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O(4/n) query complexity
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Abstract

The Total Influence(Average Sensitivijyof a discrete function is one of its fundamental mea-
sures. We study the problem of approximating the total imfb@eof a monotone Boolean function
f : {0,1}™ — {0,1}, which we denote by/[f]. We present a randomized algorithm that ap-
proximates the influence of such functions to within a mlittgtive factor of(1 + €) by performing

(0] (‘/ﬁl[l;]g"poly(l/e)) queries. We also prove a lower bound(b(ﬁ) on the query complexity
of any constant-factor approximation algorithm for thislgiem (which holds fod [f] = (1)), hence
showing that our algorithm is almost optimal in terms of ipdndence on. For general functions we

give a lower bound of2 (L) which matches the complexity of a simple sampling algamith

I1f]
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1 Introduction

The influence of a function, first introduced by Ben-Or andidlifi2] in the context of “collective coin-

flipping”, captures the notion of the sensitivity of a mudtiiate function. More precisely, for a Boolean

function f : {0,1}» — {0,1}, the individual influenceof coordinatei on f is defined asl;[f] %

Procioyn[f(z) # f(2(®D)], wherez is selected uniformfin {0,1}" andz(®9 denotesz with the it
bit flipped. Thetotal influenceof a Boolean functiory’ (which we simply refer to athe influenceof f) is
I[f] = %2 LIS

The study of the influence of a function and its individual uefices (distribution) has been the focus
of many papers (]2, 21)] 7,156,134, 8,1 35] 14/°6] [15,(28, 11] totimera few — for a survey seé [17]).
The influence of functions has played a central role in sé\@eas of computer science. In particular,
this is true for distributed computing (e.d.) [2,!21]), haeds of approximation (e.gl, [12,122]), learning
theory (e.g.,ﬂ@ﬂﬁ]}and property testing (e.gl, [13,/4,5]26] 31]). The notioméitience also
arises naturally in the context of probability theory (¢[82,(33,[3]), game theory (e.gl, [24]), reliability
theory (e.g.,[[28]), as well as theoretical economics adiigad science (e.g.[]1, 19, 20]).

Given that the influence is such a basic measure of functioti& plays an important role in many areas,
we believe it is of interest to study the algorithmic quastid approximating the influence of a function as
efficiently as possible, that is by querying the function srfew inputs as possible. Specifically, the need
for an efficient approximation for a function’s influence migrise in the design of sublinear algorithms,
and in particular property testing algorithms.

As we show, one cannot improve on a standard sampling arguimethe problem of estimating the
influence of a general Boolean function, which requ'ﬁ(sfﬁ) queries to the function, for any constant

multiplicative estimation factdt. This fact justifies the study of subclasses of Boolean fonsti among
which the family of monotone functions is a very natural ardtcal one. Indeed, we show that the special
structure of monotone functions implies a useful behavictheir influence, and thus the computational
problem of approximating the influence of such functionsonees significantly easier.

1.1 Our results and techniques

We present a randomized algorithm that approximates theeimée of a monotone Boolean function to

within any multiplicative factor of1 + ¢) in O (\/?}[I;}gnpoly(l/e)> expected query complexity. We also

prove an almost matching lower bound @f(ﬁ) on the query complexity of any constant-factor
approximation algorithm for this problem (which holds fdy| = Q(1)).

As noted above, the influence of a function can be approxinayesampling random edges (i.e., pairs
(z, () that differ on a single coordinate) from te, 11" lattice. A random edge has probabiliil&ﬂ to

be influential (i.e, satisfyf (z) # f(2(®9)), so a standard sampling argument implies that it sufficesko
O(ﬁpoly(l/e)) queries in order to approximate this probability to witiint- e)E

1The influence can be defined with respect to other probalsiiaces (as well as for non-Boolean functions), but we foaus o
the above definition.

Here we referenced several works in which the influence apgeglicitly. The influence of variables plays an implicite in
many learning algorithms, and in particular those thatdboil Fourier analysis, beginning with [25].

% If one wants aradditiveerror ofe, thenQ((n/€)?) queries are necessary (when the influence is large) [27].

“We also note that in the case of monotone functions, the iofisience equals twice the sum of the Fourier coefficients



In order to achieve better query complexity, we would likeirtorease the probability of hitting an
influential edge in a single trial. The algorithm we preseattares this intuition, by taking random walks
down the{0,1}" Iattic@, and then averaging the total number of influential edgeswartered in all walks
over the number of walks taken. The crucial observation oitlwthe algorithm relies, is that a monotone
function can have at most one influential edge in a single, gaith thus it is sufficient to query only the start
and end points of the walk to determine whether any influbatige was traversed.

