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Approximating the influence of a monotone Boolean function in
O(
√
n) query complexity

Dana Ron∗ Ronitt Rubinfeld† Muli Safra‡ Omri Weinstein§

January 28, 2011

Abstract

The Total Influence(Average Sensitivity) of a discrete function is one of its fundamental mea-
sures. We study the problem of approximating the total influence of a monotone Boolean function
f : {0, 1}n → {0, 1}, which we denote byI[f ]. We present a randomized algorithm that ap-
proximates the influence of such functions to within a multiplicative factor of(1 ± ǫ) by performing

O
(√

n logn

I[f ] poly(1/ǫ)
)

queries. We also prove a lower bound ofΩ
( √

n

logn·I[f ]

)

on the query complexity

of any constant-factor approximation algorithm for this problem (which holds forI[f ] = Ω(1)), hence
showing that our algorithm is almost optimal in terms of its dependence onn. For general functions we

give a lower bound ofΩ
(

n
I[f ]

)

, which matches the complexity of a simple sampling algorithm.
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1 Introduction

The influence of a function, first introduced by Ben-Or and Linial [2] in the context of “collective coin-
flipping”, captures the notion of the sensitivity of a multivariate function. More precisely, for a Boolean

function f : {0, 1}n → {0, 1}, the individual influenceof coordinatei on f is defined asIi[f ]
def
=

Prx∈{0,1}n [f(x) 6= f(x(⊕i))], wherex is selected uniformly1 in {0, 1}n andx(⊕i) denotesx with the ith

bit flipped. Thetotal influenceof a Boolean functionf (which we simply refer to asthe influenceof f ) is
I[f ] =

∑

i Ii[f ].

The study of the influence of a function and its individual influences (distribution) has been the focus
of many papers ( [2, 21, 7, 16, 34, 8, 35, 14, 6, 15, 28, 11] to mention a few – for a survey see [17]).
The influence of functions has played a central role in several areas of computer science. In particular,
this is true for distributed computing (e.g., [2, 21]), hardness of approximation (e.g., [12, 22]), learning
theory (e.g., [18, 9, 29, 30, 10])2 and property testing (e.g., [13, 4, 5, 26, 31]). The notion ofinfluence also
arises naturally in the context of probability theory (e.g., [32, 33, 3]), game theory (e.g., [24]), reliability
theory (e.g., [23]), as well as theoretical economics and political science (e.g., [1, 19, 20]).

Given that the influence is such a basic measure of functions and it plays an important role in many areas,
we believe it is of interest to study the algorithmic question of approximating the influence of a function as
efficiently as possible, that is by querying the function on as few inputs as possible. Specifically, the need
for an efficient approximation for a function’s influence might arise in the design of sublinear algorithms,
and in particular property testing algorithms.

As we show, one cannot improve on a standard sampling argument for the problem of estimating the
influence of a general Boolean function, which requiresΩ( n

I[f ]) queries to the function, for any constant

multiplicative estimation factor.3 This fact justifies the study of subclasses of Boolean functions, among
which the family of monotone functions is a very natural and central one. Indeed, we show that the special
structure of monotone functions implies a useful behavior of their influence, and thus the computational
problem of approximating the influence of such functions becomes significantly easier.

1.1 Our results and techniques

We present a randomized algorithm that approximates the influence of a monotone Boolean function to

within any multiplicative factor of(1 ± ǫ) in O
(√

n logn
I[f ] poly(1/ǫ)

)

expected query complexity. We also

prove an almost matching lower bound ofΩ
( √

n
logn·I[f ]

)

on the query complexity of any constant-factor

approximation algorithm for this problem (which holds forI[f ] = Ω(1)).

As noted above, the influence of a function can be approximated by sampling random edges (i.e., pairs
(x, x(⊕i)) that differ on a single coordinate) from the{0, 1}n lattice. A random edge has probabilityI[f ]n to
be influential (i.e, satisfyf(x) 6= f(x(⊕i))), so a standard sampling argument implies that it suffices toask
O( n

I[f ]poly(1/ǫ)) queries in order to approximate this probability to within(1± ǫ).4

1The influence can be defined with respect to other probabilityspaces (as well as for non-Boolean functions), but we focus on
the above definition.

2Here we referenced several works in which the influence appears explicitly. The influence of variables plays an implicit role in
many learning algorithms, and in particular those that build on Fourier analysis, beginning with [25].

3 If one wants anadditiveerror ofǫ, thenΩ((n/ǫ)2) queries are necessary (when the influence is large) [27].
4We also note that in the case of monotone functions, the totalinfluence equals twice the sum of the Fourier coefficients
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In order to achieve better query complexity, we would like toincrease the probability of hitting an
influential edge in a single trial. The algorithm we present captures this intuition, by taking random walks
down the{0, 1}n lattice5, and then averaging the total number of influential edges encountered in all walks
over the number of walks taken. The crucial observation on which the algorithm relies, is that a monotone
function can have at most one influential edge in a single path, and thus it is sufficient to query only the start
and end points of the walk to determine whether any influential edge was traversed.

