distribution over t is such that

Et [g(τ + t)] ≤
∫ ∞
p

D(p)F (p)dp, (2)

and such that, for all p0 ∈
[
p, pm

]
and all t0 that are ever chosen by a firm that sets price

p0,

Et [g(2τ + t+ t0))− g(τ + t0)] ≥
∫ p0

p
D(p)F (p)dp. (3)

The proof is again presented in the appendix. The existence proof consists of showing

that F (p) makes firms indifferent over all prices in its support and that there is some obfus-

cation level for which equations (2) and (3) are both satisfied. Equation (2) is the “entry”

condition necessary for consumers to be willing to get an initial price quote. Equation (3)

is the “stopping” condition necessary for consumers to never get a second price quote. It is

intuitive that both can be satisfied because the benefit of getting an additional price quote

is larger when consumers have not yet gotten any price quotes.

The conclusion that this is the only possible price distribution even when exogenous

search costs are sufficiently small so that the equilibrium would look very different without
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obfuscation is the more striking result. The first step in its proof is to note that the

equilibrium price distribution must coincide with the equilibrium of Stahl’s model for some

search cost. The dramatic selection among these follows from considering the “double

deviation” in which a firm sets its price at ε above the upper bound of the price distribution

and does enough extra obfuscation to make consumers willing to pay the extra ε; this

slight upward double deviation in price and obfuscation is reminiscent of the slight upward

single deviation in price at the heart of the Diamond paradox. Such deviations will be

profitable unless the upper bound of the equilibrium price distribution is the monopoly

price. This leaves the distribution of Stahl’s model with p̄ = pm as the only equilibrium

price distribution. Note that this argument applies even if a firm’s deviation to t =∞ only

slightly increases its customers’ expected future search costs.18

Our intuition for why making g even slightly convex can have a large effect on the

equilibrium set comes from considering this double deviation. In Stahl’s model with small

exogenous search costs, firms are indifferent between all prices in the interval [p, p]. When

setting price p firms know they have zero probability of attracting costless shoppers and

profit only from selling to costly shoppers who visit them first. They would make more

money off the costly shoppers if they charged them a higher price, but they cannot do

so because at price p consumers are exactly indifferent between purchasing and getting a

second price quote. Having even a slight ability to affect consumers’ future search costs

makes it profitable to charge slightly above the highest price being charged in equilibrium.

This type of unraveling ensures that obfuscation must be sufficient to shift the upper bound

of the price distribution all the way up to pm even when it would be much lower without

obfuscation.

One striking fact about Proposition 2 is that, as long as g(τ) ≤ V (∞), any reduction in

the exogenous fixed component of consumer search costs has no effect whatsoever on the

equilibrium distribution of prices and profits—any reduction in τ that would lead to lower

prices must be offset by changes in the equilibrium level of obfuscation (see Proposition
18One could also imagine applications in which g (·) is concave. For example, there might be learning-by-

doing in search. In this case, firms will decrease search time in order to increase consumers’ future search
costs. This will imply that either the obfuscation will be sufficient to lead to the equilibrium described in
Proposition 2 or perhaps that the other type of equilibrium in Proposition 1 will occur with the firms setting
the highest prices using zero obfuscation.
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3). Hence, our model provides a formalization of the observation in Ellison and Ellison

(2009) that improvements in search technology need not make search more efficient. Their

empirical findings are consistent with the idea that the reduction in search costs online have

led to greater equilibrium obfuscation, although probably not with the extreme finding of

this section that the response can be so large as to keep the price distribution unchanged.

Equilibrium obfuscation levels

We now consider equilibrium obfuscation levels. Obfuscation can create substantial search

costs which are another important channel of welfare effects. There is, however, substantial

indeterminacy about details of the obfuscation pattern.

The fact that all equilibria must have p = pm puts a lower bound on equilibrium search

costs—consumers must not be willing to conduct a second search when they have found

price pm and know that prices are drawn from the distribution given in Proposition 2. If

the exogenous component τ of the search costs is not too large, this implies that firms must

obfuscate in equilibrium.

Corollary 1 If g(2τ)− g(τ) <
∫ pm

p D(p)F (p)dp, where F (p) is given by equation (1), then

in any nontrivial SE some firms set t > 0.

Proof. By Proposition 2, firms are willing to set price equal to pm in any SE in which

costly searchers enter. If g(2τ)− g(τ) <
∫ pm

p D(p)F (p)dp and ti = 0 for all i, then a costly

searcher who first observes a price sufficiently close to pm will search again, contradicting

Lemma 4. �

We next note the basic welfare consequences of obfuscation. Consumers suffer both

directly from the effect of obfuscation on search costs and indirectly because obfuscation

leads to higher prices. Firms benefit from the higher prices.

Corollary 2 Suppose g(2τ) − g(τ) <
∫ pm

p D(p)F (p)dp, where F (p) is given by equation

(1). Compared to the model in which obfuscation is impossible (t = 0 identically for all

firms), the model in which obfuscation is possible leads to higher prices in sense of first-

order stochastic dominance, higher profits for all firms, and lower utility for all consumers

(both costly searchers and costless searchers) in every nontrivial SE.
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Proof. In the model where t = 0, the possible nontrivial SE price distributions are given

by Proposition 1. If obfuscation is possible, the nontrivial SE price distribution is given

by Proposition 2. Since the formula for F (p) is the same in both cases and is decreasing

in p̄ for all p, prices are higher in the sense of first-order stochastic dominance in the latter

SE. This and the fact that obfuscation reduces consumer welfare directly imply that in the

latter SE firms earn higher profits and consumer welfare is lower. �

Although we did not emphasize this when we first stated it, Proposition 2, in fact, fully

characterizes the range of possible obfuscation levels via entry and stopping conditions in

equations (2) and (3). The entry condition requires that the expected cost of the first search

be sufficiently low, which places an upper bound on how much obfuscation firms can be

doing. And the stopping condition requires that consumers not want to carry out a second

search after each price p that is observed in equilibrium, which provides a continuum of lower

bounds. All of these bounds are bounds on average obfuscation in some sense. In addition

to the distance between the lower and upper bounds, there is substantial indeterminacy in

where the obfuscation occurs. For example, all firms could set the same obfuscation level,

or firms could mix over high and low obfuscation levels. And there is a lot of indeterminacy

in the cross-sectional relationship between obfuscation and price. We return to this issue

in Section 4, where the possibility that firms may prefer not to use too much obfuscation

greatly reduces this indeterminacy.

As noted earlier another unappealing consequence of our assumption that obfuscation is

costless is that setting t =∞ is a weakly dominant deviation from the equilibrium. Indeed,

if one were to modify our model so that the heterogeneity in consumer search costs had full

support, then there would be no nontrivial equilibria because firms would always be strictly

better off setting t =∞ (thereby deterring some marginal searcher). In practice, we think

this concern is less troubling because of another effect we have left out – consumers would

move on from one firm to the next before learning the first firm’s price if the search was

taking much longer than they had expected. A working paper available from the authors

includes a variant of the model along these lines.
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Comparative statics with price-independent obfuscation

In this section, we provide some comparative statics on obfuscation by restricting attention

to equilibria in which all firms use the same pure obfuscation strategy (while mixing over

prices). When obfuscation is independent of price, the entry and stopping conditions reduce

to equations (7) and (8) in the appendix. Multiple obfuscation levels are consistent with

these bounds so our comparative statics are on sets of equilibria with respect to the strong

set order. Recall that a (one-dimensional) set X is higher than Y in the strong set order

if, given elements x ∈ X and y ∈ Y , the maximum of x and y is in X while the minimum

of x and y is in Y .19

Our first result identifies a sense in which obfuscation levels must rise when the exoge-

nous component of search costs falls.