Before continuing the technical discussion concerningalgerithm and its analysis, we make the fol-
lowing more conceptual note. Random walks have numerougcappns in Computer Science as they are
an important tool for mixing and sampling almost uniformlg. our context, where the walk is performed
on the domain of an unknown function, it is used for a difféqgumrpose. Namely, by querying only the two
endpoints of a random walk (starting from a uniformly sardmé&ement) we (roughly) simulate the process
of taking a much larger sample of elements.

The main issue that remains is determining the length of thi&wvhich we denote bw. Let p,(f)
denote the probability that a walk of lengih(down the lattice and from a uniformly selected startingpoi
passes through some influential eﬁgﬁle are interested in analyzing how(f) increases as a function of
w. We show that forw that isO(e+/n/ log n), the value of,,(f) increases almost linearly with. Namely,
itis (1+¢)-2-I[f]. Thus, by takingw to be©(e,/n/logn) we get an improvement by a factor of roughly
v/n on the basic sampling algorithm. We note though that by takirto be larger we cannot ensure in
general the same behaviormf (f) as a function ofv and|f], since the behavior might vary significantly
depending ory.

The way we prove the aforementioned dependengg,0f ) on w is roughly as follows. For any edge
e in the Boolean lattice, let,,(e) denote the probability that a walk of length(as defined above) passes
throughe. By the observation made previously, that a monotone fanatan have at most one influential
edge in a given pathy,, (f) is the sum o, (e), taken over all edgesthat are influential with respect th
For our purposes it is important thay,(¢) be roughly the same for almost all edges. Otherwise, diftere
functions that have the same number of influential edgeshende the same influend¢f|, but whose
influential edges are distributed differently in the Boaldattice, would give different values far, (f).
We show that forv = O(ey/n/logn), the value ofp,,(e) increases almost linearly wittr for all but a
negligible fraction of the influential edges (where ‘nedllg’ is with respect tol[f]). This implies that
pw(f) grows roughly linearly inv for w = O(ey/n/logn).

To demonstrate the benefit of taking walks of lengtfy/n), let us consider the classic example of the
Majority function onn variables. Here, all influential edges are concentratetierexact middle levels of
the lattice (i.e, all of them are of the forfm, 2(®9)) where the Hamming weight af is [n/2] or [n/2]).
The probability,p,,(e), of a walk of lengthw passing through an influential edgés simply the probability
of starting the walk at distance at mastabove the threshold /2. Thus, taking longer walks allows us,
so to speak, to start our walk from a higher point in the laftignd still hit an influential edge. Since the
probability of a uniformly chosen point to fall in each onethé the first,/n levels above the middle is
roughly the same, the probability of hitting an influentidige in that case indeed grows roughly linearly

that correspond to singleton seig}, ¢ € {1,...,n}. Therefore, it is possible to approximate the influence ofircfion by
approximating this sum, which equafs - >0, (Zze{(),l}":zizl (@) = > cro1ymm—o f(:c)). However, the direct sampling
approach for such an approximation again requites/I[f]) samples.

®That is, starting from a randomly selected poin{i; 1}", at each step, if the current pointiswe uniformly select an index
i such thatz; = 1 and continue the walk to(®9 .

®For technical reasons we actually consider a slightly difieé measure thap,,(f), but we ignore this technicality in the
introduction.



in the size of the walk. Nevertheless, taking walks of lengttich significantly exceed®(,/n) (say, even
Q(4/n - log(n))) would add negligible contribution to that probability (@ss contribution is equivalent to
the probability of a uniformly chosen point to devi&é,/n - log(n)) levels from the middle level) and thus
the linear dependence on the length of the walk is no longesgoved.

2 Preliminaries

In the introduction we defined the influence of a function asstlim, over all its variables, of their individual
influence. An equivalent definition is that the influence ofiadtion f is the expected number of sensitive
coordinates for a random inpute {0,1}" (that is, those coordinatégor which f(z) # f(2(®))).

It will occasionally be convenient to view as a2-coloring of the Boolean lattice. Under this setting,
any “bi-chromatic” edge, i.e, an edde, z(®") such thatf(z) # f az(@’ ﬁ will be called aninfluential
edge The number of influential edges of a Boolean functfois 271

We consider the standard partial order over the @-dimensional) Boolean lattice. Namely, for=
@1y 2n),y = (Y1, .-, yn) € {0,1}", we use the notatiom < y to mean that; < y, foreveryl <i <n,
andz; < y; for somel < i < n. A Boolean functionf : {0,1}" — {0,1} is said to bemonotone
if f(x) < f(y) forall z < y. A well known isoperimetric inequality implies that any natane Boolean
function satisfied|[f] = O(y/n) (seel[16] for a proof). This bound is tight for the notablejority function.