Before continuing the technical discussion concerning thealgorithm and its analysis, we make the fol-
lowing more conceptual note. Random walks have numerous applications in Computer Science as they are
an important tool for mixing and sampling almost uniformly.In our context, where the walk is performed
on the domain of an unknown function, it is used for a different purpose. Namely, by querying only the two
endpoints of a random walk (starting from a uniformly sampled element) we (roughly) simulate the process
of taking a much larger sample of elements.

The main issue that remains is determining the length of the walk, which we denote byw. Let pw(f)
denote the probability that a walk of lengthw (down the lattice and from a uniformly selected starting point)
passes through some influential edge.6 We are interested in analyzing howpw(f) increases as a function of
w. We show that forw that isO(ǫ

√

n/ log n), the value ofpw(f) increases almost linearly withw. Namely,
it is (1± ǫ) · wn · I[f ]. Thus, by takingw to beΘ(ǫ

√

n/ log n) we get an improvement by a factor of roughly√
n on the basic sampling algorithm. We note though that by taking w to be larger we cannot ensure in

general the same behavior ofpw(f) as a function ofw andI[f ], since the behavior might vary significantly
depending onf .

The way we prove the aforementioned dependence ofpw(f) onw is roughly as follows. For any edge
e in the Boolean lattice, letpw(e) denote the probability that a walk of lengthw (as defined above) passes
throughe. By the observation made previously, that a monotone function can have at most one influential
edge in a given path,pw(f) is the sum ofpw(e), taken over all edgese that are influential with respect tof .
For our purposes it is important thatpw(e) be roughly the same for almost all edges. Otherwise, different
functions that have the same number of influential edges, andhence the same influenceI[f ], but whose
influential edges are distributed differently in the Boolean lattice, would give different values forpw(f).
We show that forw = O(ǫ

√

n/ log n), the value ofpw(e) increases almost linearly withw for all but a
negligible fraction of the influential edges (where ‘negligible’ is with respect toI[f ]). This implies that
pw(f) grows roughly linearly inw for w = O(ǫ

√

n/ log n).

To demonstrate the benefit of taking walks of lengthO(
√
n), let us consider the classic example of the

Majority function onn variables. Here, all influential edges are concentrated in the exact middle levels of
the lattice (i.e, all of them are of the form(x, x(⊕i)) where the Hamming weight ofx is ⌊n/2⌋ or ⌈n/2⌉).
The probability,pw(e), of a walk of lengthw passing through an influential edgee is simply the probability
of starting the walk at distance at mostw above the thresholdn/2. Thus, taking longer walks allows us,
so to speak, to start our walk from a higher point in the lattice, and still hit an influential edge. Since the
probability of a uniformly chosen point to fall in each one ofthe the first

√
n levels above the middle is

roughly the same, the probability of hitting an influential edge in that case indeed grows roughly linearly

that correspond to singleton sets{i}, i ∈ {1, . . . , n}. Therefore, it is possible to approximate the influence of a function by

approximating this sum, which equals1
2n

·
∑n

i=1

(

∑

x∈{0,1}n:xi=1 f(x)−
∑

x∈{0,1}n:xi=0 f(x)
)

. However, the direct sampling

approach for such an approximation again requiresΩ(n/I [f ]) samples.
5That is, starting from a randomly selected point in{0, 1}n, at each step, if the current point isx, we uniformly select an index

i such thatxi = 1 and continue the walk tox(⊕i).
6For technical reasons we actually consider a slightly different measure thanpw(f), but we ignore this technicality in the

introduction.
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in the size of the walk. Nevertheless, taking walks of lengthwhich significantly exceedsO(
√
n) (say, even

Ω(
√

n · log(n))) would add negligible contribution to that probability (asthis contribution is equivalent to
the probability of a uniformly chosen point to deviateΩ(

√

n · log(n)) levels from the middle level) and thus
the linear dependence on the length of the walk is no longer preserved.

2 Preliminaries

In the introduction we defined the influence of a function as the sum, over all its variables, of their individual
influence. An equivalent definition is that the influence of a functionf is the expected number of sensitive
coordinates for a random inputx ∈ {0, 1}n (that is, those coordinatesi for whichf(x) 6= f(x(⊕i))).

