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Abstract—This paper presents a low-power SoC that performs
EEG acquisition and feature extraction required for contin-
uous detection of seizure onset in epilepsy patients. The SoC
corresponds to one EEG channel, and, depending on the pa-
tient, up to 18 channels may be worn to detect seizures as part
of a chronic treatment system. The SoC integrates an instru-
mentation amplifier, ADC, and digital processor that streams
features-vectors to a central device where seizure detection is
performed via a machine-learning classifier. The instrumen-
tation-amplifier uses chopper-stabilization in a topology that
achieves high input-impedance and rejects large electrode-off-
sets while operating at 1 V; the ADC employs power-gating for
low energy-per-conversion while using static-biasing for com-
parator precision; the EEG feature extraction processor employs
low-power hardware whose parameters are determined through
validation via patient data. The integration of sensing and local
processing lowers system power by 14x by reducing the rate of
wireless EEG data transmission. Feature vectors are derived at a
rate of 0.5 Hz, and the complete one-channel SoC operates from a
1 V supply, consuming 9 J per feature vector.

Index Terms—1/f noise, algorithm design and analysis, ampli-
fiers, biomedical equipment, brain, choppers, digital signal pro-
cessing, electroencephalography, low-noise amplifiers, low-power
electronics.

I. INTRODUCTION

R ECENTLY therapeutic and prosthetic devices have
begun emerging that hold great promise for the treatment

of patients with neurological conditions ranging from epilepsy
[1], Parkinson’s disease [2], narcolepsy [3], depression [4], and
motor impairments [5]. The ability to acquire targeted neuro-
logical information from the brain is an essential requirement
to the advancement of these systems. This implies the need to
sense neural signals but, more critically, to use these in order to
establish correlation with the actual clinical states of interest.
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Brain monitoring thus introduces key challenges for electronic
systems in terms of both instrumentation and information
extraction.

Seizure detection in epilepsy patients is an important appli-
cation that is representative of the challenges. This paper de-
scribes the details of an SoC that performs feature extraction
from an analog EEG channel into the digital domain; the output
is used to detect the onset of seizures by way of a machine-
learning classifier that is trained to patient-specific data. EEG
sensing is targeted so that the system is noninvasive. This im-
plies that microvolt signals must be acquired from electrodes
having very poor output impedance while in the presence of
numerous physiological and environmental interferences (e.g.,
EMG, hum, etc.). Further, for reliable detection, subtle patient-
specific EEG signal correlations must be determined over mul-
tiple channels (up to 18). The following sections start by de-
scribing the opportunity and algorithm approach for patient-spe-
cific seizure detection. Then, the SoC is described from both
the system perspective and the IC implementation perspective.
Finally, IC results are described, followed by a system demon-
stration and conclusions.

II. EPILEPSY AND SEIZURE DETECTION

Epilepsy is a neurological disorder that causes a recurring
abnormal firing in groups of neurons. As a result patients ex-
perience seizures causing loss of coherence/cognition, loss of
motor control, involuntary motion (convulsions), and possibly
even death. Fig. 1 shows PET scan images highlighting a partic-
ular firing pattern that is associated with seizures (ictal period)
in the considered patient. The EEG during a seizure onset is also
shown. Although EEG has the benefit that it is noninvasive, its
correlation with seizures is complicated by the attenuation, 1/f
filtering, and spatial aliasing of the neural field potentials across
the skull and skin. Nonetheless, taking the recording in Fig. 1
as an example, approximately 7.5 sec before the start of clinical
symptoms, a subtle but characteristic change in the EEG can be
observed. If this electrical onset can be detected, an advanced
signal can be generated to warn the patient and caregivers, ac-
tuate a therapeutic stimulator (e.g., [6], [7]), or trigger EEG data
storage for analysis by a neurologist.

Although the critical variances in the electrical onset are
minute and variable from patient to patient, [8] shows that
seizures are stereotypical for a given patient. Machine learning
can thus be used to train a classifier on a patient-by-patient
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Fig. 1. 18-channel EEG showing onset of patient seizure (ictal); electrical onset
occurs 7.5 sec before the clinical onset, which is characterized by muscle re-
flexes causing the large excursion artifacts.