In this paper we deal mainly with monotone Boolean functitret have at least constant Influence
(i.e, I[f] > ¢, for somec > 0), since the computational problem we study arises moreastwhen the
function has some significant sensitivity. As shown[inl [2hE influence of a function is lower bounded
by 4 - Pr[f = 1] - Pr[f = 0], and so our analysis holds in particular for functions ttratreot too biased
(relatively balanced).

Notations. We use the notatiorf (n) = O(g(n)) if f(n) = O(g(n)polylog(g(n))). Similarly, f(n) =
Q(g(n)) it f(n) = Q(g(n)/polylog(g(n))).

3 The Algorithm

As noted in the introduction, we can easily gdtlat ¢)-factor estimate of the influence with high constant
probability by uniformly sampling® (I[T}} ) pairs (z, z(®?)) (edges in the Boolean lattice), querying
the function on these pairs, and considering the fractionfibfential edges observed in the sample. We refer
to this as thalirect sampling approachHowever, since we are interested in an algorithm whose txitp

is % - poly(1/e) we take a different approach. To be precise, the algorithndeseribe works foe that

is above a certain threshold (of the order\gfog n/n). However, ife is smaller, then. - =2 is upper

T [f}
bounded by% poly(1/e€), and we can take the direct sampling approach. Thus we afsoméhis point

on thate = w(y/logn/n).
As discussed in the introduction, instead of consideririghi®oring pairsz, (%), we consider pairs
(v,u) such that > u and there is a path down the lattice of length rough)$n betweerv andu. Observe

that since the functiorf is monotone, if the path (down the lattice) franto « contains an influential edge,

"To verify this, observe that when partitioning the Booleattite into two sets with respect to a coordingteve end up with
2"~ 1 vertices in each set. The individual influence of variablg [f], is the fraction of the “bi-chromatic” edges among all edges
crossing the cut. SincEf] = """ | I;[f] we get that the total number of influential edgeg's* - I[f].

3



then f(v) # f(u), and furthermore, any such path can contain at most one mi&ledge. The intuition is
that since we “can’t afford” to detect influential edges dilg we raise our probability of detecting edges
by considering longer paths.

In our analysis we show that this intuition can be formalizedas to establish the correctness of the
algorithm. We stress that when considering a path, the ihgoronly queries its endpoints, so that it
“doesn’t pay” for the length of the path. The precise detaflthe algorithm are given in Figuté 1. When
we say that we take a walk of a certain lengtldown the Boolean latticevith a cut-off at a certain levet,
we mean that we stop the walk (before takinguakbteps) if we reach a point in levéfi.e., with Hamming
weight?).

Note thatm, the number of walks taken, is a random variable. Namelyatgerithm continues taking
new walks until the number of “successful” walks (that is,Ikgathat pass through an influential edge)
reaches a certain threshold, which is denoted.byhe reason for doing this, rather than deterministically
setting the number of walks and considering the random ariahich is the number of successful walks, is
that the latter approach requires to know a lower bound oimfhesnce off. While it is possible to search
for such a lower bound (by working iteratively in phases aadrdasing the lower bound on the influence
between phases) our approach yields a somewhat simpleitligo

Algorithm 1: Approximating the Influence (givene, 6 and oracle access tg)

961n (2)

~ _ &v/n 1 2n _

2. Initialize o < 0, m « 0, and ] « 0.
3. Repeat the following until = ¢:

(a) Perform arandom walk of lengtlhh down the{0, 1}™ lattice from a uniformly chosen point
v with a cut-off atn/2 — s* — 1, and letu denote the endpoint of the walk.
(b) If f(u) # f(v) thena «— a + 1.

€ m«m+1
4, [+ 2.t
w m

5. Returnl.

Figure 1:The algorithm for approximating the influence of a functjfin

In what follows we assume for simplicity thaff] > 1. As we discuss subsequently, this assumption
can be easily replaced i f] > ¢ for any constant > 0, or evenI[f] > n~¢, by performing a slight
modification in the setting of the parameters of the algaorith

Theorem 3.1 For every monotone functiofi : {0,1}" — {0,1} such that/[f] > 1, and for everyy > 0
ande = w(y/log n/n), with probability at leasti — 9, the output,/, of Algorithm1 satisfies:

(L—e)- I[f]<T<(1+e)-1I[f].

Furthermore, with probability at least — ¢, the number of queries performed by the algorithm is
0 (log(;/é) _yn 1;[gf(}n/e)).

&3



We note that the (probabilistic) bound on the number of gseperformed by the algorithm implies that
the expected query complexity of the aIgorithnﬂs(lOgg/ 9. \/m}’[gf(]"/ E)). Furthermore, the probability
that the algorithm performs a number of queries that is mioa@ t times the expected value decreases
exponentially withk.