Proposition 3 The set of obfuscation values tu (for “u”niform) played in any nontrivial

SE in which firms do not mix over obfuscation levels is decreasing in τ , the exogenous

component of consumer search costs, in the strong set order.

Proof. As in the proof of Proposition 2, the lower bound on tu is given by g(2(τ+tu))−g(τ+

tu) =
∫ pm

p D(p)F (p)dp and the upper bound on tu is given by g(τ + tu) =
∫∞
p D(p)F (p)dp,

and an increase in τ causes both of these bounds to decrease. �

Proposition 3 shows that changes in equilibrium obfuscation offset changes in the ex-

ogenous component of search costs. This follows because high exogenous search costs rule

out equilibria with high obfuscation, by the entry condition, and eliminate the need for

high obfuscation, by the stopping condition. That is, costly searchers will not be willing

to obtain a price quote if they face both high exogenous search costs and high obfusca-

tion, and firms have no need to set high obfuscation when consumers are already deterred

from comparison-shopping by high exogenous search costs. This effect, however, is weak

enough that an increase in τ must nonetheless lead to a decrease in the set of nontrivial

SE values of consumer welfare. The intuition is that prices are fixed by Proposition 2, and

any nontrivial SE value of consumer welfare given τ ′ ≥ τ can be reproduced by uniformly
19See Milgrom and Shannon (1994) for more on the strong set order.
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increasing obfuscation by τ ′ − τ . Note that Proposition 4 does not restrict attention to

equilibria with price-independent obfuscation.

Proposition 4 The set of nontrivial SE values of the costly searchers’ welfare is decreasing

in the exogenous search cost τ in the strong set order.

The proof is deferred to the appendix.

In addition, one can use the comparative statics presented in Stahl (1989) to derive

a number of other comparative statics results. For example, we can show that the lower

and upper bounds on the SE obfuscation level are both increasing in the proportion of

costless searchers, and, if there are enough firms in the market, decreasing in the number of

firms. The argument again involves considering the entry and stopping conditions. When

there are more costless searchers, Stahl shows that SE prices are lower in the sense of

first-order stochastic dominance. Therefore, more obfuscation is needed to prevent costly

searchers who first observe price pm from searching again, so the lower bound on equilibrium

obfuscation increases by the stopping condition. Similarly, lower prices imply that costly

searchers would be willing to enter despite higher obfuscation, so the upper bound on

equilibrium obfuscation increases by the entry condition. We state this result below as

Proposition 5. Proposition 6, which gives comparative statics with respect to the number

of firms is closely related. One starts by recalling Stahl’s finding that an increase in the

number of firms increases SE prices once the number of firms is sufficiently large. Hence,

obfuscation will be lower by the same argument as in Proposition 5. The details of both

proofs are deferred to the appendix.

Proposition 5 The set of obfuscation levels tu played in any nontrivial SE where firms do

not mix over obfuscation levels is increasing in µ, the proportion of costless searchers, in

the strong set order.

Proposition 6 There exists N̄ > 0 such that, if N > N̄ , then the set of obfuscation levels

tu played in any nontrivial SE where firms do not mix over obfuscation levels is decreasing

in N , the number of firms, in the strong set order.
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Note that the comparative static above only applies when the number of firms above

some threshold. The monopoly versus oligopoly comparison goes in the opposite direction.

The lower bound on equilibrium obfuscation would always be zero in a monopoly model

because there is no benefit to obfuscation – deterring consumers from obtaining additional

price quotes is not relevant when there are no other firms. And the upper bound on possible

obfuscation levels would also be lower for a monopolist because the entry condition must

be satisfied despite the monopolists’ higher price.

One can easily show that the set of values of consumer welfare is increasing in µ and

decreasing in N for N > N̄ . The connection between Propositions 5 and 6 and this fact

is the same as that between Propositions 3 and 4: raising µ (for example) leads to higher

obfuscation only because costly searchers benefit more from entering the market when µ is

high and are thus willing to tolerate more obfuscation, so obfuscation cannot be so much

higher that costly searchers benefit less on net from entering.

4 Costly Obfuscation

We argued above that obfuscation is sometimes costless: it can, for example, consist simply

of not taking actions that would help consumers. In other applications, however, obfuscation

seems costly. For example, mattress stores make price comparisons more difficult by getting

manufacturers to label the same mattress with a different model name at each store that

sells the product. There must be some cost associated with this. And even in examples

without direct costs like a bank’s adoption of a complex fee structure, there may be indirect

costs such as an increase in customer service costs to deal with questions and complaints.

In this section we examine models in which the cost c(t) that firms must incur in order

to raise the time cost of search to t is not identically zero. Obfuscation costs make the

model less tractable, but also eliminate much of the indeterminacy of the previous section

making “equilibrium obfuscation” more sharply defined. We discuss the extent to which

some results of the previous section carry over, provide a characterization of equilibrium

obfuscation, and note some interesting patterns that may arise.

Our first proposition notes that our previous characterization of the equilibrium distribu-

tion of prices sometimes still applies to models with costly obfuscation and sometimes does
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not. Whether the costless-obfuscation equilibrium carries over depends on the consumer

search-disutility function g(t) and other aspects of the model, but is largely independent of

the obfuscation cost function c(t).

Proposition 7 Let V (p) be the consumer benefit from search assuming that prices are

distributed as in the nontrivial SE of the costless-obfuscation model. Suppose that the ob-

fuscation cost function c(t) is twice continuously differentiable with c′(t) > 0 for t > 0.

(a) If g(τ) < V (∞) and g(2τ)−g(τ) > V (pm), then the model with costly obfuscation has a

unique nontrivial SE, in which no obfuscation occurs and the equilibrium price distribution

coincides with that of the costless-obfuscation model.

(b) If g(2τ) − g(τ) < V (pm), then any nontrivial SE of the costly obfuscation model must

have a price distribution with supremum p strictly less than pm.

Part (a) of the proposition notes that our previous characterization of the equilibrium price

distribution remains valid with costly obfuscation if the unavoidable search costs τ and

other factors are such that no obfuscation is necessary to deter consumers from searching

a second time. In this case, firms will not engage in costly obfuscation.

Part (b) implies that the equilibrium must be different from that characterized in the

previous section when consumers will conduct a second search if firms do not obfuscate—

one difference is that the upper bound of the price distribution is now strictly less than the

monopoly price instead of being equal to the monopoly price. We defer the proof to the

appendix, but the two-step intuition is fairly simple. The first step is showing that firms

pricing near p must sell to those consumers who visit them first, as otherwise these firms

would make no sales. The second is that the upper bound cannot be pm because otherwise

firms would profit from slightly decreasing both prices and obfuscation: lowering prices

has a second-order effect on profits conditional on making a sale and allows a first-order

reduction in obfuscation costs. Note that this second step does not go through if consumers

have unit demands.

In the costless-obfuscation model there was substantial indeterminacy in obfuscation

levels (and hence in the price-obfuscation relationship). A second basic observation is that

making obfuscation costly eliminates much of this indeterminacy because firms will never
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do more obfuscation than is necessary to deter consumers who visit them from searching

for a second time. However, we show below that firms may do strictly less obfuscation

than is needed to deter their customers from conducting a second search, because the loss

in sales from not obfuscating may be outweighed by the costs that would be required to

deter future searches. Therefore, unlike in the textbook model with constant search costs,

the consumers in our model with convex search costs may conduct a second search but then

return to the first firm to purchase before exhausting all possibilities. We feel that the fact

that our model can generate patterns of search behavior in which consumers return to a

previous store to purchase is an attractive feature consistent with empirical evidence on

search such as that in De los Santos, Hortacsu, and Wildenbeest (2010).