It will occasionally be convenient to viewf as a2-coloring of the Boolean lattice. Under this setting,
any “bi-chromatic” edge, i.e, an edge(x, x(⊕i)) such thatf(x) 6= f(x(⊕i)), will be called aninfluential
edge. The number of influential edges of a Boolean functionf is 2n−1 · I[f ].7

We consider the standard partial order ‘≺’ over the (n-dimensional) Boolean lattice. Namely, forx =
(x1, ..., xn), y = (y1, ..., yn) ∈ {0, 1}n, we use the notationx ≺ y to mean thatxi ≤ yi for every1 ≤ i ≤ n,
andxi < yi for some1 ≤ i ≤ n. A Boolean functionf : {0, 1}n → {0, 1} is said to bemonotone
if f(x) ≤ f(y) for all x ≺ y. A well known isoperimetric inequality implies that any monotone Boolean
function satisfiesI[f ] = O(

√
n) (see [16] for a proof). This bound is tight for the notableMajority function.

In this paper we deal mainly with monotone Boolean functionsthat have at least constant Influence
(i.e, I[f ] ≥ c, for somec ≥ 0), since the computational problem we study arises more naturally when the
function has some significant sensitivity. As shown in [21],the influence of a function is lower bounded
by 4 · Pr[f = 1] · Pr[f = 0], and so our analysis holds in particular for functions that are not too biased
(relatively balanced).

Notations. We use the notationf(n) = Õ(g(n)) if f(n) = O(g(n)polylog(g(n))). Similarly, f(n) =
Ω̃(g(n)) if f(n) = Ω(g(n)/polylog(g(n))).

3 The Algorithm

As noted in the introduction, we can easily get a(1± ǫ)-factor estimate of the influence with high constant

probability by uniformly samplingΘ
(

n
I[f ] · ǫ−2

)

pairs(x, x(⊕i)) (edges in the Boolean lattice), querying

the function on these pairs, and considering the fraction ofinfluential edges observed in the sample. We refer
to this as thedirect sampling approach. However, since we are interested in an algorithm whose complexity
is

√
n

I[f ] · poly(1/ǫ) we take a different approach. To be precise, the algorithm wedescribe works forǫ that

is above a certain threshold (of the order of
√

log n/n). However, ifǫ is smaller, then n
I[f ] · ǫ−2 is upper

bounded by
√
n

I[f ] ·poly(1/ǫ), and we can take the direct sampling approach. Thus we assumefrom this point

on thatǫ = ω(
√

log n/n).

As discussed in the introduction, instead of considering neighboring pairs,(x, x(⊕i)), we consider pairs
(v, u) such thatv ≻ u and there is a path down the lattice of length roughlyǫ

√
n betweenv andu. Observe

that since the functionf is monotone, if the path (down the lattice) fromv to u contains an influential edge,

7To verify this, observe that when partitioning the Boolean lattice into two sets with respect to a coordinatei, we end up with
2n−1 vertices in each set. The individual influence of variablei, Ii[f ], is the fraction of the “bi-chromatic” edges among all edges
crossing the cut. SinceI [f ] =

∑n
i=1 Ii[f ] we get that the total number of influential edges is2n−1 · I [f ].
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thenf(v) 6= f(u), and furthermore, any such path can contain at most one influential edge. The intuition is
that since we “can’t afford” to detect influential edges directly, we raise our probability of detecting edges
by considering longer paths.

In our analysis we show that this intuition can be formalizedso as to establish the correctness of the
algorithm. We stress that when considering a path, the algorithm only queries its endpoints, so that it
“doesn’t pay” for the length of the path. The precise detailsof the algorithm are given in Figure 1. When
we say that we take a walk of a certain lengthw down the Boolean latticewith a cut-off at a certain levelℓ,
we mean that we stop the walk (before taking allw steps) if we reach a point in levelℓ (i.e., with Hamming
weightℓ).

Note thatm, the number of walks taken, is a random variable. Namely, thealgorithm continues taking
new walks until the number of “successful” walks (that is, walks that pass through an influential edge)
reaches a certain threshold, which is denoted byt. The reason for doing this, rather than deterministically
setting the number of walks and considering the random variable which is the number of successful walks, is
that the latter approach requires to know a lower bound on theinfluence off . While it is possible to search
for such a lower bound (by working iteratively in phases and decreasing the lower bound on the influence
between phases) our approach yields a somewhat simpler algorithm.

Algorithm 1 : Approximating the Influence (given ǫ, δ and oracle access tof )

1. Set̃ǫ = ǫ/4, w = ǫ̃
√
n

16
√

2 log( 2n
ǫ̃
)
, s∗ = 1

2

√

2n log(2nǫ̃ ), andt =
96 ln ( 2

δ
)

ǫ2
.

2. Initializeα← 0, m← 0, andÎ ← 0.

3. Repeat the following untilα = t:

(a) Perform a random walk of lengthw down the{0, 1}n lattice from a uniformly chosen point
v with a cut-off atn/2− s∗ − 1, and letu denote the endpoint of the walk.