The next definition is central to our analysis.

Definition 1 For a (monotone) Boolean functighand integersv ands*, letp,, .«( f) denote the probability
that a random walk of lengtlhy down the Boolean lattice, from a uniformly selected poirtt @ith a cut-off
atn/2 — s* — 1, starts fromf(v) = 1 and reaches (u) = 0.

Given the definition op,, s+ (f), we next state and prove the main lemma on which the proof ebTh
rem(3.1 is based.

. 8y/2log(®")
, lete > 0 satisfye > 7

1 and denote = ¢/4. For any
V- y/2log(%) we have that

&y and fors* =

W< ——ee—e—
16,/2log(§%ﬁ7)

Lemma 3.2 Let f satisfyI[f] >
1
2

(1—€/2) —I[f] < pus(f) < (1+€/2)-—-I[f].

3|8
3|€

Proof: For a pointy € {0,1}", let h(y) denote its Hamming weight (which we also refer to asléwel
in the Boolean lattice that it belongs to). By the choicestf= 1,/ny/2log(%), and sincel[f] > 1,

the number of pointg for which h(y) > n/2 + s* or h(y) < n/2 — s*, is upper bounded by" - %[f]
Each such poiny is incident ton edges, and each edge has two endpoints. It follows that #nerat most
2n=1 . €1[f] edges(y, z) for which h(y) > n/2 + s* or h(y) < n/2 — s*. Recall that an influential edge
(y,x) for h(y) = h(x) + 1, is an edge that satisfiggy) = 1 and f(z) = 0. Lete-(f) denote the number
of influential edgesy, ) such that:/2 — s* < h(z), h(y) < n/2+s*. Since the total number of influential
edges i2"1I[f], we have that

(1—8) -2 M[f] < ex(f) < 27M[f]. (1)

Consider any influential edge;, ) whereh(y) = ¢ and? > n/2 — s*. We are interested in obtaining
bounds on the probability that a random walk of lengtiiwherew < ¢) down the lattice,

16\/@
starting from a uniformly selected pointe {0,1}", and with a cut-off atu/2 — s* — 1, passes through
(y, ). First, there is the event that= y and the edgéy, =) was selected in the first step of the walk. This
event occurs with probabilitp =" - % Next there is the event thatis at distance from y (and above it,
that is,h(v) = h( )+ 1 =1(+1),and the edge&, y) and(y, z) are selected. This occurs with probability
27" (n—10) - z+1 - 2. In general, for everyt < i < w — 1 we have(n — £)---(n — ¢ — i + 1) pairs
(v, P) wherev > y andw(v) = ¢ + i, and whereP is a path down the lattice fromto y. The probability

of selectingv as the starting vertex &~ and the probability of taking the path from v is
Therefore, the probability that the random walk passesutjingy, =) is:

—~ (n—L)---(n—L—i+1)\ __ i
( Z E—I—Z - (0+1) >_2 (1+ZH€—|—13)' @

1

=1 i=1 j=0



Let? = n/2 + s (wheres may be negative), and denaté/, i, j) et n—t-j Then

l+i—j
(6, g) = n/2—s—j L 25 +1 3)
Y n/2+s+i—j n/2+s+i—j

Consider first the case that> n/2,i.el = n/2 + s (s > 0). Inthat case itis clear that(¢,, j) < 1 (since
j <), so[[5—4 7(£,, j) is upper bounded by 1. In order to lower bod{d_(, (£, 4, j), we note that

_25+w:1_M. (4)

T(l,i,5) > 1 e -

Thus, fors < s* we have

ﬁT(M,j) > ]:[1 (1 _ M)

j=0 j=0
2(2 v .
> (1 — M) (sincei < w)
n
. 2(2s + w)w
n
> 1-— 057w (2s +w > 3s* sinces < s* andw < s%)
n
3é _
= 1- 1—2 (by the definitions o™ andw)
> 1-¢/2. (5)

Therefore, we have that for/2 < ¢ < n/2 + s*,

i—1 .
N n—~0—j
1—-€/2 < — <1 6
¢/ _H€+i—j - (©)
J=0
and for¢ > n/2 + s* it holds that
i—1 .
[ =<1 @)
=0 +1—7

We turn to the case where/2 — s* < ¢ < n/2. Here we have

28 — 1 2w 4w
i) = 14+ — > 1 — > 1] — — 8
7(6:4,5) +n/2—s+z’—j = n—2w n (8)

where the last inequality follows from the fact that< n/4. Thus,

2
i—1 w ~
[T = <1—4—w> > 1—% = 14-<€\/ﬁ) > 1-82/2 > 1-¢/2. (9)

=0 n 16, /2@(%)



On the other hand,

258 — 1 2s 8s*
(i) =1+ —m——— < 1 <1 10
7(60.) +’I’L/2—8+i—j - +n/2—s_ T (10)
where the last inequality holds sinae> 2s. Thus, we have
— 8s*\ " 16s*w
[[r.i) < <1+ > <1+ = 1+¢/2. (11)
n n

=0

where the second inequality follows from the inequality+ «)* < 1 + 2ak which holds fora < 1/(2k);
Indeed, in our cas&s*/n < 1/(2w) (this is equivalent tav < n/16s* which holds given our setting af
and the upper bound an).