To show that choosing not to deter search is something that will happen for some

specifications (as opposed to just being something that we can’t show doesn’t happen) we

present the example below.

Proposition 8 Suppose that the demand function is D(p) = 1− p, consumer disutility of

search is g(t) = 0.15t+max{t−1, 0}, and that the obfuscation cost function is such that the

firm can choose obfuscation levels 0, t∗ and t∗∗ at costs 0, c∗, and c∗∗, respectively. Then

for some parameter values the model has a symmetric SE in which firms use a strategy of

the form shown in Figure 1 below. In this equilibrium the support of the price distribution

is the union of four intervals: [p, p1] ∪ [p̂1, p2] ∪ [p̂2, p3] ∪ [p3, p]. Firms choosing prices in

the third interval do no obfuscation and costly searchers who see a price in this interval on

their first search conduct a second search. Firms setting prices in the other three intervals

use obfuscation 0, t∗, and t∗∗, respectively and thereby deter costly searchers who visit them

from conducting a second search.

The proof of Proposition 8 is numerical: the figure was generated by solving the model

numerically for particular parameter values. In particular, the equilibrium shown is for a

model with four firms, 30 percent of consumers being costless searchers, and obfuscation

cost function having parameters τ ≈ 0.347, t∗ ≈ 0.023, t∗∗ ≈ 0.308, c∗ ≈ 0.0044, and

c∗∗ ≈ 0.308.20

20The consumer disutility and search cost functions in the example do not satisfy some of the regularity
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An Example with Second Searches and Nonmonotone Obfuscation
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Figure 1: An example with second searches and nonmonotone obfuscation

Another striking feature of the example above is that obfuscation levels are not mono-

tonically related to prices. We think it is useful to point out the possibility both because

it may be unexpected and because it calls attention to the fact that the cost and ben-

efit of obfuscation are both increasing in a firm’s price (it also implies that an outside

observer—such as a regulator—cannot conclude that the highest-priced firms in a market

are necessarily the ones who use the most obfuscation, or vice versa). But there are also

senses in which our model does predict that obfuscation will be increasing in prices. One

such sense is a comparison of extremes: if we suppose that c(t) is strictly increasing then

there will be an interval of positive length [p, p′] above the lowest price on which firms set

zero obfuscation, and the highest obfuscation level chosen will be that of the firm that sets

p = p. No obfuscation is used when prices are very low because the exogenous search costs

properties we have been maintaining – the g function is piecewise linear rather than being differentiable
and strictly convex and the obfuscation cost is discontinous and only weakly increasing. We made these
changes only to make it easier to solve the model numerically and nearby smooth models should have similar
equilibria.
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are by themselves sufficient to deter a second search for consumers who first observe a price

sufficiently close to p. The fact about the top of the distribution follows from something

we noted in the proof of Proposition 7: a firm that sets price p must choose a sufficiently

high obfuscation level so that consumers who visit it first purchase with probability one.

Another result with the same flavor is that below which considers what happens when

obfuscation costs are small. An intuition for the result is that when obfuscation costs are

sufficiently small all firms will choose obfuscation levels that are just large enough to deter

consumers from conducting a second search. This level is lower when a firm’s price is lower.

An increasing price-obfuscation relationship contrasts with the predictions of the model of

Wilson (2010). In Wilson’s two-firm model, the firm that obfuscates chooses prices from a

distribution that is lower than the distribution from which the non-obfuscating firm chooses

its prices.

Proposition 9 Suppose g(t) is an increasing, strictly convex function with limt→∞ g
′(t) =

∞. Let C(t) be strictly increasing. Then there exists a δ > 0 such that for any δ ∈ (0, δ),

any nontrivial SE of the model with obfuscation cost function c(t) = δC(t) is such that

firms do no obfuscation when they choose prices in some interval [p, p̂] and obfuscation is

strictly increasing in price at all higher prices.

One assumption that we have maintained throughout the paper is that c′(t) ≥ 0. In

applications where obfuscation consists of not taking actions that would help consumers

it is plausible that obfuscation costs might be decreasing in t at least for small t (indeed,

it is natural that it is costly for firms to reduce consumer waiting time to literally zero).

We do not analyze this case formally, but some observations are that firms would always

obfuscate up to the point where costs start increasing and that this can lead to nonexistence

of nontrivial equilibria. In particular, any model in which obfuscation costs are decreasing

up to some point and increasing thereafter is equivalent (in equilibrium) to a model where

exogenous search costs are higher and obfuscation costs are everywhere increasing, as one

can reclassify the “cost-saving” obfuscation that all firms will do as part of the exogenous

search cost.

This prediction that firms will in equilibrium take any cost-saving action that increases
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consumer search costs is of course counterfactual. In our view, the key element that is

missing from the model that would overturn this prediction is the possibility that consumers

can abandon search at a firm before learning its price. To take an extreme example, Bank of

America would not benefit from reducing the size of its customer service staff to one person,

even though this would surely save costs and increase waiting times, because consumers

would not wait on the line for long enough to get through to the lone representative.

An earlier version of this paper (available from the authors) investigated the possibility

of abandoning search formally. The key implication of that model was that, under some

conditions—in particular, the condition that consumers complete all searches they begin in

equilibrium—many of the qualitative conclusions of the baseline model continue to hold.

5 A Signal-Jamming Model

In this section we explore an alternate mechanism through which obfuscation can affect con-

sumer search. In particular, we show that allowing the exogenous component of consumer

search costs τ to be uncertain makes obfuscation individually rational for firms even if search

costs are linear. The basic idea behind this signal-jamming mechanism is straightforward:

if τ is initially unknown, consumers learn about τ from their first shopping experience, so

obfuscation raises consumer expectations about the search costs they will incur on future

searches.2122 This mechanism seems plausible for many applications. For example, if a

home-improvement contractor spends a long time with a consumer discussing details about

the job and takes a long time to prepare and submit his or her bid, then it seems plausible

that consumers will expect that getting a second bid will entail similar time costs. While

obfuscation is individually rational in this model, the differences in the mechanics of this

model and that in Section 3 lead to some differences in the results. Among these are an

excess obfuscation problem that leads to both lower prices and lower consumer welfare, and
21We call this a signal-jamming model because obfuscation distorts the signals consumers get about the

exogenous search costs. Of course, consumers account for this in equilibrium when forming their beliefs.
See Holmström (1982) or Fudenberg and Tirole (1986) for seminal models of signal-jamming.

22In standard signal-jamming models, the marginal benefit to jamming the signal is usually positive in
equilibrium, and the equilibrium quantity of signal-jamming is determined by marginal signal-jamming costs
that increase in the quantity of signal-jamming; while in our model, the marginal cost of signal-jamming
is held constant at zero, so equilibrium requires that the marginal benefit of signal-jamming equal zero as
well.
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a different selection among the possible equilibria of Stahl’s model.

Formally, assume that g (t) = t, and that there is an underlying parameter θ with

expectation zero distributed with continuous density h(θ) on [θ,∞) with θ > −τ , such that

it costs a consumer t̃ = τ + θ + ti to visit a firm that sets obfuscation level ti. We assume

that when a consumer visists firm i, she observes only t̃i and pi, so that she must draw

inferences about θ in equilibrium. The timing of the game is almost as before. The one

amendment is that we assume that θ is drawn once and for all at the beginning of the game

and is unobserved by both firms and consumers.