(b) If f(u) 6= f(v) thenα←− α+ 1.

(c) m← m+ 1

4. Î ← n
w · t

m

5. ReturnÎ .

Figure 1:The algorithm for approximating the influence of a functionf .

In what follows we assume for simplicity thatI[f ] ≥ 1. As we discuss subsequently, this assumption
can be easily replaced byI[f ] ≥ c for any constantc > 0, or evenI[f ] ≥ n−c, by performing a slight
modification in the setting of the parameters of the algorithm.

Theorem 3.1 For every monotone functionf : {0, 1}n → {0, 1} such thatI[f ] ≥ 1, and for everyδ > 0
andǫ = ω(

√

log n/n), with probability at least1− δ, the output,̂I, of Algorithm 1 satisfies:

(1− ǫ) · I[f ] ≤ Î ≤ (1 + ǫ) · I[f ] .

Furthermore, with probability at least1 − δ, the number of queries performed by the algorithm is

O
(

log(1/δ)
ǫ3 ·

√
n log(n/ǫ)
I[f ]

)

.
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We note that the (probabilistic) bound on the number of queries performed by the algorithm implies that

the expected query complexity of the algorithm isO
(

log(1/δ)
ǫ3

·
√
n log(n/ǫ)
I[f ]

)

. Furthermore, the probability

that the algorithm performs a number of queries that is more thank times the expected value decreases
exponentially withk.

The next definition is central to our analysis.

Definition 1 For a (monotone) Boolean functionf and integersw ands∗, letpw,s∗(f) denote the probability
that a random walk of lengthw down the Boolean lattice, from a uniformly selected point and with a cut-off
at n/2− s∗ − 1, starts fromf(v) = 1 and reachesf(u) = 0.

Given the definition ofpw,s∗(f), we next state and prove the main lemma on which the proof of Theo-
rem 3.1 is based.

Lemma 3.2 Let f satisfyI[f ] ≥ 1, let ǫ > 0 satisfyǫ >
8
√

2 log( 8n
ǫ
)

√
n

, and denotẽǫ = ǫ/4. For any

w ≤ ǫ̃
√
n

16
√

2 log( 2n
ǫ̃I[f ]

)
and fors∗ = 1

2

√
n ·
√

2 log(2nǫ̃ ) we have that

(1− ǫ/2) · w
n
· I[f ] ≤ pw,s∗(f) ≤ (1 + ǫ/2) · w

n
· I[f ] .

Proof: For a pointy ∈ {0, 1}n, let h(y) denote its Hamming weight (which we also refer to as thelevel

in the Boolean lattice that it belongs to). By the choice ofs∗ = 1
2

√
n
√

2 log(2nǫ̃ ), and sinceI[f ] ≥ 1,

the number of pointsy for which h(y) ≥ n/2 + s∗ or h(y) ≤ n/2 − s∗, is upper bounded by2n · ǫ̃I[f ]n .
Each such pointy is incident ton edges, and each edge has two endpoints. It follows that thereare at most
2n−1 · ǫ̃I[f ] edges(y, x) for which h(y) ≥ n/2 + s∗ or h(y) ≤ n/2 − s∗. Recall that an influential edge
(y, x) for h(y) = h(x) + 1, is an edge that satisfiesf(y) = 1 andf(x) = 0. Let es∗(f) denote the number
of influential edges(y, x) such thatn/2−s∗ ≤ h(x), h(y) ≤ n/2+s∗. Since the total number of influential
edges is2n−1I[f ], we have that

(1− ǫ̃) · 2n−1I[f ] ≤ es∗(f) ≤ 2n−1I[f ] . (1)

Consider any influential edge(y, x) whereh(y) = ℓ andℓ ≥ n/2 − s∗. We are interested in obtaining

bounds on the probability that a random walk of lengthw (wherew ≤ ǫ̃
√
n

16
√

2 log( 2n
ǫ̃I[f ]

)
) down the lattice,

starting from a uniformly selected pointv ∈ {0, 1}n, and with a cut-off atn/2 − s∗ − 1, passes through
(y, x). First, there is the event thatv = y and the edge(y, x) was selected in the first step of the walk. This
event occurs with probability2−n · 1ℓ . Next there is the event thatv is at distance1 from y (and above it,
that is,h(v) = h(y) + 1 = ℓ+ 1), and the edges(v, y) and(y, x) are selected. This occurs with probability
2−n · (n − ℓ) · 1

ℓ+1 · 1ℓ . In general, for every1 ≤ i ≤ w − 1 we have(n − ℓ) · · · (n − ℓ − i + 1) pairs
(v, P ) wherev ≻ y andw(v) = ℓ+ i, and whereP is a path down the lattice fromv to y. The probability
of selectingv as the starting vertex is2−n and the probability of taking the pathP from v is 1