We therefore have that for/2 — s* < ¢ < n/2,
1—6/2<ﬁw<1+€/2. (12)
T g
Combining Equationg{6) and {12), we have thatfge — s* < ¢ < n/2 + s*,
1—5/2<ﬁw<1+5/2. (13)
T g

Now, we are interested in summing up the probability, ovielaaldom walks, that the walk passes through an
influential edge. Since the function is monotone, every oamévalk passes through at most one influential
edge, so the sets of random walks that correspond to differmential edges are disjoint (that is, the event
that a walk passes through an influential e@ger) is disjoint from the event that it passes through another
influential edge(y’, 2')). Since the edges that contributeztg ;- (f) are all from leveld > n/2 — s* (and
since there are”~'I[f] influential edges in total), by Equatioris (2} (7) ahd (13)haee

w—1
puse(f) < 2“—11m2—”-ﬁ<1+;<1+e/2>> a4
< Sy w72 1)
< %I[f]'%(1+€)-w(1+€/2) (16)
< [[ﬂT’w.(Hze) (17)
_ [[fn‘w(1+e/2), (18)

8,/2log (8
where Equation(16) follows from the definition ef, the premise of the lemma that> % and
€=c¢/4.



For lower bounding,, - (f), we will consider only the contribution of the influentialgees that belong to
levels¢ < n/2 + s*. Consequently, Equationis| (1) (2) andl(13) give in total

Pust(f) = 2= If]27" n/2+s (”Zl—e/?) (19)
1 ~ 1

> S0 - Dl - /) s (20)

> ST w( - (- ¢2) - 2(1 -9 (21)

> ”"1'”(1—26) (22)

_ 7[””’7“”(1—6/2), (23)

1/ 21o, 8n
where Equation(21) follows from the definition sf, the premise of the lemma that> L\/g(e) and
€=c¢/4.

Equations[(1B) and (23) give

(1—e¢/2)-

w
n

I[f]épw,s*(f) (1+6/2)

3|€

IS, (24)

as claimed in the Lemma.l

Proof of Theorem[3.1: Forw ands* as set by the algorithm, let, s« (f) be as in Definitiofi 1L, where we
shall use the shorthand f). Recall thatn is a random variable denoting the number of iterations peréal
by the algorithm until it stops (once = ). Letm = —lx, iy = (14;%, andrmsy = JLW' We say
that an iteration of the algorithm &iccessfuif the walk taken in that iteration passes through an infliaént
edge (so that the value ofis increased by). Letp(f) = % denote the fraction of successful iterations.

Suppose that; < m < ms. In such a case,
(I—¢/4)-p(f) < p(f) < (A+€/4)p(f) (25)

sincep(f) = L = 2UL™ By the definition of the algorithm] = 2 . L = 2. j(f) so by Lemma3]2
(recall that by the premise of the theoremms w(4/logn/n)) we have

(1=aIlf] < Q—¢/2)(1—e/DI[f] < T < (I+e/4)(1+¢/2I[f] < (1+)I[f] (26)
and thus (assumingp; < m < ms»), the output of the algorithm provides the estimation welao&ing for.

It remains to prove thaf; < m < mso with probability at leastt — §. Let X; denote the indicator
random variable whose value isif and only if theth iteration of the algorithm was successful, and let
X =" X;. By the definition ofX,, we have thaE[X;] = p(f), and so (by the definition ofi; andm)

we have thaE[ |=m1-p(f) = 1+5/4 Hence, by applying the multiplicative Chernoff bound,

Pr[m <] = Pr[X > t] = Pr[X > (1+ ¢/4)E[X]] < exp <_% G>2 1 +te/4> < exp <_%>

(27)



2
Thus, fort = ﬂ;@ we have thaPr[m < m,] < g By an analogous argument we get tiafm >

ma] < g and son; < m < mo with probability at least — ¢, as desired.
Since we have shown that < 74 with probability at leastt — §, and the query complexity of the
algorithm isO(m), we have that, with probability at leakt- ¢, the query complexity is upper bounded by

o ~0(j) ~o(cty) - o4 )

as required. W

Remark. We assumed thak[f] > 1 only for the sake of technical simplicity. This assumpti@nde
replaced with/[f] > ni for any constant > 0, and the only modifications needed in the algorithm and

its analysis are the following. The level of the cuteff should be set ta* = /n/2 - log(ggﬁc) =

%\/ﬁ\/chog@n) + log(1/€) (which is a constant factor larger than the current settiagl the lengthw
of the walks in the algorithm should be setuio= S 2/ — (which is a constant factor smaller than

164/2log( E_jﬁc)
the current setting).