We focus in this section on costless obfuscation. As before, this lets us bring out our

main observations most simply. We also restrict our attention to strategies for firms which

do not mix over obfuscation levels for a given price. That is, we consider equilibria in which

there exists a function t∗(p) such that the support of firms’ mixed strategies is contained

in the set of ordered pairs (p, t) with t = t∗(p). This restriction can be motivated by

thinking of obfuscation as being “slightly costly” for firms, so that firms do the smallest

amount of obfuscation that maximizes profit, taking price as given. The importance of this

assumption is that equilibrium implies that consumers believe with probability one that

θ = θ̂ ≡ t̃− (τ + t∗(p)) after observing total search cost t̃ and price p.23 The only exception

to this, of course, is if the observed (p, t) is inconsistent with equilibrium, which can happen

if p not in the support of the equilibrium price distribution or if t̃ < τ+t∗(p)+θ. Consumers’

beliefs about θ are unrestricted in this case, as well as after observing longer sequences of

price-obfuscation pairs that are jointly inconsistent with equilibrium (e.g., if the implied

values θ resulting from visitng two firms are not the same). Throughout this section, “SE”

should be understood to mean, “SE in which firms do not mix over obfuscation levels for a

given price.”

In this section, consumer search behavior in the signal-jamming model is similar to

search behavior in our previous model. First, we have a straightforward application of

standard results.

Lemma 5 In any SE, a costly searcher searches for the first time if τ + E[t(p)] < V (∞)
23Without this result, the consumer search problem could become much more complicated, as consumers

might have an incentive to search multiple times in order to learn more about θ.
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and continues to search if τ + θ̂+E[t(p)] < V (p0) and there are previously unsearched firms

remaining. Conversely, a costly searcher does not search for the first time if τ + E[t(p)] >

V (∞) and stops searching if τ + θ̂ + E[t(p)] > V (p0).

Next, we observe that costless obfuscation implies that costly searchers search at most

once in equilibrium, as in the convex search cost model of Section 3.24

Lemma 6 In any SE of the signal-jamming model with costless obfuscation, all costly

searchers search at most once.

Proof. Fix a SE obfuscation strategy t(p) and suppose that a firm does not sell to all

costly searchers that visit it first when it sets price p0 and obfuscation level t(p0). A

consumer who first visits a firm with price p0 and incurs total search costs t̃ will buy if

t̃− t(p0)+E[t(p)] > V (p0), since in equilibrium the consumer infers that θ = t̃− (t(p0)+ τ).

Therefore, a firm can always induce those consumers who visit it first to buy with probability

1 by setting t > t(p0) + V (p0)− E[t(p)]. By Lemma 5, this maximizes the market share of

the firm, so there cannot be a SE in which a firm does not sell to all consumers who visit

it first. �

The fact that consumers search at most once will again allow us to provide simple,

closed-form expressions for the possible SE price distributions. It is the primary place

where we use the assumption that the distribution of θ is unbounded. If θ is bounded, it

may be that consumers sometimes search multiple times.

The first main result of this section is that we get an incomplete selection from the

equilibria of Stahl’s model, and that many price distributions may be possible; in addition,

there may not exist an equilibrium in which p̄ = pm.

Proposition 10 The signal-jamming model has a nontrivial SE price distribution with

supremum pm if and only if τ ≤ V (∞) and −θ ≤
∫∞
pm D(p)dp. For every p∗ ∈ [0, pm), the

signal-jamming model has a nontrivial SE price distribution Fp∗ (p) with supremum p∗ only

if

Fp∗(p) = 1−
[(

1− µ
Nµ

)(
R(p∗)
R(p)

− 1
)] 1

N−1

(4)

24Unlike our earlier results, this result does rely on assumptions that imply that firms can always dissuade
consumers from future search by setting very high obfuscation.

27



for all p ∈
[
p∗, p∗

]
, where p∗ is given by R(p∗) =

[
1−µ

1+(N−1)µ

]
R(p∗). Such a SE exists if

and only if τ + θ ≤
∫ p∗
p∗ D(p)Fp∗(p)dp and −θ ≤

∫∞
p∗ D(p)dp. Under these conditions, the

set of nontrivial SE with the supremum of Fp∗ (p) equal to p∗ is the set of joint distributions

over p and t such that the marginal distribution over p equals Fp∗ (p) and the marginal

distribution over t is such that

τ + E [t] ≤
∫ ∞
p∗

D (p)Fp∗ (p) dp (5)

and such that for all p0 ∈
[
p∗, p∗

]
,

τ + θ + E [t] ≥
∫ p0

p∗
D (p)Fp∗ (p) dp, (6)

with equality for p0 = p∗. Furthermore, some nontrivial SE exists if τ ≤
∫∞

0 D(p)Fpm(p)dp.

The proof is given in the Appendix. To understand the result, consider first the conditions

for the existence of an equilibrium with p̄ = pm. The first condition, τ ≤ V (∞), is

simply the requirement that the exogenous search costs are not high enough to prevent

consumers from searching at least once. It is analogous to the sole condition required for

the existence of a nontrivial SE in the convex search cost model. The second condition,

−θ ≤
∫∞
pm D(p)dp, is an additional restriction requiring that the consumer surplus from

purchasing at price pm also be sufficiently large relative to the uncertainty about θ. This

reflects that there is what one can think of as “excess obfuscation” in the signal-jamming

model with costless obfuscation. In equilibrium, firms must obfuscate to the point where

consumers will not want to search again even when the exogenous component of search

costs turns out to take on its lowest possible value. This implies that, with probability one,

the average obfuscation level in any SE is higher than the minimal average obfuscation level

needed to keep all costly searchers from conducting a second search, conditional on θ. This

excess obfuscation makes it harder to sustain equilibria in which consumers search, as the

lowest E [t] such that τ + θ + E [t] ≥ V (pm) (the stopping condition) may be so high that

τ + E [t] > V (∞) (the negation of the entry condition), precluding costly searcher entry.

To put this another way, in the convex search costs model we could always simultaneously
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satisfy the entry and stopping conditions as long as g(τ) was less than V (∞). Now, the

difference between θ and E[θ] drives a wedge between the entry and stopping conditions,

so we may not be able to satisfy them both simultaneously.

The set of nontrivial SE in the signal-jamming model also differs from that in the

convex costs model in that the selection from equilibrium price distributions of Stahl’s

model may now include price distributions with p̄ < pm. In the convex costs model,

the key deviation that prevented these distributions from being equilibria was that a firm

could charge a price slightly above p̄ and obfuscate slightly more so that consumers would

not search again. This constraint on the SE set no longer exists in the signal-jamming

model: the above deviation is a deviation to an out-of-equilibrium price, so the firm cannot

necessarily induce consumers to have the beliefs about θ that it would like them to have

after such deviations. In particular, a consumer who observes a price above p̄ may believe

that the firm that set this price also set very high obfuscation, which would lead her to

believe that θ is very low. Indeed, the conditions for the existence of an equilibrium with

p̄ = p∗ < pm are analogous to the conditions for the existence of an equilibrium with

p̄ = pm, with the exception that the condition that τ ≤
∫∞
p D(p)Fpm(p)dp is strengthened

to τ + θ ≤
∫ p∗
p∗ D(p)Fp∗(p)dp (this condition is stronger given the second condition that

−θ ≤
∫∞
p∗ D(p)dp). This stronger condition reflects the fact that the stopping condition

(equation (6)) must hold with equality at p0 = p∗ if p∗ < pm, as otherwise a firm with price

p∗ would deviate to a slightly higher price, while if p∗ = pm then the stopping condition

may hold with strict inequality for all p0 in equilibrium.