(ℓ+i)···(ℓ+1) .
Therefore, the probability that the random walk passes through(y, x) is:

2−n · 1
ℓ
·
(

1 +

w−1
∑

i=1

(n− ℓ) · · · (n − ℓ− i+ 1)

(ℓ+ i) · · · (ℓ+ 1)

)

= 2−n · 1
ℓ



1 +

w−1
∑

i=1

i−1
∏

j=0

n− ℓ− j

ℓ+ i− j



 . (2)
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Let ℓ = n/2 + s (wheres may be negative), and denoteτ(ℓ, i, j)
def
= n−ℓ−j

ℓ+i−j . Then

τ(ℓ, i, j) =
n/2− s− j

n/2 + s+ i− j
= 1− 2s + i

n/2 + s+ i− j
. (3)

Consider first the case thatℓ ≥ n/2, i.e ℓ = n/2+ s (s ≥ 0). In that case it is clear thatτ(ℓ, i, j) ≤ 1 (since
j ≤ i), so

∏i−1
j=0 τ(ℓ, i, j) is upper bounded by 1. In order to lower bound

∏i−1
j=0 τ(ℓ, i, j), we note that

τ(ℓ, i, j) ≥ 1− 2s+ w

n/2
= 1− 2(2s + w)

n
. (4)

Thus, fors ≤ s∗ we have

i−1
∏

j=0

τ(ℓ, i, j) ≥
i−1
∏

j=0

(

1− 2(2s + w)

n

)

≥
(

1− 2(2s +w)

n

)w

(sincei ≤ w)

≥ 1− 2(2s + w)w

n

≥ 1− 6s∗w
n

(2s + w ≥ 3s∗ sinces ≤ s∗ andw ≤ s∗)

= 1− 3ǫ̃

16
(by the definitions ofs∗ andw)

≥ 1− ǫ̃/2 . (5)

Therefore, we have that forn/2 ≤ ℓ ≤ n/2 + s∗,

1− ǫ̃/2 ≤
i−1
∏

j=0

n− ℓ− j

ℓ+ i− j
≤ 1 , (6)

and forℓ > n/2 + s∗ it holds that
i−1
∏

j=0

n− ℓ− j

ℓ+ i− j
≤ 1 . (7)

We turn to the case wheren/2− s∗ ≤ ℓ < n/2. Here we have

τ(ℓ, i, j) = 1 +
2s− i

n/2− s+ i− j
≥ 1− 2w

n− 2w
≥ 1− 4w

n
(8)

where the last inequality follows from the fact thatw < n/4. Thus,

i−1
∏

j=0

τ(ℓ, i, j) ≥
(

1− 4w

n

)w

≥ 1−4w2

n
= 1− 4

n
·





ǫ̃
√
n

16
√

2 log( 2n
ǫ̃I[f ])





2

> 1−ǫ̃2/2 > 1−ǫ̃/2 . (9)

6



On the other hand,

τ(ℓ, i, j) = 1 +
2s− i

n/2− s+ i− j
≤ 1 +

2s

n/2− s
≤ 1 +

8s∗

n
, (10)

where the last inequality holds sincen ≥ 2s. Thus, we have

i−1
∏

j=0

τ(ℓ, i, j) ≤
(

1 +
8s∗

n

)w

≤ 1 +
16s∗w

n
= 1 + ǫ̃/2 . (11)

where the second inequality follows from the inequality(1 + α)k ≤ 1 + 2αk which holds forα < 1/(2k);
Indeed, in our case8s∗/n ≤ 1/(2w) (this is equivalent tow ≤ n/16s∗ which holds given our setting ofs∗

and the upper bound onw).

We therefore have that forn/2− s∗ ≤ ℓ < n/2,

1− ǫ̃/2 ≤
i−1
∏

j=0

n− ℓ− j

ℓ+ i− j
≤ 1 + ǫ̃/2 . (12)

Combining Equations (6) and (12), we have that forn/2− s∗ ≤ ℓ ≤ n/2 + s∗,

1− ǫ̃/2 ≤
i−1
∏

j=0

n− ℓ− j

ℓ+ i− j
≤ 1 + ǫ̃/2 . (13)

Now, we are interested in summing up the probability, over all random walks, that the walk passes through an
influential edge. Since the function is monotone, every random walk passes through at most one influential
edge, so the sets of random walks that correspond to different influential edges are disjoint (that is, the event
that a walk passes through an influential edge(y, x) is disjoint from the event that it passes through another
influential edge(y′, x′)). Since the edges that contribute topw,s∗(f) are all from levelsℓ ≥ n/2 − s∗ (and
since there are2n−1I[f ] influential edges in total), by Equations (2), (7) and (13) wehave

pw,s∗(f) ≤ 2n−1I[f ]2−n · 1

n/2− s∗

(

1 +

w−1
∑

i=1

(1 + ǫ̃/2)