Fig. 2. Seizure detection algorithm employing spectral analysis feature extrac-
tion and SVM classification.

basis, thereby simultaneously improving sensitivity and speci-
ficity of detection. The following subsection briefly describes
the approach and parameters used in this system.

A. Seizure Detection Algorithm

Fig. 2 illustrates the detection algorithm. First, the EEG chan-
nels are processed to extract specific bio-markers that are rele-
vant for seizure detection. Clinical studies have determined that
seizure onset information is contained in the spectral energy dis-
tribution of the patient’s EEG [9]. Accordingly, in this SoC the
spectral energy of each channel is extracted to seven frequency
bins over a two second window in order to form a feature vector.
Up to 18 channels may be used, resulting in a complete feature
vector of up to 126 dimensions.

In order to distinguish between seizure and non-seizure EEG,
machine learning is introduced through the use of a support-
vector machine (SVM) classifier. The classifier must first be
trained by providing it feature vectors that are labeled as cor-
responding to seizure or non-seizure. These are used to estab-
lish an optimal decision boundary between the two cases. Ac-
cordingly, for real-time seizure detection, incoming test feature
vectors are conceptually plotted (as illustrated in Fig. 2) to de-
termine where they lie with respect to the decision boundary.
The SVM radial-basis kernel is used for the classification com-
putation (a description of the kernel can be found in [10]).

The algorithm was validated through tests on 536 hours
of data over 16 patients. Ref. [8] shows that the approach of
patient-specific learning simultaneously improves sensitivity,
specificity, and latency (the values achieved are 93%, 0.3 0.7
false alarms/hour, and 6.7 3 seconds, respectively).

III. CONTINUOUS MONITORING AND DETECTION APPROACH

The physical partitioning and form-factor of the system have
important implications to patient usability, power consumption,
and robustness. For instance, EEG sensing must be distributed
around the scalp in order to acquire spatial channels, but SVM
classification (over the multidimensional feature vector) must
be centralized. As a result, the intermediate instrumentation,
computation, and communication tradeoffs determine the ap-
propriate system topology. Further, a critical application con-
sideration is that, for chronic seizure detection, no cables can
originate from the scalp, since these pose a strangulation hazard
in the case where the patient begins convulsing. Accordingly,
some form of wireless transmission from the scalp is essential.

For sensing robustness, the acquisition circuitry (e.g., instru-
mentation amplifier and ADC) is kept as close to the electrodes
as possible to mitigate EMI and mechanical disturbance on
wires carrying the microvolt EEG signals. As a result, the in-
strumentation amplifier (and, to a lesser extent, also the ADC)
must be distributed along with each electrode.

The digitized EEG recordings can be robustly transmitted
(i.e., wireless EEG) for central processing. However, local pro-
cessing is beneficial for minimizing communication cost. In
Table I, the system power for wireless EEG (where both fea-
ture vector extraction and SVM classification are performed re-
motely) is compared to that with local processing (where feature
vector extraction is performed locally and only SVM classifi-
cation is performed remotely). The power numbers are based
on actual measurements of the hardware prototype assuming
18 EEG channels. The radio used is a commercially available
low-power transmitter, ChipCon CC2550 [11], and its power
consumption is for duty-cycled operation at the required data-
rates (including idle, start-up, and active transmission modes).
By performing local processing to extract the feature vectors for
transmission, the radio data-rate is reduced by a factor of over 40
compared to complete wireless EEG transmission. Through this
computation-versus-communication tradeoff, local processing
reduces the total system power on the scalp by a factor of 14 for
the radio considered. Although other custom ultra-low-power
radios have been reported [12], [13], their use in this system re-
quires consideration of synchronization overhead, which leads
to additional power consumption.

Fig. 3 shows the block diagram of the SoC. It integrates an
instrumentation amplifier (I-amp), ADC, feature extraction pro-
cessor, and low-power parallel–serial interface for feature vector
streaming. Each SoC outputs a one-channel feature vector, and
for multiple channels, all node outputs are wired to a central
radio (also on the scalp) so that the feature vectors can be con-
catenated and transmitted.

