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Abstract— Capacity scaling laws are analyzed in an underwa-
ter acoustic network with n regularly located nodes. A narrow-
band model is assumed where the carrier frequency is allowed
to scale as a function of n. In the network, we characterize an
attenuation parameter that depends on the frequency scaling as
well as the transmission distance. A cut-set upper bound on the
throughput scaling is then derived in extended networks. Our
result indicates that the upper bound is inversely proportional
to the attenuation parameter, thus resulting in a highly power-
limited network. Furthermore, we describe an achievable scheme
based on the simple nearest-neighbor multi-hop (MH) transmis-
sion. It is shown under extended networks that the MH scheme is
order-optimal as the attenuation parameter scales exponentially
with

√
n (or faster). Finally, these scaling results are extended to

a random network realization.

I. INTRODUCTION

A pioneering work of [1], introduced by Gupta and Kumar,
characterized the sum throughput scaling in a large wireless
radio network. They showed that the total throughput scales
as Θ(

√
n/ log n) when a multi-hop (MH) routing strategy is

used for n source-destination (S–D) pairs randomly distributed
in a unit area.1 MH schemes are then further developed and
analyzed in [2], [3]. A recent result [4] has shown that an
almost linear throughput in the radio network, i.e., Θ(n1−ε) for
an arbitrarily small ε > 0, is achievable by using a hierarchical
cooperation strategy.

Along with the studies in terrestrial radio networks, the
interest in study of underwater networks has been growing
with recent advances in acoustic communication technol-
ogy [5], [6]. In underwater acoustic communication systems,
both bandwidth and power are severely limited due to the
exponential (rather than polynomial) path-loss attenuation with
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0831728, and by the ONR grant No. N00014-09-1-0700.

1We use the following notations: i) f(x) = O(g(x)) means that there exist
constants C and c such that f(x) ≤ Cg(x) for all x > c. ii) f(x) = o(g(x))

means that lim
x→∞

f(x)
g(x)

= 0. iii) f(x) = Ω(g(x)) if g(x) = O(f(x)).

iv) f(x) = ω(g(x)) if g(x) = o(f(x)). v) f(x) = Θ(g(x)) if f(x) =
O(g(x)) and g(x) = O(f(x)).

propagation distance and frequency-dependent attenuation.
This is a main feature that distinguishes underwater systems
from wireless radio links. Based on these characteristics,
network coding schemes [6]–[8] have been presented for
underwater acoustic channels. One natural question is what
are the fundamental capabilities of underwater networks in
supporting multiple S–D pairs over an acoustic channel. To
answer this question, the throughput scaling for underwater
networks of unit area was first studied [9], where n nodes
were arbitrarily located in a planar disk of unit area and the
carrier frequency was set to a constant independent of n. That
work showed an upper bound on the throughput of each node
based on the physical model assumption in [1]. This upper
bound scales as n−1/αe−W0(Θ(n−1/α)), where α corresponds
to the spreading factor of the underwater channel, and W0

represents the branch zero of the Lambert function [10].2 Since
the spreading factor typically has values in the range 1 ≤ α ≤
2 [9], the throughput per node decreases almost as O(n−1/α)
for large enough n, which is considerably faster than the
Θ(

√
n) scaling characterized for wireless radio settings [1].

In this paper, a capacity scaling law for underwater networks
is analyzed in extended networks of unit node density. Espe-
cially, we are interested in the case where the carrier frequency
scales as a certain function of n in a narrow-band model. Such
an assumption changes the scaling behavior significantly due
to the attenuation characteristics. We aim to study both an
information-theoretic upper bound and achievable scaling rate.

We explicitly characterize an attenuation parameter that
depends on the transmission distance and also on the carrier
frequency. For networks with n regularly distributed nodes, we
derive an upper bound on the total throughput scaling using the
cut-set bound. Our upper bound is based on the characteristics
of power-limited regimes shown in [4]. In extended networks,
it is shown that the upper bound is inversely proportional to
the attenuation parameter. This leads to a highly power-limited
network for all the operating regimes. Interestingly, it is seen
that unlike the case of wireless radio networks, our upper
bound heavily depends on the attenuation parameter but not on
the spreading factor (corresponding to the path-loss exponent