Finally, observe that even though Proposition 10 places both lower and upper bounds

on equilibria p∗, the last sentence of the proposition shows that existence of some nontrivial

SE is guaranteed under conditions identical to those in the convex search cost model.

The working paper version of this paper (Ellison and Wolitzky 2009) contains several

observations about the emergence of equilibrium obfuscation and its effect on prices, profits

and consumer welfare, in analogy with the analysis of the convex costs model in Section 3.

The results here are slightly more subtle due to the range of SE described in Proposition

10, but two important ideas—that obfuscation occurs in equilibrium, and that obfuscation

offsets changes in the exogenous component of consumer search costs—continue to come
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through. Here, we only present a pair of results on the excess obfuscation problem discussed

above, which is the most important effect that is present here but not in the convex costs

model: prices actually fall as the excess obfuscation problem becomes more severe, i.e. as

θ decreases, holding E [θ] fixed at 0; but nonetheless consumer welfare falls as θ decreases.

Thus, the excess obfuscation problem hurts both firm and consumer welfare, even though

it makes markets more competitive in the sense of lowering prices.

For these last results, we impose the following assumption:25

Assumption 1
∫ p∗
p∗ D(p)Fp∗(p)dp is increasing in p∗ for p∗ < pm, where Fp∗ is given by

equation (4).

Recalling that an increase in θ corresponds to a decrease in the severity of the excess

obfuscation problem, Proposition 11 shows that an increase in the severity of this problem

leads to a decrease in prices, which is perhaps a surprising result. The intuition here is

that the excess obfuscation problem rules out equilibria with high prices, because under

Assumption 1 higher prices correspond to both lower consumer welfare and a smaller gap

between consumer welfare and the benefit of a second search conditional on observing p∗

and θ, which makes it more likely that the excess obfuscation needed to satisfy the stopping

condition ((6)) is so great as to violate the entry condition ((5)). Proposition 12 (proof in

appendix) shows that, if all equilibria have p̄ < pm, this effect cannot overturn the direct

welfare costs to consumers of an increase in excess obfuscation, because excess obfuscation

leads to lower prices only by making consumers sufficiently worse off that they refuse to

enter when prices are high. So long as equilibria with p̄ = pm do not exist, then Propositions

11 and 12 show that, while equilibrium requires that firms extract some of the additional

surplus that comes with an increase in θ through reduced excess obfuscation, consumers

are still better off after such a reduction in uncertainty.26

25This assumption is implied by Assumption C in Stahl (1989), which is the same as the “Revenue
Condition” in Stahl (1996). As Stahl (1996) points out, this condition holds “for all concave (and linear)
demand functions, as well as many convex demand functions.”

26The assumption that equilibria with p̄ = pm do not exist is needed for this result because equilibria with
p̄ = pm can have very high obfuscation, since the only upper bound on obfuscation in this case is the entry
condition, while equilibria with p̄ < pm must also have low enough obfuscation that firms are not tempted
to deviate to prices slightly above p̄. This makes comparing consumer welfare across equilibria with p̄ < pm

and p̄ = pm difficult.
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Proposition 11 The set of nontrivial SE values of p̄ is increasing in θ in the strong set

order.

Proof. Recall that p∗ is a nontrivial SE value of p̄ if and only if
∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ + θ

and
∫∞
p∗ D(p)dp ≥ −θ. And

∫ p∗
p∗ D(p)Fp∗(p)dp is increasing in p∗ for p∗ < pm by Assumption

1, while
∫∞
p∗ D(p)dp is decreasing in p∗, so an increase in θ raises the lower bound on p̄ given

by the first inequality and raises the upper bound of p̄ given by the second. �

Proposition 12 Suppose that no SE with p̄ = pm exist when the lower bound on θ equals

θ or θ′ for some θ′ ≥ θ. Then increasing the lower bound on θ from θ to θ′ increases the

set of SE values of consumer welfare in the strong set order.

6 Conclusion

In this paper we have explored obfuscation using two related models in which obfuscation is

treated as an action that increases the amount of time that consumers must spend to learn

a firm’s price. In both cases, the key impact of such actions is that they lead consumers to

behave as if future search costs will be higher. In the convex costs model this is because

obfuscation directly increases the incremental costs that consumer would incur to perform

another search. In the signal jamming model there is no real effect on the future, but an

informational linkage implies that increased obfuscation leads consumers to expect higher

future search costs.

In both models, we show that obfuscation must occur in an equilibrium unless the

exogenous component of consumer search costs is high enough that consumers are willing

to purchase at the highest equilibrium price in the absence of obfuscation. And we show that

obfuscation has the same qualitative impact on welfare. It is bad for consumers both because

it directly imposes costs on them and because it leads to higher prices. The higher prices

make obfuscation beneficial for firms, except in the case when excess obfuscation makes

the market completely collapse. Note that obfuscation benefits all firms, not only those

who engage in it; even transparent firms benefit from serving an obfuscation-rich market,

as their customers are prevented from comparison-shopping by other firms’ obfuscation.
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The mechanics of our models are similar to those of Stahl (1989). In both cases ob-

fuscation can be seen as selecting among the dispersed price equilibria of Stahl’s model.

In the convex costs model, the selection is that obfuscation must be sufficiently high to

result in an equilibrium price distribution that goes all the way up to the monopoly price.

In the signal-jamming model, the constraints are that overall obfuscation levels must be

sufficiently high so that consumers are willing to search once, but never more than once.

This can leave a range of possible dispersed-price equilibria.

Our two models also have similar comparative statics implications. In both, equilibrium

obfuscation adjusts to offset changes in the exogenous component of consumer search costs,

though in equilibrium consumers still benefit from reductions in exogenous search costs and

are hurt by increases in these costs (see Ellison and Wolitzky (2009)). The signal-jamming

model is also distinguished by the fact that it displays excessive obfuscation with probability

one; this effect leads to Pareto inefficiency by decreasing both prices and consumer welfare.

Our analysis suggests a number of interesting avenues for future research. Our char-

acterizations of the costly obfuscation model are limited. In reality we feel that it takes a

great deal of cleverness for firms to devise effective obfuscation schemes, which could make

such schemes quite costly. Such costs would be natural candidates for explaining why real-

world obfuscation is limited. For example, we noted that whereas our convex costs model

with costless obfuscation predicts that obfuscation will completely offset any technological

reduction in search costs, Ellison and Ellison (2009) report that search is still fairly effective

for at least some consumers in the environment they study. Developing models of costly

obfuscation that are more tractable than ours could be challenging, but could have rewards

both from a theoretical and from an applied perspective.

Finally, we note that there are more basic related areas of search theory that have not

been fully explored. We showed in Section 4 that the combination of convex search costs and

costly obfuscation creates an environment in which search strategies are more interesting

and realistic, with different consumers searching different numbers of times. Wolinsky’s

(1986) model of search with product differentiation provides a natural way to account for

such behavior in some applications, and Stahl (1996) explores one way to get such behavior

without product differentiation by adding heterogeneous search costs, but further analyses
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of the convex cost model—with or without obfuscation—could be a valuable complement

and provide additional insights.27

27Anderson and Renault (2006) build on Wolinsky’s framework to examine the related topic of the infor-
mation content of advertising.
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Appendix

Proof of Lemma 1. We proceed by induction on the number of remaining unsearched

stores. The fact that any strategy not of this form yields a lower payoff is immediate when

one store remains unsearched. Now, assume that we have shown the result for all numbers

of remaining unsearched stores up to m and consider possible continuation strategies at a

history xn = ((p1, t1), (p2, t2), . . . , (pn, tn)) at which m + 1 stores remain unsearched. Let

p0 = min{p1, . . . , pn} and t0 = nτ +
∑n

i=1 ti.