In this system, SVM classification could also have been
performed locally. However, without specialized hardware,
the SVM computation significantly raises the system power
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TABLE I
POWER COMPARISON BASED ON HARDWARE MEASUREMENTS OF WIRELESS EEG AND LOCAL FEATURE EXTRACTION SYSTEMS

Fig. 3. SoC block diagram. Each chip corresponds to one EEG channel and is placed near the associated electrode.

consumption on the scalp, where battery size and weight lim-
itations are the most severe. Although this further reduces the
communication load to a single classification result, additional
data-rate reduction is not essential since the radio power no
longer dominates.

Promising computational approximations for low-power
SVM classification are currently being investigated [14]. Such
approximations can also be leveraged in this system, since they
can be applied to the spectral feature vectors.

IV. FEATURE-EXTRACTION SOC

The circuit and architecture details of the major SoC compo-
nents are described in the following sections.

A. Instrumentation Amplifier

The I-amp must amplify 10–50 V EEG signals from the pas-
sive scalp electrodes, and in doing so, faces the instrumenta-
tion challenges summarized in Fig. 4. First among these is elec-
trode interfacing; Ag/AgCl electrodes and electrolyte gels are
commonly used to contact the scalp since these are inexpensive
and commercially available. The typical circuit model used for
such electrodes is shown. The electrode offset voltage (EOV)
can be large (i.e., 10–100 mV), and it arises from charge ac-
cumulation due to chemical interaction between the metal and
gel. , which comes about from conduction through the elec-
trolyte, may be on the order of 2 k , while and , which
come about from the skin, can be on the order of 2 M and
50 nF, respectively [15]. To avoid severe signal attenuation, the
input impedance of the I-amp must have much larger resistive
component and much smaller capacitive component than this.
Second, common-mode rejection is critical to 1) avoid coupling
to environmental EMI and 2) avoid interference from extraneous
electrical activity on the skin (e.g., EMG, baseline EEG, etc.).
Third, 1/f noise falls within the EEG signal band, and it must be
avoided through chopper stabilization.

Fig. 4. Instrumentation challenges with EEG sensing.

Fig. 5. Instrumentation amplifier block diagram.

The architecture of the I-amp is shown in Fig. 5. Its stages
include a chopper-stabilized low-noise amplifier (CS-LNA), a
low-pass filter, and a single–differential (S-D) converter to drive
the ADC. These provide a total gain of approximately 4000.

1) Chopper-Stabilized LNA: Having stringent noise and
electrode interfacing requirements, the CS-LNA is the most
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Fig. 6. Chopper stabilized LNA (a) core topology and (b) complete topology with � cancelling servo-loop (� and � are off-chip).

critical stage of the I-amp. Chopper stabilization is a popular
and important approach for mitigating 1/f noise, and sev-
eral topologies employing it effectively towards low-power
bio-potential sensing have recently been reported [16], [17]. A
summary of these is provided below, followed by discussion
of the motivation, circuit design, and analysis for the topology
used in this I-amp.

State-of-the-Art Bio-Sensing Amplifiers: The amplifier
in [16] uses a topology where the electrode signal is sensed
through input capacitors. The use of input capacitors allows
EOV cancellation through a servo-loop that integrates the
low-frequency error at the amplifier output and feeds-back
a corrective charge following the input capacitors. In the re-
sulting topology, very few active devices strongly impact the
amplifier noise, which is thus set primarily by the input pair
of the core op-amp. In this topology, however, the amplifier
performs chopper modulation before the large input capacitors.
This leads to a switch-capacitor conductance that reduces the
amplifier’s input resistance beyond the level desired for scalp
electrodes.

To achieve very high input impedance, the amplifier in [17]
uses a current-feedback topology. Here, EOV is cancelled
through a servo-loop that feeds-back a corrective current using
transconductors. The noise of the transconductors, however,
contributes to the overall amplifier noise, thus affecting the
noise efficiency somewhat.