2The Lambert W function is defined to be the inverse of the function z =
W (z)eW (z) and the branch satisfying W (z) ≥ −1 is denoted by W0(z).
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in wireless networks). In addition, to constructively show our
achievability result for extended regular networks, we describe
the conventional nearest-neighbor MH transmission [1] with
a slight modification, and analyze its achievable throughput.
It is shown under extended networks that the achievable rate
based on the MH routing scheme matches the upper bound
within a factor of n with arbitrarily small exponent as long as
the attenuation parameter increases exponentially with respect
to

√
n (or faster). Furthermore, a random network scenario is

also discussed.
The rest of this paper is organized as follows. Section II

describes our system and channel models. In Section III,
the cut-set upper bound on the throughput is derived. In
Section IV, achievable throughput scaling is analyzed. These
results are extended to the random network case in Section V.
Finally, Section VI summarizes the paper with some conclud-
ing remarks. We refer to the full paper [11] for the detailed
description and all the proofs.

II. SYSTEM AND CHANNEL MODELS

We consider a two-dimensional underwater network that
consists of n nodes on a square with unit node density such
that two neighboring nodes are 1 unit of distance apart from
each other in an extended network, i.e., a regular network [12],
[13]. We randomly pick a matching of S–D pairs, so that each
node is the destination of exactly one source. We assume
frequency-flat channel of bandwidth W Hz around carrier
frequency f , which satisfies f � W , i.e., narrow-band
model. This is a highly simplified model, but nonetheless
one that suffices to demonstrate the fundamental mechanisms
that govern capacity scaling. Assuming that all the nodes
have perfectly directional transmissions, we also disregard
multipath propagation. Each node has an average transmit
power constraint P (constant), and we assume that the channel
state information is available at all receivers, but not at the
transmitters. It is assumed that each node transmits at a rate
T (n)/n, where T (n) denotes the total throughput of the
network.

Now let us turn to channel modeling. An underwater acous-
tic channel is characterized by an attenuation that depends
on both the distance rki between nodes i and k (i, k ∈
{1, · · · , n}) and the signal frequency f , and is given by

A(rki, f) = c0r
α
kia(f)rki (1)

for some constant c0 > 0 independent of n, where α is the
spreading factor and a(f) > 1 is the absorption coefficient [5].
The spreading factor describes the geometry of propagation
and is typically 1 ≤ α ≤ 2. Note that existing models of
wireless networks typically correspond to the case for which
a(f) = 1 (or a positive constant independent of n) and α > 2.

A common empirical model gives a(f) in dB/km for f in
kHz as [5]:

10 log a(f) = a0 + a1f
2 + a2

f2

b1 + f2
+ a3

f2

b2 + f2
,

where {a0, · · · , a3, b1, b2} are positive constants independent
of n. As mentioned earlier, we will allow the carrier frequency
f to scale with n. Especially, we consider the case where the
frequency scales at arbitrarily increasing rates relative to n.
The absorption a(f) is then an increasing function of f such
that

a(f) = Θ(ec1f2
) (2)

with respect to f for some constant c1 > 0 independent of n.
The noise ni at node i ∈ {1, · · · , n} in an acoustic chan-

nel can be modeled through four basic sources: turbulence,
shipping, waves, and thermal noise [5]. We assume that ni is
the circularly symmetric complex additive colored Gaussian
noise with zero mean and power spectral density (psd) N(f),
and thus the noise is frequency-dependent. The overall psd of
four sources decays linearly on the logarithmic scale in the
frequency region 100 Hz – 100 kHz, which is the operating
regime used by the majority of acoustic systems, and thus is
approximately given by [5]

log N(f) = a4 − a5 log f

for some positive constants a4 and a5 independent of n. This
means that N(f) = O(1) since

N(f) = Θ
(

1
fa5

)
(3)

in terms of f increasing with n.
The received signal yk at node k ∈ {1, · · · , n} at a given

time instance is given by

yk =
∑
i∈I

hkixi + nk,

where

hki =
ejθki√

A(rki, f)
, (4)

represents the channel, xi ∈ C is the signal transmitted by
node i and I ⊂ {1, · · · , n} is the set of simultaneously
transmitting nodes. The random phases ejθki are uniformly
distributed over [0, 2π) and independent for different i, k, and
time. We thus assume a narrow-band time-varying channel,
whose gain changes to a new independent value for every
symbol.

Based on the above channel characteristics, operating
regimes of the network are identified according to the fol-
lowing physical parameters: the absorption a(f) and the noise
psd N(f) which are exploited here by choosing the frequency
f based on the number n of nodes. In other words, if the
relationship between f and n is specified, then a(f) and N(f)
can be given by a certain scaling function of n from (2) and
(3), respectively.