)

(14)

≤ 1

2
I[f ] · 1

n/2− s∗
· w(1 + ǫ̃/2) (15)

≤ 1

2
I[f ] · 2

n
(1 + ǫ̃) · w(1 + ǫ̃/2) (16)

≤ I[f ] · w
n

· (1 + 2ǫ̃) (17)

=
I[f ] · w

n
(1 + ǫ/2) , (18)

where Equation (16) follows from the definition ofs∗, the premise of the lemma thatǫ >
8
√

2 log( 8n
ǫ
)

√
n

and

ǫ̃ = ǫ/4.

7



For lower boundingpw,s∗(f), we will consider only the contribution of the influential edges that belong to
levelsℓ ≤ n/2 + s∗. Consequently, Equations (1), (2) and (13) give in total

pw,s∗(f) ≥ 2n−1(1− ǫ̃)I[f ]2−n · 1

n/2 + s∗

(

1 +
w−1
∑

i=1

(1− ǫ̃/2)

)

(19)

≥ 1

2
I[f ](1− ǫ̃)w(1 − ˜ǫ/2) · 1

n/2 + s∗
(20)

≥ 1

2
I[f ] · w(1− ǫ̃)(1− ˜ǫ/2) · 2

n
(1− ǫ̃) (21)

≥ I[f ] · w
n

(1− 2ǫ̃) (22)

=
I[f ] · w

n
(1− ǫ/2) , (23)

where Equation (21) follows from the definition ofs∗, the premise of the lemma thatǫ >
8
√

2 log( 8n
ǫ
)

√
n

and

ǫ̃ = ǫ/4.

Equations (18) and (23) give

(1− ǫ/2) · w
n
· I[f ] ≤ pw,s∗(f) ≤ (1 + ǫ/2) · w

n
· I[f ] , (24)

as claimed in the Lemma.

Proof of Theorem 3.1: Forw ands∗ as set by the algorithm, letpw,s∗(f) be as in Definition 1, where we
shall use the shorthandp(f). Recall thatm is a random variable denoting the number of iterations performed
by the algorithm until it stops (onceα = t). Let m̃ = t

p(f) , m̃1 = m̃
(1+ǫ/4) , andm̃2 = m̃

(1−ǫ/4) . We say
that an iteration of the algorithm issuccessfulif the walk taken in that iteration passes through an influential
edge (so that the value ofα is increased by1). Let p̂(f) = t

m denote the fraction of successful iterations.

Suppose that̃m1 ≤ m ≤ m̃2. In such a case,

(1− ǫ/4) · p(f) ≤ p̂(f) ≤ (1 + ǫ/4)p(f) (25)

sincep̂(f) = t
m = p(f)·m̃

m . By the definition of the algorithm,̂I = n
w · t

M = n
w · p̂(f) so by Lemma 3.2

(recall that by the premise of the theorem,ǫ = ω(
√

log n/n)) we have

(1− ǫ)I[f ] ≤ (1− ǫ/2)(1 − ǫ/4)I[f ] ≤ Î ≤ (1 + ǫ/4)(1 + ǫ/2)I[f ] ≤ (1 + ǫ)I[f ] (26)

and thus (assuming̃m1 ≤ m ≤ m̃2), the output of the algorithm provides the estimation we arelooking for.

It remains to prove that̃m1 ≤ m ≤ m̃2 with probability at least1 − δ. Let Xi denote the indicator
random variable whose value is1 if and only if the ith iteration of the algorithm was successful, and let
X =

∑m̃1
i=1Xi. By the definition ofXi, we have thatE[Xi] = p(f), and so (by the definition of̃m1 andm̃)

we have thatE[X] = m̃1 · p(f) = t
1+ǫ/4 Hence, by applying the multiplicative Chernoff bound,

Pr[m < m̃1] = Pr[X > t] = Pr[X > (1 + ǫ/4)E[X]] ≤ exp

(

−1

3

( ǫ

4

)2 t

1 + ǫ/4

)

≤ exp

(

−ǫ2t

96

)

(27)

8



Thus, fort =
96 ln ( 2

δ
)

ǫ2
we have thatPr[m < m̃1] ≤ δ

2 . By an analogous argument we get thatPr[m >

m̃2] ≤ δ
2 , and som̃1 ≤ m ≤ m̃2 with probability at least1− δ, as desired.