An additional consideration is that in applications where large
EOV (e.g., 100 mV) must be tolerated, the approach of active
cancellation through servo-loops limits the minimum supply
voltage of the amplifier. As a result, power reduction through

scaling is restricted.
Finally, alternate topologies that do not rely on chopper sta-

bilization have also been effective for bio-sensing applications
[18], [19]. These designs, however, are susceptible to 1/f and
popcorn noise sources [16].

Proposed CS-LNA Topology: In order to achieve high
input impedance, minimum noise, and low-voltage operation,
the CS-LNA topology shown in Fig. 6(a) is used. The gain is
set by the ratio of the input capacitors and the feedback
capacitors . The high-pass cutoff, which is designed to be

Fig. 7. Parasitic switched-capacitor resistance �� � introduced by chopper
modulator.

less than 1 Hz in order to reject EOV while passing low-fre-
quency EEG, is set by the large feedback resistor (along
with ).

An important choice is to perform input chopper-modulation
at the op-amp virtual ground node. The first benefit of this is
that it allows the DC offset of the electrodes to be truly decou-
pled by way of the biasing resistors . As a result, very
large EOV can be rejected passively and does not have to be
processed by the amplifier. Accordingly, EOV imposes no lim-
itation on the amplifier supply voltage, which can thus be re-
duced to 1 V to improve power efficiency and has been tested
down to 750 mV. The second benefit is that the input modu-
lator does not load the input electrodes. The input modulator
does combine with the op-amp capacitance to introduce a para-
sitic switched-capacitor resistance , as shown in Fig. 7;
however, at virtual ground the electrode signal does not appear
as a voltage swing across the modulator. Hence, the amplifier
has very large input-resistance from the perspective of the input
electrodes.

One issue with input modulation at the virtual ground node
is that the parasitic switched-capacitor resistance of the modu-
lator introduces a current path between the and
nodes in Fig. 6(a). Any offset at the op-amp input passes through
this, giving rise to an offset current that can saturate
the amplifier through the large feedback resistor . In par-
ticular, for the op-amp device sizes used, the effective value of

is only 1 G (which is much less than ). Accord-
ingly, to cancel the offset-current, a G -C servo-loop is used
as shown in Fig. 6(b) in order to integrate the amplifier’s output
error and provide the offset current to the input modulator. It is
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Fig. 8. Switched-capacitor resistors for implementation of large resistances
using manufacturable capacitors.

Fig. 9. Two-stage op-amp with embedded chopper-modulators used in
CS-LNA.

worth noting that although the servo-loop provides a high-pass
characteristic, is still required in order to cancel a zero in
the feedback path which is introduced as a result of the parallel
G -C and feedback branches.

An important drawback to performing input modulation at the
op-amp virtual ground node is degraded common-mode rejec-
tion ratio (CMRR). Mismatch in the input capacitors can convert
common-mode input signals to differential-mode noise. Chop-
ping before the input capacitors (as in [16]) mitigates the effect
of their mismatch [20]. Hence, in this design CMRR is compro-
mised in favor of higher input-impedance and low-voltage oper-
ation. As described in Section IV-C, 60 Hz interference, which
is the greatest concern with regards to CMRR, falls outside the
band required for seizure detection. In this application 60 dB of
CMRR is targeted, and Section V-A shows that EEG signals are
reliably acquired.

The resistors in the CS-LNA are implemented using a modi-
fied switched-capacitor topology shown in Fig. 8. Through the
use of series-to-parallel charge sharing between the internal
stages, the charge transfer per cycle is reduced by a factor of ten.
As a result, large resistances can be realized while ensuring high
switching frequency and sufficiently large capacitors,
which are required for improved manufacturability. SpectreRF
is used to verify that noise from the switched-capacitor circuits
is acceptable (see analysis below).

The op-amp used in the CS-LNA is shown in Fig. 9. It is com-
posed of two gain stages with Miller compensation, and similar
to the design in [16], output demodulation is performed before
the dominant pole (at node A). As a result, chopper stabilization
does not limit the required bandwidth. A third current-buffer
stage is also included to reliably drive resistive loads.