The first modification follows from the fact that the numbepofntsy whose Hamming weight(y) is
at leastn/2 + r - \/n/2 or at mostn/2 — r - /n/2 is upper bounded by - 2=, This implies that the
number of edgegy, ©) (Whereh(y) = h(z)+1) such that(y) > n/2+7r-y/n/2orh(y) < n/2—r-\/n/2
is upper bounded by - 2" - 2=7°. Requiring that the latter is no more thanI[f]2"! > ¢ - n=c2""! (i.e,
e-fraction of the total number of influential edges), yielte desired, wheres* = r\/n—/2. The second
modification, i.e, in the length of the walk, is governed bg tthoice ofs*, since, by the analysis, their
product should be bounded l6y(én). Since in both expressions/I[f] = n® appears only inside kg
term, this translates only to constant factor increase.

We note that the lower bound we give in Sectidn 4 applies amlfunctions with (at least) constant

influence, and so in the above case whEE = 1/poly(n), the tightness of the algorithm (in terms of
qguery complexity) is not guaranteed.

4 A Lower Bound

In this section we prove a lower bound @f(%) on the query complexity of approximating the
influence of monotone functions. Following it we explain hawelated construction gives a lower bound

of Q (ﬁ) on approximating the influence generalfunctions. The idea for the first lower bound is the

following. We show that any algorithm that perform%mL’ggn queries cannot distinguish with constant
success probability between that following: (1) A certdireshold function (over a relatively small number
of variables), and (2) A function selected uniformly at randfrom a certain family of functions that have
significantly higher influence than the threshold functidrhe functions in this family can be viewed as
“hiding their influence behind the threshold function”. Marecise details follow.

We first introduce one more notation. For any integex £ < n and0 <t < k, let T]i :{0,1}" —
{0,1} be thet-threshold functiorover 1, ..., z;. Thatis,7/(z) = 1 if and only if S°% | a; > t. Observe
that (since for every < i < k we have thaf;[r}] = 27%-2- (¥!) while fori > k we have thaf;[7{] = 0),

Irf] = k27070 (1),



The above observation implies that for every sufficienthgéek (K > 2logn suffices), there exists a
setting oft < k/2, which we denote by(k,1), such that[[T,i(k’l)] = 1 — o(1) (where theo(1) is with
respect tdk). This setting satisfieét(,ff)l_l) = 0(2%/k) (so thatt(k, 1) = k/2 — O(/Eklog k).

Theorem 4.1 For everyl* such tha < I'* < /n/logn, there exists a family of monotone functidris
such thatl[f] > I* for everyf € Fy-, but any algorithm that distinguishes with probability atbkt2/3

between a uniformly selected functionAp andr,i(k’l) for k = 2log n, must perform) (%) queries.

In particular, considerind* = ¢ for any constant > 2, we get that every algorithm for approximating
the influence to within a multiplicative factor af/c must performQ(,/n) queries. If we increase the
lower bound on the influence, then the lower bound on the cexitplof the algorithm decreases, but the
approximation factor (for which the lower bound holds),reeses. We note that the functions for which the
lower bound construction hold are not balanced, but we csityeaake them very close to balanced without
any substantial change in the argument (by “ORimﬁk’l) as well as every function i~ with z1). We
also note that for* = Q(/log n) we can slightly improve the lower bound on approximatingittiience

to Q NV for a S”g'ltl smaller approxilnation factor). We addrédsis issue fO”OWing the
f<[*-\/log(\/ﬁ/1*)> ( y )
prootf.

Proof: Fork = 2logn and for any0 < ¢ < k, let L}, o {x € {0,1}* : Zlexi = t}. We shall also
use the shorthandfor ¢(k, 1). Fixing a choice of/*, each function inFy- is defined by a subset of Lf;
where|R| = B(I*) - 2¥ for (I*) that is set subsequently. We denote the correspondingidarioy fz and
define it as follows: For every € {0,1}",if z1... 2, ¢ R, thenfgr(z) = 7}(x), and ifzy ...z € R, then
fr(x) = maj,_, (z), wheremaj;, ,(z) =1ifandonlyif}"" , , z; > (n — k)/2. By this definition, for
everyfr € Fr«
I[fr) > B(I) - Ilma, ] . (29)

If we take 5(I*) to be3(I*) = I*/I[maj,,_,] = cI*/v/n — k (for c that is roughly,/7/2), then in F-
every function has influence at ledst Since3(I*) is upper bounded b§L§;|/2’f, which is of the order of
k/2% = 21logn /2, this construction is applicable 16 = O(y/n/logn).