Since we have shown thatm ≤ m̃2 with probability at least1 − δ, and the query complexity of the
algorithm isO(m), we have that, with probability at least1− δ, the query complexity is upper bounded by

O(m̃2) = O

(

t

p(f)

)

= O

(

t · n
w · I[f ]

)

= O

(

log(1/δ)

ǫ3
·
√
n log(n/ǫ)

I[f ]

)

, (28)

as required.

Remark. We assumed thatI[f ] ≥ 1 only for the sake of technical simplicity. This assumption can be
replaced withI[f ] ≥ 1

nc for any constantc ≥ 0, and the only modifications needed in the algorithm and

its analysis are the following. The level of the cutoffs∗ should be set tos∗ =
√

n/2 ·
√

log( 2n
ǫ̃n−c ) =

1
2

√
n
√

2c log(2n) + log(1/ǫ̃) (which is a constant factor larger than the current setting), and the lengthw

of the walks in the algorithm should be set tow = ǫ̃
√
n

16
√

2 log( 2n
ǫ̃n−c )

(which is a constant factor smaller than

the current setting).

The first modification follows from the fact that the number ofpointsy whose Hamming weighth(y) is
at leastn/2 + r ·

√

n/2 or at mostn/2 − r ·
√

n/2 is upper bounded by2n · 2e−r2 . This implies that the
number of edges(y, x) (whereh(y) = h(x)+1) such thath(y) ≥ n/2+r ·

√

n/2 orh(y) ≤ n/2−r ·
√

n/2

is upper bounded byn · 2n · 2−r2 . Requiring that the latter is no more thanǫ̃ · I[f ]2n−1 ≥ ǫ̃ · n−c2n−1 (i.e,
ǫ̃-fraction of the total number of influential edges), yields the desiredr, wheres∗ = r

√

n/2. The second
modification, i.e, in the length of the walk, is governed by the choice ofs∗, since, by the analysis, their
product should be bounded byO(ǫ̃n). Since in both expressions1/I[f ] = nc appears only inside alog
term, this translates only to constant factor increase.

We note that the lower bound we give in Section 4 applies only to functions with (at least) constant
influence, and so in the above case whereI[f ] = 1/poly(n), the tightness of the algorithm (in terms of
query complexity) is not guaranteed.

4 A Lower Bound

In this section we prove a lower bound ofΩ
( √

n
I[f ]·logn

)

on the query complexity of approximating the

influence of monotone functions. Following it we explain howa related construction gives a lower bound

of Ω
(

n
I[f ]

)

on approximating the influence ofgeneralfunctions. The idea for the first lower bound is the

following. We show that any algorithm that performso
( √

n
I[f ]·logn

)

queries cannot distinguish with constant

success probability between that following: (1) A certain threshold function (over a relatively small number
of variables), and (2) A function selected uniformly at random from a certain family of functions that have
significantly higher influence than the threshold function.The functions in this family can be viewed as
“hiding their influence behind the threshold function”. More precise details follow.

We first introduce one more notation. For any integer1 ≤ k ≤ n and0 ≤ t ≤ k, let τ tk : {0, 1}n →
{0, 1} be thet-threshold functionoverx1, . . . , xk. That is,τ tk(x) = 1 if and only if

∑k
i=1 xi ≥ t. Observe

that (since for every1 ≤ i ≤ k we have thatIi[τ tk] = 2−k ·2 ·
(

k−1
t−1

)

while for i > k we have thatIi[τ tk] = 0),

I[τ tk] = k · 2−(k−1) ·
(

k−1
t−1

)

.
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The above observation implies that for every sufficiently large k (k ≥ 2 log n suffices), there exists a
setting oft < k/2, which we denote byt(k, 1), such thatI[τ t(k,1)k ] = 1 − o(1) (where theo(1) is with
respect tok). This setting satisfies

( k−1
t(k,1)−1

)

= Θ(2k/k) (so thatt(k, 1) = k/2 −Θ(
√
k log k)).

Theorem 4.1 For everyI∗ such that2 ≤ I∗ ≤ √n/ log n, there exists a family of monotone functionsFI∗
such thatI[f ] ≥ I∗ for everyf ∈ FI∗ , but any algorithm that distinguishes with probability at least2/3

between a uniformly selected function inFI∗ andτ t(k,1)k for k = 2 log n, must performΩ
( √

n
I∗·logn

)

queries.

In particular, consideringI∗ = c for any constantc ≥ 2, we get that every algorithm for approximating
the influence to within a multiplicative factor of

√
c must performΩ̃(

√
n) queries. If we increase the

lower bound on the influence, then the lower bound on the complexity of the algorithm decreases, but the
approximation factor (for which the lower bound holds), increases. We note that the functions for which the
lower bound construction hold are not balanced, but we can easily make them very close to balanced without
any substantial change in the argument (by “ORing”τ

t(k,1)
k as well as every function inFI∗ with x1). We

also note that forI∗ = Ω(
√
log n) we can slightly improve the lower bound on approximating theinfluence

to Ω

( √
n

I∗·
√

log(
√
n/I∗)

)

(for a slightly smaller approximation factor). We address this issue following the

proof.