Fig. 6(b) shows that the CS-LNA virtual ground node is bi-
ased to midrail at 0.5 V; this helps achieve the biasing required
in the op-amp devices. Although is low, the transistor
threshold voltages are such that all switches in the stage (im-
plemented as CMOS transmission gates) can be minimum
sized and still reliably pass their required signals levels at the
switching speeds of interest.

CS-LNA Analysis: To simplify the analysis of the CS-LNA,
Fig. 10(a) shows a single-ended representation where noise
sources from each major element have been included. Based on
this, an equivalent block diagram can be derived as shown in
frame (A) of Fig. 10(b). In order to simplify this block diagram,
note that

(1)

In the CS-LNA implementation, however,
(where is the parasitic modulator conductance)

and . Hence, can be approximated as

(2)

where

(3)

The chopping waveform is not given the designation of
a voltage to highlight the fact that switch-based choppers do
not perform analog multiplication, but rather commutation (i.e.,
they reverse the polarity of the input signal periodically). Equiv-
alently, is a square-wave signal with values of or
and a mean value of zero. As a result, . We can ex-
ploit this characteristic to dispose of the choppers in frame (A)
of Fig. 10(b), thereby simplifying the analysis. First note that

(4)

which can be rewritten as

(5)

This means that the block diagram in frame (B) can be replaced
with that in frame (C). The two choppers in (C) can then be
eliminated since their product is unity. To further simplify the
diagram, the summer is moved to the left of . To
maintain equivalence, is multiplied by . Finally,
the two summers are merged and the final block diagram for
the CS-LNA is shown in frame (D). The transfer function of the
operational amplifier, , is modeled as having large DC gain

and a single, dominant pole at . Some of the admittances
are rewritten as poles and zeros with the relevant frequencies
(i.e., , and ) defined in frame (D).

Now, to analyze the CS-LNA, the loop gain is readily deter-
mined to be

(6)
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Fig. 10. Equivalent circuit model for CS-LNA (a) shown with noise sources and (b) shown in block-diagram form.

For stability and performance reasons, the component values
are chosen such that . Since the loop
gain is much larger than unity in the frequency range of interest,
the closed-loop response of the feedback loop can be accurately
approximated as the inverse of the feedback factor:

(7)

This now allows us to easily determine the transfer function
from the input signal and each noise source to the output. For
instance, the signal transfer function is

(8)

which has a high-pass frequency response with pass-band gain
of as desired.

For noise analysis of the CS-LNA, all of the resistors (i.e.,
, and ) have similar transfer functions, only

scaled by their respective conductances. As a result, based on
the CS-LNA component values, the dominating resistor noise
comes from . Its transfer function is given by

(9)

Thanks to the feedback G -C servo-loop, the zero at DC elim-
inates any DC offset that would otherwise be amplified by the
ratio . The noise transfer function can be referred
to the input by dividing (9) by (8):

(10)

Accordingly, the input-referred noise spectral density due to
can be written as

(11)

Although is a switched-capacitor resistance, its noise
spectral density can be modeled as white for frequencies well
below the switching frequency and has approximately the same
value as the noise for a normal resistor of equal value: namely

(for single-sided spectra) [21]. Note that
the noise has a characteristic and its magnitude can only
be reduced by increasing or . Since is a par-
asitic resistance caused by the chopper-modulator, its value is
somewhat fixed (approximately 1 G in this design). As a result,

must be increased as much as possible without excessively
loading the input electrode. Since the electrode impedance has
a capacitive value greater than 50 nF [15], a conservative value
for is 1 nF. Using (11), the input noise PSD is 600 nV/ Hz
at 1 Hz, and this decreases to 60 nV/ Hz at 10 Hz.

The two remaining noise sources are and . The input
referred noise of the operational amplifier, , is particularly
important as it is intended to be the dominant source for most
of the signal band. Its transfer function is given by

(12)

which can be referred to the input by dividing it by (8), resulting
in

(13)

Having dealt with 1/f noise through chopper-stabilization, the
noise is modeled as being white. The pole at the origin in
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Fig. 11. Implementations for (a) low-pass filter and (b) single–differential con-
verter.

(13), however, amplifies the noise for frequencies below
and shapes it as . To minimize this effect, component values
are chosen such that is smaller than most of the frequency
band of interest.