Consider an algorithm that needs to distinguish betwéemd a uniformly selectedly € Fr-. Clearly,

as long as the algorithm doesn’t perform a queryxosuch thatr; ...z, € R, the value returned byr
is the same as that of . But sinceR is selected uniformly irLt, as long as the algorithm performs less

than% gueries (where’ is some sufficiently large constant), with high constanbpitnlity (over
the choice off), it won't *hit” a point in . Since_—Itt— = © (144 ), the theorem follows.

In order to get the aforementioned slightly higher lower fimbdior 7* = Q(y/logn), we modify the
settings in the proof of Theorem 4.1 in the following mann®ve setk = log(\/n/I*) andt = k/2

(so that the “low influence” function is simply a majority fttion overk variables,r,f/Q). For the “high

influence” function, we letR consist of a single point in LZ/Q, where for each? = {Z} we have a
different function inF- (as defined in the proof of Theordm#.1). It follows that focteauchR, I[fr] =

(1= o)Wk + 56Vn —k > I*, while 117% ~ Vk = O(y/Iogn). By the same argument as in the
nrk/2 .
proof of Theoreni4l1, if the algorithm preforms less ths Lk‘ | 2>

_ _ Vn
vk c’I*\/log(I—‘/f)

gueries (for
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small enough?’), with high probability it won't “hit” z, and thus will not be able to distinguish between a

randomly selected functiofi € fr (where the randomness is over the choice ef Lz/z) andT,f/z.

A lower bound of Q(n/I[f]) for general functions. We note that for general (not necessarily monotone)
functions, there is a lower bound 6f(n/I[f]) on estimating the influence, which implies that it is not
possible in general to improve on the simple edge-samplapgaach (in terms of the dependenceroand
I[f]). Similarly to what we showed in the case of monotone fumstiove show that for every/* > 2, it

is hard to distinguish between the dictatorship functfgm) = x; (for which I[f] = 1) and a uniformly
selected function in a family7« of functions, where every function ifz, has influence at leagt.

Similarly to the construction in the proof of Theoréml4.1, eemsider the firsk variables, where here
k = logn. Fixing I* (wherel* = o(n) or else the lower bound is trivial), each function/ip is defined by a
subsetr of {0, 1}* such thatR| = I*. We denote the corresponding function ayand define it as follows:
Foreveryz € {0,1}",if z1... 23 ¢ Rthenfr(z) = z1, and ifzy ... 21 € R, we letfp(z) = @7, .
By this definition (since” = n), for every fr € Fr- I[fr] > (1 — 2I*/n) + (I*/n) - (n — k) > I*. The
argument for establishing that it is hard to distinguishweein f (x) = x; and a uniformly selected function
in F+ is essentially the same as in the proof of Thedrem 4.1.

11



References

[1] K. Arrow. A difficulty in the theory of social welfare. Journal of political economigss8:328—-346,
1950.

[2] M. Ben-Or and N. Linial. Collective coin flipping, robusbting schemes and minima of Banzhaf
values. InProceedings of the Twenty-Sixth Annual Symposium on Ftiondaof Computer Science
(FOCS) pages 408-416, 1985.

[3] I. Benjamini, G. Kalai, and O. Schramm. Noise sensiivif boolean functions and applications to
percolation.Inst. Hautes Etudes Sci. Publ. MatB0:5-43, 1999.

[4] E. Blais. Improved bounds for testing juntas.Rroceedings of the Twelfth International Workshop on
Randomization and Computation (RANDQIMdages 317-330, 2008.

[5] E. Blais. Testing juntas nearly optimally. Proceedings of the Fourty-First Annual ACM Symposium
on the Theory of Computing (STQ@®pges 151-158, 2009.

[6] R. Boppana. The average sensitivity of bounded depttuits. Information Processing Letters
63:257-261, 1997.

[7] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson, and N. Bini The influence of variables in product
spaceslsrael Journal of Math77:55-64, 1992.

[8] J. Bourgain and G. Kalai. Influences of variables andghodd intervals under group symmetries.
Geometric Functional Analaysig:438-461, 1997.

[9] N. Bshouty and C. Tamon. On the Fourier spectrum of mametfunctions. Journal of the ACM
43(4):747-770, 1996.