Proof: For k = 2 log n and for any0 ≤ t ≤ k, let Lt
k

def
= {x ∈ {0, 1}k :

∑k
i=1 xi = t}. We shall also

use the shorthand̃t for t(k, 1). Fixing a choice ofI∗, each function inFI∗ is defined by a subsetR of Lt̃
k

where|R| = β(I∗) · 2k for β(I∗) that is set subsequently. We denote the corresponding function byfR and
define it as follows: For everyx ∈ {0, 1}n, if x1 . . . xk /∈ R, thenfR(x) = τ t̃k(x), and ifx1 . . . xk ∈ R, then
fR(x) = maj′n−k(x), wheremaj′n−k(x) = 1 if and only if

∑n
i=k+1 xi > (n− k)/2. By this definition, for

everyfR ∈ FI∗

I[fR] ≥ β(I∗) · I[maj′n−k] . (29)

If we takeβ(I∗) to beβ(I∗) = I∗/I[maj′n−k] = cI∗/
√
n− k (for c that is roughly

√

π/2), then inFI∗

every function has influence at leastI∗. Sinceβ(I∗) is upper bounded by|Lt̃
k|/2k, which is of the order of

k/2k = 2 log n/2k, this construction is applicable toI∗ = O(
√
n/ log n).

Consider an algorithm that needs to distinguish betweenτ t̃k and a uniformly selectedfR ∈ FI∗ . Clearly,
as long as the algorithm doesn’t perform a query onx such thatx1 . . . xk ∈ R, the value returned byfR
is the same as that ofτ t̃k. But sinceR is selected uniformly inLt̃

k, as long as the algorithm performs less

than
|Lt̃

k|
c′·β(I∗)·2k queries (wherec′ is some sufficiently large constant), with high constant probability (over

the choice ofR), it won’t “hit” a point in R. Since
|Lt̃

k|
c′·β(I∗)·2k = Θ

( √
n

logn·I∗
)

, the theorem follows.

In order to get the aforementioned slightly higher lower bound for I∗ = Ω(
√
log n), we modify the

settings in the proof of Theorem 4.1 in the following manner.We setk = log(
√
n/I∗) and t = k/2

(so that the “low influence” function is simply a majority function overk variables,τk/2k ). For the “high

influence” function, we letR consist of a single point̃x in L
k/2
k , where for eachR = {x̃} we have a

different function inFI∗ (as defined in the proof of Theorem 4.1). It follows that for each suchR, I[fR] =

(1 − o(1))
√
k + 1

2k

√
n− k ≥ I∗, while I[τ

k/2
k ] ≈

√
k = O(

√
log n). By the same argument as in the

proof of Theorem 4.1, if the algorithm preforms less than
c′|Lk/2

k |
|R| = 2k

c′
√
k

=
√
n

c′I∗
√

log(
√

n
I∗ )

queries (for
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small enoughc′), with high probability it won’t “hit” x̃, and thus will not be able to distinguish between a
randomly selected functionf ∈ fR (where the randomness is over the choice ofx̃ ∈ L

k/2
k ) andτk/2k .

A lower bound of Ω(n/I[f ]) for general functions. We note that for general (not necessarily monotone)
functions, there is a lower bound ofΩ(n/I[f ]) on estimating the influence, which implies that it is not
possible in general to improve on the simple edge-sampling approach (in terms of the dependence onn and
I[f ]). Similarly to what we showed in the case of monotone functions, we show that for everyI∗ ≥ 2, it
is hard to distinguish between the dictatorship functionf(x) = x1 (for which I[f ] = 1) and a uniformly
selected function in a familyFI∗ of functions, where every function inFI∗ has influence at leastI∗.

Similarly to the construction in the proof of Theorem 4.1, weconsider the firstk variables, where here
k = log n. FixingI∗ (whereI∗ = o(n) or else the lower bound is trivial), each function inFI∗ is defined by a
subsetR of {0, 1}k such that|R| = I∗. We denote the corresponding function byfR and define it as follows:
For everyx ∈ {0, 1}n, if x1 . . . xk /∈ R thenfR(x) = x1, and ifx1 . . . xk ∈ R, we letfR(x) =

⊕n
i=k+1 xi.

By this definition (since2k = n), for everyfR ∈ FI∗ I[fR] ≥ (1 − 2I∗/n) + (I∗/n) · (n − k) ≥ I∗. The
argument for establishing that it is hard to distinguish betweenf(x) = xi and a uniformly selected function
in FI∗ is essentially the same as in the proof of Theorem 4.1.
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