First, suppose that V (p0) > Et [g(t0 + τ + t)− g(t0)]. Here, we show that any strategy

that involves stopping at xn cannot be optimal. To see this note that stopping at xn

yields utility
∫∞
p0
D(p)dp − g(t0). Continuing at xn and stopping at xn+1 regardless of

(pn+1, tn+1) yields expected utility
∫∞
p0
D(p)dp+ V (p0)− Et [g(t0 + τ + t)] which is larger.

Hence, stopping at xn cannot be optimal. And by the inductive hypothesis after continuing

to xn+1 the optimal strategy is the strategy given in the proposition.

Now suppose that V (p0) < Et [g(t0 + τ + t)− g(t0)]. Consider the alternate model

where search costs are fixed at c ≡ Et [g(t0 + τ + t)− g(t0)]. In the alternate model, it

is well-known that in any optimal strategy the consumer stops at xn.28 But, relative to

expected continuation payoffs conditional on reaching xn in the alternate model, expected

continuation payoffs conditional on reaching xn in the original model are the same for the

strategy that stops at xn and are lower for any strategy that continues at xn. So in any

best response in our model the consumer stops at xn as well.

Therefore, any strategy of the desired form yields a strictly higher expected continuation

payoff than any strategy not of this form when there are m+1 remaining unsearched firms,

so the result for m = N follows. �

Proof of Lemma 2. If prices were ever negative in a nontrivial SE, then a firm would

have a profitable deviation by replacing the negative prices in the price distribution with

zero price. So in any nontrivial SE all prices are weakly positive. Therefore, if the first

price a costly searcher observes is p0, then in SE her benefit from searching again if every

firm sets ti = 0 is
∫ p0

0 D(x)F (x)dx− (g(2τ)− g(τ)) ≤
∫ p0

0 D(x)dx− (g(2τ)− g(τ)), which is

28See Kohn and Shavell (1974) or Weitzman (1979).
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negative for p0 sufficiently close to 0. By convexity of g, her benefit from searching again is

no greater than this if any firm sets positive obfuscation.29 Therefore, in SE any firm can

guarantee itself positive profits by choosing such a sufficiently small but strictly positive

p0, so every firm must make positive profits in any SE. �

Proof of Lemma 3. By Lemma 2, no firm sets p = 0 in any SE in which costly

searchers enter. So if F (p) has an atom, it must have an atom at some p > 0. But then

pricing slightly below this atom yields strictly higher profits than pricing at the atom, as

it yields a discrete gain in profits from the costless searchers and an arbitrarily small loss

in profits from the costly searchers. �

Proof of Lemma 4. Let F (p) be a nontrivial SE price distribution for a model with

costless obfuscation. Let p̄ be the maximum of the support of F (p). Consider a firm that

sets price equal to p̄. If this firm does not sell to any of the costly searchers that visit it first,

then with probability 1 it will not sell to any consumers as, by Lemma 3, every other firm

has a lower price with probability 1 and consumers buy from the lowest-priced firm they

visit. This would contradict Lemma 2, so a firm that sets price equal to p̄ must sell to some

costly searchers that visit it first. Furthermore, if consumers mix between buying and not

buying from a firm with price equal to p, then by lowering prices by an arbitrarily small

amount the firm could sell to these consumers with probability 1, by Lemma 1, strictly

increasing profits. So if F (p) is a SE price distribution then every costly searcher who visits

a firm with price equal to p first buys immediately.

Since those costly searchers who first visit a highest-priced firm buy from it, any lower-

priced firm could sell to those costly searchers who visit it first by setting the same obfus-

cation level as the highest-priced firm. And raising one’s obfuscation level only increases

the number of consumers one sells to, by Lemma 1, so if a lower-priced firm did not sell

to those costly searchers who visited it first it could strictly increase profits by raising its

obfuscation level to that of the highest-priced firm. �

Proof of Proposition 2. We first show that any such joint distribution over p and

t is a SE price-obfuscation distribution. By Lemma 1, all consumers search at least once
29For this result, unlike many of our main results, it suffices that g is weakly convex (i.e., that obfuscation

does not decrease future search costs).
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if (2) holds, and all consumers search at most once if (3) holds. A firm that chooses

price pm obtains profit 1−µ
N R(pm), while a firm that chooses price p < pm obtains profit[

µ(1− F (p)]N−1 + 1−µ
N

]
R(p). It is easy to check that these are equal for all p ∈

[
p, pm

]
when F (p) is given by equation (1), while profits associated with a deviation to any pi

outside this interval are strictly smaller, regardless of the chosen obfuscation level ti. So

any such distribution over p and t is a SE price-obfuscation distribution.

Next, we show that the set of these joint distributions is nonempty if and only if g (τ) ≤

V (∞). If firms choose p according to F (p) and all choose the same obfuscation level, t,

equations (2) and (3) become

g(τ + t) ≤
∫ ∞
p

D(p)F (p)dp (7)

g(2(τ + t))− g(τ + t) ≥
∫ pm

p
D(p)F (p)dp (8)

Since g(·) is strictly increasing and convex with g(0) = 0, we have g(2(τ + t))− g(τ + t) ≥

g(τ + t) and limt→∞ g(2(τ + t)) − g(τ + t) = ∞. If g(τ) ≤ V (∞), continuity of g implies

that there exist t ∈ R+ that satisfy both (7) and (8). If g (τ) > V (∞), then (7) does not

hold for any marginal distribution over t.

We next note that the marginal distribution over t must satisfy (2) and (3) in any

nontrivial SE in which the marginal distribution over p equals F (p). This is immediate:

if (2) does not hold, costly searchers will not search once, and if (3) does not hold, some

consumers will search twice, by Lemma 1, which cannot occur in a nontrivial SE by Lemma

4.

Finally, we come to the main part of the proof: showing that equation (1) defines the

only possible nontrivial SE price distribution. Suppose that costly searchers enter and that

F (p) is not given by equation (1). We consider two cases:

First, suppose that p 6= pm is such that F (p) = 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 for all p in

the support of F . If p > pm, a firm could deviate to pm and make strictly higher profits

from both costless and costly searchers. Suppose p̄ < pm. By Lemma 4, if a firm plays

(ti,p̄) in SE then Et [g(2τ + ti + t)− g(τ + ti)] ≥
∫ p̄
p D(p)F (p)dp. So, by strict convexity of

g, there exist ε, ε′ > 0 such that Et [g(2τ + ti + ε+ t)− g(τ + ti + ε)] >
∫ p̄+ε′
p D(p)F (p)dp,
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so if such a firm deviated to playing (ti+ε, p̄+ε′) then a consumer will prefer to buy at price

p̄+ε′ rather than searching again when the firm’s obfuscation level is ti+ε. This deviation

gives the firm strictly higher profits from the costly searchers and makes no difference to its

profits from the costless searchers, since at price p̄ it had zero probability of selling to these

consumers (by Lemma 3) and still has zero probability of selling to them at price p̄+ ε.

Next, suppose that there exists p in the support of F such that F (p) 6= 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 .