[10] I. Diakonikolas, P. Harsha, A. Klivans, R. Meka, P. Ragéndra, R. Servedio, and L.-Y. Tan. Bounding
the average sensitivity and noise sensitivity of polyndrfieeshold functions. IfProceedings of the
Fourty-Second Annual ACM Symposium on the Theory of Congp{8TOC)2010. To appear.

[11] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell. Ohne fourier tails of bounded functions over the
discrete cube. To appearligrael Journal of Math2010.

[12] I. Dinur and S. Safra. The importance of being biasedPidoceedings of the Thirty-Fourth Annual
ACM Symposium on the Theory of Computing (ST @&gJes 33-42, 2002.

[13] E. Fischer, G. Kindler, D. Ron, S. Safra, and S. Samadtskiyn Testing juntasJournal of Computer
and System SciencegB(4):753—-787, 2004.

[14] E. Friedgut. Boolean functions with low average sewvisjt depend on few coordinate€Combinator-
ica, 18(1):27-36, 1998.

[15] E. Friedgut. Influences in product spaces: KKL, BKKKlvigted. Combinatorics, Probability and
Computing 13:17-29, 2004.

[16] E. Friedgut and G. Kalai. Every monotone graph propbkey a sharp threshold. Rroc. Amer. Math.
Soc. 124pages 2993-3002, 1996.

12



[17] G.Kalai and S.Safra. Threshold phenomena and influeBoenputational Complexity and Statistical
Physics, A.G. Percus, G. Istrate and C. Moore, eds. (Oxforiv&isity Press, New York, 200@ages
25-60, 2006.

[18] T. Hancock and Y. Mansour. Learning monotokig: DNF formulas on product distributions. In
Proceedings of the Fourth Annual Workshop on Computatibeatning Theorey (COLTpages 179—
183, 1991.

[19] G. Kalai. A Fourier-theoretic perspective for the Contket Paradox and Arrow’s Theoremvances
in Applied Mathematics29:412-426, 2002.

[20] G. Kalai. Social indeterminacyeconometrica72:1565-1581, 2004.

[21] G. Kalai, J. Kahn, and N. Linial. The influence of variablon Boolean functions. IRroceedings
of the Twenty-Ninth Annual Symposium on Foundations of Q@njscience (FOCSpages 68-80,
1988.

[22] S. Khot. On the power of unique 2-prover 1-round game®rbceedings of the Thirty-Fourth Annual
ACM Symposium on the Theory of Computing (ST @&ges 767—775, 2002.

[23] M. Krivelevich, B. Sudakov, and V. H. Vu. A sharp thresthdor network reliability. Combinatorics,
Probability and Computingl1:465-474, 2002.

[24] E. Lehrer. An axiomatization of the Banzhaf valueternational Journal of Game Theqr{§7:89-99,
1988.

[25] N. Linial, Y. Mansour, and N. Nisan. Constant depth gits, Fourier transform, and learnability.
Journal of the ACM40(3):607-620, 1993.

[26] K. Matulef, R. O’Donnell, R. Rubinfed, and R. A. ServediTesting{—1,+1} halfspaces. IfPro-
ceedings of the Thirteenth International Workshop on Ramdation and Computation (RANDOM)
pages 646657, 2009.

[27] K. Matulef, R. Servedio, and K. Wimmer. Personal comination. 2009.

[28] R. O’Donnell, M. Saks, O. Schramm, and R. Servedio. i£dercision tree has an influential variable.
In Proceedings of the Forty-Sixth Annual Symposium on Foimaaibf Computer Science (FOCS)
pages 31-39, 2005.

[29] R. O’Donnell and R. Servedio. Learning monotone decigirees in polynomial timeSIAM Journal
on Computing37(3):827-844, 2007.

[30] R.O’Donnell and R. Servedio. The Chow parameters @mblinProceedings of the Fourtieth Annual
ACM Symposium on the Theory of Computing (ST@&ges 517-526, 2008.

[31] D. Ron and G. Tsur. Testing membership in width-2 OBDOs. Proceedings of the Thirteenth
International Workshop on Randomization and ComputatRANDOM) pages 686—699, 2009.

[32] L. Russo. On the critical percolation probabilities. Wahrsch. Verw. Gelb6:229-237, 1981.

[33] M. Talagrand. On Russo’s approximédlte- 1 law. Annals of Probability 22:1576-1587, 1994.

13



[34] M. Talagrand. How much are increasing sets correla@ambinatorica 16:243—-258, 1996.
[35] M. Talagrand. On boundaries and influenc€embinatorica 17:275-285, 1997.

14



	1 Introduction
	1.1 Our results and techniques

	2 Preliminaries
	3 The Algorithm
	4 A Lower Bound