III. CUT-SET UPPER BOUND

To access the fundamental limits of an underwater network,
a cut-set upper bound on the total throughput scaling is ana-
lyzed from an information-theoretic perspective [14]. Specifi-
cally, an upper bound based on the power transfer argument [4]
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Fig. 1. The cut L in a two-dimensional extended regular network. SL and
DL represent the sets of source and destination nodes, respectively.

is established for extended networks. Note, however, that the
present problem is not equivalent to the conventional extended
network framework [4] due to different channel characteristics.
Our interest is particularly in the operating regimes for which
the upper bound is tight.

Consider a given cut L dividing the network area into two
halves as in [4], [15] (see Fig. 1). Let SL and DL denote the
sets of sources and destinations, respectively, for the cut L in
the network. More precisely, under L, source nodes SL are on
the left, while all nodes on the right are destinations DL. In this
case, we have an Θ(n)×Θ(n) multiple-input multiple-output
(MIMO) channel between the two sets of nodes separated by
the cut.

In an extended network, we take into account an approach
based on the amount of power transferred across the network
according to different operating regimes. As pointed out in [4],
the information transfer from SL to DL is highly power-
limited since all the nodes in the set DL are ill-connected
to the left-half network in terms of power. This implies that
the information transfer is bounded by the total received power
transfer, rather than the cardinality of the set DL. For the cut
L, the total throughput T (n) for sources on the left is bounded
by the (ergodic) capacity of the MIMO channel between SL

and DL under time-varying channel assumption, and thus is
given by

T (n) ≤ max
QL≥0

E

[
log det

(
IΘ(n) +

1
N(f)

HLQLHH
L

)]
, (5)

where HL is the matrix with entries [HL]ki for i ∈ SL, k ∈
DL, and QL ∈ C

Θ(n)×Θ(n) is the positive semi-definite input
signal covariance matrix whose k-th diagonal element satisfies
[QL]kk ≤ P for k ∈ SL.

The relationship in (5) will be further specified in Theo-
rem 1. Before that, we first apply the techniques of [4], [16] to
obtain the total power transfer of the set DL. These techniques
involves the relaxation of the individual power constraints to
a total weighted power constraint, where the weight assigned
to each source corresponds to the total received power on
the other side of the cut. To be specific, each column i of
the matrix HL is normalized by the square root of the total
received power on the other side of the cut from source i ∈ SL.
From (1) and (4), the total power P

(i)
L received from the signal

sent by the source i is given by

P
(i)
L = Pd

(i)
L , (6)

where

d
(i)
L =

1
c0

∑
k∈DL

r−α
ki a(f)−rki (7)

for some constant c0 > 0 independent of n. For convenience,
we now index the node positions such that the source and des-
tination nodes under the cut L are located at positions (−ix +
1, iy) and (kx, ky), respectively, for ix, kx = 1, · · · ,

√
n/2 and

iy, ky = 1, · · · ,
√

n. The scaling result of d
(i)
L defined in (7)

can be derived as follows.
Lemma 1: In an extended network, the term d

(i)
L in (7) is

d
(i)
L = Θ

(
i1−α
x a(f)−ix

)
,

where −ix + 1 represents the horizontal coordinate of node
i ∈ SL for ix = 1, · · · ,

√
n/2.

The proof of this lemma is obtained by finding upper and
lower bounds on d

(i)
L from layering techniques. The expression

(5) is then rewritten as

max
Q̃L≥0

E

[
log det

(
IΘ(n) +

1
N(f)

FLQ̃LFH
L

)]
, (8)

where FL is the matrix with entries [FL]ki = 1√
d
(i)
L

[HL]ki,

which are obtained from (7), for i ∈ SL, k ∈ DL. Here, Q̃L

is the matrix satisfying
[
Q̃L

]
ki

=
√

d
(k)
L d

(i)
L [QL]ki ,

which means tr(Q̃L) ≤ ∑
i∈SL

P
(i)
L .

We next examine the behavior of the largest singular value
for the normalized channel matrix FL, and then show how
much it affects an upper bound on (8). We first address the
case where FL is well-conditioned according to the attenuation
parameter a(f).