Then it is easy to check that profits at p do not equal profits at p̄, contradicting that p and

p̄ are both in the support of F . �

Proof of Proposition 4. Note that consumer welfare u is given by u ≡ V (∞) −

E[g(t+ τ)]. Suppose that τ ′ ≥ τ and u′ ≥ u, where u is a nontrivial SE value of consumer

welfare with fixed search cost τ and u′ is a nontrivial SE value of consumer welfare with

fixed search cost τ ′. We must show that u′ is a nontrivial SE value with search cost τ and

that u is a nontrivial SE value with search cost τ ′.30

First, suppose that u′ is the value of consumer welfare for a nontrivial SE with price

distribution F (p) and obfuscation strategies given as a function of price t′(p). Note that

t′(p) can be a probability distribution over obfuscation levels, if firms mix over obfuscation

levels given their prices. Consider the profile where firms price according to F (p) and use

obfuscation strategies t(p) = t′(p) + τ ′ − τ ≥ t′(p) ≥ 0, where if t′(p) is a probability

distribution over obfuscation levels this is interpreted as shifting this distribution up by

τ ′ − τ . It is clear that this profile is a nontrivial SE when fixed search costs are given

by τ , because at every history a consumer’s expected future total search cost when the

fixed component is given by τ and the variable component is given by t(p) is the same as

when the fixed component is given by τ ′ and the variable component is given by t′(p). And

consumer welfare in this SE is u′.

Next, suppose again that u, u′ and t′(p) are as above. To show that u is also a nontrivial

SE value when the exogenous search cost is equal to τ ′, we suppose that firms draw prices

from F (p) and obfuscate according to t(p) = t′(p) + δ, where δ is such that E[g(t′(p) + τ +
30To see that this is what must be shown let X be the set of equilibrium values of consumer welfare given

search cost τ and let Y be the set of equilibrium values of consumer welfare given τ ′. X is higher than Y
if the larger of u and u′ is in X and the smaller is in Y whenever u ∈ X and u′ ∈ Y . For u′ < u this is
trivially true, so what remains is to show it is also true when u′ ≥ u.
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δ) − g(t′(p) + τ)] = u′ − u. Note first that t(p) ≥ t′(p) implies that every costly searcher

searches at most once, because compared to the original SE, search costs have increased

while search benefits remain constant. Second, the fact that the equilibrium utility of each

type of consumer is identical to the utility that the same consumer gets in the nontrivial

SE with utility u in the game with exogenous search costs τ implies that costly searchers

are willing to enter. Hence, this profile is a nontrivial SE with payoff u in the game with

exogenous search costs τ ′. �

Proof of Proposition 5. By Proposition 2, F (p) = 1−
[(

1−µ
Nµ

)(
R(pm)
R(p) − 1

)] 1
N−1 and

R
(
p
)

=
(

1−µ
1+(N−1)µ

)
R (pm) in any pure-strategy nontrivial SE, so F (p) is increasing in µ

for all p and p is decreasing in µ. The lower bound on tu is given by g(2(τ+tu))−g(τ+tu) =∫ pm

p D(p)F (p)dp, so it is increasing in F (p) and therefore increasing in µ. Similarly, the

upper bound on tu is given by g(τ + tu) =
∫∞
p D(p)F (p)dp, so it is increasing in F (p) and

therefore in µ as well. �

Proof of Proposition 6. We claim that there exists N̄ > 0 such that
∫ pm

p D(p)F (p)dp

is decreasing in N for N > N̄ . By Proposition 2, F (p) = 1−
[(

1−µ
Nµ

)(
R(pm)
R(p) − 1

)] 1
N−1 and

R
(
p
)

=
(

1−µ
1+(N−1)µ

)
R (pm). Treating N as a continuous variable, we have

∂

∂N

∫ pm

p
D(p)F (p)dp =

∫ pm

p
D (p)

∂F (p)
∂N

dp−
∂p

∂N
D
(
p
)
F
(
p
)

=
∫ pm

p
D (p)

∂F (p)
∂N

dp.

The derivative of F (p) with respect to N is

1
N (N − 1)

[(
1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
)))

.

Therefore,

sign

(
∂

∂N

∫ pm

p
D(p)F (p)dp

)
(9)

= sign

(∫ pm

p
D (p)

[(
1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
)))

dp

)
.

For any p and N ,[(
1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
)))
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≤
[(

1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1

(
1 +

N

N − 1
log

((
1− µ
Nµ

)(
R (pm)
R
(
p
) − 1

)))

=
[(

1− µ
Nµ

)(
1 + (N − 1)µ

1− µ
− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
1 + (N − 1)µ

1− µ
− 1
)))

= 1.

For any fixed p ∈ (0, pm),

lim
N→∞

[(
1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
)))

= lim
N→∞

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
))

= −∞.

Therefore, since p > 0 for all N ,

lim
N→∞

∫ pm

p
D (p)

[(
1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1
(

1 +
N

N − 1
log
((

1− µ
Nµ

)(
R (pm)
R (p)

− 1
)))

dp

= −∞.

By (9), this implies that there exists N̄ > 0 such that
∫ pm

p D(p)F (p)dp is decreasing in N

if N > N̄ .

Recall that the lower bound on tu is given by g(2(τ+tu))−g(τ+tu) =
∫ pm

p D(p)F (p)dp,

and the upper bound on tu is given by g(τ + tu) =
∫∞
p D(p)F (p)dp. Both of these bounds

are increasing in
∫ pm

p D(p)F (p)dp, and are therefore decreasing in N if N > N̄ . �

Proof of Proposition 7. For part (a) note that the conditions on g imply that

consumers will search once and will not search a second time if firms mix over prices as

they do in the equilibrium of the costless obfuscation model. Hence, the same calculations

as for the costless obfuscation model apply and show that there is no profitable deviation

that involves zero obfuscation. Deviations that involve positive obfuscation are also not

profitable, because they cannot lead to making greater sales (for any price weakly less than

pm) and any obfuscation costs incurred will only reduce profits.

For part (b), note first that Lemmas 2 and 3 imply that prices are distributed according

to some atomless distribution F ∗ on some interval [p, p] with p > c. We must have p ≤ pm

because any price greater than p > pm is dominated by setting p = pm and using the same
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obfuscation level. We claim that firms setting prices p0 in a neighborhood of p must sell to

all consumers who visit them first. To see this, first note that if they did not sell to any

consumers who visit them first then they earn arbitrarily small profits (which is impossible,

since all firms must earn the same, strictly positive level of profits in any SE), as consumers

purchase only from the lowest-price firm they visit, and firms with prices close to p̄ have

a vanishingly small probability of being the lowest-price firm visited by any consumer who

has searched more than once. And if such a firm sells to only some of those consumers

that visit it first, it can cut prices by an arbitrarily small amount and sell to all of these

consumers, yielding a discrete gain in profits. Such firms must also be choosing obfuscation

levels satisfying

Et[g(2τ + t+ t(p0))]− g(τ + t(p0)) =
∫ p0

p
D(p)F ∗(p)dp if t (p0) > 0

Et[g(2τ + t)]− g(τ) ≥
∫ p0

p
D(p)F ∗(p)dp if t (p0) = 0

where F ∗(p) is the equilibrium price distribution. Therefore, by the assumption that g (2τ)−

g (τ) < V (pm), if p̄ = pm then t (p0) > 0 for all p0 just below p̄. Hence, if p̄ = pm, then for

all p0 just below p a first-order approximation to the profit function is

R(p0)
1− µ
N
− c(t(p0))).