Using similar noise analysis, the input-referred noise transfer
function for is given by

(14)

The noise contribution from is small since both and
are below the band of interest, and since .

2) Low-Pass Filter and Single–Differential Converter: The
low-pass filter and S-D converter have a much smaller impact
than the CS-LNA on the noise and instrumentation issues.
Together, their power is approximately 20% of the total I-amp
power. The low-pass filter provides two-pole roll-off near
200 Hz and a gain of 20 dB. Its implementation is shown in
Fig. 11(a), where the OTA uses a standard two-stage topology.

The S-D converter provides a total differential gain of approx-
imately 12 dB, and it has been designed to drive the capacitive
sample-and-hold of the ADC. Its implementation is shown in
Fig. 11(b), where the OTAs use a differential input stage and a
current-buffer output stage to drive the resistors shown.

B. ADC

Based on simulation experiments of the detection system (see
Section IV-C), it is determined that detection improves as the
resolution of EEG samples is increased up to at least 10 bits.
The ADC used in the system is thus a 12-bit successive approx-
imation register converter with an ENOB of 10.55 bits. It uses
the 6-bit main-DAC and 6-bit sub-DAC architecture shown in
Fig. 12. Detailed design and analysis of the ADC is presented
in [22]. Although the maximum conversion rate is 100 kS/s, it
operates at only 600 S/s in this system. An important feature of
the ADC for this application is that it maintains its energy per
conversion down to very low speeds (i.e., 100 S/s). Although
static biasing is required in the comparator pre-amplifiers (to
limit device hysteresis from large bias swings [23]), controlled
power-gating (through the SLEEP signal) ensures that the static
biasing remains on for only the minimum time required by the
conversion.

Fig. 12. 12-bit SAR ADC block diagram.

Like the I-amp, the ADC operates at 1 V. It is fully differ-
ential, which helps achieve 12-bit dynamic range for the given
noise floor and also provides power-supply noise rejection,
since supply noise originating from capacitor array switching
is an important concern.

C. Feature Extraction Processor

The feature extraction processor derives the spectral energy
distribution of the input EEG channel. Due to the wide range of
approaches and parameters associated with spectral analysis, it
is important to understand the key tradeoffs affecting seizure de-
tection. Clinical work in [9] has shown that the EEG band from
0–20 Hz is relevant for seizure detection. Since implementation
and computation complexity are also important concerns in this
low-power integrated system, the precise manner in which the
band should be analyzed depends on how the detector performs
as the processor’s implementation parameters are eased.

The critical detector metrics are sensitivity, specificity, and
latency. With seizure detection performed via learning-based
SVM classification, it is difficult to analytically determine the
precise effect on these metrics that the feature extraction imple-
mentation parameters have. Accordingly, in order to ascertain
how the processor complexity can be minimized, experiments
were performed to evaluate detector performance with respect
to the processor parameters. As an example, Fig. 13 shows how
the sensitivity, specificity, and latency are affected when the res-
olution of the spectral energy distribution is scaled from two
bins to eight bins (experiments are based on 1117 hours of data
from 30 patients). For instance, to achieve a sensitivity of 90%,
at least seven bins are required. Fig. 13 also shows a plot of how
the number of support vectors is affected; the number of sup-
port vectors represents the SVM classification complexity and
linearly scales the energy of the radial-basis kernel computation;
therefore, in the complete detection system, it affects the energy
of the device used to perform classification. The final processor
parameter values that are targeted based on this experimentation
are specified in Table II, and they pertain to the modulated filter
bank implementation described below.

1) Spectral Analysis Implementation: Fig. 14 shows the
block diagram of the signal processor used to perform spectral
analysis and feature vector extraction. It consists of a bank of
seven modulated bandpass filters (BPF1-7) that analyze the
band from 0–20 Hz. Each of the modulated filters is followed
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Fig. 13. Experimentation of detector performance while scaling feature extractor spectral bin resolution (each point is based on 1117 hours of data across 30
patients).

Fig. 14. Block diagram of feature extraction processor.