Lemma 2: Let FL denote the normalized channel matrix
defined by the expression (8). Under the attenuation regimes
a(f) = Ω

(
(1 + ε0)

√
n
)

for an arbitrarily small ε0 > 0, we
have that

E
[
‖FL‖2

2

]
≤ c2 log n

for some constant c2 > 0 independent of n.
Note that the matrix FL is well-conditioned as a(f) scales

exponentially with respect to
√

n (or faster). Otherwise, i.e.,
if a(f) = o

(
(1 + ε0)

√
n
)
, the largest singular value of FL

scales as a polynomial factor of n, thus resulting in a loose
upper bound on the total throughput. Using Lemma 2, we
obtain the following result.

Lemma 3: Under a(f) = Ω
(
(1 + ε0)

√
n
)
, the term (8) is

upper-bounded by

nε

N(f)

∑
i∈SL

P
(i)
L (9)
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for arbitrarily small positive constants ε0 and ε, where P
(i)
L is

given by (6).
Note that (9) represents the total amount of received signal-

to-noise ratio from the set SL of sources to the set DL of
destinations for a given cut L. We are now ready to show the
cut-set upper bound in extended networks.

Theorem 1: For an underwater regular network of unit
node density, where the absorption coefficient a(f) scales as

Ω
(
(1 + ε0)

√
n
)

for an arbitrarily small ε0 > 0, the total

throughput T (n) is upper-bounded by

T (n) ≤ c3n
1/2+ε

a(f)N(f)
, (10)

where c3 > 0 is some constant independent of n and ε > 0 is
an arbitrarily small constant.

Note that this upper bound is expressed as a function of the
absorption a(f) and the noise psd N(f) while an upper bound
for wireless radio networks depends only on the constant value
α [4].

By using (2) and the regimes a(f) = Ω((1 + ε0)
√

n), we
can also obtain the following condition:

f = Ω(n1/4),

which means that if f scales faster than n1/4, then the result
in (10) is satisfied.

IV. ACHIEVABILITY RESULT

In this section, we show that the considered transmission
scheme, commonly used in wireless radio networks, is order-
optimal in underwater networks. Under a regular network of
unit node density, the conventional MH transmission [1] is
used and its achievable throughput scaling is analyzed to show
its order optimality.

Instead of original (continuous) MH transmissions, a bursty
transmission scheme [4], [15], which uses only a fraction
1/a(f)N(f) of the time for actual transmission with instanta-
neous power a(f)N(f)P per node, is used to simply apply the
analysis for networks with no power limitation to our network
model. With this scheme, the received signal power from the
desired transmitter, the noise psd, and the total interference
power from the set I ⊂ {1, · · · , n} have the same scaling, i.e.,
Θ(N(f)), and the received signal-to-interference-and-noise
ratio (SINR) is kept at Θ(1) under the narrow-band model.

The achievable rate of MH is now shown by quantifying
the amount of interference.

Lemma 4: Suppose that a regular network of unit node
density uses the MH protocol. Then, the total interference
power from other simultaneously transmitting nodes, corre-
sponding to the set I ⊂ {1, · · · , n}, is upper-bounded by
Θ(N(f)), where N(f) denotes the psd of noise ni at receiver
i ∈ {1, · · · , n}.

The proof of this lemma is obtained by introducing a layer-
ing technique for interfering routing cells. Note that the signal
power no longer decays polynomially but rather exponentially
with propagation distance in our network. This implies that
the absorption term a(f) in (1) will play an important role

in determining the performance. It is also seen that the total
interference power does not depend on the spreading factor α.
Using Lemma 4, it is now possible to simply obtain a lower
bound on the capacity scaling in the network, and hence the
following result presents the achievable rates under the MH
protocol.

Theorem 2: In an underwater regular network of unit node
density,

T (n) = Ω
(

n1/2

a(f)N(f)

)

is achievable.
Based on Theorems 1 and 2, when a(f) = Ω

(
(1 + ε0)

√
n
)
,

i.e., f = Ω(n1/4), it is easy to see that the achievable rate and
the upper bound are of the same order up to nε, where ε and ε0
are vanishingly small positive constants. The MH is therefore
order-optimal in regular networks with unit node density
under the above attenuation regimes. We also remark that the
hierarchical cooperation strategy [4] may not be helpful to
improve the achievable throughput due to a long-range MIMO
transmission, which severely degrades performance in highly
power-limited networks.3 Even with the random phase model,
which may enable us to obtain enough degrees-of-freedom
gain, the benefit of randomness cannot be exploited because
of the power limitation.