This expression is strictly decreasing for p0 near pm, because R′(pm) = 0 and the cost term

has a nonzero derivative. Hence, p cannot be equal to pm. �

Proof of Proposition 9. We note first that it suffices to show that there is a δ such

that firms always obfuscate to the extent necessary so that consumers do not conduct a

second search when δ < δ. This suffices because the benefit of a second search is strictly

increasing in p so the convexity of g implies that a larger t is needed to deter obfuscation

when p is higher (and c(t) strictly increasing implies firms choose the smallest t that deters

a second search). Showing that no consumers will search twice takes a few steps but is not

difficult. Let p be the lower bound of the support of the equilibrium price distribution in

a nontrivial SE. Strict convexity of g and τ > 0 imply that there is a positive ∆ such that

consumers will never do a second search if p ≤ p+ ∆. Let t be such that a consumer who

sees price pm and obfuscation t would never conduct a second search even if he expects to
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find p = 0 on the next search; such a t̄ exists by the assumption that limt→∞ g
′ (t) =∞ and

the fact that τ > 0. Because a firm can deviate to setting price pm and doing obfuscation t

we can give uniform lower bound on equilibrium profits when δ is small. This also implies

a uniform lower bound on p which is strictly above cost. The fact that profits are at least

(µ(1−F (p))N−1 + (1−µ)/N)R(p) when prices are in [p, p+ ∆] then gives a uniform lower

bound on what F (p + ∆) can be. If some consumers did search for a second time in a

nontrivial SE, then this must occur when they see prices at some p̂ above p + ∆ (and

all such consumers must conduct a second search, as otherwise a firm would rather price

slightly below p̂ than at p̂). This is impossible, however, for δ small, because deviating to

set price p̂ and do obfuscation t would be more profitable: the cost of this obfuscation δC(t)

goes to zero as δ → 0, whereas the benefit is bounded below by 1−µ
N F (p+ ∆)R(p) and we

have noted that all of these terms are uniformly bounded away from 0 when δ is small. �

Proof of Proposition 10. The proof for the p̄ = pm case is similar to the p̄ < p∗ case

and is omitted; it may also be found in the working paper version.

The first part of the proposition is the usual condition for firms to be indifferent between

charging any two prices in
[
p∗, p∗

]
, as in Stahl (1989), for example.

For the second part, first note that the conditions τ + θ ≤
∫ p∗
p∗ D(p)Fp∗(p)dp and −θ ≤∫∞

p∗ D(p)dp hold if and only if there exists a t̄ ≥ 0 such that τ + t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp and

τ + θ + t̄ =
∫ p∗
p∗ D(p)Fp∗(p)dp. To see this, note that if the first pair of conditions hold,

then taking t̄ =
∫ p∗
p∗ D(p)Fp∗(p)dp − (τ + θ) gives a value for which the desired inequality

and equality both hold using that
∫ p∗
p∗ D(p)Fp∗(p)dp +

∫∞
p∗ D(p)dp =

∫∞
p∗ D(p)Fp∗(p)dp.

And conversely and if there exists a t̄ ≥ 0 with the two desired properties then τ + θ ≤∫ p∗
p∗ D(p)Fp∗(p)dp is immediate and −θ ≤

∫∞
p∗ D(p)dp follows by subtracting the equality

that holds for t̄ from the inequality also assumed to hold for t̄.

Now if there is no t̄ ≥ 0 such that τ + t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp and τ + θ + t̄ =∫ p∗

p∗ D(p)Fp∗(p)dp, there can be no SE of the desired form. To see this, first note that

costly searchers will not enter if the first inequality is violated and costly searchers will

search for a second time if they observe price p∗ and face average obfuscation t̄ if the right-

hand side of the equality is strictly greater than the left-hand side, which is impossible in

SE by Lemma 5. And if the right-hand side of the equality is strictly less than the left-hand
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side, then a firm would be able to profitably deviate to setting price slightly above p > p∗,

as costly searchers would still buy at such a price with probability one and such a firm

makes zero profit from costless searchers.

If there exists a t̄ ≥ 0 such that τ+t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp and τ+θ+t̄ =

∫ p∗
p∗ D(p)Fp∗(p)dp,

consider the strategy profile where all firms set obfuscation level equal to
∫ p∗
p∗ D(p)Fp∗(p)dp−

(τ + θ) ≥ 0 and randomize their prices according to Fp∗(p), and suppose that consumers

search optimally and have the off-equilibrium path belief that θ = θ if they ever observe

p /∈
[
p∗, p∗

]
. Under these strategies, firms sell to all consumers who visit them first and

are indifferent among all prices in
[
p∗, p∗

]
, so the only deviation that could possibly be

profitable would be that to a price greater that p∗. But a consumer that observes p̂ > p∗

expects to face search cost
∫ p∗
p∗ D(p)Fp∗(p)dp − (τ + θ) + τ + θ =

∫ p∗
p∗ D(p)Fp∗(p)dp from

searching again and to receive expected benefit
∫ p̂
p∗ D(p)Fp∗(p)dp >

∫ p∗
p∗ D(p)Fp∗(p)dp from

doing so, so a firm that deviated to such a price would not sell to consumers. So this is a

SE.

In addition, it is immediate that the set of nontrivial SE with supremum of Fp∗ (p) given

by p∗ must be as stated in the Proposition, as in the proof of Proposition 2.

Finally, suppose that τ ≤
∫∞
pm D(p)Fpm(p)dp. If −θ ≤

∫∞
pm D(p)dp, then a nontriv-

ial SE with p∗ = pm exists. So suppose that −θ >
∫∞
pm D(p)dp. Then 0 < τ + θ <∫ pm

pm D(p)Fpm(p)dp. Note that
∫ p∗
p∗ D(p)Fp∗(p)dp equals 0 if p∗ equals 0, equals

∫ pm

pm D(p)Fpm(p)dp

if p∗ equals pm, and is continuous in p∗. Therefore, the Intermediate Value Theorem implies

that there exists a p∗ such that τ + θ =
∫ p∗
p∗ D(p)Fp∗(p)dp. Therefore,

−θ = τ −
∫ p∗

p∗
D(p)Fp∗(p)dp

≤
∫ ∞
pm

D(p)Fpm(p)dp−
∫ p∗

p∗
D(p)Fp∗(p)dp

≤
∫ ∞
pm

D(p)dp

≤
∫ ∞
p∗

D(p)dp

where the second inequality again uses the assumption that
∫ p∗
p∗ D(p)Fp∗(p)dp is increasing

in p∗ for p∗ < pm. The characterization in the first part of the proposition then implies
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that a SE exists with p̄ = p∗. �

Proof of Proposition 12. Suppose that θ′ ≥ θ and u′ ≤ u, where u is a SE value

of consumer welfare with lower bound on θ given by θ and u′ is a SE value of consumer

welfare with this lower bound given by θ′. Denote the upper bound of the price distribution

yielding consumer welfare u by p̄ and denote the corresponding upper bound for u′ by p̄′.

We must show that u′ is a SE value when the lower bound is given by θ and that u is a SE

value when this bound is given by θ′.

We have that p̄ and p̄′ are both less than pm, so the proof of Proposition 10 gives that∫ p̄
p̄ = τ+θ+t̄ and

∫ p̄′
p̄′ = τ+θ+t̄′, where t̄ and t̄′ are average obfuscation levels corresponding

to SE with price upper bound p̄ and welfare u, and price upper bound p̄′ and welfare u′,

respectively. Recall that u =
∫∞
p̄ Fp̄(p)D(p)dp− τ − t̄, so we have u =

∫∞
p̄ D(p)dp+ θ and

u′ =
∫∞
p̄′ D(p)dp+ θ′. Since u′ ≤ u, this implies that p̄′ ≥ p̄. Therefore, we have

u′ =
∫ ∞
p̄′

D(p)dp+ θ′ ≤ u ≤
∫ ∞
p̄

D(p)dp+ θ′

The Intermediate Value Theorem then implies that there exists p∗ ∈ [p̄, p̄′] such that u =∫∞
p∗ D(p)dp+θ′, which then implies that u is a SE value of consumer welfare when the lower

bound on θ is given by θ′ and the upper bound on p is given by p∗. The argument for u′ is

similar. �
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