Fig. 15. Specifications of modulated bandpass filters.

TABLE II
SPECIFICATIONS FOR FEATURE EXTRACTOR FILTER BANK

by a magnitude summation, whose output is used to represent
the spectral energy of the bin. The spectral energies for each
bin are represented by a 16-bit number, and they are com-
puted over a two-second window. The seven bin energies are
then provided to an output interface which is responsible for
serially outputting the resulting 112-bit feature vector for the
one-channel SoC.

As mentioned, the ADC samples the EEG at a rate of 600 S/s,
providing some oversampling in order to tolerate aliasing in the
seizure band due to non-idealities in the anti-aliasing filtering

of the I-amp. Since the analysis bandwidth of interest is much
smaller, a decimation filter provides down-sampling by 8 pre-
ceding the filter bank in order to ease the specifications of the
modulated filters. Using this approach, the final filter orders
are 48, for the decimation filter, and 46 for the modulated fil-
ters, which have the specifications illustrated in Fig. 15. Both
the decimation and modulated filters are Type-I FIR. The re-
sulting impulse responses are symmetric, allowing the coeffi-
cient multiplications to be shared [24]. As a result, only 24 and
23 multiply–accumulate operations are required for the respec-
tive filters. Finally, during typical system operation the modu-
lated filters need to operate at a frequency of only 75 Hz in order
to process input samples to the decimation filter at the rate of
600 Hz. At a supply voltage of 1 V, the modulated filters can,
however, operate up to a frequency of 50 kHz.

As an alternative to the modulated filter-bank, FFT is also
a possible implementation for spectral analysis. However, for
modest decimation filter complexity, the analysis bandwidth is
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Fig. 16. Die photograph of prototype SoC.

TABLE III
SOC PERFORMANCE SUMMARY

still considerably wider than the seizure band, and modulated
filters allow selective analysis in the low-frequency band of
interest.

V. SOC TEST RESULTS

The EEG acquisition and seizure detection SoC is imple-
mented in a 0.18 m CMOS process with five-metal–two-poly
(5M2P) layers [25]. The choice of technology among the
options available was driven primarily by the need for low
leakage and the need for poly–poly capacitors, which are re-
quired by the ADC and I-amp. A die photograph of the proto-
type IC is shown in Fig. 16. The entire device operates from
a single 1 V supply. A performance summary of the SoC is
provided in Table III.

The I-amp has an effective area of approximately 0.30 mm .
The power consumption of the CS-LNA, which is the most
critical stage is, 3.5 W. Its CMRR is 60 dB, and its inte-
grated noise over a 100 Hz bandwidth is 1.3 V . Fig. 17(a)
shows the I-amp transfer-function measured at the output of
the low-pass filter stage, where a gain of 60 dB is observed.
Fig. 17(b) shows the input-referred noise measured at the output
of the low-pass filter stage, where an input-referred noise power

spectral density (PSD) of approximately 130 nV/ Hz is ob-
served in the EEG signal band. Fig. 17(c) shows a comparison
of the I-amp with previously reported designs.

Although the ADC samples at 600 S/s in this system, it
achieves a maximum sampling rate of 100 kS/s at a power
consumption of 25 W. The resulting energy/conversion is
250 pJ (maintained down to very low sampling rates due to
power-gated duty cycling), and the SNDR (with a 50 kHz input)
is 65.3 dB (10.55 ENOB). Detailed performance measurements
are provided in [22] along with the FOM comparison.

The energy per output vector of the feature extraction pro-
cessor is 234 nJ and it derives 112-bit output vectors at a rate of
0.5 Hz. The overall energy of the one-channel SoC is approxi-
mately 9 J per output vector.