V. EXTENSION TO RANDOM NETWORKS

In closing, we would like to mention a random network
configuration, where n S–D pairs are uniformly and indepen-
dently distributed on a square. We first discuss an upper bound
for extended networks. A precise upper bound can be obtained
using the binning argument of [4] (refer to Appendix V in [4]
for the details). For analytical convenience, we can assume the
empty zone EL, in which there are no nodes in the network,
consisting of a rectangular slab of width 0 < c̄ < 1

2
√

7e1/4 ,
independent of n, immediately to the right of the centerline
(cut), as done in [15] (see Fig. 2).4 If the network area is then
divided into n squares of unit area, then there are fewer than
log n nodes in each square with high probability regardless
of the channel characteristics. Now we take into account the
network transformation resulting in a regular network with at
most log n and 2 log n nodes, on the left and right, respectively,
at each square vertex except for the empty zone (see Fig. 2).
Then, the nodes in each square are moved together onto one
vertex of the corresponding square. More specifically, under
the cut L, the node displacement is performed in the sense

3In wireless radio networks of unit node density, the hierarchical cooper-
ation provides a near-optimal throughput scaling for the operating regimes
2 < α < 3, where α denotes the path-loss exponent that is greater than
2 [4]. Note that the analysis in [4] is valid under the assumption that α is
kept at the same value on all levels of hierarchy.

4Although this assumption does not hold in our random configuration, it
is shown in [15] that there exists a vertical cut such that there are no nodes
located closer than 0 < c̄ < 1

2
√

7e1/4 on both sides of this cut when we
allow a cut that is not necessarily linear. Such an existence is proved by using
percolation theory [2]. This result can be directly applied to our network model
since it only relies on the node distribution but not the channel characteristics.
Hence, removing the assumption does not cause any change in performance.
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Fig. 2. The node displacement to square vertices, indicated by arrows. The
empty zone EL with width constant c̄ is assumed for simplicity.

of decreasing the Euclidean distance between source node
i ∈ SL and the corresponding destination k ∈ DL, as shown
in Fig. 2, which will provide an upper bound on d

(i)
L in (7).

It is obviously seen that the amount of power transfer under
the transformed regular network is greater than that under
another regular network with at most log n nodes at each
vertex, located at integer lattice positions in a square with area
n. Hence, the upper bound for random networks is boosted by
at least a logarithmic factor of n compared to that of regular
networks discussed in Section III.

Now we turn our attention to showing an achievable
throughput for extended random networks. In this case, the
nearest-neighbor MH protocol [1] can also be utilized since
our network is highly power-limited. Then, the area of each
routing cell needs to scale with 2 log n to guarantee at least
one node in a cell [1], [3].5 Each routing cell operates based
on 9-time division multiple access to avoid causing large
interference to its neighboring cells [1], [3]. For the routing
with continuous MH transmissions (i.e., no burstiness), since
per-hop distance is given by Θ(

√
log n), the received signal

power from the intended transmitter is expressed as

c4P

(log n)α/2a(f)c5
√

log n

for some constants c4 > 0 and c5 ≥ √
2 independent of n,

which thus results in at least a polynomial decrease in the
throughput compared to the regular network case shown in
Section IV (note that this relies on the fact that log(1+x) can
be approximated by x for small x > 0).6 This comes from the
fact that the received signal power tends to be mainly limited
due to exponential attenuation with transmission distance
Θ(

√
log n). Therefore, we may conclude that the existing MH

5When methods from percolation theory are applied to our random net-
work [2], the routing area constructed during the highway phase is a certain
positive constant that is less than 1 and independent of n. The distance in
the draining and delivery phases, corresponding to the first and last hops of
a packet transmission, is nevertheless given by some constant times log n,
thereby limiting performance, especially for the condition a(f) = ω(1).
Hence, using the protocol in [2] indeed does not perform better than the
conventional MH case [1] in random networks.

6In terrestrial radio channels, there is a logarithmic gap in the achievable
scaling laws between regular and random networks [1], [12].

scheme does not satisfy the order optimality under extended
random networks regardless of the attenuation parameter a(f).

VI. CONCLUSION

The attenuation parameter and the capacity scaling laws
have been characterized in a narrow-band channel of under-
water acoustic networks. Provided that the carrier frequency
f scales at arbitrary rates relative to the number n of nodes,
the information-theoretic upper bound and the achievable
throughput were derived as a function of the attenuation
parameter a(f) in extended regular networks. We proved that
the nearest-neighbor MH protocol is order-optimal as long as
the frequency f scales faster than n1/4. Our scaling results
were also extended to the random network scenario, where it
was shown that the conventional MH scheme does not satisfy
the order optimality for all the operating regimes.
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