A. EEG Acquisition

Fig. 18(a) shows actual EEG recorded using the on-chip
I-amp and ADC without any post-processing. For sensing,
Ag/AgCl electrodes are used along with electrolyte gel. A
ground connection is provided between the SoC and the
depicted ground location on the scalp. Differential sensing
is performed through a recording electrode and a reference
electrode, which is located on the scalp midline. The first
waveform corresponds to recordings from the frontal position
location (FP1-REF). The large periodic excursions correspond
to eye-blinks by the subject. The second two waveforms corre-
spond to recordings from the occipital location (O1-REF). In
the first case, the subject closes his eyes to enter a relaxed state,
evoking the alpha wave with a characteristic 10 Hz rhythm. In
the second case, the subject opens his eyes, and is restimulated
by the environment, abolishing the alpha wave. Fig. 18(b) shows
an FFT of the occipital recordings, highlighting the 8–12 Hz
activity of the alpha wave during the relaxed, eyes-closed state.

VI. EEG CLASSIFICATION SYSTEM DEMONSTRATION

Plans exist to employ the SoC in patient tests both for patient
monitoring/alert-generation and for closed-loop actuation of a
therapeutic vagus nerve stimulator [6]. Before patient testing,
however, system demonstration of the SoC is performed through
real-time EEG sensing, digitization, feature vector extraction,
and feature vector classification.

For the demonstration, a one-channel system is used to sense
EEG from the occipital electrode location, and the SVM is
trained to detect the relaxed eyes-closed state characterized
by the presence of the alpha wave. Fig. 19(a) shows a block
diagram of the setup. The SVM classification computation has
been implemented on several processor platforms including
low-power DSP (e.g., MSP430) and mobile laptop device (for
the purposes of benchtop testing and demonstration). Detection
latency is an important metric that is primarily limited by
feature extraction; the importance of low-frequency (e.g., 1 Hz)
EEG content in seizure detection implies the need for long
window times for spectral analysis. For instance, in this system
a window length of 2 seconds is used.

For the demonstration, training is first performed by pro-
viding the SVM with ten feature vectors (i.e., five eyes-closed
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Fig. 17. Instrumentation amplifier measurement results: (a) gain transfer function (at low-pass filter output), (b) input-referred noise PSD, and (3) comparison
with reported designs.

Fig. 18. Frontal-position and occipital EEG recordings using on-chip I-amp and ADC in (a) time-domain and (b) frequency domain (occipital recordings).

and five eyes-opened), requiring 20 sec of subject monitoring.
During real-time detection, the subject periodically opens and
closes his eyes to enter and exit the relaxed state, and the SoC
continuously senses the EEG and generates test feature vectors
that are transmitted to an SVM for alpha classification.

Fig. 19(b) shows a segment of the demonstration. The first
waveform corresponds to the ADC output, showing the EEG
annotated with the relaxed eyes-closed and eyes-opened states.
The second waveform corresponds to the output of the SVM

classification. All relaxed eyes-closed states are correctly de-
tected with less than 2.5 sec latency during a five-minute test
run.

VII. CONCLUSION

This paper discusses the rationale, design, and results for an
SoC performing continuous EEG acquisition and feature extrac-
tion which is required for a chronic seizure detection system for
epilepsy patients. An important focus of this work is processing
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Fig. 19. One-channel system demonstration of EEG acquisition, digitization, feature vector extraction, and classification: (a) setup block-diagram and (b) mea-
sured detection waveforms.

of the raw bio-potentials to extract physiologically important in-
formation and represent this as a concise feature vector. Patient
idiosyncrasies and the presence of numerous complex back-
ground processes motivates the need to apply machine learning
on the feature vectors on a patient-by-patient basis in order to
achieve high sensitivity, specificity, and latency of the detection.

The need to process a large amount of highly distributed data
in order to extract specific subtle variances applies generally in
brain monitoring applications. Since processing and communi-
cation of the entire data through the system imposes excessive
power cost, ultra-low-power local processing is critical to make
the overall system viable.

Finally, the instrumentation needs for low-power EEG acqui-
sition strongly affect the total power. As a result, it is important
to use targeted analog processing where possible to avoid the
limitations imposed by electrode, environment, and physiolog-
ical disturbances.

The presented SoC performs EEG acquisition, digitization,
and feature vector extraction. Each SoC corresponds to one elec-
trode channel, and up to 18 channels may be required depending
on the patient. Each SoC operates from a 1 V supply and con-
sumes 9 J to derive a feature vector. Feature vectors are derived
at a rate of 0.5 Hz.
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